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Abstract: The original Risk-Metrics method is underpinned by the assumption that daily asset returns 

are conditional Gaussian independently identically distributed (iid) random variables with a mean of 

zero. In this paper, a new method to calculate Value at Risk (VaR) was suggested to overcome the 

shortcoming of Risk-Metrics by employing binary response models to compute probability forecasts 

of the portfolio return by exceeding a grid of candidate quantile values. From those values, the VaR 

quantile value was selected. The proposed model was called BRV (Binary Response VaR method). 

Consistent application of BRV to the Dow Jones Industrial Average (INDEXDJX: DJI) and Dow Jones 

U.S. Marine Transportation Index (DJUSMT) time series proved that it was more accurate than the 

Risk-Metric system. This method not only worked similar to quantile regression but had the advantage 

that conventional maximum likelihood methods could be used for parameter estimation and inference. 

The BRV method was the best performing method for computing the daily VaR at both the 95% and 

99% confidence levels over the period 02/01/06–31/12/08. The BRV and the QR (quantile regression) 

methods performed similarly, but the BRV method had the practical advantage that conventional 

maximum likelihood (ML) technique could be used for parameter estimation and robust inference. 
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1. Introduction  

The Value at Risk (VaR) system falls into three major classes: The parametric method introduced 

by the Morgan Risk-Metric system, the non-parametric method based on historical simulation, and the 

semi-parametric method based on Extreme Value Theory (EVT) tail distribution. These methods are 

based on the good approximation of probability distributions extracted from an asset market price. The 

regulatory capital requirement for market risk is typically determined using the VaR for aggregate 

trading portfolio over a ten-day horizon and with a 99% confidence interval, and by the performance 

of the banks VaR models in backtesting exercises (Zumbach, 2007). Backtest is the best way to check 

the risk model performance. In backtesting, the estimated VaR is compared with the actual return over 

the same period. The VaR exceedance occurs when the return is more negative than the VaR. In order 

to backtest the accuracy for the estimated VaRs, we compute the empirical failure rates. By definition, 

the failure rate is the number of times returns exceed the forecasted VaR. If the model is correctly 

specified, the failure rate should be equal to the specified VaR level. In this paper, the backtesting VaR 

relies on the Christoffersen (2006) and Kupiec (1995) proposed system. Dumitrescu et al. (2012) have 

also proposed a backtest based on the non-linear regression model. Backtesting is a formal statistical 

framework that consists of verifying if actual trading losses are in line with model generated VaR 

forecasts and relies on testing over VaR violations. A violation is said to occur when the realized trading 

loss exceeds the VaR forecast.  

The Risk Metrics method to compute VaR is set out in Zumbach (2006) and Jorge and Jerry (2001). 

The original Risk Metrics method is underpinned by the assumption that daily asset returns are 

conditional, Gaussian independently and identically distributed (iid) random variables with a mean of 

zero. Under this assumption, VaR at the one-day horizon can be computed by multiplying the relevant 

quantile of the standard normal distribution by the one day ahead forecast of the conditional standard 

deviation of the portfolio return and multiplying the result by the market-to-market value of the 

portfolio. A convenient consequence of the iid assumption is that VaR for longer horizons can be 

computed by multiplying the daily VaR by the square root of the time horizon on days. Other methods 

to compute VaR are the historical simulation method (HS) where relevant quantile from the empirical 

distribution of simulated returns is applied (see Jorion, 2007 for details on both methods). Emenogu et 

al. (2020) discovered that the persistence of the GARCH models is robust, with the exception of a few 

cases where IGARCH and EGARCH were unstable. The SGARCH and GJRGARCH models also 

failed to converge for t-student innovation, and the mean reverting number of days for returns varied 

between models. Altun (2020) also found that GARCH models listed under the TSLx innovation 

distribution produce more accurate VaR forecasts than other competing models. Slim et al. (2017) 

claimed that in developed markets, the related models show signs of long memories, suggesting that 

the FIGARCH model is preferable to the GARCH and GJR models. In frontier and emerging markets, 

the GJR and GARCH are the most important specifications for capturing risk. This means that when 

analyzing frontier markets, risk managers should favor models that account for asymmetry. 

In practice, the Risk Metrics and HS methods to computing VaR have been the most popular 

methods within the industry. Note, however, that the HS method is highly restrictive since it ignores 

any additional explanatory information that might be thought to have an impact on the relevant return 

quantile (such as financial or macroeconomics information). This information can be incorporated into 

the VaR computed using the Risk Metrics method but only through the conditional mean or the 

conditional variance of return. The other weakness of the original Risk Metrics method is that it 
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assumes normality of the returns. In practice, empirical evidence suggests that for many financial 

prices, the conditional distributions is fat-tailed. 

VaR can also be computed using quantile regression (QR) (Jorge and Jerry, 2001) (see for example 

(Taylor 1999, 2018)). When QR is used, the relevant return quantile can be modelled as a function of 

contemporaneous or lagged explanatory variables. In addition to this, QR based methods to VaR are 

more flexible than the Risk Metrics method since they do not require returns to be conditionally 

Gaussian. However, QR has several drawbacks. For example, the linearity assumption is highly 

questionable when data is heteroscedastic, (see Kupiec 1995, Peracchi 2002) and while nonlinear QR 

estimation techniques have been proposed, the asymptotic theory is not well developed. Furthermore, 

with both linear and nonlinear QR, the presence of heteroscedasticity can lead to estimated quantile 

that cross each other, and in both cases, robust inference typically requires bootstrapping, which 

increases the computational cost of the method. Tabasi et al. (2019) used GARCH models to model 

the volatility-clustering feature and found that using the t-student distribution function instead of the 

Normal distribution function improved model parameter estimation. Nieto and Ruiz (2016) compared 

the forecasting potential of various GARCH-based VaR models to their alternatives in an updated 

report. Surprisingly, they found that forecasting outcomes are affected by the number of out-of-sample 

observations as well as the time span being studied. They concluded that no single model outperforms 

another. Furthermore, only the asymmetric EGARCH-based model with skewed Student’s-t 

distribution can be approved under the various model tests. Thavaneswaran et al. (2020) have 

introduced a volatility estimator applying an estimating function approach.  

I propose an alternative parametric method to computing VaR. This alternative method allows the 

practitioner to utilize additional explanatory information to forecast the relevant quantile. However, 

relative to QR-based methods, the method proposed here has the significant practical advantage that the 

conditional maximum likelihood (ML) technique can be used for parameter estimation and robust inference.  

The proposed method exploits the inverse relationship between the conditional quantile function 

(QF) and the conditional cumulative distribution (CDF), utilizing a technique for estimating the 

conditional CDF developed by Foresi and Peracchi (1995). I assume the market-to-market value of the 

relevant portfolio is one; hence, the daily VaR depends only on a one day ahead forecast of the relevant 

quantile for portfolio returns. Rather than directly forecast the VaR quantile, here it is proposed that 

the forecast is obtained indirectly using binary response models to compute probability forecasts over 

a grid of candidate quantile values. The candidate quantile value with an associated probability forecast 

closest to the desired probability (e.g. p = 0.01 for VaR at the 99% confidence level) is used as the VaR. 

This method is equivalent to forecasting points on the left tail of the conditional CDF and then inverting 

at the required VaR probability (Jelito and Pitera 2021).  

Binary response models have previously been shown to be useful for forecasting the direction of 

asset returns. For example, Christoffersen and Diebold (2006) use a Logit model that conditions 

volatility as a predictor to forecast the direction of a time series index. Using binary response models 

to estimate points on the conditional CDF for stock returns has not previously been used for computing 

VaR. For brevity, we will refer to the method proposed here as the BRV (Binary Response VaR method). 

Ugurlu (2023) has also proposed a coherent multivariate average Var to quantify the total risk.  

I compare the empirical performance of the BRV method with the orthodox Risk Metrics and HS 

method and a QR method in Monte Carlo simulations and an empirical application. The empirical 

application involves recursively computing daily VaR for two stock market indices, Dow Jones 

Industrial Average (INDEXDJX: DJI), and Dow Jones U.S. Marine Transportation Index (DJUSMT) 
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over a three-year period 02/01/06–31/12/18 using the previous five years of daily data for parameter 

estimation at each day. The results are analyzed using tests for correct unconditional coverage and 

independence of the VaR exceedances. Computing VaR over this period is challenging as the period 

begins with benign market conditions and ends with extremely volatile conditions associated with the 

global financial crisis that began in 2007. I found that the BRV method and QR method clearly 

dominate the Risk Metrics and HS method over this period. In particular, it appears that the Risk 

Metrics and HS method consistently underestimate the population VaR over this period since the 

proportion of VaR exceedances is too large for the given confidence levels. In contrast, exceedances 

when the BRV method is used are much closer to the expected number. Underestimating the population 

VaR can lead to serious penalties for banks operating in countries where the Basel ll Capital Accord 

has been implemented. Hence, this result is of practical importance. 

2. Materials and methods 

2.1. BRV method 

Define the probability of the log portfolio returns Rt exceeding a threshold ri conditional on a 

known k×1 vector of predictors Xt−1 as, 

Pi,t =  Pt (Rt  ≤  ri | Xt−1) = E (Yi,t | Xt−1)                      (1) 

where −∞ <  ri  <  ∞ (i = 1, 2 … . , N) and Yi,t is a binary indicator, 

Yi,t  =  
1,     if   Rt  ≤  ri

0,    if   Rt  >  ri
                             (2) 

Note that: Pi,t can be interpreted as the value of the conditional CDF for Rt evaluated at ri. 

The VaR return quantile at the confidence level (1 – p) ×100%, 0 < p < 1, is the value ri.  

Such that Pt(Ri  ≤  ri |Xt−1)  =  p . Let this be denoted by Qi (p).  In practice the aim when 

computing VaR is to forecast the future value QT+h (p). Throughout this paper we focus on computing 

daily VaR, so T denotes the current day and h = 1. 

The BRV method to forecasting QT+1 (p). proposed here has three clear steps: 

(i) Estimate multiple binary response models with the binary indicator (2) as the dependent 

variable over a range of candidate VaR return quantile, ri , using conventional ML (the form of the 

link function in the binary response model and the location and number of values for ri  will be 

discussed below); 

(ii) project the estimated binary response models forward to compute a one step ahead forecast of 

the probability of exceeding 

ri, p̂i,T+1 =  PT+1 (RT+1  ≤  ri |XT );                        (3) 

(iii) as a forecast of the VaR quantile QT+1 (p) use the threshold ri from (i) that minimizes 

the distance between the probability forecast p̂i,T+1 and the desired VaR probability p, 

r̂i  =  arg min{p̂i,T+1 − p}                             (4) 
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The use of binary response models to estimate the conditional CDF for stock returns was proposed 

by Foresi and Peracchi (1995). Let −∞ < r1 < r2 < ⋯ < rN < ∞ be N feasible values of the return 

over the conditional CDF for Rt. Foresi and Peracchi (1995) show that points on the conditional CDF 

correspondence to ri(i = 1, 2, ... , N) can be estimated using a functional form that best approximates 

the population conditional CDF, Ft, as the link function in separate binary response models with the 

binary indicator (2) as the dependent variable. The “best approximation” is formalized as the approximation 

that minimizes the Kullback–Leibler divergence. Under weak regularity conditions, the parameters of 

the binary respons model can be consistently estimated by ML giving the estimated point F̂i,t. 

Clearly, the conditional CDF should satisfy the standard condition, 

0 <  Fi,t  <  1                                  (5) 

An attractive approach of the Foresi and Peracchi (1995) technique is that since it involves 

modelling the log-odds in [Fi,t/(1 − Fi,t)]  rather than Fi,t  directly, (5) is automatically satisfied. 

Foresi and Peracchi (1995) use a semi-parametric Logit model in their empirical work. In principle, 

any twice-differentiable CDF can be used. Note that monotonicity of the estimated CDF, 

0 < F̂i,t < ⋯ < F̂N,t < 1                           (6) 

will not necessarily be satisfied if the ML estimation is unrestricted. Whether monotonicity is satisfied 

or not depends on numerous factors, including the sample size and the spread of the ri values. In 

practice, even if monotonicity is violated, this might not have a serious detrimental impact on the 

practical performance of the technique. Monotonicity can be incorporated into the estimation algorithm 

if in practice it is a serious problem. 

Foresi and Peracchi (1995) focus on estimating points on the conditional CDF using binary 

response models. Here, estimated binary response models are used to produce forecasts of the 

probability of exceeding candidate quantiles in the left tail of the conditional CDF (i.e., forecasts of 

points on the left tail of the conditional CDF). In the simulation and empirical work here, for simplicity, 

the cumulative normal and logistic CDFs are used. For example, when the logistic is used, 

pi,t  =  
1

1+exp(− X́t−1 βi  )
                            (7) 

Where βi is a k×1 vector of parameters and Xt−1 is the vector of predictors in (1). The conditional 

CDF Fi,t can then be estimated by replacing B in (7) with the ML estimator β̂i.
1 

Step (ii) of the BRV method is to use the estimated parameters from (i) to compute a one-step ahead 

probability forecast for each candidate threshold ri. Therefore, when the logistic CDF is used, 

p̂i,T+1  =  
1

1+exp(− X́T β̂i  )
                           (8) 

where XT is the vector of predictors at time T. Step (iii) of the BRV method involves finding the 

relevant VaR r̂i = arg min{p̂i,T+1 − p} . This can be done using a linear computer grid search. To 

implement this method, the practitioner needs to decide on a functional form for the link function and 

on the total number of thresholds ri to use the size of N) and on their location and spacing. In the 

empirical application below, for simplicity, the logistic CDF is used as a link function. Similar link 

functions can also be used (e.g., normal CDF, Student t CDF, Generalized Extreme Value CDF, semi-

parametric link functions, etc.) and, in practice, backtesting over a historical sample period could be 

 
1 The asymptotic properties of the ML estimator for a Logit model are well-known and they are omitted. 
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employed to select the best performing link function from a set of candidate functions. In simulations 

and empirical applications discussed below, I found a grid of ri values in backtesting, starting with 

the third value of the order statistics for the historical returns followed by the 1st, 3rd, 5th, 10th and 15th 

percentiles, which produce good results (thus N = 6). Cubic spline interpolation is then used to increase 

the number of forecasts and thresholds. 

Clearly, if the link function has exactly the same form as the population conditional CDF for 

returns (e.g., normal-normal or logistic-logistic) and appropriate regressors are employed, then as T →

 ∞, the Foresi and Peracchi (1995) method provides a consistent estimator of points on the left tail of 

the conditional CDF, providing that the regularity conditions required for ML to be a consistent 

estimator in this instance, are satisfied. To illustrate this in action, assume the following Data 

Generating Process (DGP) for log returns, 

Rt =  γ1 X1,t + γ2 X2,t +  εt ,                            (9) 

εt ~ L (0,1)                                  (10)  

X1,t = θ1 X1,t−1 + V1,t ,        V1,t ~ N (0,1)                     (11) 

X2,t = θ2 X2,t−1 + V2,t ,        V2,t ~ N (0,1)                     (12) 

where L(0,1) and N(0,1) denote a logistic and normal distribution with mean of zero and a variance of 

one. Therefore, conditional on the X variables generated by AR(1) models, returns have a logistic 

distribution. We simulate representative series of returns from this general DGP. For one set the 

following parameter values are used; γ1 = 0.50, γ2 = 0, θ1 = 0.30  For the other set; γ1 =
0.50, γ2 = 0.50, θ1 = 0.30, θ2 = 0.30. Therefore in the first set of simulations the model contains a 

single stationary regressor, while in the second set the model contains two stationary regressors. 

Observations from (9)–(12) are simulated for the following sample sizes, T = 100, 200, 500, 1000, 

10000. For each series, we then estimate the left tail of the conditional CDF using the method of Foresi 

and Peracchi (1995) employing the logistic CDF as the link function over a grid of ri values starting 

with the third value of the order statistics for the historical returns followed by the 1st, 3rd, 5th, 10th and 

15th percentile values.2 In both cases, a constant and the correct explanatory variables are used in the 

link function.  

2.2. Monte carlo simulation results 

Table 1. Simulated p̂ distribution 95% confidence.  

Percentile 5th 25th 50th 75th 95th 
Gaussian-GARCH DGP 
1-BRV 

QR 

Risk Metrics 

HS 

0.021 

0.024 

0.028 

0.022 

0.030 

0.040 

0.040 

0.040 

0.042 

0.052 

0.048 

0.052 

0.063 

0.064 

0.060 

0.064 

0.074 

0.082 

0.076 

0.084 

t-GARCH DGP 
2-BRV 

QR 

Risk Metrics 

HS 

0.014 

0.012 

0.056 

0.010 

0.036 

0.032 

0.068 

0.032 

0.049 

0.046 

0.080 

0.046 

0.079 

0.076 

0.092 

0.076 

0.128 

0.116 

0.116 

0.116 

AR-Gaussian- GARCH DGP 
3-BRV 

QR 

Risk Metrics 

HS 

0.019 

0.024 

0.032 

0.024 

0.028 

0.040 

0.048 

0.040 

0.062 

0.052 

0.056 

0.052 

0.064 

0.064 

0.068 

0.064 

0.090 

0.078 

0.088 

0.078 

AR-t GARCH DGP 
4-BRV 

QR 

Risk Metrics 

HS 

0.022 

0.012 

0.056 

0.012 

0.023 

0.028 

0.076 

0.028 

0.042 

0.050 

0.084 

0.050 

0.082 

0.076 

0.108 

0.076 

0.122 

0.124 

0.126 

0.124  
2 Note that here the model is not predictive since the explanatory variables are current values which we make no attempt 

to forecast. In the Monte Carlo simulations and empirical application discussed below, which involves forecasting, lagged 

values of the explanatory variables are used. 
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For each replication VaR is computed using QR, along with the original Risk Metrics and HS 

methods, the true volatility is used when computing the Risk Metrics VaR. 

To assess the finite-sample performance of each method, for each replication the estimated 

unconditional coverage is computed 𝑝̂. The 5th, 25th, 50th, 75th and 95th percentiles of the empirical 

distribution of 𝑝̂  are reported in Table 1 for the 95% confidence level and Table 2 for the 99% 

confidence levels. In Table 1 and 2, these are reported in four rows: The first row is Gaussian GARCH 

data generating process (DGP), the second row is threshold GARCH data generating process, the third 

row contains autoregressive Gaussian GARCH data generating process, and the fourth-row reports 

autoregressive threshold GARCH date generation process. The selection of a confidence level for an 

interval determines the probability that the confidence interval produced will contain the true 

parameter value. Common choices for the confidence level are 0.95, and 0.99. These levels correspond 

to percentages of the area of the normal density curve. For example, a 95% confidence interval covers 

95% of the normal curve-the probability of observing a value outside of this area is less than 0.05. 

Because the normal curve is symmetric, half of the area is in the left tail of the curve, and the other 

half of the area is in the right tail of the curve. 

Table 2. Simulated p̂ distribution 99% confidence. 

Percentile 5th 25th 50th 75th 95th 
Gaussian-GARCH DGP 
BRV 

QR 

Risk Metrics 

HS 

0.000 

0.000 

0.000 

0.000 

0.007 

0.008 

0.008 

0.008 

0.011 

0.012 

0.012 

0.012 

0.014 

0.016 

0.016 

0.016 

0.026 

0.028 

0.028 

0.028 

t-GARCH DGP 
BRV 

QR 

Risk Metrics 

HS 

0.000 

0.000 

0.016 

0.000 

0.003 

0.004 

0.028 

0.004 

0.013 

0.012 

0.036 

0.012 

0.016 

0.016 

0.044 

0.016 

0.030 

0.040 

0.062 

0.044 

AR-Gaussian-GARCH DGP 
BRV 

QR 

Risk Metrics 

HS 

0.000 

0.000 

0.004 

0.000 

0.005 

0.004 

0.008 

0.004 

0.013 

0.008 

0.012 

0.010 

0.016 

0.016 

0.020 

0.016 

0.024 

0.020 

0.026 

0.022 

AR-t GARCH DGP 
BRV 

QR 

Risk Metrics 

HS 

0.000 

0.000 

0.020 

0.000 

0.004 

0.004 

0.028 

0.004 

0.013 

0.012 

0.040 

0.012 

0.021 

0.020 

0.052 

0.020 

0.040 

0.040 

0.070 

0.040 
The second-fourth simulation experiments are the same as the first but with different DGPs for 

the returns, allowing for serial correlation and conditionally non-Gaussian returns. The various DGPs 

for all the experiments are given below: 

DGP 1. Gaussian-GARCH 

𝑅𝑡 =  𝜀𝑡ℎ𝑡
1/2

 , ℎ𝑡 = 0.1 + 0.1 𝑅𝑡−1
2 + 0.8 ℎ𝑡−1 , 𝜀𝑡 ~ 𝑁 (0,1)            (13) 

DGP 2. t-GARCH. 

𝑅𝑡 =  𝑣𝑡ℎ𝑡
1/2

 , ℎ𝑡 = 0.1 + 0.1 𝑅𝑡−1
2 + 0.8 ℎ𝑡−1 , 𝑣𝑡 ~ 𝑡 (5)             (14) 

DGP 3. AR-Gaussian-GARCH 

𝑅𝑡 =  0.3 𝑅𝑡−1 + 𝑢𝑡 , 𝑢𝑡 = 𝜀𝑡 𝑅𝑡
1/2

 , 𝜀𝑡 ~ 𝑁 (0,1)               (15) 

ℎ𝑡 = 0.1 + 0.1 𝑢𝑡−1
2 + 0.8 ℎ𝑡−1                   (16) 

DGP 4. AR – t – GARCH 

𝑅𝑡 =  0.3 𝑅𝑡−1 + 𝑢𝑡 , 𝑢𝑡 = 𝑣𝑡 𝑅𝑡
1/2

 , 𝑣𝑡 ~ 𝑡 (5)              (17) 

ℎ𝑡 = 0.1 + 0.1 𝑢𝑡−1
2 + 0.8 ℎ𝑡−1                     (18) 
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For DGPs 1 and 3, a normal CDF is used as the link function when using the BRV method (i.e. 

Probit models are estimated). For DGPs 2 and 4, a logistic CDF is used as the link function (Logit 

models are estimated). For DGPs 1 and 2, just a constant is included as a predictor in the relevant link 

function, and for DGPs 3 and 4, the link function also contains a lag of returns (hence, the estimated 

models are correctly specified). 

For the 95% confidence level, it can be seen in Table 1 that the empirical distribution of 𝑝̂ for 

both the BRV and QR methodes are virtually identical. They both have good levels of unconditional 

coverage given the small size of the backtesting period (250 observations). The distribution of 𝑝̂ is 

centered close to the population value of p=0.05, irrespective of the DGP. In both cases, the 

performance of these methods is similar, irrespective of whether returns are conditionally Gaussian or 

non-Gaussian. It can be shown that the logistic CDF closely approximates a student t CDF with 9 

degrees of freedom (see Mudholkar and George (1978). Hence, the BVR method using Logit models 

is clearly well-suited to computing VaR if the conditional distribution for returns is thought to be fat 

tailed. The results in Table 2 show that at the 99% confidence level, the BRV and QR methods also 

produce very similar results. Again, the distributions of 𝑝̂ are centered close to the population value 

of p= 0.01 and both have a similar variance. 

In contrast, however, it can be seen that at both confidence levels, the Risk Metrics method 

significantly underestimates the population VaR for DGPs 2 and 4 (non-Gaussian returns). For DGP 3, 

(Gaussian returns but with serial correlation), the Risk Metrics method, which ignores serial correlation, 

slightly underestimates the population VaR. The HS method gives similar results to the BRV and QR 

methods for all the DGPs at both confidence levels, and there is no distinguishable difference in the 

performance of the HS method for the DGPs with and without serial correlation. 

3. Results 

In this section, I discuss an empirical application involving DJI and DJUSMT series. The 

application involves recursively computing the daily VaR at the 95% and 99% confidence levels using 

the BRV, QR, Risk Metrics, and HS methods for every trading day over the three-year period 02/01/06–

31/12/08 (755 days), using a five-year window of historical data for parameter estimation 

(approximately 1250 observations). For example, VaR on 02/01/06 is computed using data from 

31/12/00–31/12/05. Note that the parameters of the BRV and QR models are re-estimated each  day. 

The conditional standard deviation ℎ𝑡−1
1/2

 is chosen as an important predictor following the evidence 

in Christoffersen and Diebold (2006) on its ability to forecast the direction of stock returns, and a 

positive relationship with 𝑝𝑖,𝑡 is expected. 𝑇𝐵𝑡−1 is included to allow for present value effects, and 

𝑉𝑡−1 is included to capture market sentiment, and again for both, a positive relationship with 𝑝𝑖,𝑡 is 

expected. Conventional ML is used for parameter estimation in the BRV method and the interior point 

algorithm of Koenker and Park (1978) is used for parameter estimation in the QR method. In the Risk 

Metrics method, an EWMA volatility forecast with a weight of 0.94 is used, which is the default choice 

for the Risk Metrics method applied to daily data. 

Prior to discussing the backtesting results, as an example, the estimated Logit model parameters 

and robust t-statistics computed using Huber-White robust standard errors are given in Table 3 for each 

index and stock at three points over the backtesting period (the points are 29/12/06, 31/12/07, and 

30/12/08). In each case, the 1st percentile of the order statistics is used to define the threshold. On the 

basis of the robust t – statistics, I found clear evidence that all three explanatory variables are 

statistically significant at one or more of these points, and that when statistically significant, the signs 

of the estimated parameters are consistent with our expectations. Note that in Table 3, 𝛽̂0  is the 
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estimated constant, which are −13.162 for DJI and −10.708 for DJUSMT, and 𝛽̂1 is the estimated 

parameter on 𝑇𝐵𝑡−1, which are 0.518 for DJI and −0.018 for DJUSMT. 𝛽̂2 is the estimated parameter 

on 𝑉𝑡−1,which are 0.119 for DJI and 0.107 for DJUSMT. 𝛽̂3 is the estimated parameter on ℎ𝑡−1
1/2

 , 

which are 2.617 for DJI and 2.551 for DJUSMT. Robust t-statistics computed using Huber-White 

standard errors are in parentheses.  

Table 3. Logit model estimation results. 

Sample end  𝜷̂𝟎 𝜷̂𝟏 𝜷̂𝟐 𝜷̂𝟑 

DJI 
1-31/12/08 

 

31/12/07 

 

30/12/08  

−13.162 

( - 4.406) 

- 9.606 

(-5.220)  

- 20.165 

(- 4.255)  

0.518 

(1.616) 

0.184 

(0.559) 

1.546 

(2.651)  

0.119 

(1.831) 

0.059 

(2.387)  

0.024 

(0.955) 

2.617 

(7.219) 

2.550 

(2.563) 

1.026 

(3.777)  

DJUSMT 

and Dow Jones U.S. Marine Transportation  2-31/12/08 

 

31/12/07 

 

30/12/08  

−10.708 

(- 3.035) 

- 11.088 

(- 6.802)  

- 20.465 

(- 4.201)  

−0.018 

(- 0.049)  

- 0.062 

(- 0.223)  

1.546 

(2.442)  

0.107 

(1.144)  

0.150 

(2.430)  

0.036 

(0.429)  

2.551 

(6.979)  

3.457 

(3.250)  

1.300 

(6.325)  

As one might expect, the exact statistical significance of the estimated parameters varies 

depending on the index or stock and sample period, but there are some patterns. For example, for each 

series, I found that ℎ𝑡−1
1/2

  is strongly statistically significant, but that the statistical significance of 

𝑇𝐵𝑡−1  and 𝑉𝑡−1  varies over the sample. Note that I do not eliminate statistically insignificant 

predictors prior to computing VaR using the BRV method; however, this method could be taken in 

future research to allow for structural change. 

4. Backtesting results 

To summarize the backtesting results, for each method and at each confidence level, the estimated 

unconditional coverage 𝑝̂ is reported for comparison with the population unconditional coverage p. 

Christoffersen (1998) proposes a complete methodology for evaluating the number of exceedances and 

their independence. The independence test rationale dictates that, if the violations are dependent, then 

the transition probabilities would not be equal. Finally, Christoffersen (1998) proposes a joint test that 

combines both hypotheses (Conditional Coverage CC hypothesis). Correct unconditional coverage 

𝐿𝑅𝑢𝑐 and independence of the VaR exceedances 𝐿𝑅𝑖𝑛𝑑 are proposed by Christoffersen (1998). The 

𝐿𝑅𝑢𝑐 and 𝐿𝑅𝑖𝑛𝑑  tests utilize the fact that if the VaR method is perfect, then VaR exceedances should 

be unpredictable and so a binary indicator of exceedances (the hit indicator), 

𝐻𝑡+1 =  
1,     𝑖𝑓     𝑅𝑡+1 <  𝑄̂ (𝑝)𝑡+1

0,     𝑖𝑓     𝑅𝑡+1 ≥  𝑄̂ (𝑝)𝑡+1

                       (19) 

where 𝑄̂ (𝑝)𝑡+1 is the forecast of the relevant return quantile, should be an independent Bernoulli 

random variable. The 𝐿𝑅𝑢𝑐  and 𝐿𝑅𝑖𝑛𝑑   tests are straightforward to compute and have a 𝑥2  (1) 

asymptotic distribution (see Christoffersen, 1998, for further details). 

The backtesting results for the DJI at the 95% and 99% confidence levels, respectively, are given 

in Table 4. The results for the method that is optimal on the basis of the estimated unconditional 

coverage 𝑝̂ relative to the population value p are bolded. For DJI, at the 95% confidence level, the 

BRV result is 𝑝̂ = 0.05, suggesting that the population VaR over this period is estimated extremely 

well (p=0.05). In contrast, the Risk Metrics, HS, and QR results are 𝑝̂ = 0.061, 𝑝̂ = 0.110, and 𝑝̂ = 

0.052, respectively, suggesting that the population VaR is underestimated by each of these methods. 

The 𝐿𝑅𝑎𝑐 test rejects the null hypothesis of correct unconditional coverage for the Risk Metrics and 
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HS methodes at either the 5% or 1% significance levels. For DJI at the 99% confidence level, the Risk 

Metrics result is 𝑝̂ = 0.029 while the HS result is 𝑝̂ = 0.045, and the QR result is 𝑝̂ = 0.034. 

Table 4. Backtesting results: DJI. 

 𝑝̂ 𝐿𝑅𝑢𝑐 𝐿𝑅𝑖𝑛𝑑 

95% confidence 
Risk Metrics  

BRe VaR  

QR 

HS 

0.061 

0.050 

0.058 

0.107 

5.092 **  

0.002 

1.037 

39.843 ** 

1.086 

0.681 

0.272 

0.462 

BRV 0.050 0.002 0.681 
QR 0.052 1.037** 0.272 
HS 0.110 30.091 ** 0.469 
99% confidence 
Risk Metrics Metrics  

BRe VaR  

QR 

HS 

0.029 

0.012 

0.020 

0.046 

18.439 ***** 

0.027 

5.770 ** 

53.487 *** 

1.382 

0.649 

0.649 

1.142 

BRV 0.010 0.024 0.634 
QR 0.034 5.095 ** 0.561 
HS 0.045 28.333 ** 1.104 

Note that: *, **, and *** indicate a rejection of the null hypothesis at the 10%, 5%, and 1% levels, respectively. 

On the basis of the estimated unconditional coverage 𝑝̂ , in both cases, the BRV method is 

superior to any of the other methodes considered. For DJUSMT, at the 95% confidence level, the BRV 

result is 𝑝̂ = 0.05, suggesting that the population VaR over this period is estimated extremely well 

(p=0.05). In contrast, the Risk Metrics, HS, and QR results are 𝑝̂ = 0.065, 𝑝̂ = 0.088, and 𝑝̂ = 

0.032, respectively, suggesting that the population VaR is underestimated by each of these methods. 

The 𝐿𝑅𝑎𝑐 test rejects the null hypothesis of correct unconditional coverage for the Risk Metrics and 

HS methodes at either the 5% or 1% significance levels. For DJUSMT at the 99% confidence level, 

the Risk Metrics result is 𝑝̂ = 0.024 while the HS result is 𝑝̂ = 0.053, and the QR result is 𝑝̂ = 0.19. 

Therefore, again, in all three cases, these results suggest that the population VaR is underestimated. 

Furthermore, in all three cases, 𝐿𝑅𝑢𝑐 rejects the null hypothesis of correct unconditional coverage at 

conventional significance levels. The BRV result is 𝑝̂ = 0.015, which is much closer to the desired 

level of coverage. 

Table 5. Backtesting results: DJUSMT. 

 𝑝̂ 𝐿𝑅𝑢𝑐 𝐿𝑅𝑖𝑛𝑑 

95% confidence 
Risk Metrics Metrics  

BRe VaR  

QR 

HS 

0.065 

0.044 

0.054 

0.083 

3.239 *  

0.656 

0.287 

14.930 *** 

0.705 

3.111 *  

4.830 **  

4.371 **  

BRV 0.021 0.543 5.111 ** 
QR 0.032 0.067 0.265 
HS 0.088 21.81 *** 7.002 ** 
99% confidence 
Risk Metrics Metrics  

BRe VaR  

QR 

HS 

0.023 

0.013 

0.020 

0.042 

8.817 *** 

0.729 

5.770 ** 

44.337 *** 

0.830 

0.296 

0.649 

6.758 *** 

BRV 0.015 0.894 0.365 
QR 0.19 6.655*** 0.574 
HS 0.053 36.339*** 9.55** 

The results for the DJI and DJUSMT indices in Table 5 show that at the 95% confidence level, 

the QR method is preferred on the basis of the estimated unconditional coverage with the BRV method 

being the next most accurate. At the 99% confidence level, the BRV method is preferred. Again, for 

the other method considered 𝑝̂ > 𝑝 and the rejections obtained from 𝐿𝑅𝑢𝑐, it is suggested that the 

population VaR is underestimated. In this case, rejections are also obtained from 𝐿𝑅𝑖𝑛𝑑 for the BRV, 

QR, and HS methods at the 95% confidence level, suggesting mis-specified models. 
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The optimal method on the basis of the estimated unconditional coverage 𝑝̂ are either the BRV 

method (optimal in four out of six cases) or the QR method (optimal in the remaining two cases).  

5. Discussion 

Underestimating the population VaR can lead to serious penalties for banks in countries where 

the Basel II Capital Accord has been implemented and is a well-known weakness of the Risk Metrics 

method if the population conditional distribution is fat-tailed.  

6. Conclusions 

I propose an alternative parametric method to computing the widely used financial risk measure 

VaR. The BRV method involves using binary response models to compute probability forecasts of the 

portfolio return exceeding a grid of candidate quantile values. The candidate quantile value associated 

with a probability forecast closest to the desired VaR probability is chosen as the VaR. The performance 

of the BRV method is impressive relative to the orthodox Risk Metrics and HS methods and a QR-

based method, both in Monte Carlo simulation experiments and an empirical application involving DJI 

and DJUSMT indexes. In the empirical application, the BRV method is the most accurate method in 

most cases on the basis of the estimated unconditional coverage. Note in particular that the BRV 

method is the best performing method for computing the daily VaR at both the 95% and 99% 

confidence levels over the turbulent period 02/01/06–31/12/08. The BRV and QR methods perform 

similarly, but relative to QR, the BRV method has the practical advantage that conventional ML 

methods can be used for parameter estimation and robust inference. 
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