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Abstract: The reduction of carbon emissions has attracted significant global attention. This paper 

empirically analyzes the dynamic nonlinear linkages among carbon markets, green bonds, clean energy, 

and electricity markets by constructing DCC-GARCH and TVP-VAR-SV models, and places the four 

markets under a unified framework to analyze the volatility risk from a time-varying perspective, 

thereby enriching the research on China’s carbon market and renewable energy sector. We found that 

extreme events have a significant impact on the dynamic connectivity among the four markets. The 

analysis of the shock impact indicates that the carbon market has a positive effect on the power market 

in the short and medium terms, but has a mitigating impact in the long term. Especially, when the other 

markets are hit, the carbon market has evident fluctuation in 2020. The green bond market has a 

positive influence on the carbon market, whereas the power market demonstrates adverse effects in the 

short and medium terms. The New Energy Index negatively impacts the power market in the short and 

medium terms, but is expected to have a positive effect after 2020, highlighting the growing need for 

renewable energy in the power system transformation. According to the findings mentioned above, we 

put forward appropriate recommendations.  
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1. Introduction  

Sustainable economic development has led to increasingly serious environmental problems and 

the frequent occurrence of emergencies, and thus it is undoubtedly a continuing and serious challenge 

to the world. Due to being in the process of development, China has a strong need for energy 

consumption to support its economic growth, resulting in high levels of carbon emissions (Zhou et al., 

2021). In 1970, China emitted approximately 748.51 megatons of CO2, a similar amount to Japan and 

Germany, one-fifth of the emissions in the US, and one-fourth of those in the EU. In 2021, China’s 

emissions reached 10,523.03 million tons, 2.23 times more than the US, 10 times more than Japan, 

and 16 times more than Germany. As a result, the global concern for reducing carbon emissions has 

led to China’s efforts. The Kyoto Protocol entered into force in 2005, prompting the establishment of 

carbon trading markets in various countries around the world. Since 2013, China has launched eight 

CET pilot carbon markets in Shenzhen, Shanghai, Beijing, Guangdong, Tianjin, Hubei, Chongqing, 

and Fujian. This system allows companies to trade the gaps and surpluses between allowances and 

actual emissions, with those lacking allowances to purchase them from the exchange, and those with 

excess allowances to earn extra income. On September 22, 2020, a declaration was made that China 

aims to achieve “dual carbon”. Establishing a carbon market is a significant advancement and a useful 

mechanism to help achieve this objective, as reducing carbon emissions greatly relies on market forces. 

In China, the most crucial research topic is how to efficiently decrease greenhouse gas emissions and 

advance the growth of a carbon market, given its status as the largest carbon emitter. In July 2021, 

China will combine the initial eight pilot carbon markets into a unified carbon market that encompasses 

2,225 major emission companies in the power generation sector, making it the largest carbon market 

globally that addresses greenhouse gas emissions. This move is seen as a necessary step towards 

reaching the goals of “dual carbon”. 

China’s electricity, heat, gas, and water production and supply industries account for over 40% of 

the country’s total carbon dioxide emissions, with thermal power generation being the primary 

contributor. Therefore, it is critical to China’s long-term sustainable development to control the carbon 

emissions of the power sector and to accelerate its low-carbon transition. China emphasized on October 

26, 2021 the need to speed up the development of an innovative power system dominated by renewable 

energy sources. Although the development of an innovative power system is hindered by the lack of 

development and liquidity of the carbon market at the present stage, it is necessary for carbon market 

to play a positive role in promoting the development of a new power system by market force. Scholars 

have studied the linkage between the electricity market and the carbon market in (Li et al., 2021; Wen 

et al., 2022; Zhao et al., 2023), the first two of these scholars finding that the changes in electricity 

price and the return of the electricity index have a certain risk impact on the price of the carbon quota. 

Zhao et al. (2023) found that the impact between the carbon market and the electricity market is more 

of a pass-through of price fluctuations and not a direct effect of returns. The low-carbon transformation 

of the power system is inevitably inseparable from the fund support from green bonds and green credit 

which are typical green financial products. Yin (2021) predicted that China will need RMB 400–700 

billion to make an orderly transition away from its current coal-fired generation capacity. China’s green 

bond market is growing rapidly due to the high demand for green investments (Xiao et al., 2021). By 

the end of 2022, China ranked first in the world in domestic and foreign currency green loan balance 

at RMB 11.95 trillion, of which green loans in the electric power, heat, and transportation industries 

accounted for 59.67% of the green loan balance. With the expansion of China’s green bond market and 
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the introduction of relevant policies, a small number of power enterprises have also chosen the green 

bond financing method. Coal-fired power plants have access to more corporate finance through green 

bonds rather than project finance (Chan et al., 2022). At the same time, green bonds contribute to the 

low-carbon transition of the power system by facilitating the advancement of green technologies and 

expanding the share of new installed capacity from renewable energy sources (Lin et al., 2022). COP26 

underscored the significance of financial instruments and markets associated with ‘carbon’, including 

the importance of carbon markets and green bond markets (Ren, 2021; Arif, 2021). 

 

Figure 1. Linkage diagram between markets. 

With the continuous development of green bonds, carbon markets, electricity markets, and clean 

energy markets, the linkages among them are becoming more and more complex. How carbon markets 

as well as green bonds can contribute to the development of a clean-energy-led power system is the 

central question we want to examine. From a measurement perspective, we ask: Is there a dynamic 

linkage among the four markets? And, if so, is the impact unidirectional or bidirectional? Do the 

magnitude and direction of the linkage effects among markets change with different lags and under 

major event shocks? In response to the above questions, we first study the theoretical transmission 

mechanism between several markets to provide a certain theoretical basis for the empirical study of 

this paper. From linkage mechanism between the carbon market and the electricity market (Figure 1), 

power generation companies that are included in the carbon market will be influenced by the 

constraints of carbon emission in their power generation decisions and investment behavior when 

trading. As a result, fluctuations of carbon price will affect the cost of electricity generation by power 

companies and the price of shares, while changes in the power generation mode will also affect the 

supply and demand for carbon credits and therefore carbon price. The energy supply system of China 

has been transformed from coal-based to diversified, and renewable energy has gradually become the 

main source of new power supply installed capacity. When the renewable energy sector is stimulated 

by factors such as policy support and market share expansion, investors will generate expectations of 

increased profits in the new energy sector, leading to higher share prices for companies. At the same 

time, as the favorable policies for the new energy sector tend to be negative factors for carbon-intensive 

firms, resulting in the carbon-intensive sectors reducing their production capacity for anticipation of a 

relatively smaller market share, reducing the demand for fossil fuels and carbon credits and the carbon 
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trading market tends to experience an oversupply situation, which ultimately leads to a fall in carbon 

trading prices. 

Through the above background description and theoretical analysis of inter-market linkages, we 

find that the non-linear linkage effects among the carbon market, green bond market, and clean energy 

and electricity market in China can be studied from the perspective of dynamic time-varying effects, 

where traditional methods cannot capture the dynamic changes of relationships. If the non-linear 

relationship between the variables is ignored, some important features between the variables may be 

overlooked (Piotr & Witold, 2018). Therefore, this paper constructs equal interval, different time points, 

and three-dimensional impulse response functions through the internationally recognized frontier 

statistical TVP-VAR-SV model, this method can capture different economic conditions (Esmaeili & 

Rafei, 2021), while the introduction of time-varying parameters improves the accuracy of the model 

fit as well as the explanatory power of the model (Gong et al., 2021). The linkage effect between the 

indicators can be observed in detail through the impulse response results so as to analyze the risk 

transmission mechanism between markets.  

The study as is structured as follows. Section 2 reviews existing studies on each market and model 

selection. We find that many scholars have studied one or two markets accordingly, but few articles 

have examined four markets under a unified framework under the background of renewable energy 

power system transformation. Section 3 discusses the theory of the model. In Section 4, the relationship 

between the variables is first tested for non-linearity, followed by an analysis of the dynamic shock 

effects between markets by constructing DCC-GARCH and TVP-VAR-SV models. The DCC-

GARCH results indicate that the CSI New Energy Index shows a strong correlation with the electricity 

index, suggesting that the construction of the electricity system dominated by renewable energy will 

necessarily require the complementarity of the two markets. The results of the impulse response 

analysis of TVP-VAR-SV indicate that the connectivity between different markets is time-varying. The 

carbon market has a clear fluctuation in 2020 when the other three markets are affected, which indicates 

that China’s renewable energy transformation and development is a big turning point. The electricity 

market reacts negatively to the carbon market in the short and medium terms, but converges directly 

to zero in the long term, fully demonstrating the demand for renewable energy in the transformation 

process of the power system. But, due to the uncertainty, volatility, and anti-peak regulation 

characteristics of the renewable power generation output, it will bring great challenges to the system 

power balance. In Section 5, the model is tested for robustness using short-term data of the unified 

carbon market in China. The study findings can offer valuable insights for policymakers crafting 

carbon trading strategies and for investors shaping their plans, as well as offering recommendations 

and guidance for the future growth of the domestic carbon market. 

2. Literature review  

In recent years, the EU carbon market has been the primary focus of numerous studies, with a 

particular emphasis on examining the factors that influence it and its connections to energy markets. 

Ji et al. (2018, 2019) analyzed connectivity networks, and rolling window techniques were employed 

to assess the information spillover between the carbon market and the electricity and energy markets. 

They discovered a feedback loop between the EU carbon market and the other markets, with Brent 

crude oil prices having a notable impact on carbon price volatility and playing a crucial role in risk 

transmission. Hanif (2021) used the Diebold and Yilmaz spillover index method and copula function 
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to find that the connectivity spillover between the renewable energy stock index and EUA price is 

stronger in the short term than in the long term. In Li (2021), a deeper investigation was conducted 

into the variables that impact the pricing of EUA during various time periods through the use of TVP-

VAR-SV. The correlation between the carbon market and other relative markets fluctuates significantly 

over time, with carbon prices showing greater responsiveness to short-term changes in electricity prices. 

The majority of the literature mentioned above emphasizes coal, oil, natural gas, and so on, with 

limited study on the growing carbon market in China, particularly in the areas of clean energy and 

electricity markets. The power industry is a significant contributor to carbon emissions in the energy 

sector, responsible for approximately 40% of total emissions. The dominance of coal in China’s energy 

sector is expected to persist for the foreseeable future, as power generation companies slowly transition 

from conventional energy sources to cleaner, more sustainable options over an extended period of time 

(Nong et al., 2022). In Yang’s (2020) study, the DY spillover index was utilized to determine if the 

carbon market benefits from the ‘carbon-electricity’ system in the EU, particularly with significant 

involvement from German and Austrian utility companies. The study additionally highlights the 

importance of electricity demand in the transmission of risks. From a Chinese perspective, Li (2020) 

researched the spillover effects between the carbon pilot market and 10 listed Chinese power 

companies, and found that the carbon market is a net receiver of the power industry information, and 

the spillover effect between the CET market and China’s power industry is weak. Nevertheless, there 

are constraints in the literature that could be explored in future research to analyze how the total 

capacity and percentage of renewable energy installations affect the relationship between power 

companies. Wen (2022) included the CSI300 power index and determined that it is the primary 

determinant of carbon price dynamics in Hubei. 

Green bonds are financial tools that provide funding for environmentally friendly projects that 

promote energy efficiency and reduce carbon emissions. Compared to traditional financial instruments, 

green bonds are a recent addition to the financial market, but play a crucial role in funding eco-friendly 

initiatives (Samuel et al., 2024). It is projected that clean energy will make up 62% of the world’s 

energy output by 2050, leading to a 31% decrease in fossil fuel usage (Bloomberg NEF, 2020). This 

shift in energy has significantly boosted the development of the green bond sector. As a result, 

numerous academic researchers have concentrated on the correlation between green bonds and 

financial markets, as well as energy assets. Chai (2021) examined the changing nonlinear relationships 

among green bonds, renewable energy, and stock prices in the worldwide markets amidst the COVID-

19 pandemic using a TVP-VAR-SV model. The findings indicate that green bonds result in a temporary 

rise in renewable energy and had a growing beneficial effect after COVID-19. Reboredo and Ugolini 

(2020) researched how the price of green bonds are affected by different types of markets, such as 

government bonds, high-yield corporate bonds, energy markets, and so on. They used a VAR model to 

analyze the price transmission and found that green bonds are influenced by these markets, with 

stronger connections to government and investment-grade bonds compared to high-yield bonds and 

energy markets. 

The focus on investing in and using clean energy is growing (Strantzali & Aravossis, 2016; Wu, 

Wang et al., 2020). Numerous nations globally are implementing diverse renewable energy strategies 

to support the advancement of sustainable energy and are making efforts to expedite the shift towards 

sustainable energy sources (Li et al., 2021). Consequently, an increasing amount of research has also 

concentrated on the correlation between green bonds and renewable energy sources (Chen et al., 2023). 

In a study conducted by Nguyen in 2021, a strong relationship was discovered between 
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environmentally friendly bonds and renewable energy through the analysis of rolling window wavelet 

correlations. Hammoudeh (2021) also reported conflicting results in that the direct correlation between 

the clean energy index and green bonds is constrained, but there is a significant association between 

green bonds and clean energy in both typical and extreme market scenarios. In Pham’s (2021) study, a 

cross-quantile graphical framework was utilized to explore the relationship between green bonds and 

clean energy, revealing a stronger connection between the two during challenging market conditions.  

From the above literature review, each market has been studied accordingly by scholars, but there 

is less analysis of the linkage effects between multiple markets. Ren (2022) developed a novel 

framework that assesses the connection between the EU carbon futures and green bond markets by 

considering various time scales and market situations. Standard VAR models with constant parameters 

only allow the impulse responses of variables to be plotted under the assumption that the parameters 

do not change over different ranges of impulse response points. The TVP-VAR-SV model, developed 

by Esmaeili & Rafei in 2021, incorporates time-varying parameters, which enhances both the precision 

of the model fitting and the explanatory capacity of the model (Gong et al., 2021; Li et al.,2023). Zhao 

(2022) utilized the TVP-VAR technique to examine dynamic fluctuations in the relationships between 

Chinese stocks, commodities, and carbon markets, with a specific emphasis on how extreme event 

shocks affect these market interactions. This study introduced the TVP-VAR-SV model (Primiceri, 

2005) to examine the dynamic nonlinear connections between the Chinese carbon market, green bond 

market, renewable energy market, and electricity market. It is the first time these four markets were 

analyzed together using a unified framework to build DCC-GARCH and TVP-VAR-SV models for 

volatility risk analysis from a time-varying viewpoint, enhancing the research on the carbon market. 

3. Methodology introduction 

This paper introduces Primiceri’s (2005) non-linear time-varying analysis tool, the time-varying 

parametric vector autoregressive model (TVP-VAR-SV), to explain the time-varying and non-linear 

characteristics between economic phenomena. Referencing this study, it is assumed that all parameters 

obey first-order random walk processes and are time-varying, and without the homoskedasticity 

assumption. The TVP-VAR-SV model is used to empirically demonstrate the time-varying effects of 

four markets, and to flexibly capture the time-varying and gradual characteristics, while accurately 

observing the mechanisms of interaction between economic variables at different intervals and points 

in time. TVP-VAR-SV is evolved from the structural vector autoregressive model (SVAR), and the 

basic form of an SVAR model with s-order lags is given by 

𝐴𝑦𝑡 = 𝐹1𝑦𝑡−1 + 𝐹2𝑦𝑡−2 + ⋯ + 𝐹𝑠𝑦𝑡−𝑠 + 𝜇𝑡 , 𝑡 = 𝑠 + 1, ⋯ 𝑛               （1） 

where 𝑦𝑡 is the 𝑘 × 1 dimensional vector containing 𝑘 endogenous variables, 𝐴𝑡 represents the 𝑘 ×

𝑘  dimensional joint parameter matrix,  𝐹1, ⋯ 𝐹𝑠  is the pending coefficient matrix, 𝑡 − 1, ⋯ 𝑡 −

𝑠  represent different lag periods, 𝜇𝑡  represents the error or structural impact, 

𝜇𝑡~(0, 𝛴𝛴)and 𝐴𝑡 and 𝛴𝑡 are expressed as 

𝐴 = (
1 ⋯ 0
⋮ ⋱ ⋮

𝛼𝑘1 ⋯ 1
) , 𝛴 = (

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑘

)                       （2） 

Now, we can shift the terms of equation (1) as 
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𝑦𝑡 = 𝐵1𝑦𝑡−1 + 𝐵2𝑦𝑡−2 + ⋯ 𝐵𝑠𝑦𝑡−𝑠 + 𝐴−1𝛴𝜀𝑡                        （3） 

where 𝐵𝑖 = 𝐴−1𝐹𝑖  , 𝜀𝑡~𝑁(0, 𝐼𝑘) and we stack coefficient matrix 𝐵𝑖  by row elements and define 

𝑋𝑡 = 𝐼𝑘⨂(𝑦𝑡−1
′ , 𝑦𝑡−2

′ , ⋯ 𝑦𝑡−𝑠
′ ), where ⨂ denotes the Kronecker product, and (3) can be written as： 

𝑦𝑡 = 𝑋𝑡𝛽 + 𝐴−1𝛴𝜀𝑡 , 𝑡 = 𝑠 + 1, ⋯ 𝑛                         （4） 

SVAR models usually assume that the parameters (𝛽, 𝐴, 𝛴) are invariant, and this paper relaxes this 

assumption here by assuming that all parameters obey a time-varying first-order stochastic wandering 

process, enabling the gradual and time-varying characteristics of the underlying economic 

phenomenon to be captured. Ultimately, the TVP-VAR-SV model is as follows: 

𝑦𝑡 = 𝑋𝑡𝛽𝑡 + 𝐴𝑡
−1𝛴𝑡𝜀𝑡                             （5） 

where 𝐴𝑡 and 𝛴𝑡 are time-varying, and 𝛼𝑡 is the lower triangular element of 𝐴𝑡. The log stochastic 

volatility matrix is ht = (h1t, ⋯ hkt)′，where ℎ𝑗𝑡 = 𝑙𝑛𝜎𝑗𝑡
2  , 𝑗 = 1, ⋯ 𝑘 , 𝑡 = 𝑠 + 1, ⋯ 𝑛；𝛽𝑡+1 = 𝛽𝑡 +

𝜇𝛽𝑡，𝛼𝑡+1 = 𝛼𝑡 + 𝜇𝛼𝑡，ℎ𝑡+1 = ℎ𝑡 + 𝜇ℎ𝑡. 

To avoid bias in the estimated parameters due to ignoring changes in volatility in stochastic 

perturbations, the TVP-VAR-SV model assumes stochastic volatility, but the likelihood function 

becomes more complex and the model is more difficult to estimate. The estimation in this study utilizes 

the MCMC algorithm introduced by Nakajima (2011). It regards the time-varying parameters in the 

model as latent variables and generates a sample from a high-dimensional posterior distribution. Let 

y = {yt}t−1
n , ω = (Σβ, Σα, Σh) , set π(ω)  as ω  the prior probability, and sample from the posterior 

distribution π(β, a, h, ω|y) on the basis of a given 𝑦.The specific steps of the algorithm are as follows: 

first, initialise the parameters ;second, draw from the conditional posterior distribution; third, draw 

from the conditional posterior distribution; fourth, draw from the conditional posterior distribution; 

fifth, drawfrom the conditional posterior distribution; sixth, draw from the conditional posterior 

distribution; seventh, draw from the conditional posterior distribution; eighth, return to the second 

sampling step. 

4. Empirical analysis 

4.1. Data source and variable selection 

This paper includes four variables of the Hubei carbon market, green bond market, clean energy 

market, and electricity market. The China Green Bond Index is the earliest published green bond index 

in China, which can better reflect China’s green bond market. The economic focus in Hubei is primarily 

on the secondary industry, with power companies being the first to participate in the carbon market. 

The distribution of the Hubei carbon market primarily includes electric power and industrial companies 

(Chang et al., 2018; Zhou & Li, 2019). The CSI New Energy Index chooses 80 stocks from the CSI 

All-Share Index that are connected to renewable energy production, energy storage, and energy 

applications. The CSI 300 Electricity Index contains 93 listed electric power companies in China. All 

data are obtained from Wind (Table 1), with data dimensions from January 4, 2018 to September 30, 

2022, and contain a total of 1098 observations after processing of missing values. The data treatment 

of log returns was adopted for all variables prior to modeling: 𝑙𝑛(𝑥𝑡+1) − 𝑙𝑛(𝑥𝑡). 
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Table 1. Summary of the indicator data. 

Market Indicators Variable name Data sources 

Carbon Hubei carbon pilot HBEA Wind 

Green bond China Bond green bond index CBGB Wind 

Clean energy CS New Energy Index CSXN Wind 

Electricity  CSI300 electricity Index ELEC Wind 

4.2. Data test 

4.2.1. Descriptive statistics, unit root test, and cointegration test 

Table 2 shows that the skewness coefficients are both positive and negative, and that all of 

variables are asymmetrically distributed. The kurtosis coefficients of the data are all greater than 3, 

showing the characteristics of a spike distribution. The Jarque-Bera statistic test is passed at the 1% 

confidence level, meaning that the data does not follow a normal distribution. In summary, the data is 

mostly “spiky and backward tailed” and “asymmetric”, reflecting the typical features of present market 

prices and stock information. 

Table 2. Descriptive statistics of the variables. 

 HBEA CBGB CSXN ELEC 

 Mean 0.04 0.02 0.06 0.01 

 Median 0.00 0.02 0.14 0.06 

 Maximum 9.56 1.72 7.51 9.47 

 Minimum −19.72 −0.82 −14.75 −17.70 

 Std. Dev. 3.09 0.10 2.12 1.76 

 Skewness −0.29 2.89 −0.89 −1.30 

 Kurtosis 6.82 68.37 7.72 17.18 

 Jarque-Bera 1035.36 298796.30 1768.59 14412.97 

Note: The Jarque-Bera statistic at the 1% confidence level passed the test “***” 

As non-stationary time series are directly used to build the model, the results obtained are biased 

and there are pseudo-regressions. In this paper, the ADF test is used to test the stationarity of variables 

(Table 3). The results indicate that all variables are stationary at the 5% level and can be 

subsequently modeled.  

Table 3. Stationary test. 

yield data T statistic P value stationarity 

HBEA −44.29 0.01 Stable 

CBGB −27.36 0.00 Stable 

CSXN −39.07 0.00 Stable 

ELEC −37.98 0.00 Stable 
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4.2.2. BDS non-linear test 

Initially, the best VAR model for each pair of related market variables is determined by selecting 

the lag order using the Bare Pool Information Criterion and the Schwarz Criterion in order to generate 

a series of filtered residuals. The BDS technique, as described by Broock in 1996, is utilized to assess 

if the residuals adhere to the initial assumption of “independent identical distribution”. If this 

assumption is disproved, it indicates the presence of a non-linear pattern within the residual data. Table 

4 displays that the BDS test on the residual series from the bivariate VAR of the returns of correlated 

variables rejects the initial hypothesis at a 1% level of significance, indicating a notable non-linear 

relationship between the two series. 

Table 4. Test of nonlinearity of BDS. 

Bivariate VAR Residual 

sequence 

Embedded Dimension 

 two three four five six 

HBEA-CBGB Residual 1 0.055*** 0.098*** 0.123*** 0.133*** 0.134*** 

Residual 2 0.026*** 0.045*** 0.061*** 0.067*** 0.071*** 

HBEA-CSXN Residual 1 0.055*** 0.098*** 0.123*** 0.132*** 0.133*** 

Residual 2 0.001*** 0.009*** 0.018*** 0.024*** 0.028*** 

HBEA-ELEC Residual 1 0.054*** 0.097*** 0.122*** 0.132*** 0.133*** 

Residual 2 0.009*** 0.012*** 0.022*** 0.028*** 0.030***  

CBGB-CSXN Residual 1 0.027*** 0.047*** 0.063*** 0.070***  0.073*** 

Residual 2 0.001*** 0.010***  0.018*** 0.024*** 0.030***  

CBGB-ELEC Residual 1 0.027*** 0.046*** 0.061*** 0.068***  0.072*** 

Residual 2 0.010***  0.014*** 0.023*** 0.028*** 0.030***  

CSXN-ELEC Residual 1 0.011*** 0.018***  0.027*** 0.033*** 0.036*** 

Residual 2 0.001*** 0.008***  0.017*** 0.023*** 0.027***  

Notes: HBEA-CBGB refers to the bivariate VAR system of Hubei carbon price return and green bond return, with 

the same for the other related markets. “Residue 1” and “Residue 2” refer to the residual sequence obtained by VAR 

constructed with HBEA and CBGB as the dependent variable. The nested vector dimensions of BDS is 6. 

4.3. Dynamic correlation analysis 

This paper begins with a dynamic correlation analysis of the variables using a DCC-GARCH (1,1) 

model (Engle, 2002). Figure 2 intuitively shows that the conditional correlation coefficient between 

the variables has obvious time variation. It can be seen that there is no clear trend in the time-varying 

coefficient plots of the Hubei carbon market with the electricity index and the CSI New Energy Index, 

both fluctuating around a certain value, but showing an increase in correlation in early 2020 and early 

2022. The green bond market is negatively correlated with the remaining three markets overall, which 

is consistent with Nguyen et al. (2021), where the clean energy sector of power companies is the main 

area of investment in green bonds. However, the funds raised from green bonds can be used for other 

green projects and the government and companies may place more emphasis on other green projects 

to rationalize the allocation of green resources, which leads to a decrease in financial support for the 

clean energy market. The clean energy market and the electricity market show a strong dynamic 
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positive correlation, and the positive correlation gradually decreases with time. The developed power 

enterprises have already tried to reform green power before the official unification of the carbon market. 

After the unification of the carbon market in July 2021, these two markets may be more affected by 

the rest of the market factors. Not only power companies, but also the rest of the carbon-intensive 

industries are also gradually moving towards renewable energy. Overall, at the point in time when 

COVID-19 erupted, the dynamic correlation of volatility between the various markets was 

significantly strengthened, indicating that extreme events have a significant impact on the dynamic 

connectivity between the markets, which will be studied in depth later in this paper in the impulse 

response section. 

 

Figure 2. Dynamic conditional correlation coefficient plots. 

4.4. Impact effect analysis 

4.4.1. Estimation results of the TVP-SV-VAR model 

In order to determine that the sampling is a stationary probability distribution, and to obtain the 

posterior distribution of the unknown parameters, a convergence diagnosis is required before 

estimation and inference of the samples. The MCMC algorithm is applied to carry out 20,000 samples 

and discard the initial 4,000 times to obtain a stable and valid sample. The Geweke test (Table 5) shows 

a convergence diagnostic value below the 5% threshold of 1.96, supporting the original hypothesis of 

convergence in the posterior distribution. With a maximum invalid factor of 199 in the table, we can 
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extract approximately 100 uncorrelated samples from the 20,000 total, indicating an adequate number 

of samples for subsequent inference. 

Table 5. Results of the MCMC estimates for the model parameters. 

Parameter Mean Stdev 95%U 95%L Geweke Inef 

(𝛴𝛽)1 0.0023 0.0003 0.0019 0.0030 0.183 51.31 

(𝛴𝛽)2 0.0023 0.0003 0.0019 0.0029 0.008 62.07 

(𝛴𝛼)1 0.0049 0.0011 0.0032 0.0075 0.617 175.25 

(𝛴𝛼)2 0.0050 0.0013 0.0032 0.0079 0.130 199.33 

(𝛴ℎ)1 0.7716 0.0539 0.6730 0.8833 0.380 20.78 

(𝛴ℎ)2 0.4800 0.0386 0.4079 0.5595 0.080 41.65 

4.4.2. Time-varying impulse response analysis 

Impulse response analysis was performed for two types of impulse response functions at equal 

time intervals and at different time points, respectively. Figure 3 shows the impulse response plots for 

equal time intervals, reflecting the impulse response of each variable after being subjected to a positive 

unit shock at different lead times, the lead times chosen here being periods 1, 2, and 3, respectively. In 

Figure 4, the impulse response outcomes for the three variables are displayed at various time intervals, 

enabling a comparison of the variations in reaction to shocks for each variable at different time 

intervals. This section compares the performance of the carbon market in 2018, the recovery from the 

epidemic in March 2020, and the launch of the national carbon market in July 2021 by analyzing three 

specific dates: December 3, 2018; March 3, 2020; and July 21, 2021. 

 

Figure 3. Equal time interval impulse response. 
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In the Hubei carbon market, a positive shock of 1 unit on the variable results in short- and 

medium-term negative impacts on the electricity index, which gradually turns positive over time within 

the same period. However, in the long term, this effect has shifted to negative in recent years, 

suggesting that China’s electricity market has been increasingly influenced by the carbon market. 

Consequently, electricity companies will need to allocate more resources towards carbon emissions 

reduction and transformation in the long run. The clean energy index demonstrates a detrimental 

impact in the short and intermediate term, yet a beneficial impact in the distant future, suggesting that 

the boost from the carbon market on the clean energy sector is not immediate, but rather indirectly 

influenced by various markets. Specifically, when the other three markets are hit, the carbon market 

had a significant fluctuation in 2020, which foreshadowed that China’s green transformation in 2020 

will greatly affect the carbon market. 

The green bond market is seen as an attractive market because the issuance or trading of green 

bonds can increase equity market prices. The green bond market is less exposed to risks or external 

shocks than the traditional bond market, but may be affected positively or negatively by 

macroeconomic factors. Therefore, the main focus of this paper is on the transmission of information 

from the green bond market to other markets. When it is subject to a positive shock, the carbon market 

shows a significant positive effect in three periods in recent years, indicating that the green bond market 

has a significant positive impact on the performance of the carbon market. Specifically, the increase in 

green bond issuance and the restriction of carbon emission allowances have caused higher carbon 

prices, which then increases the production costs of some high carbon energy companies, ultimately 

encouraging a low carbon transition for companies to help improve their competitive advantage in the 

future. The electricity market before 2021 showed a significant negative effect of green bond market, 

and after turned into a positive effect with a gradual increase, which is due to the traditional electric 

power enterprise is undergoing a green power reform transition period before 2021. When the law of 

power generation has not yet been mastered, and the fuel commodity demand increased, leading to 

higher cost. 

Most power companies have been supported by green bond funding in recent years, and the 

transformation of their businesses has slowly smoothed out so that they can eventually achieve low-

carbon development. It has been shown that recent reductions in the cost of remote wind power 

generation are not only due to technological advances, but also due in large part to green financing, 

which can provide investors and operators of offshore wind turbine farms with cheaper sources of 

capital and revenue (Zhao et al., 2022) 

When the Power Index is subject to a shock, the Hubei carbon market shows a volatile positive 

effect in the short to medium term and a small negative effect in the long term because the carbon 

market, which acts as an information overflow, is more susceptible to policy and other factors. When 

the CSI New Energy Index receives a positive shock, the Hubei carbon market shows a negative effect 

in the short to medium term, but turns positive after July 2021 and remains positive in the long term, 

which is consistent with the results of Hanif (2021) in a study showing a positive dependence between 

carbon prices and renewable energy stocks. We also find that the degree of dependence between the 

two markets increases significantly during the 2020 pandemic, possibly due to the economic downturn 

during the COVID-19 pandemic, where companies reduced their demand for clean energy to reduce 

costs, slowing the transition process, but this in turn led to an increase in demand for carbon credits, 

which will test investors’ decision skills, a finding that also informs subsequent point-in-time impulse 

response analysis. The electricity market responds negatively in the current period, but converges 
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directly to zero in the medium to long term, demonstrating that the need for new energy sources in the 

transition process of a new energy-dominated power system. But, the uncertainty, volatility, and anti-

peak characteristics of wind power generation will pose a significant challenge to the system power 

balance (Irena, 2019). In order to eliminate or weaken the impact of new energy uncertainty and 

volatility on system safety as well as economic operation, the power system needs to have sufficient 

response and regulation capabilities. 

 

Figure 4. Impulse response plot of different points. 

Figure 4 demonstrates that the impulse response of the Green Bond Index at each point in time 

converges over time when the Hubei carbon market is hit. The carbon market had minimal influence 

on the green bond market up to the seventh period. In December 2018, there was a favorable reaction, 

while the other two time periods of the Green Bond Index saw unfavorable responses, suggesting that 

the carbon market in Hubei briefly hindered the green bond market due to the pandemic. The CSI New 

Energy Index gradually converged to zero after a negative response in the current period at all three 

time points. The electricity index responded differently at three time points with both positive and 

negative responses, indicating that the carbon market had a different impact on the electricity market. 

The unified carbon market in China has a notable influence on the electricity market in the medium 

term, showcasing the efficacy of this policy. The Hubei carbon market showed a positive effect at all 

three points in time when the green bond index was hit, indicating the unique role of green finance in 

the development of the carbon market. The CSI New Energy Index and the CSI300 electricity index 

showed a negative effect and gradually decreased to zero at three points in time with the increase of 

the lag period. The new energy market and power companies were hit hard by the pandemic, and 

financing is urgently needed, but there are limits to what green bonds can do. When the CSI New 

Energy Index was hit, the Hubei carbon market showed greater volatility at all three points in time, 

indicating that China’s carbon market has been gradually influenced by the development of the new 
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energy market in recent years. The green bond index experienced a downturn until the Chinese national 

carbon market was unified, with the negative volatility of clean energy on green bonds being linked to 

the high risk associated with the clean energy sector. This risk could potentially harm the green bond 

market (He et al., 2019). However, the establishment of the national carbon market has significantly 

aided in the steady growth of the clean energy market, leading to a gradual decrease in risk that will 

ultimately benefit the positive development of the green bond market. The electricity index shows a 

positive effect at all three points in time, and it is clear that the important influence of new energy to 

accelerate electricity market reform will not change significantly regardless of the period. 

4.4.3. Three-dimensional time-varying impulse response analysis 

In order to globally measure the time-varying dynamic connectivity effects between different 

markets, Figure 5 shows a three-dimensional time-varying impulse response diagram. The results show 

that when the Hubei carbon market was hit, the power market as well as the new energy market had 

either positive or negative dynamics at different lead times as well as time periods. Such an apparent 

change in form deserves our attention, and we cannot absolutely define the inter-market impact as 

positive or negative. The electricity market reacts more slowly to the green bond shock, while the new 

energy market reacts more quickly and sensitively, and both markets have reached their maximum 

negative effect under the shock of the 2020 epidemic, which was not found in the previous analysis. 

When the electricity market is hit, the rest of the markets have a maximum effect at the medium term, 

reflecting the fact that the electricity market, as a pillar industry, does not directly affect other markets, 

but indirectly affects related markets. At the same time, we can see more intuitively that the effects of 

the carbon market have all shown signs of slowing down in recent years when the other three markets 

have been hit, suggesting that it will be affected by more major events and drivers as the development of 

carbon markets and the expansion of its influence, so we need to look at the carbon market in more depth. 

 

Figure 5. Three-dimensional time-varying impulse response. 
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4.5. Robustness test 

The results of the robustness is verified through further analysis, and robustness can be achieved 

with smaller samples (Avkiran & Cai, 2014; He, 2020). Therefore, we use data from the daily opening 

of the national (Chinese) carbon marketfrom 16 July 2021 to 30 September 2022 for modeling, and 

compare the results with the impulse responses of the Hubei carbon market for the same time period 

to test its robustness. Table 6 shows that the invalidation factor is less than 100, indicating that the 

model has a high efficiency of posterior extraction and can be used for further analysis. 

Table 6. The MCMC estimation results for the national carbon market model parameters. 

Parameter Mean Stdev 95%U 95%L Geweke Inef 

(𝛴𝛽)1 0.0022 0.0002 0.0018 0.0027 0.513 14.23 

(𝛴𝛽)2 0.0023 0.0003 0.0018 0.0028 0.002 15.63 

(𝛴𝛼)1 0.0051 0.0011 0.0033 0.0077 0.296 61.16 

(𝛴𝛼)2 0.0055 0.0015 0.0033 0.0090 0.339 95.52 

(𝛴ℎ)1 1.2027 0.1267 0.9771 1.4721 0.557 16.28 

(𝛴ℎ)2 0.3470 0.0640 0.2405 0.4863 0.755 42.99 

 

Figure 6. Equal interval impulse response diagram of the national carbon market. 

Figure 6 and Figure 7 display the impulse response outcomes, specifically highlighting the carbon 

market’s response compared to the other three markets (top row and left column). While the impulse 

responses of the national carbon market and the Hubei carbon market differ, they share numerous 

similarities. The impact on the new energy market from changes in the carbon market varies over time, 

with a short-term positive response followed by a negative trend in the medium term and a smaller 
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positive effect in the long term. Conversely, the power market initially experiences a negative effect, 

which shifts to a positive response in the medium term and eventually stabilizes close to zero in the 

long term. During shocks, the three remaining markets show similar performance in all areas except 

for electricity, likely due to the Hubei carbon pilot market being less influenced by policy and external 

factors compared to the national pilot market. In general, the connections among markets change over 

time, and our findings are fairly stable when incorporating data from the Hubei carbon trading market 

for analysis in situations where there is not enough data from the Chinese carbon market. 

 

Figure 7. Equal interval impulse response diagram of the Hubei carbon market. 

5. Conclusions 

This study empirically analyzes the dynamic non-linear linkages between carbon markets, green 

bonds, clean energy, and electricity markets. Initially, a non-linear BDS examination was performed 

on the entire yield data, followed by the utilization of a DCC-GARCH framework to investigate the 

dynamic relationship among the four markets. The CSI New Energy Index shows a strong correlation 

with the electricity index, suggesting that the construction of the new electricity system dominated by 

new energy will necessarily require the complementarity of the two markets. When COVID-19 

emerged, the strong relationship of volatility between markets increased, indicating that major events 

have a notable effect on the connection between the four markets.  

To better explore the intrinsic effects and transmission mechanisms between markets, this study 

constructs a TVP-VAR-SV model for empirical analysis. Through impulse response analysis of two 

types of impulse response functions at equal time intervals and at different time points, our findings 

suggest that the connectivity between different markets is time-varying: 
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(1) The Hubei carbon market has a positive impact on the CSI New Energy Index in the short and 

medium terms, but a transformative impact in the long term, indicating that the new energy market 

cannot respond to the carbon market in the same period and needs the indirect synergy of multiple 

markets. There was a notable increase in the electricity market in the short and medium terms after 

2020, with a lesser negative impact in the long term. This could be due to traditional electric power 

enterprises making preparations for industrial restructuring for the long-term sustainable development 

of their enterprises. Specially, the carbon market has a clear fluctuation in 2020 when the other three 

markets are affected.  

(2) The green bond market has a significant negative impact on the electricity market before 2021, 

after turning to positive effect and gradually increasing, which is due to the early power enterprises 

experiencing green transformation, and the trial error costs are high when the law of power generation 

has not yet been mastered. In recent years, most power companies have been supported by green bond 

funding, and the development of enterprises has slowly smoothed out. 

(3) The New Energy Index had a dampening effect on the Hubei carbon market in the short to 

medium terms, and turned into a boosting effect after July 2021, indicating that the degree of 

dependence between the two markets increased significantly during COVID-19. The electricity market 

reacted negatively, but turned positive after 2020, fully demonstrating the uncertainty, volatility, and 

anti-peak regulation characteristics of the renewable power generation output, which bring great 

challenges to the system power balance. 

This paper suggests that policy makers could prioritize improving the connection between the 

carbon market and new electricity market reform and utilize the price discovery function of the carbon 

market to guide investment decisions in the renewable energy sector. We also suggest developing and 

enhancing the eco-friendly financial system to encourage financial institutions to actively create green 

financial products and boost investments in renewable energy, leading to the advancement of 

businesses’ industrial structure. Power companies could be cautious of the effects of carbon price 

fluctuations on production costs in the near future and make timely adjustments to carbon asset 

allocation. Over time, it is important to boost the share of renewable energy in electricity production 

to lessen the impact of power generation expenses on carbon prices, ultimately mitigating the threat of 

fluctuations in carbon prices. In terms of advancing carbon market development, it is crucial to 

understand how information is shared in the ‘carbon-electricity’ system and oversee the progress of 

the energy industry, particularly focusing on companies that have significant power generation 

capabilities and rely heavily on thermal power generation. 

Although the above study has obtained some key conclusions, there are still some limitations. (1) 

The existing carbon price data from the pilot regions cannot fully represent the comprehensive 

operation of China’s carbon market, and therefore, as the development of the national carbon market 

is accelerated and promoted and after the sample size of the unified national carbon market is sufficient, 

we will consider analyzing the trading data for the national carbon market and exploring the risk 

transmission mechanism between it and the power market as well as the renewable energy market. (2) 

We will also further study the inclusion of the remaining carbon-intensive industries (such as non-

ferrous metals, iron and steel, chemicals, etc.) that are also undergoing a clean energy transition, and 

include the energy market and climate risk as intermediary variables to make the research framework 

more complete. (3) This study focuses on inter-market connectivity in terms of returns and volatility. 

Higher-order moment risk is important in asset pricing, volatility modeling, risk hedging, and portfolio 

optimization, and therefore the effect of risk shocks at the level of higher-order moments will be 

considered in subsequent studies (Zhou et al., 2023).  
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