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Abstract: Regression trees (RT) involve sorting samples based on a particular feature and identifying 

the splitting point that yields the highest drop in variance from a parent node to its children. The 

optimal factor for reducing mean squared error (MSE) is the target variable itself. Consequently, 

employing the target variable as the basis for splitting sets an upper limit on the reduction of MSE and, 

equivalently, a lower limit on the residual MSE. Building upon this observation, we define lepto-

regression as the process of constructing an RT of a target feature on itself. Lepto-variance pertains to 

the portion of variance that cannot be mitigated by any regression tree, providing a measure of inherent 

variance at a specific tree depth. This concept is valuable as it offers insights into the intrinsic structure 

of the dataset by establishing an upper boundary on the “resolving power” of RTs for a sample. The 

maximal variance that can be accounted for by RTs with depths up to k is termed the sample k-bit 

macro-variance. At each depth, the overall variance within a dataset is thus broken into lepto- and 

macro-variance. We perform 1- and 2-bit lepto-variance analysis for the entire US stock universe for 

a large historical period since 1926. We find that the optimal 1-bit split is a 30–70 balance. The two 

children subsets are centered roughly at −1% and 0.5%. The 1-bit macro-variance is almost 42% of 

the total US stock variability. The other 58% is structure beyond the resolving power of a 1-bit RT. 

The 2-bit lepto-variance equals 26.3% of the total, with 42% and 47% of the 1-bit lepto-variance of 

the left and right subtree, respectively. 
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1. Introduction 

The regression tree (RT) is a machine learning model commonly used for explaining a continuous 

target variable based on various features. RTs are similar to decision trees, being constructed by 

recursively partitioning the input space into regions and assigning a constant value to each region. 

Each internal node in a regression tree represents a decision based on a particular feature. The tree 

structure is hierarchical, with the first decision at the root node and subsequent split decisions at higher 

depths creating further branching based on the outcomes of previous decisions. For a brief and concise 

introduction to RTs see Krzywinski and Altman (2017), Torgo (2011), and Elith et al. (2008). 

A great advantage of RTs is their interpretability and simple visual representation, which results 

in a simple-to-understand decision-making process. Additionally, RTs can capture complex, nonlinear 

relationships in the data. Using the RT methodology, Polimenis (2022) uniquely defined the sample 

lepto-variance as variance beyond the explanatory power of a RT, and macro-variance as the upper 

bound of sample variability that may be explained.  

Unlike the residual mean squared error (MSE) in a regression that depends on the utilized factors, 

the lepto-variance is a new type of idiosyncratic sample-specific variability that pertains to the portion 

of variance that cannot be mitigated by any regression tree, thus providing a measure of inherent 

variance at a specific tree depth. By establishing an upper boundary on the “resolving power” of RTs 

for a sample, this statistical concept is valuable as it offers insights into the intrinsic structure of the 

dataset. At each RT depth level, the overall variance within the dataset is broken into lepto- and macro-

variance. This is related to the 1-d clustering problem (Grønlund et al., 2017). The k-means problem 

in higher dimensions is NP-hard (Aloise et al., 2009). Similar techniques have been used by 

cartographers to produce so-called choropleth or thematic maps, via the so-called natural breaks 

introduced by Jenks and Caspall (1971). Data in choropleth maps are categorized using a modification 

of the Jenks natural breaks classification method. These methods cluster data into groups that minimize 

the within-group variance and maximize the between-group variance. 

Following Polimenis (2022), in this paper, the lepto-regression, lepto-variance, and lepto-ratio 

concepts are defined and then initially explored by providing simple intuitive examples. Then, 1- and 

2-bit lepto-regression analysis for the entire US stock universe is performed utilizing historical daily 

market return data for the previous 96-year period. The sample comprises 25,272 daily returns from 

July 1, 1926, to June 30, 2022. We find that the optimal 1-bit RT split is roughly a 30–70 balance. The 

left and right children subsets are centered roughly around −1% and +0.5%. The 1-bit macro-variance 

is almost 42% of the total US stock variability, while the residual 58% is structured beyond the 

resolving power of any 1-bit RT. The 2-bit lepto-variance equals 26.3% of the total, with 42% and 47% 

the 1-bit lepto-variance of the left and right subtree, respectively. 

1.1. Motivation  

The relationship between the total explanatory power and the number of independent variables is 

complicated. The total explanatory power of a regression model is often assessed using metrics such 

as the coefficient of determination (𝑅2 ). R-squared represents the dependent variable variability 

proportion explained by the independent variables and is a measure of how well the independent 
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variables in a regression model explain dependent variable variation. Adding relevant variables can 

enhance explanatory power in a linear regression, but careful consideration is needed to avoid 

overfitting, i.e., a situation of a model fitting the training data closely by capturing noise. Similarly, in 

a financial regression of stock returns on market-wide factors, the residual (idiosyncratic) variance 

depends on the factors used in the regression. In general, we can get lower residual variance by adding 

extra financial factors.  

Improving our understanding of the inherent explanatory power of RTs is valuable, as they are a 

fundamental building block for more advanced ensemble methods, such as random forests and 

gradient-boosted trees, which combine multiple trees to improve predictive performance and 

robustness. But, as with linear regression, overfitting the training data is one of the RT challenges, as 

trees can easily capture noise rather than underlying patterns. Pruning and other regularization 

techniques are used to address this issue.  

1.2. Motivation from the field of financial risk management 

Financial risk management is a large field of academic and practical significance for banking and 

finance. The key starting point of managing risk is to properly quantify it, which effectively means 

measuring volatility and correlations for the entire investable asset universe. Understanding the sources 

of volatility is of great interest. Investors place importance on understanding the factors that contribute 

to investment return volatility, as it directly affects both risk assessment and the overall decision-

making process.  

The introduction of a model-free method to analyze return variability has always been of great 

interest to the academic and financial practitioner communities. For example, the volatility index (VIX) 

introduced by Whaley (1993) is referred to by some as the market “barometer” and is tradable in CBOE. 

The index was later calculated via a more model-free method developed by Demeterfi et al. (1999). 

However, the VIX calculation is neither simple nor intuitive. 

1.3. The role of idiosyncratic financial risk 

When utilizing machine learning techniques in financial analysis, we use financial factors as 

features, being interested in finding the factors that explain a large fraction of the total stock return 

variance. Stock return variance that cannot be explained by broad market financial factors is considered 

idiosyncratic for the specific stock. The total risk of investment results from adding risks determined 

by exposure to market factors (market risks) and idiosyncratic volatility, which represents the risk 

component specific to the asset and not determined or related (i.e., orthogonal) to any wider market 

movements. The pricing implications of idiosyncratic volatility are still not well understood (Ang et 

al., 2006; Campbell et al., 2001). 

In conclusion, as investors aim to diversify portfolios and mitigate risk exposure, quantifying 

variance is crucial. A novel, model-free, and simple statistical method for analyzing total return 

variability may enable investors to make better decisions, improve risk assessment, and create 

portfolios that align with their total risk tolerance and investment objectives. 
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2. Lepto-regression  

In splitting a nominal predictor taking 𝑞 possible labels (unordered values), there exist 2𝑞−1 − 1 

possible binary partitions of these labels. If all these partitions need to be evaluated, the computation 

becomes prohibitive for any (except for very small) 𝑞  values. Various theorems related to the 

concavity of the underlying impurity function allow the problem to be simplified into a linear search 

of only 𝑞 − 1 partitions, where attribute values are sorted based on their strength of correlation with 

the target. Most notably, Fisher (1958) showed that for a continuous-valued target Y, the least squares 

partition of a set is contiguous. Breiman et al. (1984) extended this for a decision tree with binary (2-

class) target Y (see the discussion in Ripley, 1996 and Hastie et al., 2009).  

The process of constructing a regression tree involves recursively partitioning the sample based 

on the selected features and split thresholds, with a procedure continuing until a stopping criterion (a 

maximum depth or a minimum number of samples for the node) is met. At each decision node, the 

algorithm selects a feature and a threshold to split the data into two subsets with the goal of minimizing 

the residual target variance within each subset. A constant value is assigned to the instances that reach 

terminal (or leaf) nodes of the tree. 

RTs provide a binary splitting of the sample space with minimization criterion the residual sum 

of squares (i.e., sum of squared error) 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂(𝑥𝑖))
2

𝑖 , with 𝑦̂(𝑥𝑖) = 𝑦̂𝑖 the prediction for 𝑦𝑖 

given factor values 𝑥𝑖 . RTs predict using the average values 𝑦̂𝑖 = 𝑦̅𝑖  within each subset, as they 

minimize the residual mean square error 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̅𝑖)2

𝑖 .  

2.1. Definition of sample lepto-variance 

At each internal tree node (#𝑗), the RT performs a sorting of the subsample reaching this node 

𝑆𝑗 using the chosen split factor 𝑥𝑗 and finds the split point 𝑐𝑗 that produces the maximum MSE drop 

from the node to its children 𝐿𝑗 and 𝑅𝑗. Generally, sorting a sample based on a factor 𝑥𝑗 will not sort 

the target 𝑦. With no loss of generality, assume that the left child L contains the “small” 𝑦 values (i.e., 

assume 𝑦𝐿̅̅ ̅ = 𝑚𝑒𝑎𝑛{𝑦 ∈ 𝐿} < 𝑦𝑅̅̅ ̅ = 𝑚𝑒𝑎𝑛{𝑦 ∈ 𝑅}). 

Definition. A binary split of 𝑆 into 𝐿 and 𝑅 is sorted if all target values 𝑦 in 𝐿 are smaller than all 

target values in 𝑅.  

As an extension of the Fisher (1958) theorem on grouping, the following lemma for RTs is shown 

in Polimenis (2022) 

Lemma 1. In terms of minimizing MSE in a RT, when splitting a sample 𝑆, it is always beneficial to 

utilize a sorted split. Thus, the best factor to use (in terms of MSE drop) is the dependent variable itself. 

Proof. Let’s assume an unsorted split of a sample 𝑆 into 𝐿 and 𝑅 (with no loss of generality, assume 

𝑦𝐿̅̅ ̅ < 𝑦𝑅̅̅ ̅ ). Then, the maximum 𝑦 value of the left subtree 𝑢1 is larger than the minimum value of the 

right subtree 𝑢0 

𝑢1 = max {𝑦 ∈ 𝐿} > 𝑢0 = min {𝑦 ∈ 𝑅} 
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But then, we can get a better split by swapping 𝑢0 with 𝑢1 into 𝐿 and 𝑅, respectively. Because 

moving 𝑢0 into 𝐿 and 𝑢1 into 𝑅 will move the center of the 𝐿 subsample to the left and the center of 

the right subsample to the right, thus producing a larger separation between the left and right 

subsamples without changing the relative sample sizes. By the law of total variance, a larger between-

group variability means a smaller within-group variability and thus a better split. 

Since the best binary split is always a sorted split, and regressing the target on itself allows all 

sorted splits to be evaluated, using the target as a factor will provide an upper bound on the explained 

variance (or lower bound on residual MSE).  

Definition. We call lepto-regression the process of constructing an RT of a target feature on itself, and 

sample lepto-variance as the residual MSE of the lepto-regression. 

We use 𝜇12 and 𝜆12 to denote the 1-bit macro and lepto-variance, respectively (residual MSE for 

RTs with depth 1). Total variance equals 

𝜎2 = 𝜇12 + 𝜆12        (1) 

3. The 𝝀𝟏𝟐 lepto-variance of simple examples 

To get a better understanding of the novel concept of lepto-variance, a few simple example 

calculations of 𝜆12 are presented and discussed. 

The simplest case is that of the equiprobable 2-member set. Without loss of generality, assume 

the set {−0.5, 0.5}. The total variance of this sample is 0.25. In this (degenerate) case, the only split 

(and thus optimal) is the separation of the two members that produces a variance drop of 0.25 and a 

residual (lepto) variance remainder equal to zero 𝜎2 = 𝜇12 and 𝜆12 = 0. 

Next, consider the {−1, 0, 1} equiprobable set. This will split into {−1} and {0, 1} with its total 

variance of 𝜎2 =
2

3
 split into macro-variance of 𝜇12 =

1

2
 and lepto-variance of 𝜆12 =

1

6
  

The next case is the equiprobable 4-member set {−1.5, −0.5, 0.5, 1.5}. With no loss of generality, 

points are chosen to center at zero to help with mental calculations. In this case, the optimal split is the 

balanced split producing two equiprobable 2-member sets left and right, with residual variance equal 

to 𝜆12 = 0.25. The two clusters {−1.5, −0.5} and {0.5, 1.5} are centered at −1 and 1, respectively, 

giving an inter-cluster distance of 2, and a variance drop that equals 

𝜇12 = Variance drop = 0.5 × 0.5 ×  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 0.25 × 4 = 1 

Definition. We define the useful concept of lepto ratio 𝑙𝑅2 as the ratio of lepto-variance (at a specific 

depth) to total sample variance. For the 1-bit case, this equals 𝑙𝑅12 = 𝜆12/𝜎2.  

Using the law of total variance, in the last example, we calculate a total variance of 0.25 + 1 =

1.25, and a lepto ratio 𝑙𝑅12 = 20% of the total sample variance. 

3.1. A first look at lepto-variance and split balance 

From the discussion above for the 2- and 4-member sets, it may seem that the optimal split is 

always a balanced split. It is significant to note that the optimal split is not always balanced. We may 

understand some of the concepts related to the split balance (i.e., relative cluster weights) using as an 
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example the 6-member equiprobable sample {−1,0,1,2,3,4}. We may think of the entire sample as 

comprised of two separate clusters, {−1,0,1} and {2,3,4} centered at 0 and 3, with initial cluster “radius” 

epsilon equal to 1 and separated by inter-cluster distance delta equal to 3. Total sample variance is thus 

equal to 𝜎2 =
𝛿2

4
+

2

3
𝜖2. With epsilon = 1 and delta = 3, this equals 2.9167 (see Table 1 below). 

Separating the sample in the middle gives a residual variance of the two clusters equal to 𝜆12 =
2

3
 

and a variance drop of 
𝛿2

4
=

9

4
= 2.25. In this case, the balanced split is optimal. For example, if instead 

the sample is split by isolating −1, there is a var drop equal to only 
1

6
×

5

6
× (2 − (−1))

2
= 1.25 and 

there is 1.67 > 𝜆12 var left unexplained. Splitting at {−1,0} and {1,2,3,4} is better, as it gives a higher 

var drop equal to 
1

3
×

2

3
× (2.5 −  (−0.5))

2
= 2 and there is 0.9167 var left unexplained. But this is 

still inferior to the balanced split. 

Table 1a. Simple lepto-variance calculation example. Separating the 6-member 

{−1,0,1,2,3,4} sample (epsilon = 1) in the middle gives the expected variance of the two 

clusters equal to 0.67 and a variance drop of 𝜇12 = 2.25. In this case, the balanced split is 

optimal, explaining 77.14% of the total variability of 2.9167. The lepto-variance 

(highlighted cell) of the sample equals 0.67, giving a 1-bit lepto-variance ratio 𝑙𝑅12 =
22.86% of the total variance.  

Split 

point 

Sorted 

sample 

Variance 

drop 

Explained var as 

a fraction 

Left child 

MSE 

Right child 

MSE 

Residual 

MSE 

Residual MSE as a 

fraction of total 

1 −1 1.25 42.86% 0.000 2.000 1.6667 57.14% 

2 0 2.00 68.57% 0.250 1.250 0.9167 31.43% 

3 1 2.25 77.14% 0.667 0.667 0.6667 22.86% 

4 2 2.00 68.57% 1.250 0.250 0.9167 31.43% 

5 3 1.25 42.86% 2.000 0.000 1.6667 57.14% 

6 4  total var >> 2.917 0.000 2.9167 
 

We want to understand what happens if the two clusters get more spread out. Take, for example 

(by increasing epsilon to 1.2), the set {−1.2, 0, 1.2, 1.8, 3, 4.2}. Again, the two clusters are centered at 

0 and 3 (separated by delta = 3) but they are now more spread out (with higher cluster variance). Total 

variance is 3.21. Separating the set in the middle gives the expected variance of the two clusters equal 

to 0.67 × 1.44 =  0.96  and a variance drop of 0.5 × 0.5 × 9 =  2.25 . The best split is still the 

balanced split, but now the benefit of the balanced split is less pronounced. For example, splitting the 

sample by isolating −1.2 gives a var drop equal to only 
1

6
×

5

6
× (2.04 −  (−1.2))

2
= 1.458 and there 

is 1.752 var left unexplained. Splitting at {−1.2, 0} and {1.2, 1.8, 3, 4.2} is even better, as it gives a 

var drop equal to 2.2050 and there is 1.0050 var left unexplained. But this is still inferior to the balanced 

split. Observe that isolating the “outlier” −1.2 is now more beneficial than in the previous case, as it 

explains 45.42% of the total var. 
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Table 1b. Simple lepto-variance calculation example (cont.). Lepto-regression of a 6-

member set with higher within-cluster variance (epsilon = 1.2) at various points. Optimal 

split is in the middle. It still explains 𝜇12 = 2.25, but this time a smaller fraction of the 

total variance of 𝜎2 = 3.21. The lepto-variance (highlighted cell) of the sample equals 

𝜆12 = 0.96, giving a lepto-variance ratio 𝑙𝑅12 of almost 30%. 

Split 

point 

Sorted 

sample 

Variance drop Explained var 

as a fraction 

Left child 

MSE 

Right child 

MSE 

Residual 

MSE 

Residual MSE as a 

fraction of total 

1 −1.2 1.458 45.42% 0.000 2.102 1.752 54.58% 

2 0 2.205 68.69% 0.360 1.328 1.005 31.31% 

3 1.2 2.250 70.09% 0.960 0.960 0.960 29.91% 

4 1.8 2.205 68.69% 1.328 0.360 1.005 31.31% 

5 3 1.458 45.42% 2.102 0.000 1.752 54.58% 

6 4.2  total var >> 3.210 0.000 3.210 
 

As the two clusters get more spread out, as in {−1.3, 0, 1.3, 1.7, 3, 4.3}, the balanced split is not 

optimal any longer. Again, the two internal clusters are centered at 0 and 3, but they are now more 

spread out (within cluster variance 1.1267). Total sample variance 𝜎2 is 1.1267 + 2.25 = 3.3767. 

Separating the sample in the middle again explains 
1

2
×

1

2
× 9 =  2.25, but this time represents only 

66.63% of the total variance (versus 77.14% in the case of epsilon = 1). The skewed splitting at {−1.3, 

0} and {1.3, 1.7, 3, 4.3} is optimal with a var drop equal to 𝜇12 =
1

3
×

2

3
× (2.575 − (−0.65))

2
=

2.31125. 

Table 1c. Lepto-regression of a 6-member set with non-balanced optimal split (epsilon = 

1.3). The skewed splitting at {−1.3, 0} and {1.3, 1.7, 3, 4.3} is more beneficial (as well as 

its symmetric split at {−1.3, 0, 1.3, 1.7} and {3, 4.3}). In this case, 𝜆12 = 1.0654 and 

𝑙𝑅12 = 31.55%. 

Split 

point 

Sorted 

sample 

Variance 

drop 

Explained var 

as a fraction 

Left child MSE Right child 

MSE 

Residual 

MSE 

Residual MSE as a 

fraction of total 

1 −1.3 1.568 46.44% 0.0000 2.1704 1.8087 53.56% 

2 0 2.311 68.45% 0.4225 1.3869 1.0654 31.55% 

3 1.3 2.250 66.63% 1.1267 1.1267 1.1267 33.37% 

4 1.7 2.311 68.45% 1.3869 0.4225 1.0654 31.55% 

5 3 1.568 46.44% 2.1704 0.0000 1.8087 53.56% 

6 4.3 
 

total var >> 3.3767 0.0000 3.3767 
 

4. Empirical analysis 

4.1. Estimation of the historical lepto-variance of US stock returns 

Here, the concept of lepto-variance of US stock returns is presented and, to provide some 

perspective, it is compared with the residual variance when two well-known financial factors, size 

(SMB) and book-to-value (HML), are used to capture return variability. Specifically, historical daily 
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percentage return data for US stock returns starting in 1926 are analyzed. High-quality return data from 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html were downloaded on July 

30, 2022.1  

Table 2a. Daily US market percentage return data for a 96-year period are used. The 

sample comprises 25,272 daily returns for the period July 1, 1926 to June 30, 2022. 

 Date Mkt-RF SMB HML RF Mkt 

0 1926-07-01 0.10 −0.23 −0.28 0.009 0.109 

1 1926-07-02 0.45  −0.34  −0.03  0.009 0.459 

2 1926-07-06 0.17 0.29  −0.38  0.009 0.179 

3 1926-07-07 0.09  −0.59 0.00  0.009 0.099 

4 1926-07-08 0.21 −0.38  0.18  0.009 0.219 

… … … … … … … 

25267  2022-06-24 3.11  −0.36 −0.05  0.003  3.113 

25268  2022-06-27 −0.28 0.54 1.24  0.003  −0.277 

25269  2022-06-28 −2.10  −0.35  2.36  0.003  −2.097 

25270  2022-06-29 −0.20  −0.44 −1.30  0.003  −0.197 

25271  2022-06-30 −0.95  0.43  −0.15  0.003  −0.947 

25272 rows × 6 columns 

Table 2b presents descriptive return stats for daily returns of the entire US stock market and the 

two Fama-French factors SMB (size) and HML (value) for a 96-year period (in percentage). The 

variance for the entire sample is approximately 1.167. The average daily US stock return for this period 

is 4.2 bp (basis points), of which 3 bp is the risk part and 1.2 bp is the risk-free component. 

Table 2b. Using daily market return data for a 96-year period, we see descriptive return 

stats for the daily US stock market returns and the two Fama-French factors SMB (size) 

and HML (value) for the 96-year period from July 1, 1926 to June 30, 2022 (in percentage). 

Values are truncated at two decimal places for better visibility. 

 Mkt-Rf SMB HML RF Mkt 

count 25272 25272 25272 25272 25272 

mean 0.030 0.0045  0.015 0.012 0.042 

std 1.08 0.59 0.62 0.012 1.08 

min −17.44 −11.67 −6.02 −0.00 −17.41 

25% −0.40 −0.25 −0.25 0.00 −0.39 

50% 0.06 0.01 0.01 0.01 0.08 

75%  0.50 0.27 0.26 0.02 0.51 

max  15.76 8.18 9.04 0.06 15.76 

In financial asset pricing, a well-known pricing model is the three-factor model of Fama and 

French (1993). The three-factor model is based on a time-series linear regression of excess portfolio 

returns of the type 

𝑅(𝑡) − 𝑟𝑓(𝑡) =  𝑎 + 𝑏 ∙ [𝑀𝑘𝑡(𝑡) − 𝑟𝑓(𝑡)] + 𝑠 ∙ 𝑆𝑀𝐵(𝑡) + ℎ ∙ 𝐻𝑀𝐿(𝑡) + 𝑒(𝑡)   (2) 

 
1 Copyright 2022 Kenneth R. French.  
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with 𝑅(𝑡) being the return on a security or portfolio for period 𝑡, 𝑟𝑓(𝑡) the risk-free return, 𝑀𝑘𝑡(𝑡) −

𝑟𝑓(𝑡) the excess return on the value-weighted market portfolio above the risk-free asset, 𝑆𝑀𝐵(𝑡) the 

return on a diversified portfolio of small stocks minus the return on a diversified portfolio of big stocks 

for the period, and 𝐻𝑀𝐿(𝑡) the difference between the returns on diversified portfolios of high and 

low book-to-market (B/M) ratio stocks. The three-factor linear model above assumes that the 

sensitivities b, s, and h in (2) capture the most variation in expected returns, and the true value of the 

alpha intercept in (2) should be near zero for well-priced securities. 

Table 2c. Covariance matrix of the daily US returns and the 2 FF factors (truncated at 

three decimal places for better visibility). 

 Mkt - rf SMB HML rf Mkt 

Mkt - rf 1.167 −0.100 0.110 0 1.167 

SMB  0.350 −0.027 0 −0.100 

HML   0.387 0 0.110 

rf    0 0 

Mkt     1.167 

Table 2d. Correlation matrix of the daily US returns and the 2 FF factors (truncated at 

three decimal places for better visibility). 

 Mkt-rf SMB HML rf Mkt 

Mkt-rf 1 −0.157 0.163 −0.015 1 

SMB  1 −0.073 −0.011 −0.157 

HML   1 0.009 0.163 

rf    1 −0.004 

Mkt     1 

In the Figure below, the optimal depth of one RT when the US stock return vector (Mkt) is lepto-

regressed is shown. The optimal split is a 30–70 balance, for a Mkt return less than or equal to −0.264. 

The two children subsets are centered roughly at −1% and 0.5%. Total sample variance is 1.167.  

Sample 1-bit Lepto-variance equals  

𝜆12 = 0.3 × 0.877 + 0.7 × 0.593 = 0.678             (3) 

The 1-bit macro-variance (max variance drop) thus equals  

𝜇12 = 1.167 − 0.678 = 0.489      (4) 

This equals almost 42% of the total US stock variability. This implies a 1-bit lepto-ratio 𝑙𝑅12 =

58% comprising structure that cannot be removed by any 1-bit RT. Observe that the macro-variance 

could also be computed directly as the variance of a δ-scaled Bernoulli distribution with 𝑝 = 0.30 and 

𝛿 =  1.525 =  0.499 −  (−1.026) via 𝜇12 = 0.3 × 0.7 × 1.5252. 
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Figure 1a. The optimal 1-bit RT when the historical US stock return vector (Mkt) is lepto-regressed. 

To put the historical 1-bit lepto-ratio of 58% in some perspective, the optimal 1-bit RT when US 

stock returns are regressed on the two Fama-French SMB and HML factors is also estimated and shown 

in the Figure below. When using the entire historical sample, HML is more efficient than SMB and 

thus chosen for the 1-bit RT. The tree is highly skewed and can explain very little of the total historical 

US stock variability. Residual squared error equals 1.1315 (roughly 97% of total MSE).  

An interesting new statistic for any feature then is the percentage 𝑚𝑅12 of the sample macro-

variance that it can capture with a 1-bit RT. Using 1-bit RT, the Fama-French factors can only explain 

0.0355 of the total MSE. This is only 𝑚𝑅12 =
0.0355

0.489
= 7.26% of the 1-bit macro-variance, i.e., the 

maximum MSE that may be explained by 1-bit RTs. Using SMB explains 𝑚𝑅12 =
0.025

0.489
= 5.11% of 

the 1-bit macro-variance 𝜇12 (see Table 3). 

 

Figure 1b. 1-bit RT for US stock returns regressed on the 2 Fama-French SMB and HML 

factors (HML is chosen).  

In Table 3 below, the summarized depth 1-bit lepto-regression analysis for 96 years of US stock 

returns and the two Fama-French factors is shown. Using 1-bit RTs, Fama-French factors explain only 
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a small 𝑚𝑅12 fraction of the total explainable MSE (sample macro-variance). Overall, HML slightly 

dominates SMB. 

Table 3. 1-bit lepto-regression for 96 years data of US stock returns and the two Fama-French factors. 

Factor used Total MSE Explained MSE 
 

Residual MSE 𝑚𝑅12 

𝝁𝟏𝟐 + 𝝀𝟏𝟐 = 1.167 
    

SMB = 0.025 + 1.142 5.11% 

HML = 0.0355 + 1.1315 7.26% 

Mkt 𝝁𝟏𝟐 = 0.489 𝝀𝟏𝟐 = 0.678 100% 

4.2. The 2-bit historical lepto-structure of US returns 

The concept of lepto-variance of a sample may also be defined for trees of a maximum depth 

larger than 1. As we move deeper down on an RT, there will always be less residual variance. The 

argument of Lemma 1 will locally still be valid; at any node, the best split is always achieved by the 

target itself (via a sorted split). But the greediness of the RT may in rare (degenerate) occasions result 

in a situation where sorting in a split is sub-optimal (Polimenis, 2022).  

For the 4-element set {−1,0,1,2}, the greedy 1-bit split correctly splits to {−1,0} and {1,2} for a 

final 1-bit residual MSE 𝜆12 = 0.25, thus explaining 1 out of the 1.25 total variance (i.e., 𝑙𝑅12 =

20%). But when the greedy 1-bit split is applied on the 4-element set {−1,0,1,4}, it myopically isolates 

the outlier 4 at the first split, thus explaining 𝜇12 = 3 out of the total 𝜎2 = 3.5 (i.e., 𝑙𝑅12 = 14.3%). 

This is preferable to the balanced 1-bit split into {−1,0} and {1,4} that would only explain 2.25 out of 

the total 3.5 (i.e., 𝑚𝑅12 =
2.25

3
= 75%). However, the balanced split would allow a better outcome 

down the tree, as it could capture the entire variation at the 2-bit split. On the contrary, the myopic 

isolation of the outlier 4 at the first split limits the 2-bit split, thus resulting in a final 2-bit residual MSE 

equal to 
1

8
>  0. 

In Polimenis (2022), it is conjectured that the lepto-regression-based split will still achieve the 

lowest residual squared error at any average depth. For example, the greedy 2-bit max depth tree in 

the example has a lower average depth of 1.75 bits and should not be compared with the balanced split 

resulting in an average depth of 2 bits. Based on this, the lepto-variance 𝜆𝑗2 of a sample at 𝑗-bits is 

defined as the residual variance when the target is lepto-regressed on itself 𝑗 times and provides the 

minimum residual MSE for an average depth 𝑗. In the {−1,0,1,4} case, the 1-bit lepto-variance equals 

𝜆12 = 0.5, while 
1

8
 is the lepto-variance for 1.75 bits. For practical situations, with large sample sizes 

(> 1K samples) and relatively low-depth trees (less than 3–4 splits), such a situation is highly unlikely 

to occur, and the distinction between the average and maximum depth of a tree will not matter. 

Similarly, 𝜇𝑗2 will denote the 𝑗-bit macro variance (RTs with depth 𝑗), thus decomposing total 

variance into 𝜎2 = 𝜇𝑗2 + 𝜆𝑗2. 

4.3. 2-bit lepto-regression analysis for historical US stock returns 

Here, the 2-bit lepto-structure analysis for historical US stock return data is performed following 

the 1-bit analysis of the previous section. In the Figure below, the descriptive statistics and optimal 

split for the left subtree of the two optimal-depth RT when US returns are lepto-regressed is depicted. 
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The optimal split point is for returns larger than −1.884, which comprise 88.5% of the total samples 

reaching the left node. The leftmost child comprises the smallest 3.45% of market returns (11.5% of 

the initial 30%) with an average −3% return. This is a highly volatile subsection of very negative 

market returns, with a residual MSE = 1.968. The centermost part of the left child comprises 26.5% 

(88.5% of the initial 30%) of the total sample (−1.884% < Mkt ≤ −0.264%) and, with a residual MSE 

= 0.167, it is substantially less volatile. Out of the total MSE of 0.877 that reaches the left subtree, 

0.373 is lepto-structure beyond the resolving power of the 2-bit RT. Thus, 42% of the total variability 

of the left subtree is lepto. 

 

Figure 2a. Descriptive statistics and optimal split for the left subtree of a 2-bit RT when 

the US return vector is lepto-regressed. The lepto-variance of the left subtree equals 42% 

of its total variability. 

In the Figure below, descriptive statistics and optimal split for the right subtree in the optimal 2-

bit RT when the US return vector is lepto-regressed is depicted. The optimal split point is for large 

returns (larger than 1.145%), which comprise 12.2% of the total samples reaching the intermediate 

right node, or the highest 8.6% of the entire daily return sample (12.2% of the initial 70%) with an 

average 2% return. This is a highly volatile subsection of very strong market returns, with a residual 

MSE = 1.393. The centermost part of the right child is the largest subsection, as it comprises 61.5% 

(87.8% of the initial 70%) of the total sample (−0.264% < Mkt ≤ 1.145) and, with a residual MSE = 

0.124, it is substantially less volatile.  
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Figure 2b. Descriptive statistics and optimal split for the right subtree in the optimal 2-bit 

RT when the US return vector is lepto-regressed. For the right subsample (Mkt > − 

0.264%), 47% of the total MSE cannot be explained via a RT. 

 

Figure 2c. 2-bit lepto-RT for historical US return vector. From the total historical sample 

variance of 1.167bp, a 2-bit tree will never be able to explain 𝜆22 = 0.034 × 1.968 +

0.265 × 0.167 + 0.615 × 0.124 + 0.086 × 1.393 = 0.307, which implies that the 2-bit 

lepto-variance explains lR22 = 26.3% of the total. 

5. Conclusions 

The lepto-regression of a sample is a novel technique defined as the process of constructing an 

RT by regressing the target on itself. Due to its simplicity, lepto-regression is an interesting model-

free technique and has the potential to reveal important properties of sample structure. It has been 
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shown in Polimenis (2022) that, since in a regression tree it is always beneficial to generate a sorted 

split of a sample S, the lepto-regression provides an upper bound in terms of the variability of a target 

that can be explained. The variance that cannot be explained via the lepto-regression is called sample 

lepto-variance. The k-bit lepto-variance (𝜆𝑘2) of a sample is defined as the residual structure after the 

sample has been lepto-regressed (up to k times) and is the variance that cannot be explained by any set 

of features. The k-bit macro-variance is the variance captured by the lepto-regression and thus 

represents the maximum variance that can be captured by any combination of features. The lepto-

variance analysis of the entire 96-year period of US stock market daily returns reveals that the 1-bit 

macro-variance (variance drop) equals 42% of the total US stock variability, while 58% is structure 

that cannot be explained by any 1-bit RT. The 2-bit lepto-variance equals 26.3% of the total, with 42% 

and 47% of the 1-bit lepto-variance of the left and right subtree, respectively. 
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