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created by major technology companies such as Facebook, LinkedIn, Amazon, and Google. These 

techniques are employed to analyze earnings per share data for publicly traded Polish companies 

during the period spanning from the financial crisis to the pandemic shock. My objective was to 

compare prediction errors of analyzed models, using scientifically defined error measures and a series 

of statistical tests. The seasonal random walk model demonstrated the lowest error of prediction, which 

might be attributable to the overfitting of complex models. 
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1. Introduction  

The prediction of company stock prices relies on the multiplication of two key components: 

Earnings per share (EPS) and the Price-to-Earnings (P/E) multiple. Accurate forecasting of these 

elements is paramount for making sound investment decisions. EPS forecasts, in particular, play a 

critical role by providing valuable numerical insights into a company’s financial performance. In 

advanced markets such as the United States, a significant proportion of companies benefit from 

extensive coverage by financial analysts. However, in emerging markets like Poland, this coverage 

extends to only about 20% of companies. This discrepancy underscores the necessity of employing 

statistical models for EPS prediction, a need that began to be addressed in the 1960s. The initial class 

of models that garnered researchers’ attention were the autoregressive integrated moving average 

(ARIMA) models. The outcomes of these investigations yielded mixed results, with some studies 

suggesting the efficacy of the basic random walk model, indicating that more complex models did not 

consistently outperform it. Conversely, other studies arrived at divergent conclusions. Furthermore, 

from the late 1960s onward, researchers embarked on an extensive exploration of various approaches 

employing exponential smoothing techniques for EPS prediction. These investigations produced also 

mixed results, with some advocating for the use of exponential smoothing techniques, while others 

opposed them. However, over time, a consensus gradually emerged among researchers, pointing to the 

superiority of ARIMA-type models, which consistently delivered the most accurate forecasts. This 

consensus persisted until the late 1980s when a new prevailing belief emerged, suggesting that 

forecasts generated by financial analysts surpassed those produced by time series models. However, 

many researchers observed something opposite. More recently, the advent of machine learning and 

deep learning has ushered in new opportunities for experimentation. Artificial neural networks (ANNs) 

have been applied to various financial problems, including EPS forecasting. 

I aim to compare the predictive capabilities of four cutting-edge algorithms developed by major 

technology companies, namely Facebook, LinkedIn, Amazon, and Google, with the traditional 

seasonal random walk model. These methods are applied in univariate time series settings to predict 

EPS. The analysis encompasses quarterly EPS data for 267 companies listed on the Polish stock 

exchange, covering the period from the 2008–2009 financial crisis to the 2020 pandemic shock. For 

forecast testing, the years 2017–2019 are selected, aligning with the sample used in Kuryłek’s previous 

studies (2023a, 2023b). 

In lieu of relying on the conventional mean absolute percentage error (MAPE) metric, which may 

yield extreme values when the denominator is small, we opt for the mean arctangent absolute 

percentage error (MAAPE) metric, as proposed by Kim and Kim (2016). 

In summary, I pursue the following primary objective. It seeks to identify methods for forecasting 

EPS in situations where such predictions are scarce, particularly in emerging markets like Poland. 

Unfortunately, it occurred in the previous research that old-fashioned statistical methods were not 

useful in this respect. I also aim to assess whether recently developed state of the art time series models 

by BigTechs can effectively predict EPS and outperform a simplistic seasonal random walk model. 

Notably, this article presents a comparative analysis of these models using the same dataset, a unique 

contribution to the field. Hence, the paper extends the existing evidence that the naïve random walk 

model outperforms more advanced statistical models in out-of-sample predictions (Brandon et al., 

1983; Gerakos and Gramacy 2013; Grigaliūnienė, 2013).  
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2. Literature review  

The exploration of Earnings Per Share (EPS) forecasting has been a subject of extensive research 

in academic literature since the late 1960s, with a primary focus on US companies. Researchers have 

delved into various forecasting models, encompassing both simple random walk models and more 

intricate autoregressive integrated moving average (ARIMA) models (Ball and Watts, 1972; Watts, 

1975; Griffin, 1977; Foster, 1977; Brown and Rozeff, 1977, 1979). The outcomes of these studies have 

produced mixed results, with some studies advocating for the basic random walk model, asserting that 

more complex models did not consistently outperform it, while others have drawn different 

conclusions. However, over time, a consensus gradually emerged among researchers, indicating that 

ARIMA-type models generally provided the most accurate forecasts, as evidenced by the works of 

Lorek (1979) and Bathke and Lorek (1984). Lorek and Willinger (1996) found that multivariate cross-

sectional model outperforms firm-specific and common-structure ARIMA models. Later, Finger’s 

(1994) study has examined the value relevance of earnings as measured by their ability to predict both 

earnings and cash flow. Earnings were found to be a significant predictor of themselves for most of 

the sample firms. Out-of-sample forecasts showed that random walk models outperformed individually 

estimated earnings models for one-year ahead forecasts. This occurred because the choice of an 

appropriate model was dependent on the business context as suggested by Lorek and Willinger (2007). 

According to them, the random walk-with-drift model provided more accurate forecasts for a sample 

of high-technology firms, and certain ARIMA-type models were more accurate for a sample of 

regulated companies and financial institutions. 

Moreover, since the late 1960s and beyond, researchers have undertaken comprehensive 

explorations of various methods employing exponential smoothing for EPS forecasting. For instance, 

Elton and Gruber (1972) found that additive exponential smoothing without a trend component yielded 

among the best-performing models. Subsequently, several authors, including Ball and Watts (1972), 

Johnson and Schmitt (1974), Brooks and Buckmaster (1976), Ruland (1980), and Brandon et al. (1983), 

discovered that EPS time series tended to follow random walks, with exponential smoothing delivering 

similar results in terms of forecast accuracy. Brandon et al. (1986) further highlighted the effectiveness 

of the Holt-Winter (see Holt, 1957, 2004) exponential smoothing model for EPS prediction, 

particularly for short-term forecasts. This cost-effective model consistently produced accurate 

forecasts in comparison to other methods. These findings were corroborated by subsequent studies by 

Brandon et al. (1987) and Jarrett (2008), which reaffirmed the superior performance of the Holt-

Winters model, as measured by the Mean Absolute Percentage Error (MAPE) metric.  

Turning the focus to the Polish market, Kuryłek (2023a, 2023b) conducted analogous studies that 

compared various univariate time series models, including multiple naive random walk models, 

ARIMA-type models, and exponential smoothing models. These models were employed for EPS data 

related to Polish companies spanning from the aftermath of the 2008–2009 financial crisis to the onset 

of the 2020 pandemic shock. Notably, the seasonal random walk (SRW) model emerged as the standout 

performer across all quarters, providing a relatively accurate representation of the Polish market’s 

behavior in contrast to the other models examined.  

A consensus regarding ARIMA models’ effectiveness persisted until the late 1980s when a 

prevailing belief surfaced, suggesting that forecasts generated by financial analysts surpassed those 

produced by time series models (Brown et al., 1987). Nevertheless, Conroy and Harris (1987) observed 

that analysts tended to excel in short forecast horizons, with their advantage diminishing over longer 
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timeframes. This perspective persisted until recent years when the superiority of analysts over time 

series models was once again questioned. Lacina et al. (2011) noted that analysts’ forecasts were no 

more accurate than naive random walk (RW) forecasts. Lev et al. (2010) provided evidence that 

estimate-based accounting items are less useful for the prediction of cash flows, however, they improve 

the prediction of next year’s earnings, though not of subsequent years’ earnings. A notable study by 

Bradshaw et al. (2012) revisited the widely accepted notion that analysts’ EPS forecasts outperformed 

random walk (RW) time-series forecasts. To their surprise, basic RW forecasts exhibited higher 

accuracy, particularly for longer time horizons, smaller or newer firms, and situations where analysts 

predicted negative or substantial changes in EPS. In a similar vein, research by Pagach and Warr (2020) 

validated that ARIMA time-series forecasts of quarterly EPS were as accurate as, or even more precise 

than, the consensus analysts’ forecasts in approximately 40% of cases. Moreover, this time-series 

superiority became more pronounced with longer forecast horizons, decreased firm size, and 

particularly in the case of high-technology firms. Similarly, Gaio et al. (2021) suggested that the 

random walk model outperformed market analysts’ forecasts in Brazil. 

Recent research has placed a significant emphasis on the utilization of artificial neural networks 

for EPS forecasting. Applications of big data approach and artificial intelligence to construction and 

infrastructure problems can be found in the following articles: Aidan et al. (2020), Al-Somaydaii et al. 

(2022), Al-Zwainy et al. (2016, 2018, 2020), Al-Zwainy and Raheem (2020). However, the outcomes 

of this research have been inconclusive. Cao et al. (2004) conducted a comparative analysis of 

forecasting accuracy using three-layer neural feedforward networks in both univariate and multivariate 

settings, employing the logistic (sigmoid) activation function. This study demonstrated that the 

application of neural networks led to more accurate forecasts compared to other forecasting models. 

In contrast to these findings, Lai and Li (2006) examined the performance of various models for EPS 

prediction, including ARIMA models and Artificial Neural Networks (ANN), and identified the ANN 

model as having the poorest accuracy. Cao and Parry (2009) showcased that the univariate neural 

network model consistently outperformed both univariate models and linear regression models. In a 

related study from the same year, Cao and Gan (2009) applied neural network models to predict the 

EPS of Chinese listed companies, confirming that the neural network model, with weights optimized 

using a genetic algorithm, outperformed a similar model using backpropagation for weight estimation, 

regardless of whether a univariate or multivariate approach was employed. Ahmadpour et al. (2015) 

delved into EPS forecasting utilizing a standard multilayer perceptron (MLP) neural network with 

three layers. Additionally, they used a genetic algorithm to extract rules from the neural network. 

Interestingly, these extracted rules exhibited significantly greater accuracy than a pure MLP model. In 

a more recent investigation by Elend et al. (2020), who compared long short-term memory (LSTM) 

networks to temporal convolution networks (TCNs) for predicting future EPS, focusing on a diverse 

sample of US firms. The results demonstrated that LSTM outperformed the naive persistent model, 

achieving a significant enhancement in prediction accuracy. TCNs also displayed promising results. 

Notably, the predictive accuracy of these neural networks was at least equivalent to, if not superior to, 

that of analysts, particularly for non-financial companies. The article by Xiaoqiang (2022) provides a 

concise overview of deep learning and machine learning techniques applicable to financial ratios 

forecasting, including EPS. However, the newest achievements in time series methods developed by 

BigTech companies haven’t been explored in this context yet. 

As the newest one, it is also worth mentioning the work by Dreher et al. (2024). The authors 

showed that considering accounting information on tax loss carryforwards does not enhance 
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performance forecasts and typically worsens the predictions of earnings in out-of-sample tests, for 

German listed companies, using the information for tax footnotes. Their article was based on the 

findings of Flagmeier (2017), who found a negative and significant association between unrecognized 

tax losses of German firms and future pre-tax cash flows and earnings. 

3. Data and methods 

3.1. Data 

The Polish stock market, which integrated into the European Union post-2004, distinguishes itself 

with its depth. It boasted a market capitalization of $197 billion and had 774 listed companies as of the 

close of 2021. However, it is important to highlight that its stocks lack the extensive coverage by financial 

analysts seen in the United States or Western Europe. In 2019, only about 20% of the 711 listed companies 

received analyst coverage. This underscores the pressing need for employing statistical forecasting 

techniques to predict key financial data for these companies. I primarily focus on analyzing the earnings 

per share (EPS) data series, which is sourced from EquityRT, an analytical platform. The analysis explores 

the EPS figures of firms listed on the Warsaw Stock Exchange, spanning from Q1 2010 to Q4 2019. This 

period extends between two significant structural shifts: the first being the financial crisis of 2008–2009, 

and the second being the onset of the COVID-19 pandemic in 2020. For the purpose of forecasting, data 

from Q1 2010 to Q4 2018 (36 quarters) are used for model estimations. Furthermore, data from Q1 2019 

to Q4 2019 are reserved as a validation sample to assess the accuracy of forecasts. Alternatively, sliding 

window approaches were explored by utilizing the years 2017 and 2018 as validation samples. After 

comprehensive coverage of a full-time window and the exclusion of the effects of splits and reverse splits 

by removing them from the sample, 267 companies remained in the dataset. 

3.2. The models 

Denote 𝑄𝑡 as the realization of EPS in quarter t. Individually, time series models were estimated 

for each company. 

The seasonal random walk model (SRW) can be described as:  

               𝑄𝑡 = 𝑄𝑡−4 + 𝜀𝑡 where 𝜀𝑡 are IID and 𝜀𝑡~𝑁(0, 𝜎2)               (1) 

This model is proposed because of the research by Kuryłek (2023a, 2023b), which proves its 

superiority over either ARIMA or exponential smoothing model types for Poland. The forecast is �̂�𝑡 =

𝑄𝑡−4, so the model uses the value delayed by 4 quarters as the forecast, removing the necessity for 

parameter estimation. 

BigTech companies such as Facebook, Amazon, Google, and LinkedIn have played a pivotal role 

in advancing the field of time series modeling. They have not only developed cutting-edge research 

but have also made their proprietary time series models available to the public, thereby influencing the 

industry landscape and promoting specific approaches and technologies.  

3.2.1. Additive approach 

An additive model can be defined through the following decomposition of a time series:  
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                    𝑄𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐻𝑡 + 𝜀𝑡                      (2)  

where 𝑇𝑡 is a trend, 𝑆𝑡 is a seasonality component,  𝐻𝑡 a holiday component and  𝜀𝑡 a random 

error. The trend component is responsible for encapsulating the overarching direction exhibited by the 

time series, while the seasonality component effectively captures the cyclic patterns inherent in the 

time series data. Additionally, the holiday component is dedicated to encompassing the influence of 

holidays on the time series. This approach finds application in the algorithms developed by both 

Facebook and LinkedIn. Here the length of time series used for training the models for each of 267 

companies is 36 observations. 

The Prophet model (PROPH) by Facebook 

The Prophet model, created by Facebook employees Letham and Taylor (2018), is a versatile tool. 

It can capture both linear and non-linear trends, automatically detecting changepoints, accommodating 

shifts in the trend, handling multiple seasonal patterns, and effectively managing outliers. It employs 

piecewise linear or logistic trend functions. This model because of its additive structure is simple, 

interpretable, and flexible because it may handle a wide variety of time series. The model can be 

however sensitive to parameter tuning and it can be difficult to find the optimal parameter values for 

a given time series. The piecewise linear trend is a straightforward adaptation of the linear model, 

where different segments of the independent variable exhibit distinct linear relationships. This setting 

is used for modeling. On the other hand, the logistic trend handles non-linear growth patterns that 

saturate, indicating that the growth rate diminishes over time until it levels off. To model the 

seasonality component of time series data, the Prophet model utilizes a Fourier series, a mathematical 

representation of periodic signals that decomposes them into their constituent frequencies. For 

forecasting, the algorithm adopts a Bayesian approach, which considers the uncertainty in estimated 

parameters when making predictions. The fbprophet library in the Python programming language is 

used to implement this model. 

The SilverKite model (SILV) by LinkedIn 

The SilverKite model, a prominent algorithm within the GreyKite library, was detailed in a 

research paper authored by LinkedIn employees Al Orjany et al. (2022). This model’s additive nature 

makes it a straightforward, easy-to-understand tool that can handle diverse time series patterns. 

However, its parameter sensitivity can make it challenging to achieve optimal performance for specific 

time series. The SilverKite is a relatively new model, and its performance compared to established 

methods is being evaluated. It operates by separately modeling the conditional mean of a time series 

and the volatility or uncertainty associated with the error term. In the initial phase, the model extracts 

raw features from timestamps, event data, and historical records. These features are then transformed 

into suitable basis functions, such as the Fourier transformation for capturing seasonality. A 

changepoints detection algorithm is applied to identify shifts in the trend, and an appropriate machine 

learning algorithm is trained to accommodate potential covariates, including techniques like ridge or 

quantile regression. In the second phase, the model focuses on modeling the conditional variance of 

residuals using an auto-regression process, which can effectively address any remaining correlations 

within the series. To perform these calculations, the greykite library in Python is employed. 
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3.2.2. Artificial neural network approach 

The behavior of EPS can be described by the following formula: 

                  𝑄𝑡+1 = 𝑓𝑚𝑜𝑑𝑒𝑙(𝑄𝑡, 𝑄𝑡−1, … , 𝑄𝑡−𝑛) + 𝜀𝑡                     (3) 

where 𝑓𝑚𝑜𝑑𝑒𝑙( ) is a function described by an artificial recurrent neural network (RRNs) and 𝜀𝑡 is a 

residual term.  

These concepts are outlined in the book authored by Bengio et al. (2017). An artificial neural 

network can be conceptualized as a black box capable of prediction but not explanation of modeled 

behavior. The parameter n denotes the length of the lookback period and is set at 8 to encompass at 

least one year and an equivalent period of full years. This choice aligns with the relevance of the 

seasonal random walk model, as demonstrated by Kurylek (2023a, 2023b), which is rooted in this one-

year delay. Additionally, given the relatively short time series utilized for model training, it is essential 

to keep the number of delayed years in check so as not to over-restrict the volume of observations for 

model training. As a result, a duration of two years, equivalent to 8 quarters, was selected to explore 

dependencies longer than one year while maintaining sufficient length. Both Amazon and Google have 

adopted the artificial neural network approach. Number of observations used for training the models 

for each of 267 companies is 28. 

The Autoregressive Recurrent Network model (DEEPAR) by Amazon 

The model’s details are outlined in the paper authored by Flunkert et al. (2020) and form a 

component of the Amazon SageMaker service. DeepAR is highly scalable, making it well-suited for 

handling large volumes of time series data, but it is a complex neural network architecture and as such 

it can make it almost impossible to understand and interpret compared to simpler forecasting models. 

Also due to its neural network nature training processes can be computationally expensive. DeepAR 

utilizes a recurrent neural network to parameterize a distribution function that captures the level of 

uncertainty in forecasts. Recurrent neural networks excel in identifying and learning nonlinear long-

term dependencies within data and are adept at processing sequential data. In the case of a Gaussian 

distribution, the model predicts both the mean and standard deviation. The algorithm follows an 

autoregressive approach, where predictions are generated one step at a time. At each time step within 

the forecast horizon, the model conditions its prediction on values generated in prior steps. DeepAR 

also autonomously generates feature time series based on the frequency of the target time series. To 

deploy the model in Python, the gluonts library is utilized. 

The Temporal Fusion Transformer model (TFT) by Google 

The TFT model, crafted and published by Google researchers in a paper authored by Arık et al. 

(2021), centers around the transformer architecture and is tailored for probabilistic distribution 

forecasting. Transformers, a type of neural network, excel in modeling extended dependencies within 

data. They employ an encoder-decoder architecture, where the encoder handles historical time series 

data, and the decoder generates forecasts for upcoming time steps. Both the encoder and decoder 

employ a self-attention mechanism to grasp enduring relationships across various time steps. This 

mechanism allows the model to selectively focus on different segments of the input sequence, 

capturing dependencies over time. The TFT architecture incorporates Gated Residual Networks (GRNs) 

at different levels. These GRNs introduce residual connections that feed the output of a specific layer 
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to upper layers in the network that aren’t directly adjacent. The model’s automated feature detection 

mechanism automatically identifies and incorporates relevant features of any time series into the 

forecasting process, alleviating the need for manual feature engineering. Its neural network 

architecture makes the model hard to interpret. As a relatively nascent model, TFT’s performance is 

still under evaluation against established forecasting methods. The model’s implementation in Python 

relies on the pytorch_forecasting library. 

3.3. Mean arctangent absolute percentage error (MAAPE) 

It can be denoted 𝐴1
𝑖 , … , 𝐴4

𝑖  as the earnings per share (EPS) values for the first through fourth 

quarters of 2019 for a specific firm i. Similarly, 𝐹1
𝑖 , … , 𝐹4

𝑖 represent the predicted values of EPS for the 

corresponding quarters, denoted as �̂�𝑡 , where t=37,..,40 for i-th company. To calculate the absolute 

percentage error (APE) for any firm i during the j-th quarter of 2019, the following formula can be used: 

                 𝐴𝑃𝐸𝑗
𝑖 = |

𝐴𝑗
𝑖 −𝐹𝑗

𝑖

𝐴𝑗
𝑖 |                              (4) 

Nevertheless, the absolute percentage error (APE) has a notable limitation: It can produce infinite 

or undefined results when the actual values are close to zero, which is a common occurrence in earnings 

forecasts. Additionally, when the actual values are extremely small, often below one, it can result in 

exceptionally high percentage errors, essentially outliers. Furthermore, when actual values are zero, it 

leads to infinite APEs. To tackle this challenge, Kim and Kim (2016) introduced a novel method in the 

literature known as the arctangent absolute percentage error. 

        𝐴𝐴𝑃𝐸𝑗
𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛 (|

𝐴𝑗
𝑖 −𝐹𝑗

𝑖

𝐴𝑗
𝑖 |)                      (5) 

This is due to the property of the arctan function, which transforms values in the range of [−∞, 

+∞] to a value within the interval [−π⁄2, π⁄2]. Consequently, the mean arctangent absolute percentage 

error (MAAPE) for the i-th firm can be formulated as follows: 

              𝑀𝐴𝐴𝑃𝐸𝑖 =
1

4
∑ 𝐴𝐴𝑃𝐸4

𝑗=1
𝑗

𝑖
=

1

4
∑ 𝑎𝑟𝑐𝑡𝑎𝑛 (|

𝐴𝑗
𝑖 −𝐹𝑗

𝑖

𝐴𝑗
𝑖 |)4

𝑗=1                (6) 

Moreover, the Mean Arctangent Absolute Percentage Error (MAAPE) for the j-th quarter across 

all I companies in the dataset can be formulated as: 

    𝑀𝐴𝐴𝑃𝐸𝑗 =
1

𝐼
∑ 𝐴𝐴𝑃𝐸𝐼

𝑖=1
𝑗

𝑖
=

1

𝐼
∑ 𝑎𝑟𝑐𝑡𝑎𝑛 (|

𝐴𝑗
𝑖 −𝐹𝑗

𝑖

𝐴𝑗
𝑖 |)𝐼

𝑖=1              (7) 

Thus, the following formula concisely summarizes the Mean Arctangent Absolute Percentage 

Error (MAAPE) across all four quarters and for all I companies in the sample: 

                  𝑀𝐴𝐴𝑃𝐸 =
1

𝐼
∑ 𝑀𝐴𝐴𝑃𝐸𝑖𝐼

𝑖=1 =
1

4
∑ 𝑀𝐴𝐴𝑃𝐸𝑗

4
𝑗=1                   (8) 

Predictions are generated using the mentioned models, and for each model represented as m, and 

the values 𝑀𝐴𝐴𝑃𝐸(𝑚)1, … , 𝑀𝐴𝐴𝑃𝐸(𝑚)4, along with 𝑀𝐴𝐴𝑃𝐸(𝑚), are subsequently computed.  
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3.4. The equality of means tests 

To evaluate the statistical significance of differences in mean arctangent absolute percentage 

errors (MAAPEs) across multiple models, three statistical tests have been utilized: the one-way 

ANOVA test, the Alexander-Govern test, and the Kruskal-Wallis test. Descriptions of these tests are 

presented below. 

The one-way ANOVA test 

The one-way ANOVA test, as outlined by Lowry (2014), is employed to ascertain whether there 

is a statistically significant difference in the mean of errors, denoted as MAAPEs. This test is frequently 

used to examine whether means are equal. However, for the resulting p-value to be meaningful, specific 

critical assumptions must be satisfied. These assumptions encompass the independence of variables that 

yield observations in the sample, the consistency of variances among distinct groups, and the normal 

distribution of their datasets. The sample for all tests mentioned below consists of 267 observations. 

       𝐻𝑜: 𝑀𝑒𝑎𝑛𝑠 𝑜𝑓 𝐴𝐴𝑃𝐸𝑠 𝑜𝑓 𝑎𝑙𝑙 4 𝑚𝑜𝑑𝑒𝑙𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒              (9) 

The Alexander-Govern test 

Unlike the one-way ANOVA test, this specific test does not require the assumption of 

homoscedasticity. Instead, it relaxes the requirement of equal variances, as pointed out by Alexander 

and Govern (1994). The other assumptions, such as the normality of distribution, remain relevant. 

       𝐻𝑜: 𝑀𝑒𝑎𝑛𝑠 𝑜𝑓 𝐴𝐴𝑃𝐸𝑠 𝑜𝑓 𝑎𝑙𝑙 4 𝑚𝑜𝑑𝑒𝑙𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒              (10) 

The Kruskal-Wallis test 

Next, a Kruskal-Wallis one-way H-test is conducted, as detailed by Corder and Foreman (2009). 

This nonparametric test avoids the complexities associated with the potential normality of errors. The 

close proximity of the average ranks of the four models indicates that I cannot reject the null hypothesis 

of median AAPE equality. These computations for each quarter and for all forecast quarters are 

performed, resulting in Kruskal-Wallis H statistics and their respective p-values. 

     𝐻𝑜: 𝑀𝑒𝑑𝑖𝑎𝑛𝑠 𝑜𝑓 𝐴𝐴𝑃𝐸𝑠 𝑜𝑓 𝑎𝑙𝑙 4 𝑚𝑜𝑑𝑒𝑙𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒             (11) 

It is noteworthy that in prior research, both the Alexander-Govern test and the Kruskal-Wallis test were 

not considered. 

The Wilcoxon test 

Last, a nonparametric two-sided Wilcoxon test is employed, as originally proposed by Wilcoxon 

(1945). This test facilitates a paired comparison of forecast errors, allowing us to assess the similarity 

in median errors across various models. Notably, this test does not rely on specific assumptions about 

probability distributions, except for the symmetry of the difference in scores and the independence of 

the random variables generating observations. Ruland (1980) provided a comprehensive explanation 

of the Wilcoxon test’s utility in the context of verification, particularly for determining whether errors 

from different EPS models exhibit statistically significant differences.  

          𝐻𝑜: 𝑀𝑒𝑑𝑖𝑎𝑛𝑠 𝑜𝑓 𝐴𝐴𝑃𝐸𝑠 𝑜𝑓 𝑎 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒            (12)  



227 

Data Science in Finance and Economics  Volume 4, Issue 2, 218–235. 

The null hypothesis for each test was rejected only if their respective p-values fell below the commonly 

accepted significance level of 0.05, a principle widely employed, as explained by Ruland (1980), 

among others. If the tests indicated that the mean (median) errors of a specific type of model were not 

only lower but also statistically discernible from those of other models, it would suggest the superiority 

of that particular model class over its alternatives. The calculation of the aforementioned test statistics 

and their corresponding p-values was performed using the Scipy library within Python. 

4. Results  

The seasonal random walk (SRW) model, as detailed in Table 1, consistently demonstrates 

superior performance over all other models in every quarter, excelling in overall performance. In 

contrast, the Amazon-developed DeepAR model (DEEPAR) exhibits the second-best performance. 

The remaining three BigTech models (PROPH, SILVK, TFT) consistently occupy lower positions 

across all periods. Among these, LinkedIn’s SilverKite model (SILVK) delivers the most favorable 

results, with Facebook’s Prophet model (PROPH) following closely behind. The Google-developed 

TFT model (TFT) records the highest MAAPE. 

 

 

Figure 1. Mean arctangent absolute error of various models. 

Table 1 and Figure 1, similar to the graphical presentation made by Dreher et al. (2024), present 

the outcome of various models as well as the results of several equality of means tests, including the 

one-way ANOVA test (F statistic), the Alexander-Govern test (AG statistic), and the Kruskal-Wallis 

test (H statistics). Across each of the respective 1st, 2nd, 3rd, and 4th quarters, as well as when 

considering all quarters collectively, these tests consistently reject the null hypothesis claiming that the 

means (medians, in the case of the Kruskal-Wallis test) of arctangent absolute percentage errors 

(AAPEs) for all four models are statistically equivalent. 
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Table 1. Summary statistics on forecast errors and mean equality tests for 2019 quarters. 

Model Quarters All Quarters 

Q1 MAAPE Q2 MAAPE Q3 MAAPE Q4 MAAPE MAAPE 

SRW 0,658 0,702 0,653 0,736 0,687 

PROPH 0,850 0,812 0,837 0,848 0,837 

SILVK 0,812 0,763 0,797 0,794 0,792 

DEEPAR 0,788 0,726 0,725 0,777 0,754 

TFT 0,869 0,829 0,847 0,844 0,847 

F statistics 8,067 3,488 7,760 2,990 9,212 

F pvalue 0,000 0,008 0,000 0,018 0,000 

H statistics 31,401 13,390 28,892 12,146 26,983 

H pvalue 0,000 0,010 0,000 0,016 0,000 

AG statistics 33,414 13,770 31,694 11,515 38,879 

AG pvalue 0,000 0,008 0,000 0,021 0,000 

To evaluate whether the errors of the best model exhibit statistical distinctions from those of the 

other models, the Wilcoxon nonparametric test was employed for comparing the medians of AAPEs 

between the SRW model and all other models. As outlined in Table 2, the results indicate that the 

seasonal random walk (SRW) model yields statistically lower median errors compared to the other 

models, except the DeepAR model (DEEPAR) only for the 2nd and 4th quarter. 

Table 2. P-values of paired Wilcoxon test of forecast errors in respective quarters of 2019. 

Quarter Model PROPH SILVK DEEPAR TFT 

Q1 SRW 0,000 0,000 0,000 0,000 

Q2 SRW 0,000 0,018 0,452 0,000 

Q3 SRW 0,000 0,000 0,039 0,000 

Q4 SRW 0,002 0,022 0,125 0,000 

ALL SRW 0,000 0,000 0,001 0,000 

This finding leads to the conclusion that the seasonal random walk model (SRW) offers the best 

performance among all the tested models in every analyzed quarter. The evidence presented supports 

the supremacy of the seasonal random walk model (SRW) for EPS forecasting in Poland.   

4.1. Robustness checks 

Tests for robustness were performed, taking into account both time and various widely used error 

metrics. As shown in Table 3, the seasonal random walk model (SRW) had the smallest MAAPE error 

metric and achieved the best results in 2019, 2018, and 2017. The statistical significance of differences 

among the various models is confirmed by the remarkably low p-values obtained from all statistical 

tests conducted, including the one-way ANOVA test, the Alexander-Govern test, and the Kruskal-Wall 

is test. Additionally, the Wilcoxon test was applied to all model pairs in conjunction with the seasonal 

random walk model, and the corresponding p-values for each year are outlined in Table 4. In each of 

these years, the seasonal random walk model (SRW) achieved statistically superior results compared 

to other methods. Therefore, the consistent superiority of the seasonal random walk model is evident 

over time. 
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Table 3. Summary statistics on forecast errors and mean equality tests for all quarters 2017–2019. 

Model 2017 2018 2019 

MAAPE MAAPE MAAPE 

SRW 0,686 0,711 0,687 

PROPH 0,797 0,832 0,837 

SILVK 0,791 0,815 0,792 

DEEPAR 0,765 0,793 0,754 

TFT 0,836 0,870 0,847 

F statistics 6,569 7,030 9,212 

F pvalue 0,000 0,000 0,000 

AG statistics 22,978 24,079 26,983 

AG pvalue 0,000 0,000 0,000 

H statistics 28,352 29,901 38,879 

H pvalue 0,000 0,000 0,000 

Table 4. P-values of paired Wilcoxon test of forecast errors for all quarters 2017–2019 and SRW model. 

Year Model PROPH SILVK DEEPAR TFT 

2017 SRW 0,000 0,000 0,000 0,000 

2018 SRW 0,000 0,000 0,000 0,000 

2019 SRW 0,000 0,000 0,001 0,000 

Table 5 presents my evaluation of the performance of the examined models using alternative error 

metrics, specifically the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE), across 

all quarters in 2019. These metrics were adjusted for CPI inflation to ensure comparability, with the 

aim of making future errors have the same present value in nominal terms as current errors. Once again, 

the seasonal random walk model consistently demonstrated the lowest errors, whether assessed 

through RMSE or MAE. 

Table 5. RMSE and MAE in all joint quarters 2019. 
 

SRW PROPH SILVK DEEPAR TFT 

RMSE 0,937 1,679 1,259 1,007 1,616 

MAE 0,705 1,397 1,079 0,828 1,388 

Table 6. Summary statistics for RMSE and MAE in all joint quarters 2019. 
 

F statistics F pvalue AG statistics AG pvalue H statistics H pvalue 

RMSE 1,300 0,273 3,196 0,362 7,536 0,057 

MAE 1,379 0,248 4,275 0,233 9,265 0,026 

However, most of the statistical tests presented in Table 6 did not confirm any statistically 

significant differences among the outcomes generated by all these techniques. This lack of distinction 

can be attributed to the statistical proximity of errors between the SRW and DeepAR models, as 

indicated in Table 7 and Table 8 by the Wilcoxon tests. This suggests that the forecasts produced by 

the seasonal random walk (SRW) model, whether in terms of RMSE or MAE, outperform those of the 

three sophisticated models (PROPH, SILVK, TFT), with only the DeepAR model by Amazon 

(DEEPAR) achieving a statistically similar range of errors. 
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Table 7. P-values of paired Wilcoxon test of forecast errors for RMSE in 2019. 

RMSE 

Model PROPH SILVK DEEPAR TFT 

SRW 0,000 0,002 0,373 0,000 

Table 8. P-values of paired Wilcoxon test of forecast errors for MAE in 2019. 

MAE 

Model PROPH SILVK DEEPAR TFT 

SRW 0,000 0,000 0,207 0,000 

5. Discussion  

The relative underperformance of more complex models developed by BigTechs, such as PROPH, 

SILVK, DEEPAR, and TFT, compared to the SRW model, fit well with Dreher et al. (2024) who also 

found that complex machine learning approaches that optimize explanatory power within the sample 

do not perform well for out-of-sample prediction. The main reason for that is model overfitting, which 

results in unstable relations among variables that depend on the relevant test data set. Using this 

relation in making predictions makes sense only if the statistical relation is sufficiently valid (Lev et 

al. 2010). More complex models may overparameterize the market’s straightforward behavior, leading 

to larger forecast errors. These findings are also consistent with the work of Kurylek (2023a, 2023b), 

which showed that even much simpler models like ARIMA and exponential smoothing models, that 

were relevant for the US market, cannot beat the naïve seasonal random walk for Poland. Moreover, 

the SRW model consistently outperformed other models across time and different error metrics like 

RMSE or MAE. This suggests that utilizing techniques more sophisticated than the SRW for EPS 

forecasting in Poland may lack practical merit or a further calibration for out of development sample 

predictions could be needed. Interestingly, even in the United States, research results are not unanimous. 

Some research, like Cao et al. (2004), argues that advanced neural network methods are superior, while 

others, such as Lai and Li (2006), provide evidence supporting simpler random walk models.  

In conjunction with the results obtained by Kuryłek (2023a, 2023b), this strengthens the argument 

that even the most advanced BigTech time series models cannot outperform the simplicity of the 

random walk model in EPS forecasting in univariate time series settings. As a result, the use of these 

advanced techniques beyond the ordinary seasonal random walk in Poland for EPS forecasting in 

investment contexts seems impractical.  

6. Conclusions 

I explore the predictive capabilities of five univariate time-series models for forecasting Earnings 

per Share (EPS): The seasonal random walk (SRW), the Prophet model by Facebook (PROPH) model, 

the SilverKite model by LinkedIn (SILVK), the DeepAR model by Amazon (DEEPAR), and the TFT 

model by Google (TFT). These models represent the state of the art in time-series forecasting 

techniques, developed by leading BigTech companies. Mechanical forecasting of EPS holds particular 

significance in emerging markets, where financial analysts’ coverage of listed companies is limited. 

This is exemplified by the case of Poland. When applied to quarterly EPS data for 267 Polish 

companies spanning from 2010 to 2019, the SRW model consistently outperformed the other models, 
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providing a more accurate representation of the Polish market. This assertion is supported by rigorous 

statistical tests, including the one-way ANOVA, Alexander-Govern, Kruskal-Wallis, and Wilcoxon tests.  

I align with Dreher et al.’s (2024) findings that complex machine learning models maximizing in-

sample explanatory power often underperform in out-of-sample prediction. This is primarily due to 

overfitting, where unstable relationships emerge based on the specific sample used for training. 

Applying these relationships to new data only holds validity if the underlying statistical basis is robust 

(Lev et al., 2010). In this case, the intricate models likely overparameterize the underlying, simpler 

market behavior, resulting in inflated forecast errors.  

Moreover, the SRW model consistently outperformed other models across time and different error 

metrics like RMSE or MAE. This suggests that utilizing techniques more sophisticated than the SRW 

for EPS forecasting in Poland might lack practical merit or a further calibration for out of development 

sample predictions could be needed.  

Future research could explore the relationship between forecasting accuracy and firm size. 

Additionally, the industry sector in which a company operates may be a crucial factor in determining 

the most accurate model for EPS forecasting. Investigating time series transformations to normalize 

EPS distributions could also be valuable. Furthermore, multivariate models incorporating fundamental 

variables can be explored too. A compelling area of interest lies in comparing the prediction accuracy 

of the best mechanical statistical/machine learning/neural network-based model with forecasts 

provided by market analysts. It could be also interesting to investigate how various model predictions, 

as well as analysts’ forecasts, behaved during crisis times like the great financial crisis of 2008–2009 

or COVID-19. From an investment perspective, further research is warranted on P/E multiple 

prediction techniques. Additionally, there may be identifiable seasonal patterns uncovered by the SRW 

model, offering potential insights into investment strategies. Such strategies may challenge the “weak 

form” of the Efficient Market Hypothesis (EMH). 
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