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Abstract: Regression trees (RT) involve sorting samples based on a particular feature and identifying
the splitting point that yields the highest drop in variance from a parent node to its children. The
optimal factor for reducing mean squared error (MSE) is the target variable itself. Consequently,
employing the target variable as the basis for splitting sets an upper limit on the reduction of MSE and,
equivalently, a lower limit on the residual MSE. Building upon this observation, we define lepto-
regression as the process of constructing an RT of a target feature on itself. Lepto-variance pertains to
the portion of variance that cannot be mitigated by any regression tree, providing a measure of inherent
variance at a specific tree depth. This concept is valuable as it offers insights into the intrinsic structure
of the dataset by establishing an upper boundary on the “resolving power” of RTs for a sample. The
maximal variance that can be accounted for by RTs with depths up to k is termed the sample k-bit
macro-variance. At each depth, the overall variance within a dataset is thus broken into lepto- and
macro-variance. We perform 1- and 2-bit lepto-variance analysis for the entire US stock universe for
a large historical period since 1926. We find that the optimal 1-bit split is a 30—70 balance. The two
children subsets are centered roughly at —1% and 0.5%. The 1-bit macro-variance is almost 42% of
the total US stock variability. The other 58% is structure beyond the resolving power of a 1-bit RT.
The 2-bit lepto-variance equals 26.3% of the total, with 42% and 47% of the 1-bit lepto-variance of
the left and right subtree, respectively.
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1. Introduction

The regression tree (RT) is a machine learning model commonly used for explaining a continuous
target variable based on various features. RTs are similar to decision trees, being constructed by
recursively partitioning the input space into regions and assigning a constant value to each region.
Each internal node in a regression tree represents a decision based on a particular feature. The tree
structure is hierarchical, with the first decision at the root node and subsequent split decisions at higher
depths creating further branching based on the outcomes of previous decisions. For a brief and concise
introduction to RTs see Krzywinski and Altman (2017), Torgo (2011), and Elith et al. (2008).

A great advantage of RTs is their interpretability and simple visual representation, which results
in a simple-to-understand decision-making process. Additionally, RTs can capture complex, nonlinear
relationships in the data. Using the RT methodology, Polimenis (2022) uniquely defined the sample
lepto-variance as variance beyond the explanatory power of a RT, and macro-variance as the upper
bound of sample variability that may be explained.

Unlike the residual mean squared error (MSE) in a regression that depends on the utilized factors,
the lepto-variance is a new type of idiosyncratic sample-specific variability that pertains to the portion
of variance that cannot be mitigated by any regression tree, thus providing a measure of inherent
variance at a specific tree depth. By establishing an upper boundary on the “resolving power” of RTs
for a sample, this statistical concept is valuable as it offers insights into the intrinsic structure of the
dataset. At each RT depth level, the overall variance within the dataset is broken into lepto- and macro-
variance. This is related to the 1-d clustering problem (Grenlund et al., 2017). The k-means problem
in higher dimensions is NP-hard (Aloise et al., 2009). Similar techniques have been used by
cartographers to produce so-called choropleth or thematic maps, via the so-called natural breaks
introduced by Jenks and Caspall (1971). Data in choropleth maps are categorized using a modification
of the Jenks natural breaks classification method. These methods cluster data into groups that minimize
the within-group variance and maximize the between-group variance.

Following Polimenis (2022), in this paper, the lepto-regression, lepto-variance, and lepto-ratio
concepts are defined and then initially explored by providing simple intuitive examples. Then, 1- and
2-bit lepto-regression analysis for the entire US stock universe is performed utilizing historical daily
market return data for the previous 96-year period. The sample comprises 25,272 daily returns from
July 1, 1926, to June 30, 2022. We find that the optimal 1-bit RT split is roughly a 30—70 balance. The
left and right children subsets are centered roughly around —1% and +0.5%. The 1-bit macro-variance
is almost 42% of the total US stock variability, while the residual 58% is structured beyond the
resolving power of any 1-bit RT. The 2-bit lepto-variance equals 26.3% of the total, with 42% and 47%
the 1-bit lepto-variance of the left and right subtree, respectively.

1.1. Motivation

The relationship between the total explanatory power and the number of independent variables is
complicated. The total explanatory power of a regression model is often assessed using metrics such
as the coefficient of determination (R?). R-squared represents the dependent variable variability
proportion explained by the independent variables and is a measure of how well the independent
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variables in a regression model explain dependent variable variation. Adding relevant variables can
enhance explanatory power in a linear regression, but careful consideration is needed to avoid
overfitting, i.e., a situation of a model fitting the training data closely by capturing noise. Similarly, in
a financial regression of stock returns on market-wide factors, the residual (idiosyncratic) variance
depends on the factors used in the regression. In general, we can get lower residual variance by adding
extra financial factors.

Improving our understanding of the inherent explanatory power of RTs is valuable, as they are a
fundamental building block for more advanced ensemble methods, such as random forests and
gradient-boosted trees, which combine multiple trees to improve predictive performance and
robustness. But, as with linear regression, overfitting the training data is one of the RT challenges, as
trees can easily capture noise rather than underlying patterns. Pruning and other regularization
techniques are used to address this issue.

1.2. Motivation from the field of financial risk management

Financial risk management is a large field of academic and practical significance for banking and
finance. The key starting point of managing risk is to properly quantify it, which effectively means
measuring volatility and correlations for the entire investable asset universe. Understanding the sources
of volatility is of great interest. Investors place importance on understanding the factors that contribute
to investment return volatility, as it directly affects both risk assessment and the overall decision-
making process.

The introduction of a model-free method to analyze return variability has always been of great
interest to the academic and financial practitioner communities. For example, the volatility index (VIX)
introduced by Whaley (1993) is referred to by some as the market “barometer” and is tradable in CBOE.
The index was later calculated via a more model-free method developed by Demeterfi et al. (1999).
However, the VIX calculation is neither simple nor intuitive.

1.3. The role of idiosyncratic financial risk

When utilizing machine learning techniques in financial analysis, we use financial factors as
features, being interested in finding the factors that explain a large fraction of the total stock return
variance. Stock return variance that cannot be explained by broad market financial factors is considered
idiosyncratic for the specific stock. The total risk of investment results from adding risks determined
by exposure to market factors (market risks) and idiosyncratic volatility, which represents the risk
component specific to the asset and not determined or related (i.e., orthogonal) to any wider market
movements. The pricing implications of idiosyncratic volatility are still not well understood (Ang et
al., 2006; Campbell et al., 2001).

In conclusion, as investors aim to diversify portfolios and mitigate risk exposure, quantifying
variance is crucial. A novel, model-free, and simple statistical method for analyzing total return
variability may enable investors to make better decisions, improve risk assessment, and create
portfolios that align with their total risk tolerance and investment objectives.
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2. Lepto-regression

In splitting a nominal predictor taking g possible labels (unordered values), there exist 2971 — 1
possible binary partitions of these labels. If all these partitions need to be evaluated, the computation
becomes prohibitive for any (except for very small) g values. Various theorems related to the
concavity of the underlying impurity function allow the problem to be simplified into a linear search
of only g — 1 partitions, where attribute values are sorted based on their strength of correlation with
the target. Most notably, Fisher (1958) showed that for a continuous-valued target Y, the least squares
partition of a set is contiguous. Breiman et al. (1984) extended this for a decision tree with binary (2-
class) target Y (see the discussion in Ripley, 1996 and Hastie et al., 2009).

The process of constructing a regression tree involves recursively partitioning the sample based
on the selected features and split thresholds, with a procedure continuing until a stopping criterion (a
maximum depth or a minimum number of samples for the node) is met. At each decision node, the
algorithm selects a feature and a threshold to split the data into two subsets with the goal of minimizing
the residual target variance within each subset. A constant value is assigned to the instances that reach
terminal (or leaf) nodes of the tree.

RTs provide a binary splitting of the sample space with minimization criterion the residual sum
of squares (i.e., sum of squared error) RSS = ¥;(y; — 37(xi))2, with $(x;) = ; the prediction for y;
given factor values x;. RTs predict using the average values y; = y; within each subset, as they
minimize the residual mean square error MSE = %Zi(yi - ¥;)2.

2.1. Definition of sample lepto-variance

At each internal tree node (#j), the RT performs a sorting of the subsample reaching this node
Sj using the chosen split factor xj and finds the split point cj that produces the maximum MSE drop
from the node to its children Lj and Rj. Generally, sorting a sample based on a factor xj will not sort
the target y. With no loss of generality, assume that the left child L contains the “small” y values (i.e.,
assume y; = mean{y € L} < yg = mean{y € R}).

Definition. A binary split of S into L and R is sorted if all target values y in L are smaller than all
target values in R.

As an extension of the Fisher (1958) theorem on grouping, the following lemma for RTs is shown
in Polimenis (2022)

Lemma 1. In terms of minimizing MSE in a RT, when splitting a sample S, it is always beneficial to
utilize a sorted split. Thus, the best factor to use (in terms of MSE drop) is the dependent variable itself.

Proof. Let’s assume an unsorted split of a sample S into L and R (with no loss of generality, assume
v, < ¥g ). Then, the maximum y value of the left subtree u, is larger than the minimum value of the
right subtree u,

uy = max{y € L} > u, = min {y € R}
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But then, we can get a better split by swapping u, with u, into L and R, respectively. Because
moving u, into L and u, into R will move the center of the L subsample to the left and the center of
the right subsample to the right, thus producing a larger separation between the left and right
subsamples without changing the relative sample sizes. By the law of total variance, a larger between-
group variability means a smaller within-group variability and thus a better split.

Since the best binary split is always a sorted split, and regressing the target on itself allows all
sorted splits to be evaluated, using the target as a factor will provide an upper bound on the explained
variance (or lower bound on residual MSE).

Definition. We call lepto-regression the process of constructing an RT of a target feature on itself, and
sample lepto-variance as the residual MSE of the lepto-regression.

We use u12 and 212 to denote the 1-bit macro and lepto-variance, respectively (residual MSE for
RTs with depth 1). Total variance equals

0% =pul?+ 112 (1)
3. The 212 lepto-variance of simple examples

To get a better understanding of the novel concept of lepto-variance, a few simple example
calculations of 112 are presented and discussed.

The simplest case is that of the equiprobable 2-member set. Without loss of generality, assume
the set {—0.5, 0.5}. The total variance of this sample is 0.25. In this (degenerate) case, the only split
(and thus optimal) is the separation of the two members that produces a variance drop of 0.25 and a
residual (lepto) variance remainder equal to zero 2 = u12? and 112 = 0.

Next, consider the {—1, 0, 1} equiprobable set. This will split into {—1} and {0, 1} with its total
variance of 02 = 2 split into macro-variance of u1? = % and lepto-variance of 112 = %

The next case is the equiprobable 4-member set {—1.5, —0.5, 0.5, 1.5}. With no loss of generality,
points are chosen to center at zero to help with mental calculations. In this case, the optimal split is the
balanced split producing two equiprobable 2-member sets left and right, with residual variance equal
to 112 = 0.25. The two clusters {-1.5, —0.5} and {0.5, 1.5} are centered at —1 and 1, respectively,
giving an inter-cluster distance of 2, and a variance drop that equals

u1? = Variance drop = 0.5 x 0.5 x distance squared = 0.25 x4 =1

Definition. We define the useful concept of lepto ratio [R? as the ratio of lepto-variance (at a specific
depth) to total sample variance. For the 1-bit case, this equals [R1%2 = 112 /o2.

Using the law of total variance, in the last example, we calculate a total variance of 0.25 + 1 =
1.25, and a lepto ratio [R1% = 20% of the total sample variance.

3.1. Afirst look at lepto-variance and split balance

From the discussion above for the 2- and 4-member sets, it may seem that the optimal split is
always a balanced split. It is significant to note that the optimal split is not always balanced. We may
understand some of the concepts related to the split balance (i.e., relative cluster weights) using as an
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example the 6-member equiprobable sample {-1,0,1,2,3,4}. We may think of the entire sample as
comprised of two separate clusters, {—1,0,1} and {2,3,4} centered at 0 and 3, with initial cluster “radius”
epsilon equal to 1 and separated by inter-cluster distance delta equal to 3. Total sample variance is thus

equal to g2 = %2 + %62. With epsilon = 1 and delta = 3, this equals 2.9167 (see Table 1 below).

Separating the sample in the middle gives a residual variance of the two clusters equal to 112 = %

and a variance drop of %2 = z = 2.25. Inthis case, the balanced split is optimal. For example, if instead
the sample is split by isolating —1, there is a var drop equal to only% X g x(2- (—1))2 = 1.25 and
there is 1.67 > 112 var left unexplained. Splitting at {—1,0} and {1,2,3,4} is better, as it gives a higher
var drop equal to % X g x (25 — (—0.5))2 = 2 and there is 0.9167 var left unexplained. But this is
still inferior to the balanced split.

Table 1la. Simple lepto-variance calculation example. Separating the 6-member
{-1,0,1,2,3,4} sample (epsilon = 1) in the middle gives the expected variance of the two
clusters equal to 0.67 and a variance drop of 12 = 2.25. In this case, the balanced split is
optimal, explaining 77.14% of the total variability of 2.9167. The lepto-variance
(highlighted cell) of the sample equals 0.67, giving a 1-bit lepto-variance ratio [R1? =
22.86% of the total variance.

Split Sorted Variance  Explained var as Left child Right child Residual ~ Residual MSE as a

point  sample drop a fraction MSE MSE MSE fraction of total
1 -1 1.25 42.86% 0.000 2.000 1.6667 57.14%

2 0 2.00 68.57% 0.250 1.250 0.9167 31.43%

3 1 2.25 77.14% 0.667 0.667 0.6667 22.86%

4 2 2.00 68.57% 1.250 0.250 0.9167 31.43%

5 3 1.25 42.86% 2.000 0.000 1.6667 57.14%

6 4 total var >> 2.917 0.000 2.9167

We want to understand what happens if the two clusters get more spread out. Take, for example
(by increasing epsilon to 1.2), the set {—1.2, 0, 1.2, 1.8, 3, 4.2}. Again, the two clusters are centered at
0 and 3 (separated by delta = 3) but they are now more spread out (with higher cluster variance). Total
variance is 3.21. Separating the set in the middle gives the expected variance of the two clusters equal
to 0.67 X 1.44 = 0.96 and a variance drop of 0.5 x 0.5x9 = 2.25. The best split is still the
balanced split, but now the benefit of the balanced split is less pronounced. For example, splitting the

sample by isolating —1.2 gives a var drop equal to only % X g x (2.04 — (—1.2))2 = 1.458 and there

is 1.752 var left unexplained. Splitting at {—1.2, 0} and {1.2, 1.8, 3, 4.2} is even better, as it gives a
var drop equal to 2.2050 and there is 1.0050 var left unexplained. But this is still inferior to the balanced
split. Observe that isolating the “outlier” —1.2 is now more beneficial than in the previous case, as it
explains 45.42% of the total var.
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Table 1b. Simple lepto-variance calculation example (cont.). Lepto-regression of a 6-
member set with higher within-cluster variance (epsilon = 1.2) at various points. Optimal
split is in the middle. It still explains p12? = 2.25, but this time a smaller fraction of the
total variance of 02 = 3.21. The lepto-variance (highlighted cell) of the sample equals
112 = 0.96, giving a lepto-variance ratio [R12 of almost 30%.

Split Sorted  Variance drop Explained var Left  child Right child Residual Residual MSE as a

point sample as a fraction MSE MSE MSE fraction of total
1 -1.2 1.458 45.42% 0.000 2.102 1.752 54.58%

2 0 2.205 68.69% 0.360 1.328 1.005 31.31%

3 1.2 2.250 70.09% 0.960 0.960 0.960 29.91%

4 1.8 2.205 68.69% 1.328 0.360 1.005 31.31%

5 3 1.458 45.42% 2.102 0.000 1.752 54.58%

6 4.2 total var >>  3.210 0.000 3.210

As the two clusters get more spread out, as in {-1.3, 0, 1.3, 1.7, 3, 4.3}, the balanced split is not
optimal any longer. Again, the two internal clusters are centered at 0 and 3, but they are now more
spread out (within cluster variance 1.1267). Total sample variance o2 is 1.1267 + 2.25 = 3.3767.

Separating the sample in the middle again explains % X % X 9 = 2.25, but this time represents only
66.63% of the total variance (versus 77.14% in the case of epsilon = 1). The skewed splitting at {—1.3,
0} and {1.3, 1.7, 3, 4.3} is optimal with a var drop equal to u1? = § X g x (2.575 — (—0.65))2 =
2.31125.

Table 1c. Lepto-regression of a 6-member set with non-balanced optimal split (epsilon =
1.3). The skewed splitting at {—1.3, 0} and {1.3, 1.7, 3, 4.3} is more beneficial (as well as
its symmetric split at {-1.3, 0, 1.3, 1.7} and {3, 4.3}). In this case, 112 = 1.0654 and
IR1%? = 31.55%.

Split  Sorted Variance  Explained var Left child MSE Rightchild Residual  Residual MSE as a
point sample drop as a fraction MSE MSE fraction of total

1 -1.3 1.568 46.44% 0.0000 2.1704 1.8087 53.56%

2 0 2311 68.45% 0.4225 1.3869 1.0654 31.55%

3 13 2.250 66.63% 1.1267 1.1267 1.1267 33.37T%

4 1.7 2.311 68.45% 1.3869 0.4225 1.0654 31.55%

5 3 1.568 46.44% 2.1704 0.0000 1.8087 53.56%

6 4.3 total var >>  3.3767 0.0000 3.3767

4. Empirical analysis
4.1. Estimation of the historical lepto-variance of US stock returns
Here, the concept of lepto-variance of US stock returns is presented and, to provide some

perspective, it is compared with the residual variance when two well-known financial factors, size
(SMB) and book-to-value (HML), are used to capture return variability. Specifically, historical daily
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percentage return data for US stock returns starting in 1926 are analyzed. High-quality return data from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html were downloaded on July

30, 2022.

Table 2a. Daily US market percentage return data for a 96-year period are used. The
sample comprises 25,272 daily returns for the period July 1, 1926 to June 30, 2022.

Date Mkt-RF SMB HML RF Mkt
0 1926-07-01 0.10 —-0.23 —0.28 0.009 0.109
1 1926-07-02 0.45 —0.34 —-0.03 0.009 0.459
2 1926-07-06 0.17 0.29 —0.38 0.009 0.179
3 1926-07-07 0.09 —-0.59 0.00 0.009 0.099
4 1926-07-08 0.21 —0.38 0.18 0.009 0.219
25267 2022-06-24 3.11 —0.36 —0.05 0.003 3.113
25268 2022-06-27 —-0.28 0.54 1.24 0.003 —-0.277
25269 2022-06-28 —2.10 —0.35 2.36 0.003 —2.097
25270 2022-06-29 —0.20 —0.44 -1.30 0.003 —-0.197
25271 2022-06-30 —0.95 0.43 —-0.15 0.003 —0.947

25272 rows <6 columns

Table 2b presents descriptive return stats for daily returns of the entire US stock market and the
two Fama-French factors SMB (size) and HML (value) for a 96-year period (in percentage). The
variance for the entire sample is approximately 1.167. The average daily US stock return for this period
is 4.2 bp (basis points), of which 3 bp is the risk part and 1.2 bp is the risk-free component.

Table 2b. Using daily market return data for a 96-year period, we see descriptive return
stats for the daily US stock market returns and the two Fama-French factors SMB (size)
and HML (value) for the 96-year period from July 1, 1926 to June 30, 2022 (in percentage).

Values are truncated at two decimal places for better visibility.

Mkt-Rf SMB HML RF Mkt
count 25272 25272 25272 25272 25272
mean 0.030 0.0045 0.015 0.012 0.042
std 1.08 0.59 0.62 0.012 1.08
min —17.44 -11.67 —6.02 —0.00 -17.41
25% —0.40 —0.25 —0.25 0.00 —-0.39
50% 0.06 0.01 0.01 0.01 0.08
75% 0.50 0.27 0.26 0.02 0.51
max 15.76 8.18 9.04 0.06 15.76

In financial asset pricing, a well-known pricing model is the three-factor model of Fama and
French (1993). The three-factor model is based on a time-series linear regression of excess portfolio
returns of the type

! Copyright 2022 Kenneth R. French.
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R(t)—rf(t) = a +b-[Mkt(t) —rf(t)]+s-SMB(t) + h- HML(t) + e(t) (2)
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with R(t) being the return on a security or portfolio for period t, rf(t) the risk-free return, Mkt (t) —
rf(t) the excess return on the value-weighted market portfolio above the risk-free asset, SMB(t) the
return on a diversified portfolio of small stocks minus the return on a diversified portfolio of big stocks
for the period, and HML(t) the difference between the returns on diversified portfolios of high and
low book-to-market (B/M) ratio stocks. The three-factor linear model above assumes that the
sensitivities b, s, and h in (2) capture the most variation in expected returns, and the true value of the
alpha intercept in (2) should be near zero for well-priced securities.

Table 2c. Covariance matrix of the daily US returns and the 2 FF factors (truncated at
three decimal places for better visibility).

Mkt - rf SMB HML rf Mkt
Mkt - rf 1.167 —0.100 0.110 0 1.167
SMB 0.350 —0.027 0 —0.100
HML 0.387 0 0.110
rf 0 0
Mkt 1.167

Table 2d. Correlation matrix of the daily US returns and the 2 FF factors (truncated at
three decimal places for better visibility).

Mkt-rf SMB HML rf Mkt
Mkt-rf 1 —0.157 0.163 —0.015 1
SMB 1 —0.073 —0.011 —0.157
HML 1 0.009 0.163
rf 1 —0.004
Mkt 1

In the Figure below, the optimal depth of one RT when the US stock return vector (Mkt) is lepto-
regressed is shown. The optimal split is a 3070 balance, for a Mkt return less than or equal to —0.264.
The two children subsets are centered roughly at —1% and 0.5%. Total sample variance is 1.167.

Sample 1-bit Lepto-variance equals

A1%2 = 0.3 x 0.877 + 0.7 X 0.593 = 0.678 (3)
The 1-bit macro-variance (max variance drop) thus equals
ul? =1.167 — 0.678 = 0.489 4)

This equals almost 42% of the total US stock variability. This implies a 1-bit lepto-ratio [R1% =
58% comprising structure that cannot be removed by any 1-bit RT. Observe that the macro-variance
could also be computed directly as the variance of a 5-scaled Bernoulli distribution with p = 0.30 and
§ = 1.525 = 0.499 — (—1.026) viau1? = 0.3 x 0.7 x 1.5252.

Data Science in Finance and Economics Volume 4, Issue 2, 270—284.
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node #0
Mkt <= -0.264
squared_error = 1.167
samples = 100.0%

value = 0.042
node #1 node #2
squared_error = 0.877|squared_error = 0.593
samples = 30.0% samples = 70.0%
value = -1.026 value = 0.499

Figure 1la. The optimal 1-bit RT when the historical US stock return vector (Mkt) is lepto-regressed.

To put the historical 1-bit lepto-ratio of 58% in some perspective, the optimal 1-bit RT when US
stock returns are regressed on the two Fama-French SMB and HML factors is also estimated and shown
in the Figure below. When using the entire historical sample, HML is more efficient than SMB and
thus chosen for the 1-bit RT. The tree is highly skewed and can explain very little of the total historical
US stock variability. Residual squared error equals 1.1315 (roughly 97% of total MSE).

An interesting new statistic for any feature then is the percentage mR12 of the sample macro-
variance that it can capture with a 1-bit RT. Using 1-bit RT, the Fama-French factors can only explain

0.0355 of the total MSE. This is only mR1? = 0(;04—3;95 = 7.26% of the 1-bit macro-variance, i.e., the
: 0.025

maximum MSE that may be explained by 1-bit RTs. Using SMB explains mR1% = Py 5.11% of
the 1-bit macro-variance u1?2 (see Table 3).

node #0
HML == 2.655
squared_error = 1.167
samples = 100.0%
value = 0.042

VAN

node #1 node #2
squared_error = 1.089||squared_error = 11.242
samples = 99.6% samples = 0.4%
value = 0.03 value = 2.915

Figure 1b. 1-bit RT for US stock returns regressed on the 2 Fama-French SMB and HML
factors (HML is chosen).

In Table 3 below, the summarized depth 1-bit lepto-regression analysis for 96 years of US stock
returns and the two Fama-French factors is shown. Using 1-bit RTs, Fama-French factors explain only
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a small mR12 fraction of the total explainable MSE (sample macro-variance). Overall, HML slightly
dominates SMB.

Table 3. 1-bit lepto-regression for 96 years data of US stock returns and the two Fama-French factors.

Factor used Total MSE Explained MSE Residual MSE mR1?
ul? +21%2 = 1.167

SMB = 0.025 + 1.142 5.11%
HML = 0.0355 + 1.1315 7.26%
Mkt ul? = 0.489 A1% = 0.678 100%

4.2. The 2-bit historical lepto-structure of US returns

The concept of lepto-variance of a sample may also be defined for trees of a maximum depth
larger than 1. As we move deeper down on an RT, there will always be less residual variance. The
argument of Lemma 1 will locally still be valid; at any node, the best split is always achieved by the
target itself (via a sorted split). But the greediness of the RT may in rare (degenerate) occasions result
in a situation where sorting in a split is sub-optimal (Polimenis, 2022).

For the 4-element set {—1,0,1,2}, the greedy 1-bit split correctly splits to {—1,0} and {1,2} for a
final 1-bit residual MSE 112 = 0.25, thus explaining 1 out of the 1.25 total variance (i.e., [R1? =
20%). But when the greedy 1-bit split is applied on the 4-element set {—1,0,1,4}, it myopically isolates
the outlier 4 at the first split, thus explaining u1? = 3 out of the total 62 = 3.5 (i.e., [R1%? = 14.3%).
This is preferable to the balanced 1-bit split into {—1,0} and {1,4} that would only explain 2.25 out of

the total 3.5 (i.e., mR12 = Zgis = 75%). However, the balanced split would allow a better outcome

down the tree, as it could capture the entire variation at the 2-bit split. On the contrary, the myopic
isolation of the outlier 4 at the first split limits the 2-bit split, thus resulting in a final 2-bit residual MSE
equal tog > 0.

In Polimenis (2022), it is conjectured that the lepto-regression-based split will still achieve the
lowest residual squared error at any average depth. For example, the greedy 2-bit max depth tree in
the example has a lower average depth of 1.75 bits and should not be compared with the balanced split
resulting in an average depth of 2 bits. Based on this, the lepto-variance 12 of a sample at j-bits is
defined as the residual variance when the target is lepto-regressed on itself j times and provides the
minimum residual MSE for an average depth j. In the {-1,0,1,4} case, the 1-bit lepto-variance equals
A12 = 0.5, while% is the lepto-variance for 1.75 bits. For practical situations, with large sample sizes
(> 1K samples) and relatively low-depth trees (less than 3—4 splits), such a situation is highly unlikely
to occur, and the distinction between the average and maximum depth of a tree will not matter.

Similarly, pj2 will denote the j-bit macro variance (RTs with depth j), thus decomposing total
variance into o2 = uj? + ;2.

4.3. 2-bit lepto-regression analysis for historical US stock returns

Here, the 2-bit lepto-structure analysis for historical US stock return data is performed following
the 1-bit analysis of the previous section. In the Figure below, the descriptive statistics and optimal
split for the left subtree of the two optimal-depth RT when US returns are lepto-regressed is depicted.
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The optimal split point is for returns larger than —1.884, which comprise 88.5% of the total samples
reaching the left node. The leftmost child comprises the smallest 3.45% of market returns (11.5% of
the initial 30%) with an average —3% return. This is a highly volatile subsection of very negative
market returns, with a residual MSE = 1.968. The centermost part of the left child comprises 26.5%
(88.5% of the initial 30%) of the total sample (—1.884% < Mkt < —0.264%) and, with a residual MSE
= 0.167, it is substantially less volatile. Out of the total MSE of 0.877 that reaches the left subtree,
0.373 is lepto-structure beyond the resolving power of the 2-bit RT. Thus, 42% of the total variability
of the left subtree is lepto.

Mkt

count 7574.000000

mean -1.026157 Mktnziej%&#
squared_error = 0.877
std 0.936746 samples = 100.0%
value = -1.026
min -17.413000
25%  -1.240000 / \
node #1 node #2
50% -0.747000 squared_error = 1.968 | squared_error = 0.167
samples = 11.5% samples = 88.5%
75% -0.459000 value = -2.999 value = -0.771
max -0.264000

Figure 2a. Descriptive statistics and optimal split for the left subtree of a 2-bit RT when
the US return vector is lepto-regressed. The lepto-variance of the left subtree equals 42%
of its total variability.

In the Figure below, descriptive statistics and optimal split for the right subtree in the optimal 2-
bit RT when the US return vector is lepto-regressed is depicted. The optimal split point is for large
returns (larger than 1.145%), which comprise 12.2% of the total samples reaching the intermediate
right node, or the highest 8.6% of the entire daily return sample (12.2% of the initial 70%) with an
average 2% return. This is a highly volatile subsection of very strong market returns, with a residual
MSE = 1.393. The centermost part of the right child is the largest subsection, as it comprises 61.5%
(87.8% of the initial 70%) of the total sample (—0.264% < Mkt < 1.145) and, with a residual MSE =
0.124, it is substantially less volatile.
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Mkt
count 17698.000000
node #0
mean 0.498992 Mkt == 1.145
squared_error = 0.593
15 e samples = 100.0%
min -0.263000 value = 0.499
25% 0.038000 / \.
o node #1 node #2
50% 0.309000 squared _error = 0.124|squared_error = 1.393
samples = 87.8% samples = 12.2%
75% 0.715000
° value = 0.29 value = 2.001
max 15.762000

Figure 2b. Descriptive statistics and optimal split for the right subtree in the optimal 2-bit
RT when the US return vector is lepto-regressed. For the right subsample (Mkt > —
0.264%), 47% of the total MSE cannot be explained via a RT.

node #F0
Mkt == -0_264
squared_error = 1. 167
samples = 100.0%
wvalue = 042

N

node #1 node #4
Mkt == -1.884 Mkt == 1.145
squared_error = 0.877F squared_esrror = 0.593
samples = 30.0% samples = 70.0%
wvalue = -1.026 walue = 0.499

node #2
squared error = 1.968
samples = 3 4%
wvalue = -2.999

node #3
squared error = 0. 167
samples = 26.5%
value = -0.771

node #5
squared error = 0.124
samples = 61 5%
walue = 0.29

node #6
squared error = 1393
samples = B 6%
walue = 2.001

Figure 2c. 2-bit lepto-RT for historical US return vector. From the total historical sample
variance of 1.167bp, a 2-bit tree will never be able to explain 2122 = 0.034 x 1.968 +
0.265 x 0.167 + 0.615 x 0.124 + 0.086 x 1.393 = 0.307, which implies that the 2-bit
lepto-variance explains IR22 = 26.3% of the total.

5. Conclusions

The lepto-regression of a sample is a novel technique defined as the process of constructing an
RT by regressing the target on itself. Due to its simplicity, lepto-regression is an interesting model-
free technique and has the potential to reveal important properties of sample structure. It has been
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shown in Polimenis (2022) that, since in a regression tree it is always beneficial to generate a sorted
split of a sample S, the lepto-regression provides an upper bound in terms of the variability of a target
that can be explained. The variance that cannot be explained via the lepto-regression is called sample
lepto-variance. The k-bit lepto-variance (1k?) of a sample is defined as the residual structure after the
sample has been lepto-regressed (up to k times) and is the variance that cannot be explained by any set
of features. The k-bit macro-variance is the variance captured by the lepto-regression and thus
represents the maximum variance that can be captured by any combination of features. The lepto-
variance analysis of the entire 96-year period of US stock market daily returns reveals that the 1-bit
macro-variance (variance drop) equals 42% of the total US stock variability, while 58% is structure
that cannot be explained by any 1-bit RT. The 2-bit lepto-variance equals 26.3% of the total, with 42%
and 47% of the 1-bit lepto-variance of the left and right subtree, respectively.
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