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Abstract: For ten simple horizontal merger tests, I analytically derive the probability of blocking a 

merger. The assumptions are the symmetry of diversion ratios, price-cost margins, and efficiency 

gains, and the uniform joint distribution of these variables. The robustness analyses suggest that the 

limitations arising from the simplifying assumptions are only moderate. Based on these results, I 

provide an easy-to-use Excel calculator (without VBA macro), with which the probabilities 

associated with any product market and price increase threshold can be quickly calculated. 

Additionally, I propose a paired testing protocol for unknown demand systems by linking linear- and 

isoelastic-demand indicators through the threshold or the alarm probability. 
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1. Introduction 

When firms merge, antagonistic forces emerge which affect the future pricing policy of the 

combined company. Disappearing competition between merging parties boosts, while decreasing 

marginal cost restrains the incentive for a price increase. The boost is due to the fact that, after a 

price increase, a portion of the diverted customers are captured by other product(s) of the now same 

owner. The importance of this recapture is scaled up by the price-cost margin(s). The potential 

https://dx.doi.org/10.3934/DSFE.2024007
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restraint is due to the well-known synergies (economies of scale and scope etc.).1 In other words, 

after the merger, the objective functions of the companies are not separately but globally optimised. 

It follows that the larger the portion of the recaptured consumers, or the larger the pre-merger 

price-cost margins of the companies’ products, or the smaller the efficiency gain, the greater the 

incentive for a post-merger price increase. These are the typical unilateral (non-coordinated) price 

issues under Bertrand competition with differentiated products. 

A key element of a merger control procedure is the estimation of the resultant of the 

abovementioned incentives. Scientific debates have forged several simple indicators as well as more 

complex methods for this purpose. The spectrum of indicators is quite diverse. An important divide 

is whether the manner of the pass-through of costs to prices along a demand system is incorporated 

or not. If it is, the price increase incentive is scaled, that is, the indicator can provide a price-effect 

(i.e. how much a firm would increase the price of its product post-merger), and not just some outline 

of the magnitude. Another important aspect is the depth of the optimisation process. The indicators 

completely or partially lack the price-setting loops of the merging parties (i.e. the internal feedback); 

moreover, they completely miss the price reactions of the non-merging parties (i.e. the external 

feedback). Consequently, the estimate of an indicator with pass-through factor is an approximation of 

a full-fledged simulation’s estimate. On the other hand, the indicators’ need for data and time is 

typically less, and so they are better suited for screening purposes. 

In this article, I provide analytically the subpopulations that are flagged by the indicators as 

problematic (and so the alarm probabilities), with a customisable sample space and threshold. For 

several reasons, these formulae provide valuable prior information for the competition authorities. 

First, each authority has its own idea of what is an acceptable price increase in a given market, 

i.e. what is the threshold “standard”. (e.g. 5 percent). Now they can finally face the potential 

consequence, i.e. the portion of the (market-specific) merger population they probably screen out in 

the long run during the initial inspection. Second, it may make them rethink their standards on the 

basis of the revealed trade-offs. If an indicator is thought to be acceptably accurate (a conscientious 

agent would not use it otherwise, would he?), and it flags, say, 95 (or 5) out of 100 mergers with a 

conventional threshold, the test is too strict (or too soft), and calls for higher (or lower) threshold 

standards. Third, such extreme (high or low) probabilities with economically reasonable thresholds 

may also indicate the serious inaccuracy of the indicator, but I do not address this issue in this article. 

Fourth, the expected rates of price increase under linear and isoelastic demands tend to be the 

boundary cases. In practice, however, extremes are rare. By mapping the related linear and isoelastic 

indicators through a specific threshold (or alarm probability), I also show that a rough interval of 

alarm probability (or threshold) can be estimated, behind which a foggy spectrum of alternative 

demand systems lurks. To sum it up, if the theories behind the indicators (and thus the accuracy) are 

thought to be more or less correct, the alarm probabilities provide valuable pieces of information for 

policymakers and theorists. 

The structure of the article is as follows. Section 2 briefly outlines the indicators. Section 3 

derives their alarm probabilities analytically. Section 4 discusses the results through an arbitrary 

sample space. Section 5 checks the robustness of the results to the assumptions on symmetry and 

distribution. Section 6 concludes. 

 
1 For a detailed survey, see Röller et al. (2006). 
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2. Overview of simple indicators 

A group of indicators does not incorporate the pass-through factor. In his pioneering work, 

Werden (1996) derived a formula that shows the marginal cost reduction needed to offset the 

incentive of a merging firm to increase the price (CMCR, Compensating Marginal Cost Reductions). 

It was derived under the approach that the prices of the merging parties’ products are mutually 

adjusted. Farrell and Shapiro (2010a) presented a simpler approach, called UPP (Upward Pricing 

Pressure), about which they claimed to have an advantage in terms of transparency.2 It assumes that 

the price of the merging partner remains unchanged, that is, in contrast with CMCR, it lacks the 

in-house feedback. Schmalensee (2009) proposed an amendment to UPP, namely the incorporation of 

the cost change of the merging partner. Farrell and Shapiro (2010b) argued again that, with this 

complement, this indicator is more advanced at the expense of transparency. Moresi (2010) presented 

an indicator based on UPP, called GUPPI (Gross Upward Pricing Pressure Index), which does not 

account for the downward pressure of efficiencies but is accompanied by an exogenous threshold. 

The other group of indicators, which I call quasi-simulations, incorporates the pass-through 

factor. Shapiro (2010) derived a formula assuming linear demand and that the slope (own-price 

derivatives) for both products is −1. It is the generalisation of Schmalensee’s (2009) indicator called 

PCAL (Price Change Assuming Linearity) to asymmetric products (i.e. to non-identical prices, 

marginal costs, diversion ratios and efficiencies). Additionally, Shapiro (2010) provided another 

formula assuming constant elasticity of demand and full symmetry of variables. Based on linear 

demand, Hausman et al. (2011) derived a formula assuming identical cross-price derivatives for the 

demand functions (Slutsky symmetry). They argued that their assumption is more realistic than 

Shapiro’s (2010); however, their expression does not cover efficiency gains. Hausman et al. (2011) 

actually provided an additional, more general formula, of which the one with Slutsky symmetry is a 

special case. All these metrics are called IPR (Illustrative or Indicative Price Rise). In a brief note, 

Salop and Moresi (2009) described how GUPPI should be transformed to measure the “first-round” 

price increase, both in the case of linear and isoelastic demand. In the linear case, Shapiro (2010) and 

Hausman et al. (2011) explicitly showed the difference between the transformed GUPPI and their 

more complex formulae, i.e. the effect of the feedback. 

Table 1 summarises the indicators. With the assumption of price symmetry, I can express the 

asymmetric formulae in terms of margins rather than prices and costs. Variable 𝑚𝑖 is the pre-merger 

price-cost margin of product 𝑖 (Firm 1), 𝑚𝑖 = (𝑝𝑖 − 𝑐𝑖) 𝑝𝑖⁄ . Variable 𝑑𝑖𝑗 is the diversion ratio 

from product 𝑖  to product 𝑗  (Firm 2), 𝑑𝑖𝑗 = − (𝜕𝑞𝑗 𝜕𝑝𝑖⁄ ) (𝜕𝑞𝑖 𝜕𝑝𝑖⁄ )⁄  where 𝑞  represents the 

demand. Variable 𝑒𝑖 is the efficiency gain as a proportion of the pre-merger marginal cost, 𝑒𝑖 =

(𝑐𝑖 − 𝑐𝑖
𝑝𝑜𝑠𝑡

) 𝑐𝑖⁄ . Note that originally the CMCR-equation was arranged to show the marginal cost 

reduction necessary to restore pre-merger prices; that is, acronym CMCR stood for the 𝑒𝑖 itself. I 

have rearranged the original equation to one side, and I call this expression “CMCR” for simplicity. 

In the case of UPPs and CMCR, the incentive for a price increase is signalled if the calculated 

value of the indicator is non-negative, while in the case of GUPPI, the dividing line is some arbitrary 

threshold. In the case of quasi-simulations, the alarm condition is the reaching or exceeding of some 

positive threshold (i.e. the maximum tolerable price increase rate) that is to be adjusted to the 

properties of the relevant market. 

 
2 Epstein-Rubinfeld (2010) stated that UPP is essentially a special case of a merger simulation, while Farrell and Shapiro 

(2010c) refused it, claiming that their information requirement is quite different. 
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Table 1. Simple indicators in horizontal merger control (with my own notations). 

  Asymmetry Asymmetry (exception: 𝑝1 ≔ 𝑝2) Full symmetry Demand assumptions Thold 
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 UPP(FS) 

Farrell-Shapiro 

(2010a) 

𝑑12(𝑝2 − 𝑐2) − 𝑒1𝑐1 𝑑12𝑚2 − 𝑒1(1 − 𝑚1) 𝐷𝑀 − 𝐸(1 − 𝑀) - 0 

UPP(Sch) 

Schmalensee 

(2009) 

𝑑12(𝑝2 − (1 − 𝑒2)𝑐2) − 𝑒1𝑐1 = UPP1 (FS) + 𝑑12𝑒2𝑐2 𝑑12(𝑚2 + 𝑒2(1 − 𝑚2)) − 𝑒1(1 − 𝑚1) 𝐷𝑀 − 𝐸(1 − 𝐷)(1 − 𝑀) - 0 

CMCR a 

Werden 

(1996) 

𝑑12(𝑝2 − 𝑐2) + 𝑑12𝑑21(𝑝1 − 𝑐1) − 𝑒1𝑐1(1 − 𝑑12𝑑21)
= UPP1 (FS) + 𝑑12𝑑21(𝑝1 − 𝑐1(1 − 𝑒1)) 

𝑑12(𝑚2 + 𝑑21𝑚1) − 𝑒1(1 − 𝑚1)(1 − 𝑑12𝑑21) 𝐷𝑀 − 𝐸(1 − 𝐷)(1 − 𝑀) - 0 

GUPPI 

Moresi 

(2010) 

𝑑12(𝑝2 − 𝑐2)

𝑝1
 𝑑12𝑚2 𝐷𝑀 - ℝ+ 
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IPR(S) 

Shapiro 

(2010) 

(2𝑑12
𝑝2 − 𝑐2

𝑝2
− 𝑒2 (1 −

𝑝2 − 𝑐2

𝑝2
) (𝑑21 − 𝑑12))

𝑝2

𝑝1
+ 𝑑21(𝑑21 + 𝑑12)

𝑝1 − 𝑐1

𝑝1

4 − (𝑑21 + 𝑑12)2

−
𝑒1 (1 −

𝑝1 − 𝑐1

𝑝1
) (2 − 𝑑21(𝑑12 + 𝑑21))

4 − (𝑑21 + 𝑑12)2
 

2𝑑12𝑚2 − 𝑒2(1 − 𝑚2)(𝑑21 − 𝑑12) + 𝑑21(𝑑21 + 𝑑12)𝑚1

4 − (𝑑21 + 𝑑12)2

−
𝑒1(1 − 𝑚1)(2 − 𝑑21(𝑑12 + 𝑑21))

4 − (𝑑21 + 𝑑12)2
 

𝐷𝑀

2(1 − 𝐷)
−

𝐸(1 − 𝑀)

2
 

linear with equal slopes of -1 
𝜕𝑞1

𝜕𝑝1
=

𝜕𝑞2

𝜕𝑝2
= −1 

ℝ+ 

IPR(S)i b 

Shapiro 

(2010) 

- - 
𝐷𝑀

1 − 𝐷 − 𝑀
 isoelastic ℝ+ 

IPR(H1) c 

Hausman et al. 

(2011) 

2𝑑12
𝑝2 − 𝑐2

𝑝1
+ 𝑑12𝑑21

𝑝1 − 𝑐1
𝑝1

+
(𝑝1 − 𝑐1)2

(𝑝2 − 𝑐2)𝑝1
∙

𝑞2
𝑞1

𝑑21
2

4 − 2𝑑12𝑑21 −
𝑝2 − 𝑐2
𝑝1 − 𝑐1

∙
𝑞1
𝑞2

𝑑12
2 −

𝑝1 − 𝑐1
𝑝2 − 𝑐2

∙
𝑞2
𝑞1

𝑑21
2

 

2𝑑12𝑚2 + 𝑑12𝑑21𝑚1 +
𝑚1

2

𝑚2
∙ 𝑑12

2

4 − 2𝑑12𝑑21 −
𝑚2
𝑚1

𝑑12
2 −

𝑚1
𝑚2

𝑑21
2

 
𝐷𝑀

2(1 − 𝐷)
 linear ℝ+ 

IPR(H2) 

Hausman et al. 

(2011) 

𝑑12(𝑝2 − 𝑐2) + 𝑑12𝑑21(𝑝1 − 𝑐1)

2(1 − 𝑑12𝑑21)𝑝1
 

𝑑12𝑚2 + 𝑑12𝑑21𝑚1

2(1 − 𝑑12𝑑21)
 

𝐷𝑀

2(1 − 𝐷)
 

linear with Slutsky symmetry 
𝜕𝑞2

𝜕𝑝1
=

𝜕𝑞1

𝜕𝑝2
 

ℝ+ 

Gl 

Salop-Moresi 

(2009) 

GUPPI1

2
∙

𝑝2

𝑝1
=

𝑑12(𝑝2 − 𝑐2)

2𝑝1
∙

𝑝2

𝑝1
 

𝑑12𝑚2

2
 

𝐷𝑀

2
 linear ℝ+ 

Gi 

Salop-Moresi 

(2009) 

GUPPI1

1 − 𝑚1
∙

𝑝2

𝑝1
=

𝑑12(𝑝2 − 𝑐2)

𝑝1(1 − 𝑚1)
∙

𝑝2

𝑝1
 

𝑑12𝑚2

1 − 𝑚1
 

𝐷𝑀

1 − 𝑀
 isoelastic ℝ+ 

a In the case of full symmetry, the CMCR after some manipulation is 𝐷𝑀(1 + 𝐷) − 𝐸(1 − 𝑀)(1 − 𝐷)(1 + 𝐷), and so it can be divided by 1 + 𝐷 since the threshold is zero. 
b The formula is given for full symmetry only. 
c In the cases of price symmetry and full symmetry, I also assumed quantity symmetry (𝑞1 ≔ 𝑞2).



192 

Data Science in Finance and Economics  Volume 4, Issue 2, 188–217. 

3. Derivation of alarm probability 

I call a test stricter if it indicates problem with greater probability when merging the ownership 

of two products randomly selected from the same product market.3 In this experiment, if we have 

three variables, diversion ratio (𝐷), margin (𝑀), and efficiency (𝐸), the sample space is a cuboid, 

Ω = {𝑥 = (𝐷, 𝑀, 𝐸) ∈ ℝ3 |
0 ≤ 𝑑𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝑑𝑚𝑎𝑥 < 1

0 ≤ 𝑚𝑚𝑖𝑛  ≤ 𝑀 ≤ 𝑚𝑚𝑎𝑥 < 1
0 ≤ 𝑒𝑚𝑖𝑛 ≤ 𝐸 ≤ 𝑒𝑚𝑎𝑥 < 1

 } , 

where the minimum and maximum bounds are market specific. The indicator is a random variable, 

𝐼: Ω → ℝ, and a test is a pair of an indicator and a threshold, i.e. (𝐼, 𝑡). The set of outcomes that 

triggers alarm is then 

𝐴 = {𝑥 ∈ Ω: 𝐼 ≥ 𝑡} . 

The probability measure of the alarm event is 

P(𝐴) =
𝐴

Ω
=

∭ 1
𝐴

𝑑𝐸 𝑑𝑀 𝑑𝐷

∭ 1
Ω

𝑑𝐸 𝑑𝑀 𝑑𝐷
=

∭ 1
𝐴

𝑑𝐸 𝑑𝑀 𝑑𝐷

(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)(𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛)(𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛)
 , 

where I assumed that the joint distribution of variables is uniform. In geometric terms, the ratio of 

the volumes of the homogenous objects shows the probability we are looking for. 

Naturally, the concept can be generalised to higher dimensions (i.e. asymmetry of variables). In 

those cases, the sample space is an n-orthotope (“hypercuboid”), but otherwise the same applies as 

discussed above. However, over three dimensions or with non-uniform probability measure, it is 

cumbersome (if not impossible) to provide analytical solutions, either because of the hardship of 

finding the proper limits of integration or because of the integration procedure itself. In Section 5, 

using numerical methods, I analyse the robustness of the results to the assumptions on symmetry 

and distribution. 

The derivation of the alarm set of each indicator can be found in the Appendix. The Excel 

calculator based on these results can be downloaded from: https://doi.org/10.5281/zenodo.10895535. 

4. Discussion through an arbitrary example 

For demonstrational purposes, I discuss the results of the previous section by choosing the 

domains of variables covering almost all of the products. In real-world applications, i.e. when 

considering a specific product market, the domains should be narrowed accordingly (although, in 

theory, it is not excluded that there are markets with similarly wide domains). With the provided 

Excel calculator, anyone can easily perform their customised calculations. 

With regard to price-cost margins, there are some crutches we can rely on. Damodaran’s (2018) 

collection of average gross profit margins by industry shows that they are mostly between 10 and 70 

 
3 If we know the nature of the demand, such a comparison only makes sense between indicators specialised for that 

particular demand. 
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percent in the USA.4 Since they are averages, there must be some dispersion; thus, I expand this 

range into both directions with 10 percentage points.5 As for diversion ratios, we can get a blurry 

picture from the publicly available information of past and recent merger cases. I assume a range of 0 

to 50 percent, taking into account that the diversion ratios obtained from consumer surveys tend to 

overestimate the true values. Regarding efficiency gain, we have the least support. Röller et al. (2006) 

refutes the conventional wisdom that mergers and efficiency gain often go hand in hand. Moreover, 

the non-robust empirical examples they cited suggest that only 30 to 70 percent of the possible cost 

reduction is passed on to prices. It means that in order to offset a 10 percent price increase at a 

pass-through rate of 0.3, marginal cost should drop by 10/0.3=33.3 percent, which is, although a 

pretty high rate, not excluded by the authors from the realms of reality. Since the efficiency variable 

in the indicators expresses the effective rate, I assume a range of 0 to 20 percent for this variable. 

First, let us get some impressions from the visualisation of the alarm sets (Figure 1). 

 

Figure 1. Alarm sets (threshold for GUPPI and quasi-simulations is 0.05). 

Notes: Alarm sets expand to the southwest as threshold decreases. Recall that the floor of object IPR(S) is IPR(H1/H2). 

The alarm set of UPP(Sch)/CMCR is somewhat greater than that of UPP(FS), which is to be 

expected due to the boosting feedback effect (see Table 1). With the given 5 percent threshold, the 

difference between the alarm sets of the quasi-simulations is also quite significant. It is not surprising 

if we compare indicators based on different demand structures, e.g. Gl and Gi, but a remarkable 

discrepancy is unfortunate if comparing two indicators from the same demand class, e.g. Gl and 

IPR(H1/H2) (or Gi and IPR(S)i). It logically follows that at least one of a pair is certainly flawed in 

terms of accuracy in this particular (arbitrary) market situation, but this issue is out of the scope of 

this paper. In the concrete example, the difference stems from the fact that, unlike IPR(H1/H2), Gl 

ignores feedback effects. 

Notice the difference between UPPs and IPR(S) regarding their relationship with efficiency, 

which originates from their different foundations. Strictly speaking, UPPs consider efficiency gain as 

a must; without any, they would not give a green light to a merger. On the contrary, in the case of 

 
4 I excluded banks with profit margin of 100 percent. In Europe, the same range is approximately 15 to 85 percent. 

5 Note that Butler Consultants’ (2018) database on average industry profit margins shows significantly greater values 

than Damodaran’s (2018) in lots of industries. 
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IPR(S), the surface intersects the 𝐷-𝑀 plane in the examined domain. That is, there are green-light 

cases (i.e. the projected price rise is less than the threshold) even with some loss of efficiency. 

Now, let us see the big picture on a reasonable spectrum of thresholds (Figure 2). 

 

Figure 2. Alarm probabilities as a function of threshold. 

Many things reappear from our previous evaluation of Figure 1. In the group of indicators 

without a pass-through factor, UPPs and CMCR are quite stringent, rejecting about 60–65 percent of 

the mergers. GUPPI is also not a very indulgent metric. Even with a threshold of 0.1, it flags about 

40 percent of the mergers, and it becomes extremely harsh at lower thresholds. In the group of 

quasi-simulations, IPR(S) is lenient, which is perhaps not a surprise: it assumes linear demand and is 

the only one that incorporates efficiency gain. Gl is also mostly permissive, but also has a severe side, 

similar to IPR(H1/H2). Indicators assuming isoelastic demand, IPR(S)i and Gi, are naturally more 

relentless, even with very high thresholds. 

With 𝑑𝑚𝑎𝑥 + 𝑚𝑚𝑎𝑥 > 1, it is easy to prove that the order of the indicated price-effects (without 

efficiency) is Gl < IPR(S)=IPR(H1/H2) < Gi < IPR(S)i if 1 − 𝐷 − 𝑀 > 0, and IPR(S)i < Gl < IPR(S) 

= IPR(H1/H2) < Gi if 1 − 𝐷 − 𝑀 ≤ 0 (see Table 1). The peculiar position-switching of IPR(S)i 

comes from its “blank triangle” in the northeast (recall Figure 1). Note, however, that this phenomenon 

can only occur because we are exploring a sample space that includes the upper parts of the economically 

meaningful domain. That is, were 𝑑𝑚𝑎𝑥 + 𝑚𝑚𝑎𝑥  <  1, this issue would not arise at all. 

4.1. Mapping indicator to indicator 

Since the price-effects under linear and isoelastic demand systems are typically the lower and 

upper extremes, the effects under other formations (e.g. logit, almost ideal) tend to be located 

somewhere between them. On this basis, the above results can also be read in more complex ways if 
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two indicators are paired and linked accordingly. I argue that it is a handhold when facing the chasm 

of an unknown demand structure. 

For the sake of example, let us link Gl and Gi through a specific threshold or alarm probability. 

If the authority believes that the maximum tolerable price increase rate is 0.05 in the relevant market, 

but knows nothing about the true demand system, the portion of the problematic subpopulation can 

be estimated between about 40 to 70 percent (see Figure 2). Since (with 𝑡Gl  =  𝑡Gi) Gl <  Gi

⟺ 𝐴Gl ⊂ 𝐴Gi ⟺ P(𝐴Gl)  <  P(𝐴Gi) , the problematic populations of the intermediate demand 

formations can be thought of as interpolations (see Figure 3, left side). 

      

Figure 3. Overlap of alarm sets. 

What about the reverse? If the authority seeks to flag no more than 40 percent of the population, 

it suggests that the implied threshold is between 0.05 and 0.2, depending on the (unknown) demand. 

If either Gl 0.05 or Gi 0.2 is used for testing, the rejection ratio will be 40 percent. However, 

P(𝐴Gl)  =  P(𝐴Gi)  ⇏  𝐴Gl  =  𝐴Gi (see Figure 3, right side)! 𝐴Gl ∖ 𝐴Gi is the set of outcomes that 

indicates a price increase rate above 0.05 when the demand is linear, but below 0.2 when the demand 

is isoelastic. Consequently, here the upper bound of our interval estimate of the threshold is too high. 

𝐴Gi ∖ 𝐴Gl is the set of outcomes that indicates a price increase rate above 0.2 when the demand is 

isoelastic, but below 0.05 when it is linear. Thus, here the lower bound is the one that is 

overestimated. With a paired testing protocol of [Gl 0.05, Gi 0.2] with at least one rejection, the 

mergers associated with these two “outlier” subsets would also be blocked. It follows that the 

rejection ratio would be bigger than 40 percent, but not by much since 
(𝐴Gl∖𝐴Gi)∪(𝐴Gi∖𝐴Gl)

𝐴Gl∪𝐴Gi
 =  1 −

 
(𝐴Gl∪𝐴Gi)∖(𝐴Gl∩𝐴Gi)

𝐴Gl∪𝐴Gi
 is moderately small. 

Choosing IPR(S)i instead of Gi, the interval estimates would not be that favourable due to the 

peculiar feature of this indicator. Setting an equal threshold, Gl ≶ IPR(S)i ⟹ 𝐴Gl ⊄ 𝐴IPR(S)i , 

which implies that the size of the problematic subpopulation is not a monotonic function of the 

“curvature” of the demand system. Setting an equal probability, the corresponding alarm probability 

of the paired testing is significantly larger than the selected individual alarm probability, which 

indicates a weak overlap. However, recall that it is the matter of the selected sample space: markets 

with more moderate diversion ratios and margins are not affected by this issue. 

In summary, mapping indicators along a specific threshold or alarm probability may come in 

handy if the nature of the underlying demand is unknown. The added value of such a procedure 

depends on two important caveats. First, by equal thresholds, the alarm set of a linear indicator is not 
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necessarily a proper subset of the alarm set of an isoelastic indicator, which means that the isoelastic 

demand only tends to (i.e. not always) lead to higher price increases. For a reliable interval estimate 

of the problematic population (and so the alarm probability), these exceptions need to be modest. 

Second, the equality of the size of the two alarm objects (and so the equality of the two alarm 

probabilities) does not necessarily mean a perfect overlap of the alarm objects; therefore, their union 

according to the paired test can be significantly bigger than the individual object. For a reliable 

interval estimate of the threshold, this difference needs to be minimal. In a very limited information 

environment, I reckon that such mappings may be the best, undoubtedly rough, approaches. 

Findings of this section: 

• There can be huge differences between the alarm probabilities of various indicators with the 

same threshold, even within the same demand class. 

• From the latter it logically follows that the accuracies can differ substantially. 

• The respective trade-offs between threshold and alarm probability is provided for any 

product market with linear, isoelastic, or unknown demand system. 

• If the demand system is unknown, a rough interval estimate of the problematic population 

ratio or the maximum tolerable price-effect can be given by linking the linear-demand and 

isoelastic-demand indicators. 

5. Robustness analysis 

It is out of question that the results depend on the basic assumptions – the point is, however, the 

degree of this dependence. In this section, I explore the “cost” of simplifications (i.e. uniformity of 

the joint distribution of variables and full symmetry of variables). 

Unfortunately, there is no full-scale open-access database of the product variables, let alone 

available research on their joint probability distributions. Let us define then a non-uniform 

distribution, which closely reflects both theory and evidence. Werden and Froeb (2011) argued that 

in “Bertrand competition among differentiated products […] high degree of differentiation implies 

low diversion ratios causing high margins” (p. 166), and vice versa. But in practice, we might add, it 

is far from being a deterministic relationship. Higher than “usual” industry margins could not only be 

a sign of product uniqueness, but also the consequence of market inefficiency. Moreover, products 

with high market power could also be managed poorly, that is, with low margins. Therefore, suppose 

the following stochastic relationship between margin and diversion ratio: 

𝑀 = −
𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
𝐷 + 𝑚𝑚𝑎𝑥 +

𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
𝑑𝑚𝑖𝑛 + 𝜉 . 

The deterministic part gives the equation of an intersecting hyperplane of the sample space. 

Suppose that the intersection is the set of modes of the joint distribution, and that the occurrence 

density decreases in proportion to the orthogonal distance from this hyperplane (𝐻), 
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𝑓(𝐷, 𝑀) = 𝑚𝑎𝑥{𝑑𝑖𝑠𝑡⊥(𝑥̂, 𝐻): ∀𝑥̂ ∈ Ω} − 𝑑𝑖𝑠𝑡⊥(𝑥, 𝐻)

=
(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) ∙ (𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛)

√(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)2 + (𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛)2

−
|
𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
𝐷 + 𝑀 − 𝑚𝑚𝑎𝑥 −

𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
𝑑𝑚𝑖𝑛|

√
(𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛)2

(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)2 + 1

 , 

where the maximum distance is naturally the distance from the edge(s) of the sample space opposite 

to the hyperplane. Figure 4 visualises this setup. 

 

Figure 4. Sample space, set of modes, and an orthogonal distance. 

It drives us to an “inverse” distance-weighted probability measure, which, in geometric terms, is 

the ratio of the masses of the non-homogeneous objects, 

P(𝐴) =
𝐴

Ω
=

∭ 𝑓(𝐷, 𝑀)
𝐴

𝑑𝐸 𝑑𝑀 𝑑𝐷

∭ 𝑓(𝐷, 𝑀)
Ω

𝑑𝐸 𝑑𝑀 𝑑𝐷
 . 

Figure 5 shows the difference in probabilities between the baseline case and the alternative cases. 

 

Figure 5. Difference between baseline and alternative probabilities. 

Legend: Uppercase denotes full symmetry, lowercase denotes asymmetry. 

Reminder: UPP(Sch)=CMCR, IPR(H1)=IPR(H2), P(AGUPPI)=P(Aguppi), P(AGl)=P(Agl). 
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Switching to the non-uniform (“inverse” distance-weighted) measure did not affect probabilities 

greatly: almost all differences are between ±5 percentage points at lower thresholds. The odd-one-out 

is IPR(S)i, the reason for which is easy to understand from Figure 1. The alternative distribution puts 

more emphasis on the area close to the main diagonal, that is, the importance of the unflagged upper 

right triangle of IPR(S)i plummets, and so the rejection ratio springs up. 

As for the issue of symmetry versus asymmetry, notice that (on the examined spectrum of 

threshold) full symmetry is usually, but not necessarily, more favourable to the merging parties; the 

exceptions are ipr(S) and ipr(H2) in higher ranges. Data collection challenges or short deadlines 

often impel competition authorities to assume symmetry, and thus it is good to be aware of the 

consequences of this decision. In our concrete case, the differences are mostly small, which 

advocates the use of the simpler approach (i.e. full symmetry). 

Findings of this section (drawn from a large sample space): 

• Changing the probability measure from uniform to non-uniform does not affect the alarm 

probabilities substantially, except for IPR(S)i. 

• The alarm probabilities under full symmetry are typically lower than under asymmetry; 

nevertheless, the difference is not substantial. 

6. Conclusions and outlook 

Competition authorities have their visions for the tolerable post-merger price increase rates of 

the relevant markets. However, they do not know what portion of the relevant population is put under 

potential scrutiny as a result of this vision. I filled this gap by providing analytical solutions of alarm 

probabilities for each well-known indicator, and thus also how these indicators relate to each other. 

Based on these and the reverse approach (i.e. inferring the threshold from the population of interest), 

I also showed that the combination of two demand-specific indicators allows for more sophisticated 

screening tests than a “universal” indicator. 

As a consequence, I argue that the exploration of the domain of diversion ratios, margins, and 

efficiency gains of the merger populations is inevitable for the proper use of indicators. I also showed 

that the exploration of the probability distribution or the use of asymmetric variables might be useful, 

but they are not necessarily that important. 

From a practical point of view, the exploration of domains is incomparably easier and faster to 

perform than the exploration of the joint distribution. Note that competition authorities have the 

privilege of collecting precious data from a very broad spectrum of the economy. They could create 

their own dedicated database of the main variable values of their merger cases, with which they have 

the best chance to provide reliable estimates of the domains. Moreover, with such a database, they 

have the only chance of making robust estimates of the joint probability distributions. In a carefully 

anonymised form, this could also be made open access, classified by some product/activity standard 

(e.g. CPA/NACE, NAPCS/NAICS). In (sub)categories, where there are only a few items/economic 

actors, precaution is needed in order to prevent identifiability, but it can be easily remedied by setting 

the aggregation levels on a sector-specific basis. Thinking of cross-border mergers, it would be 

constructive if such national databases were implemented along a harmonised methodology. Not 

only competition authorities, but also the research community, and thus the average consumer could 

benefit from such “goldmines”. 
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Finally, no one should forget that the results of analyses (e.g. accuracy studies) based on 

empirical merger data are only useful as long as the economic context is relatively stable. As soon as 

the domains and/or the underlying relationship of the variables change, the validity of these results 

expires. That is why customisable tools are indispensable, especially in turbulent times. 
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Appendix: Derivations of alarm sets 

Assumptions: 

• full symmetry of variables, 

• uniform distribution of variables. 

For simplicity, let 𝑑, 𝑚, 𝑒 denote the upper and 𝛿, 𝜇, 𝜀 denote the lower bounds of the 

variables. Since it is not confusing, I also use the conventional notation 𝑑 for differential operator. 

A. 𝐔𝐏𝐏(𝐅𝐒) = 𝑫𝑴 − 𝑬(𝟏 − 𝑴) ≥ 𝟎  

The alarm condition rearranged to efficiency is 𝐸 ≤
𝐷𝑀

1−𝑀
 , which implies that 𝐴 ≠ ∅ if 𝜀 <

𝑑𝑚

1−𝑚
 . Since 

equality holds ⟹ {
𝜀 = 0 ∧  (𝐷 = 0 ∨  𝑀 = 0)
𝜀 > 0 ∧  𝐷 > 0 ∧  𝑀 > 0 

 , 

the derivations are to be separated under different lower bound conditions. 

If 𝜀 <
𝑑𝑚

1 − 𝑚
≤ 𝑒  

Lower bound condition 1: 𝜀 = 0 

With 𝛿 = 𝜇 = 0, the volume is 

∫ ∫
𝐷𝑀

1 − 𝑀

𝑚

0

𝑑

0

𝑑𝑀 𝑑𝐷 . 

Substituting 𝑢 = 1 − 𝑀 (𝑑𝑢 = −𝑑𝑀), the inner integral becomes 

∫
𝐷𝑀

1 − 𝑀

𝑚

0

𝑑𝑀 = 𝐷 ∫
𝑢 − 1

𝑢

1−𝑚

1

𝑑𝑢 = 𝐷[𝑢 − ln 𝑢]1
1−𝑚 = 𝐷(−𝑚 − ln(1 − 𝑚)) . [1] 

Thus, the outer integral is 

∫ 𝐷(−𝑚 − ln(1 − 𝑚))
𝑑

0

𝑑𝐷 =
𝑑2(−𝑚 − ln(1 − 𝑚))

2
 . 
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With 𝛿 > 0 or 𝜇 > 0, the parts below these lower bounds is to be subtracted. Note that if 𝛿 >
0 and 𝜇 > 0, the part affected by double subtraction is to be compensated. Thus, the general 

formula for 𝛿 ≥ 0 and 𝜇 ≥ 0 is 

𝑑2(−𝑚 − ln(1 − 𝑚))

2
−

𝛿2(−𝑚 − ln(1 − 𝑚))

2
−

𝑑2(−𝜇 − ln(1 − 𝜇))

2

+
𝛿2(−𝜇 − ln(1 − 𝜇))

2
 . 

[2] 

Lower bound condition 2: 𝜀 > 0 

In order to find the proper limits of integration, let us rearrange the alarm condition to 𝐷 and 

𝑀, which is 𝐷 >
𝐸(1−𝑀)

𝑀
 and 𝑀 >

𝐸

𝐸+𝐷
 , and thus the alarm set is 

∫ ∫ ∫ 1

𝐷𝑀
1−𝑀

𝜀

𝑚

𝜀
𝜀+𝐷

𝑑

𝜀(1−𝑚)
𝑚

𝑑𝐸 𝑑𝑀 𝑑𝐷 = ∫ ∫ (
𝐷𝑀

1 − 𝑀
− 𝜀)

𝑚

𝜀
𝜀+𝐷

𝑑

𝜀(1−𝑚)
𝑚

𝑑𝑀 𝑑𝐷 . 

Using result from [1], the inner integral becomes 

∫ (
𝐷𝑀

1 − 𝑀
− 𝜀)

𝑚

𝜀
𝜀+𝐷

𝑑𝑀 = [𝐷(−𝑀 − ln(1 − 𝑀)) − 𝜀𝑀] 𝜀
𝜀+𝐷

𝑚

= 𝐷 (−𝑚 − ln(1 − 𝑚) +
𝜀

𝜀 + 𝐷
+ ln (1 −

𝜀

𝜀 + 𝐷
)) − 𝜀𝑚 +

𝜀2

𝜀 + 𝐷
 , 

and thus the outer integral is 

∫ ((−𝑚 − ln(1 − 𝑚))𝐷 +
𝜀𝐷

𝜀 + 𝐷
+ ln (1 −

𝜀

𝜀 + 𝐷
) ∙ 𝐷 − 𝜀𝑚 +

𝜀2

𝜀 + 𝐷
)

𝑑

𝜀(1−𝑚)
𝑚

𝑑𝐷 . [3] 

First, I calculate the non-trivial indefinite integrals of the second and the third terms of [3]. Here 

and hereafter I do not use different notations for the constants of integration, i.e. I always stick to 

letter 𝑐. 

The second term of [3] is (substituting 𝑢 = 𝜀 + 𝐷) 

𝜀 ∫
𝐷

𝜀 + 𝐷
𝑑𝐷 = 𝜀 ∫

𝑢 − 𝜀

𝑢
𝑑𝑢 = 𝜀(𝑢 − 𝜀 ln 𝑢) + 𝑐 = 𝜀(𝜀 + 𝐷 − 𝜀 ln(𝜀 + 𝐷)) + 𝑐

= 𝜀(𝐷 − 𝜀 ln(𝜀 + 𝐷)) + 𝑐 . 
[4] 

For calculating the third term of [3], we need to integrate by parts (∫ 𝑓𝑔′ = 𝑓𝑔 − ∫ 𝑓′𝑔). Let 

𝑓 =  ln (1 −
𝜀

𝜀 + 𝐷
)  and 𝑔′ = 𝐷 . 

Applying chain rule for getting 𝑓′ 

𝑓′ =
𝑑

𝑑𝐷
ln (1 −

𝜀

𝜀 + 𝐷
) =

1

1 −
𝜀

𝜀 + 𝐷

∙
𝑑

𝑑𝐷
(1 −

𝜀

𝜀 + 𝐷
) =

1

1 −
𝜀

𝜀 + 𝐷

∙
𝜀

(𝜀 + 𝐷)2

=
𝜀

(𝜀 + 𝐷)2 − 𝜀(𝜀 + 𝐷)
=

𝜀

𝐷(𝜀 + 𝐷)
 , 
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and thus 

∫ 𝑓𝑔′ = ∫ ln (1 −
𝜀

𝜀 + 𝐷
) 𝐷 𝑑𝐷 = ln (1 −

𝜀

𝜀 + 𝐷
)

𝐷2

2
− ∫

𝜀

(𝜀 + 𝐷)
∙

𝐷

2
𝑑𝐷

=
ln (1 −

𝜀
𝜀 + 𝐷

) 𝐷2

2
−

𝜀(𝐷 − 𝜀 ln(𝜀 + 𝐷))

2
+ 𝑐 , 

where (for the last step) I used the result obtained at [4]. 

Remaining integrals of [3] come trivially, and thus the alarm set is 

[
(−𝑚 − ln(1 − 𝑚))𝐷2

2
+ 𝜀(𝐷 − 𝜀 ln(𝜀 + 𝐷)) +

ln (1 −
𝜀

𝜀 + 𝐷
) 𝐷2

2
−

𝜀(𝐷 − 𝜀 ln(𝜀 + 𝐷))

2

− 𝜀𝑚𝐷 + 𝜀2 ln(𝜀 + 𝐷)]

𝑎 

𝑑

= [
(−𝑚 − ln(1 − 𝑚))𝐷2

2
+

𝜀(𝐷 − 𝜀 ln(𝜀 + 𝐷))

2
+

ln (1 −
𝜀

𝜀 + 𝐷
) 𝐷2

2
− 𝜀𝑚𝐷

+ 𝜀2 ln(𝜀 + 𝐷)]

𝑎 

𝑑

= [
(−𝑚 − ln(1 − 𝑚))𝐷2

2
+

𝜀𝐷

2
+

𝜀2 ln(𝜀 + 𝐷)

2
+

ln (1 −
𝜀

𝜀 + 𝐷
) 𝐷2

2
− 𝜀𝑚𝐷]

𝑎 

𝑑

= [
𝐷

2
((−𝑚 − ln(1 − 𝑚))𝐷 + 𝜀 + ln (1 −

𝜀

𝜀 + 𝐷
) 𝐷 − 2𝜀𝑚) +

𝜀2 ln(𝜀 + 𝐷)

2
]

𝑎 

𝑑

= [
𝐷

2
(𝐷 (ln (1 −

𝜀

𝜀 + 𝐷
) − 𝑚 − ln(1 − 𝑚)) + 𝜀(1 − 2𝑚)) +

𝜀2 ln(𝜀 + 𝐷)

2
]

𝑎 

𝑑

, 

[5] 

where 𝑎 =
𝜀(1−𝑚)

𝑚
 . Since 𝛿 and 𝜇 may truncate this set, the general formula for 𝛿 ≥ 0 and 𝜇 ≥

0 is 

[5] − [5 with 𝑑 ≔ 𝛿 if 𝛿 >
𝜀(1 − 𝑚)

𝑚
] − [5 with 𝑚 ≔ 𝜇 if 𝜇 >

𝜀

𝜀 + 𝑑
]

+ [5 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
𝜀(1 − 𝜇)

𝜇
 and 𝜇 >

𝜀

𝜀 + 𝛿
] . 

[6] 

If 𝑒 <
𝑑𝑚

1 − 𝑚
 

In this case, the object part above 𝑒 is to be subtracted. The alarm sets are then [2] – [6 with 

𝜀 ≔ 𝑒] under Condition 1, and [6] – [6 with 𝜀 ≔ 𝑒] under Condition 2. 
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B. 𝐔𝐏𝐏(𝐒𝐜𝐡) 𝐂𝐌𝐂𝐑⁄ = 𝑫𝑴 − 𝑬(𝟏 − 𝑫)(𝟏 − 𝑴) ≥ 𝟎  

The alarm condition rearranged to efficiency is 𝐸 ≤
𝐷𝑀

(1−𝐷)(1−𝑀)
 , which implies that 𝐴 ≠ ∅ if 

𝜀 <
𝑑𝑚

(1−𝑑)(1−𝑚)
 . Since (just as with UPP(FS)) 

equality holds ⟹ {
𝜀 = 0 ∧  (𝐷 = 0 ∨  𝑀 = 0)
𝜀 > 0 ∧  𝐷 > 0 ∧  𝑀 > 0 

 , 

the derivation are to be separated under different lower bound conditions. 

If 𝜀 <
𝑑𝑚

(1 − 𝑑)(1 − 𝑚)
≤ 𝑒  

Lower bound condition 1: 𝜀 = 0 

With 𝛿 = 𝜇 = 0, the volume is 

∫ ∫
𝐷𝑀

(1 − 𝐷)(1 − 𝑀)

𝑚

0

𝑑

0

𝑑𝑀 𝑑𝐷 . 

The inner integral becomes (like in [1]) 

∫
𝐷𝑀

(1 − 𝐷)(1 − 𝑀)

𝑚

0

𝑑𝑀 =
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚)) , 

then the outer integral is 

∫
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚))

𝑑

0

𝑑𝐷 = (𝑑 + ln(1 − 𝑑))(𝑚 + ln(1 − 𝑚)) . 

With 𝛿 > 0 or 𝜇 > 0, the parts below these lower bounds is to be subtracted. If 𝛿 > 0 and 

𝜇 > 0, the part affected by double subtraction is to be compensated. Thus, the general formula is 

(𝑑 + ln(1 − 𝑑))(𝑚 + ln(1 − 𝑚)) − (𝛿 + ln(1 − 𝛿))(𝑚 + ln(1 − 𝑚))

− (𝑑 + ln(1 − 𝑑))(𝜇 + ln(1 − 𝜇)) + (𝛿 + ln(1 − 𝛿))(𝜇 + ln(1 − 𝜇)) . [7] 

Lower bound condition 2: 𝜀 > 0 

The alarm set is (using rearranged forms of alarm condition, 𝐷 ≥
𝐸(1−𝑀)

𝐸(1−𝑀)+𝑀
, 𝑀 ≥

𝐸(1−𝐷)

𝐸(1−𝐷)+𝐷
 ), 

∫ ∫ ∫ 1

𝐷𝑀
(1−𝐷)(1−𝑀)

𝜀

𝑚

𝜀(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑑

𝜀(1−𝑚)
𝜀(1−𝑚)+𝑚

𝑑𝐸 𝑑𝑀 𝑑𝐷

= ∫ ∫ (
𝐷𝑀

(1 − 𝐷)(1 − 𝑀)
− 𝜀)

𝑚

𝜀(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑑

𝜀(1−𝑚)
𝜀(1−𝑚)+𝑚

𝑑𝑀 𝑑𝐷 . 

The inner integral is 
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∫ (
𝐷𝑀

(1 − 𝐷)(1 − 𝑀)
− 𝜀)

𝑚

𝜀(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑑𝑀 =
𝐷

1 − 𝐷
[−𝑀 − ln(1 − 𝑀)] 𝜀(1−𝐷)

𝜀(1−𝐷)+𝐷

𝑚 − [𝜀𝑀] 𝜀(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑚

=
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚) +

𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
+ ln (1 −

𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
)) − 𝜀𝑚

+
𝜀2(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
 , 

so the outer integral is 

∫ (
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚)) +

𝜀𝐷

𝜀(1 − 𝐷) + 𝐷
+ ln (1 −

𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) ∙

𝐷

1 − 𝐷
− 𝜀𝑚

𝑑

𝑎

+
𝜀2(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) 𝑑𝐷

= ∫ (
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚)) +

𝜀(1 − 𝜀)𝐷

𝜀(1 − 𝐷) + 𝐷
+ ln (1 −

𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
)

𝑑

𝑎

∙
𝐷

1 − 𝐷
− 𝜀𝑚 +

𝜀2

𝜀(1 − 𝐷) + 𝐷
) 𝑑𝐷 , 

[8] 

where 𝑎 =
𝜀(1−𝑚)

𝜀(1−𝑚)+𝑚
 . 

I integrate [8] term by term as an indefinite integral. The first (combined) term is already known 

from previous calculations (see [1]): 

∫
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚)) 𝑑𝐷 = (𝑑 + ln(1 − 𝑚))(𝑚 + ln(1 − 𝑚)) + 𝑐 [9] 

The second term of [8] is (substituting 𝑢 = 𝜀(1 − 𝐷) + 𝐷 = (1 − 𝜀)𝐷 + 𝜀  and 𝑑𝑢 =
(1 − 𝜀) 𝑑𝐷 ) 

∫
𝜀(1 − 𝜀)𝐷

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 = 𝜀(1 − 𝜀) ∫

𝑢 − 𝜀
1 − 𝜀

𝑢
∙

1

1 − 𝜀
𝑑𝑢 =

𝜀

1 − 𝜀
∫

𝑢 − 𝜀

𝑢
𝑑𝑢

=
𝜀

1 − 𝜀
(𝑢 − 𝜀 ln(𝑢)) + 𝑐 =

𝜀((1 − 𝜀)𝐷 + 𝜀) − 𝜀2 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
+ 𝑐

= 𝜀𝐷 −
𝜀2 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
+ 𝑐 . 

[10] 

The third term of [8] is 

∫ ln (1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) ∙

𝐷

1 − 𝐷
𝑑𝐷 . 

Let 𝑓 = ln (1 −
𝜀(1−𝐷)

𝜀(1−𝐷)+𝐷
) and 𝑔′ =

𝐷

1−𝐷
 and so 
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𝑓′ =
𝑑

𝑑𝐷
ln (1 −

𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) =

1

1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷

∙
𝑑

𝑑𝐷
(1 −

𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) . 

[11] 

Applying chain rule and quotient rule 

𝑑

𝑑𝐷
(1 −

𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) = 𝜀 (−

𝑑

𝑑𝐷

1

𝜀(1 − 𝐷) + 𝐷
+

𝑑

𝑑𝐷

𝐷

𝜀(1 − 𝐷) + 𝐷
)

= 𝜀 (
1 − 𝜀

(𝜀(1 − 𝐷) + 𝐷)2
+

𝜀(1 − 𝐷) + 𝐷 − 𝐷(1 − 𝜀)

(𝜀(1 − 𝐷) + 𝐷)2
)

= 𝜀 (
1 − 𝜀

(𝜀(1 − 𝐷) + 𝐷)2
+

𝜀 − 𝜀𝐷 + 𝐷 − 𝐷 + 𝜀𝐷

(𝜀(1 − 𝐷) + 𝐷)2
) =

𝜀

(𝜀(1 − 𝐷) + 𝐷)2
 . 

[12] 

Writing [12] to [11] 

𝑓′ =
1

1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷

∙
𝜀

(𝜀(1 − 𝐷) + 𝐷)2
=

𝜀

(𝜀(1 − 𝐷) + 𝐷)2 − 𝜀(1 − 𝐷)(𝜀(1 − 𝐷) + 𝐷)

=
𝜀

𝐷(𝜀(1 − 𝐷) + 𝐷)
 . 

Function 𝑔 is obtained in a familiar way (see [1]) 

𝑔 = ∫
𝐷

1 − 𝐷
𝑑𝐷 = −𝐷 − ln(1 − 𝐷) + 𝑐 . 

Now, integrating by parts we get 

∫ 𝑓 𝑔′ = 𝑓 𝑔 − ∫ 𝑓′𝑔

= ln (1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) (−𝐷 − ln(1 − 𝐷))

− ∫
𝜀

𝐷(𝜀(1 − 𝐷) + 𝐷)
(−𝐷 − ln(1 − 𝐷)) 𝑑𝐷 . 

[13] 

First part of the integral of [13] is (substituting 𝑢 = 𝜀(1 − 𝐷) + 𝐷 = (1 − 𝜀)𝐷 + 𝜀 and 𝑑𝑢 =
(1 − 𝜀) 𝑑𝐷 ) 

 

∫
𝜀

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 =

𝜀

1 − 𝜀
∫

1

𝑢
𝑑𝑢 =

𝜀 ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
+ 𝑐 , [14] 

and the second part is 

∫
𝜀 ln(1 − 𝐷)

𝐷(𝜀(1 − 𝐷) + 𝐷)
𝑑𝐷 . 

To solve the second part, the first move is partial fraction decomposition: 

𝐴

𝐷
+

𝐵

𝜀(1 − 𝐷) + 𝐷
=

𝜀

𝐷(𝜀(1 − 𝐷) + 𝐷)
 



206 

Data Science in Finance and Economics  Volume 4, Issue 2, 188–217. 

𝐴(𝜀(1 − 𝐷) + 𝐷) + 𝐵𝐷 = 𝜀 . 

Choosing 𝐷 = 0 we get 𝐴 = 1. Using this value, by 𝐷 = 1 we get 𝐵 = 𝜀 − 1. Thus, the 

integral of the decomposed fraction is 

∫
𝜀 ln(1 − 𝐷)

𝐷(𝜀(1 − 𝐷) + 𝐷)
𝑑𝐷 = ∫

ln(1 − 𝐷)

𝐷
𝑑𝐷 + (𝜀 − 1) ∫

ln(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 . [15] 

Knowing that ∫
ln(1−𝐷)

𝐷

0

𝑑
𝑑𝐷 = Li2(𝑑), and considering that [8] (the outer integral) is on domain 

[0, 𝑑], we can formalize the first integral of [15] as6 

∫
ln(1 − 𝐷)

𝐷
𝑑𝐷 = − Li2(𝐷) + 𝑐 . [16] 

Now, let us solve the second integral of [15]. Substituting 𝑢 = ln(1 − 𝐷) (which is exp(𝑢) =
1 − 𝐷, and so exp(𝑢) 𝑑𝑢 = − 𝑑𝐷) we get 

(𝜀 − 1) ∫
ln(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 = −(𝜀 − 1) ∫

𝑢

𝜀 exp(𝑢) + 1 − exp(𝑢)
exp(𝑢) 𝑑𝑢

= −(𝜀 − 1) ∫ 𝑢
exp(𝑢)

(𝜀 − 1) exp(𝑢) + 1
 . 

[17] 

Let ℎ = 𝑢  and 𝑖′ =
exp(𝑢)

(𝜀−1) exp(𝑢)+1
 and so (substituting 𝑣 = (𝜀 − 1) exp(𝑢) + 1  and 𝑑𝑣 =

(𝜀 − 1) exp(𝑢) 𝑑𝑢 ) 

𝑖 = ∫
exp(𝑢)

(𝜀 − 1) exp(𝑢) + 1
𝑑𝑢 =

1

𝜀 − 1
∫

1

𝑣
𝑑𝑣 =

ln 𝑣

𝜀 − 1
+ 𝑐 =

ln((𝜀 − 1) exp(𝑢) + 1)

𝜀 − 1
+ 𝑐 . 

Integrating by parts 

∫ ℎ 𝑖′ = ℎ 𝑖 − ∫ ℎ′𝑖 = 𝑢
ln((𝜀 − 1) exp(𝑢) + 1)

𝜀 − 1
− ∫

ln((𝜀 − 1) exp(𝑢) + 1)

𝜀 − 1
 . 

The latter integral term is (substituting 𝑤 = −(𝜀 − 1) exp(𝑢)  and 𝑑𝑤 = −(𝜀 −
1) exp(𝑢) 𝑑𝑢 ) 

∫ ℎ′𝑖 = ∫
ln((𝜀 − 1) exp(𝑢) + 1)

𝜀 − 1
𝑑𝑢 = ∫

ln(1 − 𝑤)
𝑤

exp(𝑢)

∙
1

(𝜀 − 1) exp(𝑢)
𝑑𝑤

=
1

𝜀 − 1
∫

ln(1 − 𝑤)

𝑤
𝑑𝑤 = −

Li2(𝑤)

𝜀 − 1
+ 𝑐 = −

Li2(−(𝜀 − 1) exp(𝑢))

𝜀 − 1
+ 𝑐 . 

Putting together the pieces, ∫ ℎ 𝑖′ becomes 

∫ ℎ 𝑖′ =  𝑢
ln((𝜀 − 1) exp(𝑢) + 1)

𝜀 − 1
+

Li2(−(𝜀 − 1) exp(𝑢))

𝜀 − 1
+ 𝑐 , 

and so [17] is 

 
6 In the Excel calculator, the dilogarithm (Li2) is approximated by trapezoidal rule with a step size of 10-5. 
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(𝜀 − 1) ∫
ln(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 = −(𝜀 − 1) ∫ ℎ 𝑖′

= −𝑢 ln((𝜀 − 1) exp(𝑢) + 1) − Li2(−(𝜀 − 1) exp(𝑢)) + 𝑐

= − ln(1 − 𝐷) ln((𝜀 − 1)(1 − 𝐷) + 1) − Li2(−(𝜀 − 1)(1 − 𝐷)) + 𝑐 . 
[18] 

Substituting [16] and [18] to [15] it becomes 

∫
𝜀 ln(1 − 𝐷)

𝐷(𝜀(1 − 𝐷) + 𝐷)
𝑑𝐷

= − Li2(𝐷) − ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷)) − Li2((1 − 𝜀)(1 − 𝐷))

+ 𝑐 . 

[19] 

And finally, writing [14] and [19] into [13], we earned the third term of [8], which is 

∫ ln (1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) ∙

𝐷

1 − 𝐷
𝑑𝐷

= ln (1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) (−𝐷 − ln(1 − 𝐷)) +

𝜀 ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
− Li2(𝐷)

− ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷)) − Li2((1 − 𝜀)(1 − 𝐷)) + 𝑐 . 

[20] 

The fourth term of [8] is trivial. The fifth term of [8] is (see [14]) 

∫
𝜀2

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 =

𝜀2 ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
+ 𝑐 . [21] 

Gathering all terms from first to fifth (writing [9], [10], [20], the trivial fourth, and [21] into [8], 

respectively), the alarm set is 

[(𝐷 + ln(1 − 𝐷))(𝑚 + ln(1 − 𝑚)) + 𝜀𝐷 −
𝜀2 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀

− ln (1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) (𝐷 + ln(1 − 𝐷)) +

𝜀 ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
− Li2(𝐷)

− ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷)) − Li2((1 − 𝜀)(1 − 𝐷)) − 𝜀𝑚𝐷

+
𝜀2 ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
]

𝑎

𝑑

= [(𝐷 + ln(1 − 𝐷))(𝑚 + ln(1 − 𝑚)) + 𝜀(1 − 𝑚)𝐷

− ln (1 −
𝜀(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) (𝐷 + ln(1 − 𝐷)) +

𝜀 ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
− Li2(𝐷)

− ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷)) − Li2((1 − 𝜀)(1 − 𝐷))]
𝑎

𝑑

 , 

[22] 



208 

Data Science in Finance and Economics  Volume 4, Issue 2, 188–217. 

where 𝑎 =
𝜀(1−𝑚)

𝜀(1−𝑚)+𝑚
 . Since 𝛿 and 𝜇 may truncate this set, the general formula for 𝛿 ≥ 0 and 

𝜇 ≥ 0 is 

[22] − [22 with 𝑑 ≔ 𝛿 if 𝛿 >
𝜀(1 − 𝑚)

𝜀(1 − 𝑚) + 𝑚
] − [22 with 𝑚 ≔ 𝜇 if 𝜇 >

𝜀(1 − 𝑑)

𝜀(1 − 𝑑) + 𝑑
]

+ [22 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
𝜀(1 − 𝜇)

𝜀(1 − 𝜇) + 𝜇
 and 𝜇 >

𝜀(1 − 𝛿)

𝜀(1 − 𝛿) + 𝛿
] . 

[23] 

If 𝑒 <
𝑑𝑚

(1 − 𝑑)(1 − 𝑚)
 

In this case, the object above 𝑒 is to be subtracted. The alarm sets are then [7] – [23 with 𝜀 ≔
𝑒] under Condition 1, and [23] – [23 with 𝜀 ≔ 𝑒] under Condition 2. 

C. 𝐈𝐏𝐑(𝐒) =
𝑫𝑴−𝑬(𝟏−𝑴)(𝟏−𝑫)

𝟐(𝟏−𝑫)
≥ 𝒕  

The alarm condition rearranged to efficiency is 𝐸 ≤
𝐷𝑀

(1−𝐷)(1−𝑀)
−

2𝑡

1−𝑀
 , which implies that 

𝐴 ≠ ∅ if 𝜀 <
𝑑𝑚

(1−𝑑)(1−𝑚)
−

2𝑡

1−𝑚
 . Since 𝑡 > 0, the equality holds ⟹ 𝜀 ≥ 0 ∧  𝐷 > 0 ∧  𝑀 > 0, 

and so it is sufficient to derive one triple integral with a general lower bound for 𝐸. 

If 𝜀 <
𝑑𝑚 − 2(1 − 𝑑)𝑡

(1 − 𝑑)(1 − 𝑚)
≤ 𝑒  

The alarm set is (using rearranged forms of alarm condition, 𝐷 >
𝐸(1−𝑀)+2𝑡

𝐸(1−𝑀)+𝑀+2𝑡
, 𝑀 >

(𝐸+2𝑡)(1−𝐷)

𝐸(1−𝐷)+𝐷
 ) 

∫ ∫ ∫ 1

𝐷𝑀
(1−𝐷)(1−𝑀)

− 
2𝑡

1−𝑀

𝜀

𝑚

(𝜀+2𝑡)(1−𝐷)
𝜀(1−𝐷)+𝐷

 

𝑑

𝜀(1−𝑚)+2𝑡
𝜀(1−𝑚)+𝑚+2𝑡

𝑑𝐸 𝑑𝑀 𝑑𝐷

= ∫ ∫ (
𝐷𝑀

(1 − 𝐷)(1 − 𝑀)
−

2𝑡

1 − 𝑀
− 𝜀)

𝑚

(𝜀+2𝑡)(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑑

𝜀(1−𝑚)+2𝑡
𝜀(1−𝑚)+𝑚+2𝑡

𝑑𝑀 𝑑𝐷 . 

The inner integral is 
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∫ (
𝐷𝑀

(1 − 𝐷)(1 − 𝑀)
−

2𝑡

1 − 𝑀
− 𝜀)

𝑚

(𝜀+2𝑡)(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑑𝑀

=
𝐷

1 − 𝐷
[−𝑀 − ln(1 − 𝑀)](𝜀+2𝑡)(1−𝐷)

𝜀(1−𝐷)+𝐷

𝑚 + [2𝑡 ln(1 − 𝑀)](𝜀+2𝑡)(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑚

− [𝜀𝑀](𝜀+2𝑡)(1−𝐷)
𝜀(1−𝐷)+𝐷

𝑚

=
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚) +

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
+ ln (1 −

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
))

+ 2𝑡 ln(1 − 𝑚) − 2𝑡 ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) − 𝜀𝑚 +

𝜀(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
 , 

so the outer integral is 

∫ (
𝐷

1 − 𝐷
(−𝑚 − 𝑙𝑛(1 − 𝑚)) +

(𝜀 + 2𝑡)𝐷

𝜀(1 − 𝐷) + 𝐷
+

𝐷

1 − 𝐷
ln (1 −

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
)

𝑑

𝑎

+ 2𝑡 ln(1 − 𝑚) − 2𝑡 ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) − 𝜀𝑚

+
𝜀(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) 𝑑𝐷

= ∫ (
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚)) +

(1 − 𝜀)(𝜀 + 2𝑡)𝐷

𝜀(1 − 𝐷) + 𝐷

𝑑

𝑎

+
𝐷

1 − 𝐷
ln (1 −

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) − 2𝑡 ln (1 −

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
)

+ 2𝑡 ln(1 − 𝑚) − 𝜀𝑚 +
𝜀(𝜀 + 2𝑡)

𝜀(1 − 𝐷) + 𝐷
) 𝑑𝐷 , 

[24] 

where 𝑎 =
𝜀(1−𝑚)+2𝑡

𝜀(1−𝑚)+𝑚+2𝑡
 . 

I integrate [24] term by term as an indefinite integral. The first (combined) term is already 

known from previous calculations 

∫
𝐷

1 − 𝐷
(−𝑚 − ln(1 − 𝑚)) 𝑑𝐷 = (𝐷 + ln(1 − 𝐷))(𝑚 + ln(1 − 𝑚)) + 𝑐 . [25] 

The second term of [24] comes easy from [10] 

∫
(1 − 𝜀)(𝜀 + 2𝑡)𝐷

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 = (𝜀 + 2𝑡)𝐷 −

𝜀(𝜀 + 2𝑡) ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
+ 𝑐 . [26] 

The third term of [24] is 

∫ ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) ∙

𝐷

1 − 𝐷
𝑑𝐷 . 
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Let 𝑓 = ln (1 −
(𝜀+2𝑡)(1−𝐷)

𝜀(1−𝐷)+𝐷
) and 𝑔′ =

𝐷

1−𝐷
 and so 

𝑓′ =
𝑑

𝑑𝐷
ln (1 −

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) =

1

1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷

∙
𝑑

𝑑𝐷
(1 −

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) . 

[27] 

The latter derivative comes easy from [12] 

𝑑

𝑑𝐷
(1 −

(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) =

𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)2
 . 

[28] 

Writing [28] to [27] 

𝑓′ =
1

1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷

∙
𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)2

=
𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)2 − (𝜀 + 2𝑡)(1 − 𝐷)(𝜀(1 − 𝐷) + 𝐷)

=
𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)(𝜀(1 − 𝐷) + 𝐷 − (𝜀 + 2𝑡)(1 − 𝐷))

=
𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
 . 

Function 𝑔 comes like earlier (see [1]) 

𝑔 = ∫
𝐷

1 − 𝐷
𝑑𝐷 = −𝐷 − ln(1 − 𝐷) + 𝑐 . 

Now, integrating by parts we get 

∫ 𝑓 𝑔′ = 𝑓 𝑔 − ∫ 𝑓′𝑔

= ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) (−𝐷 − ln(1 − 𝐷))

− ∫
𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
(−𝐷 − ln(1 − 𝐷)) 𝑑𝐷 . 

[29] 

First part of the integral of [29] is 

∫
(𝜀 + 2𝑡)𝐷

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
𝑑𝐷 . 

For solving this integral, partial fraction decomposition is needed: 

𝐴

(1 + 2𝑡)𝐷 − 2𝑡
+

𝐵

𝜀(1 − 𝐷) + 𝐷
=

(𝜀 + 2𝑡)𝐷

((1 + 2𝑡)𝐷 − 2𝑡)(𝜀(1 − 𝐷) + 𝐷)
 

𝐴(𝜀(1 − 𝐷) + 𝐷) + 𝐵((1 + 2𝑡)𝐷 − 2𝑡) = (𝜀 + 2𝑡)𝐷 . 
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Choosing 𝐷 =
2𝑡

1+2𝑡
 we get 𝐴 = 2𝑡 , and choosing 𝐷 = −

𝜀

1−𝜀
 we get 𝐵 = 𝜀 . Thus, the 

integral of the decomposed fraction is 

∫
(𝜀 + 2𝑡)𝐷

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
𝑑𝐷 = ∫

2𝑡

(1 + 2𝑡)𝐷 − 2𝑡
𝑑𝐷 + ∫

𝜀

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷

=
2𝑡 ln((1 + 2𝑡)𝐷 − 2𝑡)

1 + 2𝑡
+

𝜀 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
+ 𝑐 . 

[30] 

The second part of the integral of [29] is 

∫
(𝜀 + 2𝑡) ln(1 − 𝐷)

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
𝑑𝐷 . 

For the first step, we need partial fraction decomposition here, too: 

𝐴

(1 + 2𝑡)𝐷 − 2𝑡
+

𝐵

𝜀(1 − 𝐷) + 𝐷
=

𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
 

𝐴(𝜀(1 − 𝐷) + 𝐷) + 𝐵((1 + 2𝑡)𝐷 − 2𝑡) = 𝜀 + 2𝑡 . 

Choosing 𝐷 =
2𝑡

1+2𝑡
 we get 𝐴 = 1 + 2𝑡, and choosing 𝐷 = −

𝜀

1−𝜀
 we get 𝐵 = 𝜀 − 1. Thus, 

the integral of this decomposed fraction is 

∫
(𝜀 + 2𝑡) ln(1 − 𝐷)

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
𝑑𝐷

= ∫
(1 + 2𝑡) ln(1 − 𝐷)

(1 + 2𝑡)𝐷 − 2𝑡
𝑑𝐷 + ∫

(𝜀 − 1) ln(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 . 

[31] 

Let us solve the first integral of [31]. Substituting 𝑢 = ln(1 − 𝐷) (which is exp(𝑢) = 1 − 𝐷, 

and so exp(𝑢) 𝑑𝑢 = − 𝑑𝐷) we get 

(1 + 2𝑡) ∫
ln(1 − 𝐷)

(1 + 2𝑡)𝐷 − 2𝑡
𝑑𝐷 = −(1 + 2𝑡) ∫

𝑢

(1 + 2𝑡)(1 − exp(𝑢)) − 2𝑡
exp(𝑢) 𝑑𝑢

= −(1 + 2𝑡) ∫ 𝑢
exp(𝑢)

1 − (1 + 2𝑡) exp(𝑢)
𝑑𝑢 . 

[32] 

Let ℎ = 𝑢 and 𝑖′ =
exp(𝑢)

1−(1+2𝑡) exp(𝑢)
 and so (substituting 𝑣 = 1 − (1 + 2𝑡) exp(𝑢) and 𝑑𝑣 =

−(1 + 2𝑡) exp(𝑢) 𝑑𝑢 ) 

𝑖 = ∫
exp(𝑢)

1 − (1 + 2𝑡) exp(𝑢)
𝑑𝑢 = −

1

1 + 2𝑡
∫

1

𝑣
𝑑𝑣 = −

ln 𝑣

1 + 2𝑡
+ 𝑐

= −
ln(1 − (1 + 2𝑡) exp(𝑢))

1 + 2𝑡
+ 𝑐. 

Integrating by parts 

∫ ℎ 𝑖′ = ℎ 𝑖 − ∫ ℎ′𝑖 = −𝑢
ln(1 − (1 + 2𝑡) exp(𝑢))

1 + 2𝑡
+ ∫

ln(1 − (1 + 2𝑡) exp(𝑢))

1 + 2𝑡
𝑑𝑢 . 
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The latter integral is (substituting 𝑤 = (1 + 2𝑡) exp(𝑢) and 𝑑𝑤 = (1 + 2𝑡) exp(𝑢) 𝑑𝑢 ) 

∫ ℎ′𝑖 = ∫
ln(1 − (1 + 2𝑡) exp(𝑢))

1 + 2𝑡
𝑑𝑢 = ∫

ln(1 − 𝑤)
𝑤

exp(𝑢)

∙
1

(1 + 2𝑡) exp(𝑢)
𝑑𝑤

=
1

1 + 2𝑡
∫

ln(1 − 𝑤)

𝑤
𝑑𝑤 = −

Li2(𝑤)

1 + 2𝑡
+ 𝑐 = −

Li2((1 + 2𝑡) exp(𝑢))

1 + 2𝑡
+ 𝑐 . 

Putting together the pieces, ∫ ℎ 𝑖′ becomes 

∫ ℎ 𝑖′ =  −𝑢
ln(1 − (1 + 2𝑡) exp(𝑢))

1 + 2𝑡
−

Li2((1 + 2𝑡) exp(𝑢))

1 + 2𝑡
+ 𝑐 , 

and so [32] is 

(1 + 2𝑡) ∫
ln(1 − 𝐷)

(1 + 2𝑡)𝐷 − 2𝑡
𝑑𝐷 = −(1 + 2𝑡) ∫ ℎ 𝑖′

= 𝑢 ln(1 − (1 + 2𝑡) exp(𝑢)) + Li2((1 + 2𝑡) exp(𝑢)) + 𝑐

= ln(1 − 𝐷) ln(1 − (1 + 2𝑡)(1 − 𝐷)) + Li2((1 + 2𝑡)(1 − 𝐷)) + 𝑐 . 
[33] 

The second integral of [31] is known from [18]: 

∫
(𝜀 − 1) ln(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷

= − ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷)) − Li2((1 − 𝜀)(1 − 𝐷)) + 𝑐 . 
[34] 

Substituting [33] and [34] to [31], it becomes 

∫
(𝜀 + 2𝑡) ln(1 − 𝐷)

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
𝑑𝐷

= ln(1 − 𝐷) ln(1 − (1 + 2𝑡)(1 − 𝐷)) + Li2((1 + 2𝑡)(1 − 𝐷))

− ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷)) − Li2((1 − 𝜀)(1 − 𝐷)) + 𝑐 . 

[35] 

And finally, writing [30] and [35] into [29], we earned the third term of [24], which is 

∫ ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) ∙

𝐷

1 − 𝐷
𝑑𝐷

= ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) (−𝐷 − ln(1 − 𝐷)) +

2𝑡 ln((1 + 2𝑡)𝐷 − 2𝑡)

1 + 2𝑡

+
𝜀 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
+ ln(1 − 𝐷) ln(1 − (1 + 2𝑡)(1 − 𝐷))

+ Li2((1 + 2𝑡)(1 − 𝐷)) − ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷))

− Li2((1 − 𝜀)(1 − 𝐷)) + 𝑐 . 

[36] 

The fourth term of [24] is 
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∫ −2𝑡 ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) 𝑑𝐷 . [37] 

Let 𝑓 = ln (1 −
(𝜀+2𝑡)(1−𝐷)

𝜀(1−𝐷)+𝐷
) and 𝑔′ = 1. From [27 and 28], we know that 

𝑓′ =
𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
 , 

and so integrating by parts 

∫ 𝑓 𝑔′ = 𝑓 𝑔 − ∫ 𝑓′𝑔

= ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) 𝐷 − ∫

𝜀 + 2𝑡

(𝜀(1 − 𝐷) + 𝐷)((1 + 2𝑡)𝐷 − 2𝑡)
𝐷 𝑑𝐷

= ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) 𝐷 −

2𝑡 ln((1 + 2𝑡)𝐷 − 2𝑡)

1 + 2𝑡

−
𝜀 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
+ 𝑐 , 

[38] 

where, in the last step, I used the result of [30]. Finally, putting [38] to [37] we get the fourth term of [24]  

−2𝑡 ∫ 𝑓 𝑔′ = −2𝑡 (ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) 𝐷 −

2𝑡 ln((1 + 2𝑡)𝐷 − 2𝑡)

1 + 2𝑡

−
𝜀 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
) + 𝑐 . 

[39] 

The fifth (combined) term of [24] comes trivially. The sixth term of [24] is also obvious from [14] 

∫
𝜀(𝜀 + 2𝑡)

𝜀(1 − 𝐷) + 𝐷
𝑑𝐷 =

𝜀(𝜀 + 2𝑡) ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
+ 𝑐 . [40] 

Gathering all terms from first to sixth (writing [25], [26], [36], [39], the trivial fifth term, and 

[40] into [24], respectively), the outer definite integral becomes 



214 

Data Science in Finance and Economics  Volume 4, Issue 2, 188–217. 

[(𝐷 + ln(1 − 𝐷))(𝑚 + ln(1 − 𝑚)) + (𝜀 + 2𝑡)𝐷 −
𝜀(𝜀 + 2𝑡) ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀

+ ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) (−𝐷 − ln(1 − 𝐷)) +

2𝑡 ln((1 + 2𝑡)𝐷 − 2𝑡)

1 + 2𝑡

+
𝜀 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
+ ln(1 − 𝐷) ln(1 − (1 + 2𝑡)(1 − 𝐷))

+ Li2((1 + 2𝑡)(1 − 𝐷)) − ln(1 − 𝐷) ln(1 − (1 − 𝜀)(1 − 𝐷))

− Li2((1 − 𝜀)(1 − 𝐷))

− 2𝑡 (ln (1 −
(𝜀 + 2𝑡)(1 − 𝐷)

𝜀(1 − 𝐷) + 𝐷
) 𝐷 −

2𝑡 ln((1 + 2𝑡)𝐷 − 2𝑡)

1 + 2𝑡

−
𝜀 ln((1 − 𝜀)𝐷 + 𝜀)

1 − 𝜀
) + (2𝑡 ln(1 − 𝑚) − 𝜀𝑚)𝐷

+
𝜀(𝜀 + 2𝑡) ln(𝜀(1 − 𝐷) + 𝐷)

1 − 𝜀
]

𝑎

𝑑

 , 

[41] 

where 𝑎 =
𝜀(1−𝑚)+2𝑡

𝜀(1−𝑚)+𝑚+2𝑡
 . Since 𝛿 and 𝜇 may truncate this set, the general formula for 𝛿 ≥ 0 and 

𝜇 ≥ 0 is 

[41] − [41 with 𝑑 ≔ 𝛿 if 𝛿 >
𝜀(1 − 𝑚) + 2𝑡

𝜀(1 − 𝑚) + 𝑚 + 2𝑡
 ]

− [41 with 𝑚 ≔ 𝜇 if 𝜇 >
(𝜀 + 2𝑡)(1 − 𝑑)

𝜀(1 − 𝑑) + 𝑑
]

+ [41 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
𝜀(1 − 𝜇) + 2𝑡

𝜀(1 − 𝜇) + 𝜇 + 2𝑡
 and 𝜇

>
(𝜀 + 2𝑡)(1 − 𝛿)

𝜀(1 − 𝛿) + 𝛿
] . 

[42] 

If 𝑒 <
𝑑𝑚 − 2(1 − 𝑑)𝑡

(1 − 𝑑)(1 − 𝑚)
 

In this case, the object part above 𝑒 is to be subtracted, and so the alarm set is [42] – [42 with 

𝜀 ≔ 𝑒]. 

D. 𝐈𝐏𝐑(𝐒)𝐢 =
𝑫𝑴

𝟏−𝑫−𝑴
≥ 𝒕  

The alarm set is non-empty if 
𝑑𝑚

1−𝑑−𝑚
> 𝑡 or 1 − 𝑑 − 𝑚 < 0. 
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If 
𝑑𝑚

1 − 𝑑 − 𝑚
> 𝑡  

The alarm set is (using rearranged forms of alarm condition, 𝐷 >
𝑡(1−𝑀)

𝑡+𝑀
, 𝑀 >

𝑡(1−𝐷)

𝑡+𝐷
 ) 

∫ ∫ 1
𝑚

𝑡(1−𝐷)
𝑡+𝐷

𝑑

𝑡(1−𝑚)
𝑡+𝑚

𝑑𝑀 𝑑𝐷 = ∫ (𝑚 −
𝑡(1 − 𝐷)

𝑡 + 𝐷
)

𝑑

𝑡(1−𝑚)
𝑡+𝑚

𝑑𝐷

= [𝑚𝐷 − 𝑡 ln(𝑡 + 𝐷) + 𝑡(𝐷 − 𝑡 ln(𝑡 + 𝐷))]𝑡(1−𝑚)
𝑡+𝑚

𝑑

= [(𝑚 + 𝑡)𝐷 − (𝑡 + 𝑡2) ln(𝑡 + 𝐷)]𝑡(1−𝑚)
𝑡+𝑚

𝑑

= (𝑚 + 𝑡)𝑑 − (𝑡 + 𝑡2) ln(𝑡 + 𝑑) − 𝑡(1 − 𝑚) + (𝑡 + 𝑡2) ln (𝑡 +
𝑡(1 − 𝑚)

𝑡 + 𝑚
)

= (𝑚 + 𝑡)𝑑 − 𝑡(1 − 𝑚) + (𝑡 + 𝑡2) ln (
𝑡 + 𝑡2

(𝑡 + 𝑑)(𝑡 + 𝑚)
) . 

[43] 

Since 𝛿 and 𝜇 may truncate this set, the general formula for 𝛿 ≥ 0 and 𝜇 ≥ 0 is 

[43] − [43 with 𝑑 ≔ 𝛿 if 𝛿 >
𝑡(1 − 𝑚)

𝑡 + 𝑚
 ] − [43 with 𝑚 ≔ 𝜇 if 𝜇 >

𝑡(1 − 𝑑)

𝑡 + 𝑑
]

+ [43 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
𝑡(1 − 𝜇)

𝑡 + 𝜇
 and 𝜇 >

𝑡(1 − 𝛿)

𝑡 + 𝛿
] . 

[44] 

If 1 − 𝑑 − 𝑚 < 0  

The overhanging part of the object is 

(𝑑 − (1 − 𝑚))(𝑚 − (1 − 𝑑))

2
 , 

which is to be subtracted from [44] to get the alarm set. 

E. 𝐈𝐏𝐑(𝐇) =
𝑫𝑴

𝟐(𝟏−𝑫)
≥ 𝒕  

The alarm set, which is non-empty if 
𝑑𝑚

2(1−𝑑)
> 𝑡, is (using rearranged forms of alarm condition, 

𝐷 >
2𝑡

2𝑡+𝑀
 , 𝑀 >

2𝑡(1−𝐷)

𝐷
 ) 

∫ ∫ 1
𝑚

2𝑡(1−𝐷)
𝐷

𝑑

2𝑡
2𝑡+𝑚

𝑑𝑀 𝑑𝐷 = ∫ (𝑚 −
2𝑡(1 − 𝐷)

𝐷
)

𝑑

2𝑡
2𝑡+𝑚

𝑑𝐷 = [𝑚𝐷 − 2𝑡 ln 𝐷 + 2𝑡𝐷] 2𝑡
2𝑡+𝑚

𝑑

= 𝑚𝑑 − 2𝑡 ln 𝑑 + 2𝑡𝑑 −
2𝑡𝑚

2𝑡 + 𝑚
+ 2𝑡 ln

2𝑡

2𝑡 + 𝑚
−

4𝑡2

2𝑡 + 𝑚

= 𝑚𝑑 + 2𝑡 (ln
2𝑡

𝑑(2𝑡 + 𝑚)
+ 𝑑 − 1) . 

[45] 
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Since 𝛿 and 𝜇 may truncate this set, the general formula for 𝛿 ≥ 0 and 𝜇 ≥ 0 is 

[45] − [45 with 𝑑 ≔ 𝛿 if 𝛿 >
2𝑡

2𝑡 + 𝑚
 ] − [45 with 𝑚 ≔ 𝜇 if 𝜇 >

2𝑡(1 − 𝑑)

𝑑
]

+ [45 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
2𝑡

2𝑡 + 𝜇
 and 𝜇 >

2𝑡(1 − 𝛿)

𝛿
] . 

F. 𝐆𝐔𝐏𝐏𝐈 = 𝑫𝑴 ≥ 𝒕  

The alarm set, which is non-empty if 𝑑𝑚 > 𝑡, is (using rearranged forms of alarm condition, 

𝐷 >
𝑡

𝑚
 , 𝑀 >

𝑡

𝐷
 ) 

∫ ∫ 1
𝑚

𝑡
𝐷

𝑑

𝑡
𝑚

𝑑𝑀 𝑑𝐷 = ∫ (𝑚 −
𝑡

𝐷
)

𝑑

𝑡
𝑚

𝑑𝐷 = [𝑚𝐷 − 𝑡 ln 𝐷] 𝑡
𝑚

𝑑 = 𝑚𝑑 − 𝑡 ln 𝑑 − 𝑡 + 𝑡 ln
𝑡

𝑚

= 𝑚𝑑 + 𝑡 (ln
𝑡

𝑑𝑚
− 1) . 

[46] 

Since 𝛿 and 𝜇 may truncate this set, the general formula for 𝛿 ≥ 0 and 𝜇 ≥ 0 is 

[46] − [46 with 𝑑 ≔ 𝛿 if 𝛿 >
𝑡

𝑚
 ] − [46 with 𝑚 ≔ 𝜇 if 𝜇 >

𝑡

𝑑
]

+ [46 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
𝑡

𝜇
 and 𝜇 >

𝑡

𝛿
] . 

G. 𝐆𝐥 =
𝐆𝐔𝐏𝐏𝐈

𝟐
=

𝑫𝑴

𝟐
≥ 𝒕  

Using [46] obtained at GUPPI, the alarm set is 

𝑚𝑑 + 2𝑡 (ln
2𝑡

𝑑𝑚
− 1) [47] 

if 𝑑𝑚 > 2𝑡, else the set is empty. Since 𝛿 and 𝜇 may truncate this set, the general formula for 

𝛿 ≥ 0 and 𝜇 ≥ 0 is 

[47] − [47 with 𝑑 ≔ 𝛿 if 𝛿 >
2𝑡

𝑚
 ] − [47 with 𝑚 ≔ 𝜇 if 𝜇 >

2𝑡

𝑑
]

+ [47 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
2𝑡

𝜇
 and 𝜇 >

2𝑡

𝛿
] . 

H. 𝐆𝐢 =
𝐆𝐔𝐏𝐏𝐈

𝟏−𝑴
=

𝑫𝑴

𝟏−𝑴
≥ 𝒕  

The alarm set, which is non-empty if 
𝑑𝑚

1−𝑚
> 𝑡, is (using rearranged forms of alarm condition, 

𝐷 >
𝑡(1−𝑀)

𝑀
 , 𝑀 >

𝑡

𝑡+𝐷
 ) 
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∫ ∫ 1
𝑚

𝑡
𝑡+𝐷

𝑑

𝑡(1−𝑚)
𝑚

𝑑𝑀 𝑑𝐷 = ∫ (𝑚 −
𝑡

𝑡 + 𝐷
)

𝑑

𝑡(1−𝑚)
𝑚

𝑑𝐷 = [𝑚𝐷 − 𝑡 ln(𝑡 + 𝐷)]𝑡(1−𝑚)
𝑚

𝑑

= 𝑚𝑑 − 𝑡 ln(𝑡 + 𝑑) − 𝑡(1 − 𝑚) + 𝑡 ln (𝑡 +
𝑡(1 − 𝑚)

𝑚
)

= 𝑚𝑑 + 𝑡 (ln
𝑡

𝑚(𝑡 + 𝑑)
+ 𝑚 − 1) . 

[48] 

Since 𝛿 and 𝜇 may truncate this set, the general formula for 𝛿 ≥ 0 and 𝜇 ≥ 0 is 

[48] − [48 with 𝑑 ≔ 𝛿 if 𝛿 >
𝑡(1 − 𝑚)

𝑚
 ] − [48 with 𝑚 ≔ 𝜇 if 𝜇 >

𝑡

𝑡 + 𝑑
]

+ [48 with 𝑑 ≔ 𝛿 and 𝑚 ≔ 𝜇 if 𝛿 >
𝑡(1 − 𝜇)

𝜇
 and 𝜇 >

𝑡

𝑡 + 𝛿
] . 
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