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Abstract: This paper presents a method to identify causal interactions between two time series. The
largest eigenvalue follows a Tracy-Widom distribution, derived from a Coulomb gas model. This defines
causal interactions as the pushing and pulling of the gas, measurable by the variability of the largest
eigenvalue’s explanatory power. The hypothesis that this setup applies to time series interactions was
validated, with causality inferred from time lags. The standard deviation of the largest eigenvalue’s
explanatory power in lagged correlation matrices indicated the probability of causal interaction between
time series. Contrasting with traditional methods that rely on forecasting or window-based parametric
controls, this approach offers a novel definition of causality based on dynamic monitoring of tail events.
Experimental validation with controlled trials and historical data shows that this method outperforms
Granger’s causality test in detecting structural changes in time series. Applications to stock returns and
financial market data show the indicator’s predictive capabilities regarding average stock return and
realized volatility. Further validation with brokerage data confirms its effectiveness in inferring causal
relationships in liquidity flows, highlighting its potential for market and liquidity risk management.
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1. Introduction

Time series correlations are widely used dependence metrics in finance and economics. The problem
is that correlations are usually spurious, do not represent dependence for non-normal distributions, and
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heavily depend on the scale and frequency of the time series. Correlations are statistical measures that
depend on the chosen time-window as point estimates, making them useless for dynamic dependencies
and change point detection (Janse et al., 2021; Rodriguez Dominguez and Stynes, 2022). To avoid these
pitfalls, statistical techniques such as copulas, entropy-based measures, network graphs, and parametric
distance metrics have been applied to model dependence (Marti et al., 2021). These statistical methods,
along with their flaws, are involved in finance and insurance for risk management, portfolio optimization,
alpha generation, factor investing, credit lending, and more, with trillions of dollars depending on them
every year. Causality could be one solution for measuring true dependencies, but at the cost of being
difficult to measure and identify. Granger’s economics Nobel Prize-winning causality test (Granger,
1969) detects probabilistic causal relationships between time series using control variables. However,
although it provides information about forecasting capabilities, it provides nothing about true causal
interactions. The fact that it still remains one of the benchmarks for time series causal identification
evidences the need for a statistical method using time series data that could detect causal interactions.

Causal relationships are based on interactions, which if strong enough, can modify the structure of
the time series model. This work focuses on physical experiments with a clear definition for causal
interactions and mapping statistical properties to time series causal identification. The Coulomb-Dyson
gas of charges is a log-gas (or a two-dimensional Coulomb gas) consisting of repelling particles on
the line in a global confining potential. An interaction can be defined as compressing the whole gas,
which is equivalent to forcing the largest eigenvalue of a random matrix representing the gas inside the
allowed band given by the Tracy-Widom distribution (Tracy and Harold, 2002). This is the distribution
for the large deviations of the first eigenvalue in a random matrix. The large deviation function is the
excess free energy of the gas of eigenvalues forced to stay between two hard walls (Cunden et al.,
2018). Greater values in the first eigenvalue in a variogram can explain a third-phase gas transition
pulled-to-pushed-type interaction. The first premise of this work is that a greater number of interactions
implies greater probability of a true interaction. Finally, this system of a Coulomb-Dyson gas being
pulled and compressed by two walls can be equivalent to a system of two pairs of cause-and-effect time
series candidates. In this case, the large deviations of the first eigenvalue are analyzed for different
lagged 2 × 2 correlation matrices, with the lag applied to the causal candidate time series. The second
premise of this work is that the interaction, detected in nature and by homology to the Coulomb-Dyson
gas compression, must be causal due to the direction of time imposed by the lagged correlation matrices.
Therefore, the interaction that is true with highest probability and in the direction of time must be causal.
The standard deviation of the explanatory power of the first eigenvalue for all lags is computed as a
causal interactions indicator. Large values of this indicator in a particular point in time means a high
probability of a causal interaction, the interaction being measured by the extreme deviations of the first
eigenvalue and the causality enforced by the direction of time in the lagged correlation matrices.

Based on these previous aspects, the main contributions proposed in this paper follow:

• A new method to detect causal interactions between two time series using random matrix theory
(RMT) and eigenvalues’ distributions being defined from physical experiments is presented, in the
form of an indicator.
• To the best of the authors’ knowledge, there is no causal identification method that focuses on

random matrix theory (RMT) and eigenvalues’ distributions. Some work uses RMT to search
for structural changes in financial markets (Potters et al., 2005; Bouchaud and Potters, 2009). It
differs from this paper in that they do not mention the variability of the variogram of the largest
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eigenvalue, but focus on its tendency and with no link to causal interactions. Whereas this work
uses a different indicator consisting of the standard deviation of the variogram measured, in this
case, by the explanatory power of the largest eigenvalue and not the eigenvalue itself to capture
extreme variations, which maximize the probability of having a causal interaction.
• The method is able to capture structural changes in time series more dynamically than traditional

econometric methods. It is also able to detect causal interactions in a pair of time series. In the
experiments, the method is able to identify the causal variable from a pool of more than one
thousand time series candidates. The same output is found with synthetic generated data.
• The indicator is relatively simple, easy for model validation of financial institutions and regulators,

and can be used, as shown in the experiments, for risk management in flow business, including
but not limited to liquidity risk in banks and brokerage units, foreign exchange flows in the global
economy (Mensi et al., 2021; Arkol and Azimli, 2024), order-book management (Brown et al.,
1997) and high frequency trading (Samsul et al., 2019). It is also useful for market risk analysis,
regime-switch detection (Balcilar et al., 2015), structural breaks in the market (Fenghua et al.,
2017) and forecasting (Li et al., 2021).
• Finally, to the best of the authors’ knowledge, there is no method that connects causality from an

experimental physics point of view with causal interactions between time series (Edinburgh et
al., 2021).

The paper is organized as follows: in Section 2, a revision of the state-of-the-art method is presented;
in Section 3, the Coulomb-Gas experimental setup analogy for causal interactions is described; in
Section 4, the methodology for the indicator is shown; in Section 5, experiments are presented; and in
Section 6, some conclusions are made and future work suggested.

2. Literature review

The main issue with applying causality to finance and economics is that it has many varied in-
terpretations by authors in different fields (Pearl, 2009; Karimi and Hamilton, 2011; Yarlagadda and
Hershey, 2003; Kosuke et al., 2010). A Nobel Prize-winning causal time series identification approach
is the Granger causality test (Granger, 1969), which is not focused on empirical causality, and just
considers linear prediction and time-lagged dependence between two time series. Despite being one
of the most applied methods in history, it cannot identify true causal relationships as it does not take
unknown confounders into account (Cochrane, 1997). The Granger test has been designed for the time
and frequency domains, but the same issues persist (Breitung and Candelon, 2006). Causality has
been studied with different frameworks, which are sometimes difficult to connect in quantum physics,
statistical physics, and relativity theory (Brukner, 2014; Sklar, 2009; Havas, 1969). This work focuses
on the concept of causality from statistical physics.

Causality is defined as the requirement that two points in space-time cannot communicate with each
other if they are separated by a spacelike distance (Rosenfelder, 1989). Therefore causality implies
interactions. Random matrix theory has been applied for detecting structural changes in financial market
dynamics, in particular the variogram of the largest eigenvalue (Potters et al., 2005; Bouchaud and
Potters, 2009). An expression for the variogram of the top eigenvalue is obtained in (Potters et al., 2005):

|λt+τ−λt|
2 = 2ϵ

(
1 − exp (−ϵ τ)

)
(1)
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This result is expected when a ”true” dynamical evolution of the structure of the matrix is absent.
These results assume that the correlation matrix is time independent. Any significant deviation from
(1) would indicate a genuine evolution of the market structure. Figure 1 shows a real evolution of the
strength of the average correlation with time. Finally, the non-stationary effects in financial markets are
investigated by studying the dynamics of the top eigenvalue and eigenvector. If the true top eigenvector
(or eigenvalue) did not evolve in time, the variograms in (1) should converge to their asymptotic
limits. If the correlations’ structure changes over extended periods of time, which would lead to an
increased asymptotic value for the variograms including a long time tail. The asymptotic value of
these variograms is furthermore much larger than the theoretical one. This non-stationarity of financial
markets is expected and dangerous for out-of-sample risk management (Potters et al., 2005). In Figure 1,
the variograms display the existence of genuine fluctuations of the market mode on a time scale of 100
days, superimposed to the initial noise-dominated regime. These fluctuations, when becoming extreme,
can be captured by the indicator presented in this paper and related to causal interactions.

Figure 1. Variogram of the top eigenvector from (Potters et al., 2005).

The Tracy-Widom distribution of the largest eigenvalue for extreme values has been studied for
random dynamical systems (Majumdar and Schehr, 2014). In particular, the Coulomb gas analogy,
which is used in this work for causal interactions in pairs of time series, has been applied before to
derive the deviation functions describing the tails of the distribution of the largest eigenvalue (Hastings
and McLeod, 1980; Nadal and Majumdar, 2011).

3. Coulomb gas analogy for detecting causal interactions

Random matrix theory analyzes the eigenvalue spectra of random matrices, and in particular the
Tracy-Widom region is focused on the edges. The distribution of eigenvalues of a N × N Hermitian
matrix, with independent and identically distributed (i.i.d.) upper triangular entries, converges in
probability as N → ∞ to the Wigner semicircle distribution. The probability distribution of the largest
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eigenvalue, λmax, is more difficult to estimate. It has been shown that the standard deviation of this
distribution scales to N−1/6. Tracy-Widom revealed that for large N, the distribution of a random variable
χ is independent of N: P(χ ≤ x) = Fβ(x), which is called the Tracy-Widom distribution and depends on
β. For β = 2:

F2 (x) = exp
(
−

∫ ∞

x
(z − x) q2 (z)dz

)
(2)

Here, q(x) satisfies the special case of α = 0 of the Painleve II equation:

q′′(z) = zq(z) + 2q3(z) + α (3)

For α = 0, the solution only requires the right-tail boundary condition for its unique specification:
q(z) ∼ Ai(x) as z→ ∞. Ai is the Airy function

Ai(x) =
1
π

∫ ∞

0
cos

(
t3

3
+ xt

)
dt (4)

which satisfies the differential equation Ai′′(z) − zAi(z) = 0 and vanishes like the following expression:
Ai(z) ∼ (1/2

√
πz1/4) exp−(2/3)z3/2

as z→ ∞ (Nadal and Majumdar, 2011; Hastings and McLeod, 1980).
For large deviations of the largest eigenvalue, the probability of λmax for large N is (Nadal and Majumdar,
2011):

P(λmax = t) ≈


exp

{
−βN2ψ−

(
t
√

N

)
+ . . .

}
f or t <

√
2N and

∣∣∣t − √2N
∣∣∣ ≈ O(

√
N)

1
aβN−1/6 F′β

(
t−
√

2N
aβN−1/6

)
f or

∣∣∣t − √2N
∣∣∣ ≈ O(N−1/6)

exp
{
−βNψ+

(
t
√

N

)
+ . . .

}
f or t >

√
2N and

∣∣∣t − √2N
∣∣∣ ≈ O(

√
N)

(5)

F′β is the Tracy–Widom distribution, ψ− and ψ+ are the left and right large deviation functions describing
the tails of the distribution of λmax, and both were computed by simple physical methods exploiting the
Coulomb gas analogy (Hastings and McLeod, 1980).

The physics of the left and right tail are very different. In the case of the left tail, the semi-circular
charge density of the Coulomb gas is pushed by the hard wall, resulting in a reorganisation of all of the
N charges, which creates an energy difference. In contrast, for the right tail, the dominant fluctuations
are caused by pulling a single charge away (to the right) from the Wigner sea (the blue area from Figure
2), leading to an energy difference of O(N). The different behavior of the probability distribution leads
to a phase transition. In Figure 3, the effect of the presence of a wall on the Wigner semi-circle is shown.
If N is large but finite, the Tracy-Widom distribution describes the crossover function between stable
and unstable regimes of a random dynamical system (Majumdar and Schehr, 2014), and moreover, there
is a third-order phase transition between these regimes, which also takes place in the Coulomb gas,
two-dimensional Quickest Change Detection, and several other systems of interest.

4. Causal interactions time series indicator

Given X,Y ∈ RL×1, a pair of cause-and-effect variables in the form of time series of length L. The
lagged correlation matrix is computed with the returns of X and Y, rX, rY ∈ R

L×1, and lagging one of
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them by τ time-steps of time t. For the relationship to be causal, the direction of time is such that the
lagged variable must be the causal candidate time series X. The lagged correlation coefficient is:

CXY(τ) = ⟨rX
t, rY

t+τ⟩ (6)

such that CXY(τ = 0) = CXY is the standard correlation coefficient. Whereas the correlation matrix of the

standard case is symmetric, the lagged case RXY =

[
1 CYX(τ)

CXY(τ) 1

]
is non-symmetric.

Figure 2. The Tracy-Widom distribution from (Majumdar et al., 2020).

Figure 3. The effect of the presence of a wall on the Wigner semi-circle.

The indicator for causal interactions, σΓ, is defined as the standard deviation of the explanatory
power for the first eigenvalue, Γ = λ1

λ1+λ2
, in 2 × 2 lagged correlation matrices for different values of lag

τ = 1, . . .max τ. The indicator at time t is computed as follows:

• For each lag τ, the lagged correlation matrix is computed as CXY(τ) = ⟨rX
t−τ, rY

t⟩, with the lag
applied to the candidate causal time series returns rX, while the effect rY remains fixed for all lags.
• A principal component analysis is performed on each lagged CXY(τ), and the explanatory power of

the first eigenvalue is recorded as Γ(τ) = λ1
λ1+λ2

.
• The same process is repeated for all lags, τ = 1, . . .max τ, with max τ being a model hyperparame-

ter. Finally, the standard deviation of all Γ(τ) values, for τ = 1, . . .max τ gives the indicator at time
t, σΓ(t):

σΓ(t) = S td (Γ(1), . . . ,Γ(max τ)) (7)
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Higher values of σΓ(t), ∀t, means a higher probability of having a causal interaction from X to Y. In
Algorithm 1, the method is presented.

Algorithm 1: Causal interactions time series indicator for 2-variables set (σΓ)
Data: Causal time series candidate X ∈ RL×1 and effect candidate time series Y ∈ RL×1, both of

length L; lag values, τ = 1, . . .max τ, for a given max τ; k = t, . . . ,T are the timestamps
for the time series of the indicator.

Result: The time series σΓ(t → T) = {σΓ(t), . . . , σΓ(T )}, with k = t, . . . ,T .
for t ≤ k ≤ T do

X(k) = X[k − L : k]; X(k) = (X(k) − mean(X(k)))/std(X(k))
Y(k) = Y[k − L : k]; Y(k) = (Y(k) − mean(Y(k)))/std(Y(k))
for 1 ≤ τ ≤ max τ do

X(k, τ) = X(k).shi f t(τ)
PCA(k, τ) = PCA([Y(k), X(k, τ)]T )
V(k, τ) = λ1(k,τ)

λ1(k,τ)+λ2(k,τ)

end
σΓ(k) = S td(V(k, 1), . . . ,V(k,max τ))
σΓ(t → T).append(σΓ(k))

end

5. Experiments and discussion

5.1. Datasets description

Two sets of experiments were performed. The first one uses financial market daily time series data
sourced from Bloomberg, spanning the years 2013 to 2023. The second set of experiments uses daily
time series data from end-of-day files of a brokerage business containing all clients’ cash and trading
activities, flows, and positions. The anonymous dataset was provided by Miralta Finance Bank S.A. A
description of the datasets is given next:

• For the first set of experiments in Section 5.3, a financial market dataset consisting of 110 daily
time series of stocks’ causal drivers candidates was used. These are enumerated in Table 1, and
consist of daily time series of pricing, macroeconomic, products and market indicators data from
the following asset classes: credit, rates, commodities and equities indexes, FX spot rates (X-rate
and spot is the same), commodities, equities and government bonds futures’ indexes, credit default
swap (CDS) indexes and implied volatility data. A second dataset consists of effect time series
candidates, daily prices for twelve SP500 stocks from different sectors. Notable examples include
technology sector stocks such as Apple, consumer discretionary sector stocks like McDonald’s
Corporation, energy sector stocks such as Schlumberger Limited, and financial sector stocks like
Goldman Sachs Group, Inc.
• For the second set of experiments in Section 5.4, brokerage business variables are included, which

comprise data for approximately 15,000 clients (as detailed in Table 3). This dataset provides
information on various aspects such as trading volume data, cash-flow data, account statuses, and trade
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executions. This offers valuable insights into brokerage operations, client behavior and liquidity
analysis for an institution like a bank, which must be managed optimally for regulatory purposes.

For the first dataset, the goal is to use the indicator, σΓ, to measure causal interactions and relation-
ships between causal drivers’ candidates and stocks from the SP500. The second dataset is focused on
finding causal relationships via interactions between a brokerage business and its liquidity levels. But
first, in the next section, a randomized experiment is performed.

Figure 4. Average of σΓ for 10 i.i.d. time series generated from a normal distribution (400
time-stamps generated).

Figure 5. Average of σΓ, the same case as in Figure 4. In this case, together with the average
σΓ for pairs of time series from the brokerage dataset of the experiments (with known causal
interactions and structural changes).

5.2. A Randomized experiment for structural change detection

Figure 4 shows the average of σΓ for 10 i.i.d. time series generated from a normal distribution. For
this, Algorithm 1 is applied to sets of 2 different time series. In Figure 5, the average values of σΓ from
the i.i.d. series’ previous case are compared with the average values of Algorithm 1 applied to time
series variables from the brokerage dataset, which was described in the previous section, and includes
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true causal interactions and structural changes, as prior knowledge for the experiments. The hypothesis
that the indicator captures structural changes can be simply verified from this experiment, as for i.i.d.
generated time series in Figure 4, and the values of the cumulative sum of the indicator σΓ are much
smaller than the values for time series with structural relationships and changes in Figure 5.

5.3. Causal interactions market risk indicator

The first set of experiments tests the ability of the indicator in detecting structural changes in the effect
candidate variable. For that, the change is synthetically forced. For the different stocks, autoregressive
moving average ARMA models are calibrated to historical time series returns data. At a specific and
predefined point in time (03/10/2018), the ARMA parameters are forced to change in different ways,
and the ARMA models with this new set of parameters are calibrated with the rest of the historical time
series data, from that point onwards.

(a) Goldman Sachs (b) Apple

(c) Schlumberger (d) McDonald’s

Figure 6. time series of the indicator σΓ for all driver candidates and four SP500 stocks as
effect variables. A structural change with calibrated ARMA models are forced for the effect
variables at 03/10/2018 for all cases. Right sub-figures include the change, and left ones do not.

In Figure 6, a pair of figures are shown for four stocks: the figures on the left are the cases where
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the ARMA parameters do not change on that particular test day, and the right figures are the ones with
changes in the ARMA parameters. In these figures, all of the cases using the four stocks as the effect
variable and the 110 causal drivers’ candidates from Table 1 as causal variables are shown. It is clearly
seen how the indicator σΓ, computed for all pairs of stock/drivers’ candidates, dramatically jumps. This
is what was expected for this indicator, the ability to accurately capture structural changes in time series.
In the left figures in Figure 6, indicators have higher values for the candidates with more chances to
be related by causal interactions; and in the right figures, at the change point, this distance can have
a reduced appearance. However, looking at the scale of the axis, it is clear that the gap between the
indicators for different drivers is increased, and this is caused by the jump of all of the indicators which
changes the scale. Even though all indicators jump at the change point, the causal drivers of the change
have higher indicator values post-change. The structural changes have been identified, but there is still
the need to test the indicator for identifying causal interactions with the extreme values of the indicator.

Next, the same experiment shown in Figure 6 for the case of the causal indicator σΓ is performed for
the Granger causality test. In this case, a rolling test is computed for the same time period than in Figure
6, for all causal drivers’ candidates and the same four SP500 stocks. The forced change in ARMA
structure is done at 01/10/2018, for all cases in these Granger causal test experiments. Results are shown
in Figure 7, where the time series of the f-statistic for the Granger causality test (rolling-window-based)
are shown for all cases. It can be seen that the Granger causality test captures the date of the structural
changes, but with less precision than the proposed causal interactions’ indicator σΓ. Also, the Granger
test has an overlap for all the causal candidates’ f-statistic time series values, in contrast to the σΓ
indicator, which can differentiate between ARMAs adjusted to different causal candidates’ variables.
This means that the σΓ indicator has more precision detecting the date of the structural change for
all cases than the Granger test. Also, the indicator σΓ contains more information about the structural
changes and the underlying time series processes, as it shows different values depending on the causal
candidates’ time series variables used to fit the ARMA models.

(a) Goldman Sachs (b) Apple (c) Schlumberger (d) McDonald’s

Figure 7. time series analysis presents the Granger causality test f-statistic for all driver
candidates, indicating overlapping values across all causal candidates. The study encompasses
four S&P 500 stocks, scrutinizing them as effect variables. Additionally, a structural change
is imposed on the effect-variables on January 10, 2018, employing calibrated ARMA models
across all cases.
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Table 1. List of financial markets’ variables (cause-and-effect candidates) with time series
from Bloomberg as described in Section 5.1.

Ticker Description Ticker Description
1-3 Year EU 1-3 Year EU Swap rate Generic 1st ’US’ Future US 30-Year T-Bond Futures
3-5 Years EU 3-5 Years EU Swap rate Generic 1st ’Z ’ Future FTSE 100 Index Futures

AUD-JPY X-RATE AUD-JPY X-RATE Global Aggregate All World Credit Full Spectrum
Argentine Peso Spot Argentine Peso Spot Global High Yield All world High Yield Credit

Australian Dollar Spot Australian Dollar Spot HANG SENG INDEX HANG SENG INDEX
BRAZIL IBOVESPA INDEX BRAZIL IBOVESPA INDEX IBEX 35 INDEX IBEX 35 INDEX

Brazilian Real Spot Brazilian Real Spot Indian Rupee Spot Indian Rupee Spot
British Pound Spot British Pound Spot Japanese Yen Spot Japanese Yen Spot
CAC 40 INDEX CAC 40 INDEX LME COPPER 3MO ($) LME COPPER 3MO ($)

CAD-CHF X-RATE CAD-CHF X-RATE LME COPPER SPOT ($) LME COPPER SPOT ($)
CAD-JPY X-RATE CAD-JPY X-RATE MSCI INDIA India cross asset index
CHF-JPY X-RATE CHF-JPY X-RATE Mexican Peso Spot Mexican Peso Spot

Canadian Dollar Spot Canadian Dollar Spot NIKKEI 225 NIKKEI 225
Cboe Volatility Index Cboe Volatility Index New Zealand Dollar Spot New Zealand Dollar Spot

Corporate All world Corporate Credit Norwegian Krone Spot Norwegian Krone Spot
Credit All world Credit full spectrum Pan-European High Yield Pan-European High Yield Credit

DAX INDEX DAX INDEX Polish Zloty Spot Polish Zloty Spot
DOLLAR INDEX SPOT DOLLAR INDEX SPOT RF Global Inflation-Linked Fixed Income Inflation linked bonds

EM USD Aggregate Emerging Markets USD Aggregate RF Global Treasury Fixed Income Global Goverment bonds
EUR-AUD X-RATE EUR-AUD X-RATE S&P/BMV IPC S&P/BMV IPC
EUR-CAD X-RATE EUR-CAD X-RATE S. African Rand Spot S. African Rand Spot
EUR-GBP X-RATE EUR-GBP X-RATE Singapore Dollar Spot Singapore Dollar Spot
EUR-JPY X-RATE EUR-JPY X-RATE South Korean Won Spot South Korean Won Spot
EUR-NOK X-RATE EUR-NOK X-RATE Swedish Krona Spot Swedish Krona Spot
EUR-PLN X-RATE EUR-PLN X-RATE Swiss Franc Spot Swiss Franc Spot
EUR-SEK X-RATE EUR-SEK X-RATE TR/CC CRB ER Index Commodities Futures Index Price

Euro Spot Euro Spot Turkish Lira Spot Turkish Lira Spot
FTSE 100 INDEX FTSE 100 INDEX U.S. Aggregate U.S. credit full spectrum
FTSE MIB INDEX FTSE MIB INDEX U.S. Corporate High Yield U.S. Corporate High Yield
GBP-AUD X-RATE GBP-AUD X-RATE U.S. Treasury US Treasury index
GBP-CAD X-RATE GBP-CAD X-RATE UK Gilts 10 Yr UK Gilts 10 Yr

Generic 1st ’CF’ Future CAC 40 Futures UK Gilts 30 Year UK Gilts 30 Year
Generic 1st ’CO’ Future Brent Crude Oil Futures ICE US Generic Govt 10 Yr 10 Yr Treasury
Generic 1st ’FV’ Future US 5-Year T-Note Futures US Generic Govt 2 Yr 2 Yr Treasury
Generic 1st ’GX’ Future DAX Index Futures US Generic Govt 5 Yr 5 Yr Treasury
Generic 1st ’HG’ Future Copper High Grade Futures COMEX USD-CAD X-RATE USD-CAD X-RATE
Generic 1st ’HO’ Future Heating Oil #2 Futures NYMEX USD-CHF X-RATE USD-CHF X-RATE
Generic 1st ’KC’ Future Coffee “C” Futures USD-GBP X-RATE USD-GBP X-RATE
Generic 1st ’QS’ Future Low Sulphur Gasoil Futures ICE USD-JPY X-RATE USD-JPY X-RATE
Generic 1st ’TY’ Future US 10-Year T-Note Futures

In Table 2, the KS and Anderson-Darling statistics, p-values, and the Wasserstein distance are
shown for the four stocks presented in the experiments, in order to validate that all come from different
distributions, enriching the generalization of the results. Due to space constraints, results are shown for
these four stocks only, although original experiments were performed with twelve of them in all cases.
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Table 2. Statistics for the four SP500 stocks shown in the experiments.
List 1 List 2 KS Statistic KS P-Value Anderson-Darling Statistic Wasserstein Distance
SCHLUMBERGER LTD APPLE INC 0.0872 0.0000 217.4060 0.0042
SCHLUMBERGER LTD GOLDMAN SACHS GROUP INC 0.0658 0.0000 196.3330 0.0043
SCHLUMBERGER LTD MCDONALDS CORP 0.1523 0.0000 1,163.2190 0.0084
APPLE INC GOLDMAN SACHS GROUP INC 0.0372 0.0655 12.2670 0.0010
APPLE INC MCDONALDS CORP 0.1212 0.0000 519.5290 0.0044
MCDONALDS CORP GOLDMAN SACHS GROUP INC 0.1082 0.0000 524.3530 0.0042

Note: This table displays the statistical results of Kolmogorov-Smirnov (KS) tests for data similarity, Anderson-Darling tests
for non-normal data distribution, and Wasserstein distances for measuring the distance between probability distributions. It
is computed between pairs of stock return distributions for selected companies from different sectors including significance
level. Significant p-values (≤ 0.05) indicate notable differences in distributions, while larger test statistics signify
greater dissimilarity.

(a) Versus GS 1m average returns (b) Versus GS 90-days realized volatility

(c) Versus GS stock price

Figure 8. This figure represents the time series dynamics of the indicator σΓ concerning the
top four driver candidates impacting the performance of Goldman Sachs (GS) stock during the
COVID-19 crisis. These candidates are identified based on the highest cumulative sum values
for the indicators among a pool of 109 candidates. The figures presented in this analysis depict
the time series behavior of the indicators for the identified top causal candidates, denoted as
values 1 to 4.
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In Figure 8, the top four causal drivers candidates’ σΓ values for Goldman Sachs during the peak of
the COVID crisis are shown. The ranking changes for the causal variables candidates during the period,
but the top four values are recorded and shown in the plots. These indicators’ values are compared with
the Goldman Sachs stock price, volatility, and average returns time series. In Figure 8, the predictability
of the 1-month average return and realized volatility from the top indicators for the causal drivers
candidates’ sample, can be seen. Also, a strong inverse relationship between these indicators and the stock
price occurs. All of these experiments show that the indicators with a causal driver having the highest
values are strong risk analysis measures indicators, which include prediction (causal) capabilities for
the stock. In Figure 9, the distribution of all causal drivers’ σΓ candidates’ values is analyzed for the
cases in which Goldman Sachs’ stock time series returns are the effect variable from 2014 to 2023. The
historical distribution in Figure 9b follows an inverse Wishart distribution, which can be contrasted with
Figure 9a.

(a) Theoretical inverse Wishart distribution from (Ny-
dick, 2012).

(b) All drivers’ σΓ historical distribution for Goldman
Sachs stock from 2014 to 2023.

(c) time series of the indicator σΓ values for some of the top, bottom, and
average values’ cases, for Goldman Sachs stock from 2014 to 2023 as the
effect variable.

Figure 9. σΓ historical distribution values for Goldman Sachs (GS) as effect variable between
2014 and 2023 and comparison with theoretical Inverse Wishart distribution.
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At this stage, the capabilities of the indicator in detecting structural changes has been verified, with
the ability to monitor them at each timestamp, instead of using estimation windows such as in the
Granger test, the Chow test, or other likelihood ratio tests. It has shown strong predictability capabilities
with respect to the effect variable, with the method itself not based on predictability between the
cause-and-effect variable, as in the Granger test. It instead focuses on the distribution properties of the
explanatory power of the spectra from lagged correlation matrices. Therefore, the predictability is a
consequence and not an assumption of the method, which makes this predictability closer to true causal
interactions. To confirm the hypothesis of causal interactions, another experiment is shown in which the
causal relationship is known in advance and tested with the indicator.

Figure 10. The top twelve causal drivers’ σΓ candidates daily time series sum values for the
U.S. credit default swap high yield index as the effect variable.

Figure 11. The top twelve causal drivers’ σΓ candidates daily time series sum values for the
Stoxx 600 equity index as the effect variable.

Experiments are conducted consisting of selecting a known causal relationship in the financial
markets, and checking if the rule for the maximum σΓ indicator is able to select the same pair of
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cause-and-effect variables, given a particular effect variable, and from more than a hundred causal
drivers’ candidates. For the effect variable, the credit default swap (CDS) index for high yield US
corporates (CDX), the Stoxx 600 equity index, the Stoxx volatility index, and the CDS investment
grade for the Europe corporate sector (iTraxx EU) were used. The indicator is given in the form of a
daily time series, and in order to measure the level of causal interactions, all of these values are added
up and displayed in a bar graph. Figure 10 shows how the cumulative sum of all of the indicator’s
values during the period from 2014 to 2023 for the CDX index as effect candidate identifies the US high
yield corporate credit as the top causal driver candidate couple. This is the one among all of the 110
candidates which has the highest prior probability to be a causal variable for the CDX. The reason is
that the insurance contract on the high yield US corporates credit is the CDX index, so in consequence
it is causally connected with the dynamics of that type of credit itself.

Figure 12. The top twelve causal drivers’ σΓ candidates daily time series sum values for the
Stoxx 600 volatility index as the effect variable.

Figure 13. The top twelve causal drivers’ σΓ candidates daily time series sum values for the
iTraxx (Europe) credit default swap investment-grade index as the effect variable.

Next, Figure 11 shows, for the Stoxx 600 index, which consists of the largest companies’ stocks in
Europe by market capitalization, the strongest indicators’ cumulative sum values for the main equity

Data Science in Finance and Economics Volume 4, Issue 3, 422–445.



437

indexes of the European countries. This is obvious, as both sets of indexes share the same constituents.
In the case of the Stoxx volatility index, the same rationale applies as for the Stoxx 600 index (Figure
12). Being an implied volatility index, the constituents are not shared this time by both sets of indexes,
however the stocks and their indexes must be causally connected with their implied volatility, and as a
consequence, the one in the index. In the case of the iTraxx Europe CDS index, displayed in Figure
13, the main European equity indexes are shown as the causal counterparts. Not having a European
credit investment grade index in the sample demands the choice of using the equity component of these
corporates instead. This equity component has strong connections with the credit component and their
CDS index, and from the sample, are known to be the most causally connected, as they are the stock
prices of the corporate names in which the default insurances are written (all of the CDS contracts that
make up the iTraxx index).

In Figure 14, the distributions of the average values of the Jensen-Shannon distance are shown,
between the historical distribution of the indicator σΓ and the inverse Wishart distribution, for 1, 3,
and 6 degrees of freedom, fitted to the historical data of the indicators. Values of the three distances
for the three degrees of freedom are averaged. The distribution of the average is shown for the cases
in which the effect variable is the CDX index and the causes variables consist of all of the candidates
from the sample of more than one hundred candidates. It can be seen in Figure 14 that the top causal
variable candidate for the CDX index, from experiments and from common knowledge, is the U.S
Corporate high yield, as previously stated in the paper, which has the indicator with the shortest distance
between the historical distribution and the fitted inverse Wishart for different degrees of freedom. This
experiment verifies the hypothesis that stronger causal interactions measured by the indicator make the
indicator behave more like an inverse Wishart distribution.

Figure 14. Distribution of the average values of the Jensen-Shannon distance between the
historical distribution of the indicator σΓ and the inverse Wishart distribution fitted to this
historical data, using 1, 3, and 6 degrees of freedom for the latter, and averaging the three
distances (for all cases in which the CDX index is the effect and the full sample of causal
candidates is the causes).
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5.4. Causal liquidity risk indicator for brokerage/banking firms

For the brokerage dataset, the daily brokerage activities, with time series data of 15,000 clients
approximately, is analyzed. The goal is to investigate the power of the structural temporal (causal)
interactions between the cash-balance of the company and other related variables from the business as a
function of time. Experiments are performed with cause-and-effect pairs of variables, with the effect
being the cash-balance. For illustration, the results are plotted in thematic buckets, such that only the
cause variables are displayed and the effect variable is understood to be the same in all cases.

The buckets consist of:

• The account status, which includes the daily amount in account currency of open positions in
different products, including shares, bonds, mutual funds, CFDs, derivatives, FX Spot, and ETO.
• Bookkeeping cash, which includes all of the daily cash movements in the account currency, both

internal and external cash transactions, and the financial product which is the reason for the
transaction.
• Trades executed, which is focused on the daily buying-and-selling transaction activities in the

account currency for all clients and in all broker products.

A description of the causal candidates’ variables is shown in Table 3. The cash-balance of the company
is the effect variable for all cases and figures, and the plots display all indicators’ time series with their
respective causal counterpart as a label.

Figures 15–17 show area plots in which the values of the indicator for each causal candidate variable
are compared, so that all values for the indicators amount to 100% for each date, and the time series is
displayed with higher areas indicating causal interactions between them and the cash-balance. From
the experiments, it can be seen that the account status bucket has more mixed results, with mutual
funds from November 2022 until March 2023 comprising the majority. After that, the majority of cash
movements can be explained by stocks (shares), as can be seen in Figure 15.

In the Bookkeeping cash bucket, shown in Figure 16, a sustained pattern of the majority of cash
transactions coming from shares activities is presented. Until March 2023, this majority was shared
with mutual funds, however this ceased from March onwards, and the derivatives and FX products
have started to build importance since then. The relationship with daily variations of cash-balance
gross amount (net of outflows and inflows for each closing day) is studied, with respect to the causal
candidates’ variables, each in terms of net movements of cash for a closing day (all outflows plus inflows).
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Figure 15. Account status, value of σΓ for max lag = 2, cash-balance vs. broker securities
open positions.

Figure 16. Bookkeeping cash, value of σΓ for max lag = 2, cash-balance vs. broker cash
transactions.

Finally, the Trades executed bucket shows very similar behavior to the Bookkeeping cash bucket,
which serves as a validation point for our results, as can be seen in Figure 17. The reason why the
mutual funds product is not in this figure is because its execution process is different, as much of the
operations do not need to be converted to cash (funds transfer). This could mean that, although mutual
funds has been a product that, at least historically until March 2023, was responsible for the movement
of cash-balance from the clients (seen in the Bookkeeping bucket in Figure 16), this was not due to
daily executions in mutual funds with cash, but in the form of internal and external transfer funds. With
regards to Trades executed, we can see that from June 2022 until December 2022, the relationships
were mixed, with shares not holding the majority. From December 2022 until now, shares have held the
majority with some derivatives gaining importance since March 2023.
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Table 3. Brokerage business variables
Variable Description
Bonds Fixed income products
CFD Contract for Difference (Derivative that replicates a financial product)
ETO Exchange Traded Options
Futures Future contract
FX (Spot and Forward) Currency exchange rates
FX option Options on exchange rates
Shares Companies’ stocks
Mutual Fund Third-party managed funds
CFD open positions Managed Volumes of CFD
ETO open positions Managed Volumes of ETO
Futures open positions Managed Volumes of Futures
FX open positions Managed Volumes of FX
Mutual Funds open positions Managed Volumes of Mutual Funds
Stocks open positions Managed Volumes of Stocks
Bonds open positions Managed Volumes of Bonds
Bonds BKCash Cash flows from/for Bonds positions
CFDs BKCash Cash flows from/for CFDs positions
Contract Futures BKCash Cash flows from/for Futures positions
Contract Options BKCash Cash flows from/for ETO positions
FX Option BKCash Cash flows from/for FX options positions
Spot & Forward BK Cash Cash flows from/for FX positions
mutual funds BK Cash Cash flows from/for Mutual Funds positions
Shares BKCash Cash flows from/for Shares positions

Figure 17. Broker trades executed vs. cash-balance, value of σΓ for max lag = 2.
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With greater lags (five or more) values only get smoother but patterns look similar (in Figures 18 and
19, results for 10 lags are displayed). This verifies the theoretical setup presented in this document in
that, for greater lags, the standard deviation of their largest eigenvalue varies more. This implies a higher
probability that the two variables deviate from independence toward a structured (causal) relationship.
This is reflected by the fact that the indicator becomes less volatile in time.

Figure 18. Broker trades executed vs. cash-balance, value of σΓ for max lag = 10.

Figure 19. Bookkeeping cash, value of σΓ for max lag = 10, cash-balance vs. broker cash
transactions.

All of the findings from the Figures 15–17 are aligned with the rationale and causal behavior of the
cash-flows, given the brokerage business of the dataset. The majority of the client operations were made
on stocks, so it makes sense that their executions and cash transactions have more causal interactions
with the cash-balance of the company (Figures 15 and 16). Periods of weak shares business operations
(executions) are compensated by the second and third most traded products, the bonds and CFDs. This
is true for executable products, in the case of mutual funds where the relationship is only via cash
transaction or fund transfer (fund transfers do not affect the cash-balance so they are omitted). The fact
that the Account status bucket gives mixed results in Figure 15 can be explained because this bucket
consists of balances (levels), and increments in cash-balance are not related by causal interactions with
other balances’ levels. In contrast, increments of cash-balance must be related to other cash-flows within
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the system by causal interactions, which is well-captured in the other two buckets (cash transactions and
executions). Useful findings from the experiments for brokerage business for retail and institutional
clients (ie., banks) include:

• Liquidity risk can be monitored by analyzing interactions between operational flows (executions
and trading activities) and increments in the cash-balance.
• As most brokerage businesses have stocks as the main traded asset, their flows should be monitored

first and are highly correlated to the equities market performance (crisis and rallies would have an
impact on liquidity risk).
• Mutual funds do not have an impact on liquidity as most operations are being made via fund

transfers, which do not convert the asset to cash.

Finally, with regard to the limitations of the indicator, it can be said that it works better with data of
higher frequencies than daily, as it can deal with a higher number of lags, in contrast to daily time series,
in which more than ten lags is redundant. The fact that it only works for pairs of time series is limiting
for cases in which more simultaneous relationships need to be detected.

6. Conclusions

A method to measure causal interactions between pairs of time series using the variability in
explanatory power of the largest eigenvalue is presented. The method is only applied and can deliver the
expected results with no more than a pair of time series, one cause and one effect candidate. Using the
homology of the interactions of two walls pushing and pulling a Coulomb gas, which can be modelled
by the largest eigenvalue of a random matrix following a Tracy-Widom distribution, the standard
deviation of the explanatory power of the largest eigenvalue is used to measure a similar interaction
in a system consisting of two time series. The causality component of the interaction is enforced
by the direction of time, thanks to lagging the correlation matrices from which the variations of the
explanatory power are being measured. To the authors’ knowledge, it is the first time random matrix
theory and eigenvalues distributions have been applied to measure causal interactions, and also that an
experimental system in statistical physics has been used as homology for this purpose. Experiments
were conducted with synthetic and real time series and scenarios, including known causal relationships.
The method can capture these interactions more accurately than other traditional methods such as the
Granger causality test. The indicator can detect structural breaks in time series as shown by experiments
with different ARMA models. It can also detect widely known causal variables’ candidates for a given
set of effect variables among more than one hundred causal candidates (for example, the CDS vs credit
as in Figure 10). Two datasets are used for market and liquidity risk analysis based on the indicator.
The simplicity, dynamism, and the fact that it does not rely on predictability like other methods, but
on spectral theory, random matrix theory, and the homology with statistical and experimental physics
properties of causality, make the method extremely useful for risk management with time series for financial
institutions and regulators.

For future work, it would be interesting to investigate indicators that can detect causal interactions
among more than two time series. The use of random matrix theory seems promising in adding structure
to the problem of causal interactions detection. It would be interesting to study the connection between
the inverse Wishart distribution, which the causal interactions indicator follows, and the Coulomb gas

Data Science in Finance and Economics Volume 4, Issue 3, 422–445.



443

analogy. It would also be interesting to study configurations of the Coulomb gas analogy for the case of
multiple connected gas lines (as in a causal graph of interactions). Finally, it would be interesting to test
the indicator as a source of alpha in trading strategies in which information from options derivatives
is used to predict their underlying stock price future movements. Also, in the study of prepayments
behavior of loans or mortgages, it can be used to detect which variables cause these prepayments, with
strong implications in household economies.
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