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Abstract: In this article, we describe the novel properties of Bitcoin and green financial assets and 

empirically examine the connectedness between Bitcoin and two green financial assets (i.e., carbon 

emissions, green bonds) and two representative markets of conventional assets (i.e., oil and emerging 

stock). This study also analyzes whether Bitcoin, carbon, green bonds, oil, and emerging stock assets 

can hedge against any market turbulence. From observed findings, Bitcoin was not an effective 

substitute for green bond assets. Thus, Bitcoin is not a valuable hedge instrument to substitute green 

bonds to mitigate climate risks. More precisely, the findings of the study show that carbon assets 

outperform emerging stock assets amidst the COVID-19 crisis, while the stock markets incurred 

significant losses. Crucially, the innovative findings also played an important role for policymakers 

interested in decarbonizing the crypto-assets.  
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1. Introduction  

Globally, cryptocurrencies have experienced vast growth and naturally attracted investors’ 

attention owing to their performance and potential diversification features (Charfeddine et al., 2020; 
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Huynh et al., 2021; Naeem et al., 2022; Chen et al. 2022). As of 5 February 2024, the total market cap 

of all crypto-assets including stablecoins and tokens reached approximately $1.63 trillion, and Bitcoin 

is the most traded crypto, accounting for 51.9% of the total market cap, nearing $846.49 billion (refer 

to CoinMarketCap; https://coinmarketcap.com/). While the Bitcoin (BTC) transaction volumes have 

increased, competition on the network has also risen. Energy-intensive cryptocurrency mining 

validates blockchains and pays miners, making it more complicated to estimate energy usage (Arfaoui, 

Naeem, Boubaker, Mirza, Karim, 2023). 

According to a report released by the Cambridge Centre for Alternative Finance (CCAF), 

Bitcoin’s current energy usage is about 110 terawatt-hours (TWh) yearly, which is estimated to be 

around 0.55% of global energy generation. The carbon footprint of all Bitcoin transactions in a year is 

comparable to 97.14 million tons of carbon dioxide emissions; see Carter (2021). In addition, the 

Bitcoin Energy Consumption Index constructed by Digiconomist demonstrates that one Bitcoin trade 

is equivalent to the electricity consumption of a common American household for 53 days (Pan et al., 

2023). Major environmental concerns surrounding Bitcoin (BTC) mining have intensified 

sustainability-aware investors’ dilemma to achieve the economic payoff of Bitcoin versus adopting 

financial backing to the green bonds’ philosophy (Bariviera and Merediz-Solà, 2021).  

In this spirit, the rapid increase of the potential environmental impacts associated with crypto 

results in global investors concentrating more on inclusive green growth investments to diversify the 

climate risk of crypto (Naeem and Karim, 2021). The rising of carbon emissions has quickened 

contemporary global warming, leading to destructive impacts on all life (Uddin et al., 2018). 

Accordingly, a large body of literature has emerged to tackle environmental issues, and sustainable 

actions have been undertaken by industry, government, and academia to decrease carbon emissions as 

well as fossil fuel usage to avoid global climate catastrophe (Southworth, 2009; Iqbal et al., 2022; 

Naeem et al., 2021). Noteworthily, the world economy and climate change are symbolized as volatile 

and uncertain conditions for portfolio investment. Prior literature concludes the argument and almost 

always considers major financial backing from green bonds or eco-friendly stocks to be a good 

substitute for clean energy or renewable energy stocks (Naeem and Karim, 2021; Sharma et al., 2023).  

The potential interconnection between Bitcoin futures and other financial asset classes provides 

valuable and practical insights for investors since this interconnectedness can impact the investment 

decisions of market participants (Ji et al., 2019; Bouri et al., 2020; Gonzalez et al., 2021, Li et al., 2023, 

among others). If Bitcoin and cryptocurrencies are highly connected to other financial assets such as 

green bonds, carbon emissions, crude oil, and conventional stock prices, market participants then can 

develop a style of portfolio including a long position in green bonds and a short position in the 

cryptocurrencies to hedge overall portfolio risk exposure. Alternatively, in case a weak association 

exists, incorporating a long position in a crypto-asset in a well-designed portfolio will be broadly 

diversified from risky assets to safe-haven assets, leading to improving the risk of reward ratio (e.g., 

Baur et al., 2010). Especially, during turbulent market periods, if there are low and stable correlations 

among assets, then Bitcoin can play a safe-haven role for market participants by allocating part of their 

wealth to cryptocurrencies until the economic turmoil is over (Conlon et al., 2020; Zeng et al., 2020). 

Accordingly, three problems naturally appear themselves:  

Contextualizing the above consideration of these issues, this study intends to respond to the 

following research questions:  

1.Which direction of volatility interlinkages occur among the five asset classes studied in this paper, 

especially focusing on crypto connectedness within green financial (i.e., green bonds, carbon) assets? 

https://coinmarketcap.com/
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2. What is the crypto connectedness among green bonds, carbon, energy, and the crypto-markets 

in various time frequencies, such as short, medium, and long? 

3. Do these considered assets offer the potentiality of investment diversification possibilities based 

on considered assets?  

To answer these questions, we investigate the dynamic connectedness between Bitcoin, green 

financial assets, oil, and emerging stock markets by using the dynamic conditional correlation (DCC) 

-GJR-GARCH-based connectedness approach developed by Cappiello (2006). The present work 

employs the DCC-GJR-GARCH model under the DCC process to measure both the optimal portfolio 

weights and the optimal hedging ratios (Kroner & Sultan, 1993; Kroner & Ng, 1998) for these assets. 

In addition, to better understand the structure in terms of volatility spillover impacts among these assets, 

this study utilizes the wavelet coherence analysis introduced by Torrence and Compo (1998) to 

visualize the volatility spillover based on wavelet spectrum (or scalogram). 

Particularly, the findings of the study show that carbon assets outperformed emerging stock assets 

amidst the COVID-19 crisis, while the stock markets incurred significant losses. Several factors can 

be explained for the outperformance during the epidemic phase. For instance, (i) there is an 

accelerating demand for carbon assets. (ii) Since carbon assets offer environmental benefits of 

emission reduction, responsible investors may have consistent expectations of rising interest in this 

instrument of offsetting carbon footprint. 

Specifically, concerning contribution to green finance-related literature, this paper ultimately 

extends prior research in several ways as follows. 

First, unlike previous literature, this study relates the subject of green finance with Bitcoin’s 

emissions, oil, and emerging stock prices and has awakened the attention of crypto-portfolios. 

Particularly, it seeks to identify the potential connectedness of Bitcoin to green finance, carbon oil, and 

emerging stock prices. As a result, such a portfolio analysis may be useful in guiding us to draw 

innovative results and key implications in terms of green finance in the post-COVID-19 era. Second, 

Bitcoin is not a valuable hedge for green bond assets, suggesting that Bitcoin is an inappropriate 

substitute for green bonds in the role of decreasing the risk of climate change. Third, the innovative 

findings also play an important role for policymakers interested in decarbonizing crypto-assets, thereby 

directing crypto technology usage toward activities dedicated to climate change mitigation. 

To the best of our knowledge, this is a pioneering study to investigate the volatility linkages 

between sustainable finance, oil, and emerging stock markets and analyze whether the hedging 

strategies allocating Bitcoin and these financial assets considerably decrease portfolio risk. 

The remainder of the paper is organized as follows. Section 2 provides a related studies review. 

Section 3 is dedicated to the methodology and econometric model. Section 4 elaborates on the data 

sources and the main empirical results. Section 5 outlines the main conclusions and economic implications. 

2. Review of related studies  

Green finance is defined as an extensive term that includes carbon finance to boost carbon 

emissions reductions, sustainable finance for socially inclusive green initiatives, and climate finance 

to mitigate climate change (Yan et al., 2022; Nguyen et al., 2021; Flammer 2020; Reboredo 2018). 

Broadly speaking of financial products, green bonds (GBs, hereafter) were first issued in 2007 by the 

European Investment Bank (EIB). Following the release of sustainable development goals (SDGs), 

green finance thereby had a significant boost after 2015 (Nedopil Wang et al., 2022), attracting 
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widespread attention of investors, scholars, and policymakers. Prior literature describes the time-

varying spillovers between Bitcoin and energy-relevant investments and suggests the potential of 

Bitcoin as a hedger and diversifier for financing conventional energy projects. (Okorie and Lin, 2020; 

Okorie 2021; Hou et al., 2022; Ghabri et al., 2022). Likewise, Qi and Zhang (2022) predominantly 

detected strong bidirectional spillovers between GBs and traditional bonds. Furthermore, in extant 

studies on the general spillover effect issue, a substantial body of financial literature documents 

asymmetric volatility spillovers among GBs and emerging markets, such as Wei et al. (1995), Beirne 

et al. (2013), Qi et al. (2022), and Qian et al. (2023a, 2023b). The empirical results also indicate 

substantial interaction between the GBs and stock markets. Moreover, regarding the diversification 

role of GB markets, Reboredo (2018) noted that investors in the energy and equity markets may 

potentially benefit from diversification through GB markets.  

Despite a large body of studies that have investigated the intercorrelation between Bitcoin and 

conventional energy-related assets, only a few studies published to date have discovered the 

interconnection between Bitcoin and ESG-related assets or environmentally friendly investing. Corbet 

et al. (2021) reported no evidence that Bitcoin price has a positive impact on green ETFs or carbon 

credit, suggesting that only energy firms obtain benefits from Bitcoin’s miners for energy consumption. 

There is weak relatedness between green financial assets and Bitcoin, indicating that green bonds and 

clean energy stocks can provide hedging or diversification benefits for crypto investing (e.g., Naeem 

and Karim, 2021; Ren et al., 2022; Chen et al. 2024). Yang and Hamori (2021) and Pham et al. (2022) 

further demonstrated evidence of an asymmetric tail relationship between carbon credit and 

cryptocurrency markets. Analyzing this dependence is crucial for investors who are searching for 

methods to hedge against climate risk in crypto investment.  

Subsequently, while a strand of literature has used time-varying parameter vector autoregressive 

(TVP-VAR) approach developed by Diebold and Yilaz (2014) to investigate the connectedness 

between green bonds and varied financial markets, e.g. Attarzadeh and Balcilar (2022); Yadav et al. 

(2022) among others. The studies on incorporating blockchain-based crypto assets are still limited to 

a few studies and are in their early stages but rapidly expanding (Arfaoui et al., 2023). Therefore, this 

research seeks to bridge the gap by exploring volatility spillover from crypto to the energy and green 

bond market. The current article intends to add value to the studies by using dynamic conditional 

correlation (DCC) and wavelet coherence approaches to examine volatility spillover in the 

cryptocurrency, energy markets, and green bonds. 

3. Methodology and data 

3.1. The econometric model  

As our major purpose is to discover the correlations in the one-to-one relationships between the 

pair assets’ returns, thereby we use a representative bivariate model. Then, the bivariate DCC-GARCH 

model can be written mathematically: 

𝑟𝑖,𝑡= 𝑢𝑖,𝑡 + 𝜀𝑖,𝑡                               (1) 

Where 𝑟𝑖,𝑡 , 𝑢𝑖,𝑡, and 𝜀𝑖,𝑡 = 𝐻𝑖,𝑡
1/2
 𝑧𝑖,𝑡 denote the 2 × 1 vector of asset returns, conditional returns, and 

the residuals, respectively. 𝑧𝑖,𝑡 refers to a 2×1 vector of i.i.d. errors. 
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 𝑯𝑡 = √𝑫𝑡𝑨𝑡√𝑫𝑡
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)𝑸𝑡 𝑑𝑖𝑎𝑔(
1

√𝑞1,1,𝑡

,
1

√𝑞2,2,𝑡

)

}
 
 

 
 

                  (2) 

where 𝑯𝑡 is defined as the variance-covariance matrix. 𝑫𝑡 are the diagonal conditional variances. 

𝑨𝒕 refers to the conditional correlation matrix. 𝑄𝑡 represents a symmetric positive definite matrix is 

defined as follows. 

𝑸𝑡 = [
𝑞1,1,𝑡 𝑞1,2,𝑡
𝑞
2,1,𝑡

𝑞2,2,𝑡
] 

In addition, introducing Engle (2002), we specify 𝑄𝑡 as the following equation. 

 (3) 

where 𝑸̅  denotes the 2× 2 unconditional matrices composed by the standardized residuals 𝑧𝑖,𝑡 . 

Parameters 𝑎  and 𝑏  are non-negative, and the DCC process signifies mean-reverting in 

consideration of 𝑎 + 𝑏< 1. The correlation estimator is then given by 

𝝆1,2,𝑡 =
𝒒1,2,𝑡

√𝒒1,1,𝑡√𝒒2,2,𝑡
                             (4) 

To analyze the asymmetric effect of positive and negative shocks on volatility, the asymmetric (A-

DCC) approach was introduced by Cappiello et al. (2006), and they modified the conditional volatility 

model as follows. 

ℎ𝑖,𝑡 = 𝜔𝑖,0+𝛼𝑖,𝑖 𝜀𝑖,𝑡−1
2  + 𝛽𝑖  ℎ𝑖,𝑡−1 + 𝛾𝑖𝐼𝑡−1 𝜀𝑖,𝑡−1

2                        (5) 

𝐼𝑡−1 = {
1 
0
 
if 𝜀𝑖,𝑡−1 < 0 

if  𝜀𝑖,𝑡−1 > 0
 

where 𝐼𝑡−1 is the indicator function. Thus, a positive value for 𝛾 denotes that negative residuals tend 

to increase volatility more than positive residuals and then captures the “asymmetric” effect. The 

estimates of the model parameters can be calculated by applying the Quasi-Maximum Likelihood 

(QML) approach, and the log-likelihood estimation is expressed as follows:  

𝑙𝑜𝑔𝐿 = ∑ −
1

2
(𝑛 ln 𝜋 + ln(𝑑𝑒𝑡 𝐻𝑡) + 𝑢𝑡𝐻𝑡

−1𝑢𝑡
𝑇) 𝑇

𝑡=1                (6) 

where 𝑑𝑒𝑡 is the determinant of 𝐻𝑡. The definition of residuals 𝑢𝑡 also extends the joint distribution 

of conventional DCC introduced by Engle (2002).  

3.2. Asset allocation models  

Assume that 𝒘 = (𝒘𝟏, ⋯ ,𝒘𝑵)
𝑻 represents the weights of the assets in the portfolio. In what 

follows, 𝒘 ∈ 𝑾 :={𝑤 ∈ ℝ𝑵|𝒘𝒊 ≥ 0,𝒘𝑻𝟏 = 𝟏}, which indicates that the short-selling scenario is not 

considered here. In this note, this constraint is set only to describe a practical method for quantifying 

the common limitation with short-selling financial assets or cryptocurrency. This serves, as the 

approaches proposed in this paper are equally suitable for settings that allow it. 

𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑸̅ + 𝑎𝑧𝑡−1𝑧𝑡−1
𝑇 + 𝑏𝑄𝒕−𝟏 

https://www.sciencedirect.com/science/article/pii/S1057521919302224?casa_token=VQvvfqX5jJwAAAAA:G2jm47_CQ96C8mwswIL3Gkd7LyzIi36ecEzuQUEWHnB8PTkZT0erPhyASaajAkF5-fbt_kQZ679U#bb0200
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3.2.1. Minimum-variance portfolio 

As proposed by Markowitz (1952), mean-variance portfolio optimization is considered under the 

assumption of normality for the returns. The weights can be achieved by solving the optimization 

problem as follows:  

 argmin
𝑤

 𝒘𝑻𝚺𝐰                                (7) 

subject to 

𝒘𝑻𝟏 = 𝟏  

with 𝚺 denoting the covariance matrix of the returns. 

3.2.2. Portfolios to maximize expected utility 

Subsequently, to evaluate the potential performance of Bitcoin and other assets within portfolios, 

we compare the trading strategy (max U) with three benchmark trading strategies: holding Bitcoin only, 

holding other assets only (carbon emission…), and the well-known equal-weight portfolio (EQ, half- 

Bitcoin and other assets). Without loss of generality, the market participants will select the optimal 

weights (𝒘) to maximize the expected utility function based on the mean-variance optimal portfolio 

(MVO) rule. The mean-variance term and the objective function can be expressed as 

U(𝒘) = 𝒓𝒘𝑻 −
γ

2
𝒘𝑯̂𝒘𝑻                            (8) 

where 𝑟 is the momentum factor (Jegadeesh and Titman 1993), γ denotes the risk aversion coefficient, 

and 𝐻̂ is the estimation of variance-covariance matrices through the preceding DCC-GJR model.  

3.2.3. Equally weighted portfolio  

The naïve portfolio can be written as 𝒘 = (
𝟏

𝑵
, ⋯ ,

𝟏

𝑵
)
𝑻
.This portfolio requires no assumptions or 

estimates and is equally weighted.  

3.3. Wavelet coherence analysis 

To identify the dynamic linkages or spillover of Bitcoin and sustainable assets classes, we conduct 

the approach of wavelet coherence as follows: 

The wavelet coherency proposed by Torrence and Compo (1998) takes the co-movement between 

two-time series, x(t) and y(t), into account in the time-frequency domain. The cross‐wavelet transform 

of x(t)and y(t) is shown mathematically as follows: 

𝑊𝑥,𝑦(𝑢, 𝑠) = 𝑊𝑥(𝑢, 𝑠)𝑊𝑦∗(𝑢, 𝑠)                       (9)  

where u and s refer to the scale and position index, respectively. * represents the complex conjugate. 

The squared wavelet coherence between x(t) and y(t) recognizes significant co-movement through 

cross‐wavelet power series at a given time scale, which can be written as  

𝑅2(𝑢, 𝑠) =
⌈𝑆(𝑠−1𝑊𝑥,𝑦(𝑢,𝑠))⌉

2

𝑆(𝑠−1|𝑊𝑥(𝑢,𝑠)|
2)𝑆(𝑠−1|𝑊𝑦(𝑢,𝑠)|

2
)
                     (10)  

https://www.sciencedirect.com/science/article/pii/S2405918823000132#bib22
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where 𝑆(.) is a smoothing operator and 𝑠 represents a wavelet scale, with 𝑅2(𝑢, 𝑠) between 0 and 

1, reflecting the localized correlation in a time‐frequency domain in the squared specification (Mensi 

et al., 2020; Rubbaniy et al., 2021; Goodell et al., 2022). Since 𝑅2( , ) is accompanied by limited 

positive values, the wavelet coherence phase difference is applied to identify the direction 

(positive/negative) of co-movements between pairs. The wavelet coherence phase formulation 

between two-time series can be written as follows mathematically:  

𝜌𝑥,𝑦(𝑢, 𝑠) = tan
−1 (

𝑙𝑚[𝑆(𝑠−1𝑊𝑥,𝑦(𝑢,𝑠))]

𝑅𝑒[𝑆(𝑠−1𝑊𝑥,𝑦(𝑢,𝑠))]
)                    (11) 

where lm and Re depict the imaginary smoothing component and the real component of the smoothing 

operators, respectively. (Rubbaniy et al., 2021; Anwer et al., 2023).  

3.4. Data and sample 

Daily data for the largest cryptocurrency (Bitcoin) as well as financial assets including green 

bonds, carbon emission, and Brent oil futures prices were extracted from investing.com 

(https://www.investing.com/commodities/). The datasets used were collected from investing.com, 

which is one of the top three global financial websites and a financial markets platform providing real-

time data. The data used in Bitcoin futures is based on the Chicago Mercantile Exchange (CME) Group. 

In addition, we chose December 12, 2017, as the starting point of our research because statistical data 

on Bitcoin futures trading in the CME have been collected since December 10, 2017, when Bitcoin 

futures trading began on the Chicago Board of Exchange (CBOE) exchange. Among the prominent 

asset classes, the Dow Jones Emerging Markets Index is a close proxy of conventional stock markets, 

and carbon asset is proxied by carbon emissions (allowance) futures under this study. Where carbon 

emission (allowance) futures stand for carbon emissions and carbon assets (briefly denoted as Carbon in 

figures and tables). To do so, the data for the Dow Jones Emerging Markets Index (DJEMI) is retrieved 

from the S&P Dow Jones Indices LLC’s data (www.spglobal.com/spdji/en/). The DJEMI is developed 

to measure 95% of the market cap that covers stocks traded in emerging markets. The natural logarithm 

returns,𝑅𝑖,𝑡 = 𝑙𝑛 (
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
) × 100 , is then estimated for the period from 11/12/2017 to 30/4/2023, 

i=Bitcoin, other assets, where 𝑅𝑖,𝑡 is the return series of assets i at time t. The profile data includes 

6,900 observations. 

4. Empirical application and portfolio analysis 

As depicted in Figure 1, a similar empirical stylized fact can also be observed from each asset’s 

return. It is noteworthy that Bitcoin returns are more volatile compared to other assets. In contrast, the 

green bond is less volatile than other assets and is a more stable one. The yellow (bold) lines exhibit 

the considerable volatility jump risk, and all asset returns are significantly affected by shocks from the 

first wave of the COVID-19 outbreak that occurred in February 2020. 
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Figure 1. Time series for each financial asset’s returns. 
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Figure 1. Time series for each financial asset’s returns. 

Notes: 

The top panel illustrates the daily logarithmic returns (𝑅𝑡) of Bitcoin futures.  

The second panel plots the daily logarithmic returns (𝑅𝑡) of carbon emission futures . 

The third panel illustrates the daily logarithmic returns (𝑅𝑡) of S & P Green Bond . 

The fourth panel plots the daily logarithmic returns (𝑅𝑡) of Brent oil futures. 

The last panel illustrates the daily logarithmic returns (𝑅𝑡) of emerging stock market𝑠 . 

4.1. Evidence of dynamic conditional correlations and volatility spillovers  

In terms of the estimates of variance–covariance equations in the DCC-GARCH model, the own 

conditional ARCH (𝛼11,𝛼22) and GARCH (𝛽11,𝛽22) effects can measure the dependence of short and 

long-term persistence, correspondingly. As shown in Table 1, the results report that patterns could be 

very generally observed among Bitcoin and financial assets. Unsurprisingly, our empirical results show 

stronger long-term persistence of own volatility than short-run persistence. These highly significant 

coefficients are present in most cases exactly. These findings are in line with the results of Hatem et 

al. (2022). The values of parameters (𝛽11,𝛽22) for Bitcoin against carbon asset are 0.8608 and 0.7848, 

Stock                                                                                           

Oil                                                                            
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other portfolio is 0.8434, 0.9027 for the BTC/GB, and equal 0.8625, 0.8511 for the BTC/oil, 

respectively. The volatility sensitivity to own lagged conditional variance specification in the GARCH 

terms reports on statistical significance results for all Bitcoin vs. financial assets series at the 1% level. 

Turning out to the findings of time-varying characteristics are reported in Table 1 for the pairs of 

Bitcoin/ other assets. The dynamic connectedness is positive and varies considerably over time for all 

asset pairs (except for DCC a of BTC-carbon, GB, and carbon/emerging), then showing similar 

evidence to Canh et al. (2019) and Wang et al. (2019). Likewise, the estimates of the DCC parameters 

(a and b) are meaningful as mass coefficients and report along with their statistical significance in most 

cases. For short-run persistence of the shock on the DCC, we observe the highest for BTC/Stock at 

0.0537, while the greatest long-term shock persistence to the DCC is 0.98 for BTC/GB. 

Regarding the hedge and diversifier properties of representative crypto, a Bitcoin asset is referred 

to as a hedge asset that is negatively correlated or uncorrelated with another asset. To put it another 

way, a hedge requires no correlation or a negative correlation between two assets on average; see Baur 

et al. (2010). A diversifier is an asset that has a positive (non-perfectly) correlation with another asset 

or portfolio on average; see Baur et al. (2010). As depicted in Table 1, dcc 𝑎 corresponds to parameter 

𝑎  (equation 3), dcc b corresponds to parameter b, and dcc1_2 corresponds to the parameter 𝝆1,2 

(equation 4). In addition, the parameters of conditional correlations between Bitcoin, carbon, and GB 

assets are positively weak (dcc1_2 = 0.042, for Bitcoin/carbon and dcc1_2 = 0.056 for Bitcoin/GB) 

estimated at the 5% significance level. This is evidenced in coincidence with the existence of the 

interlinkages or spillover effects among Bitcoin and green financial (i.e., carbon and GB) assets. As a 

result, we offer the interpretation that Bitcoin is an unsuitable hedge instrument to substitute green 

bonds in the role of decreasing the risk of climate change owing to the presence of the interlinkage 

effects between crypto and green financial (i.e., green bonds, carbon) assets.  

To investigate the asymmetric responses in the connectedness of Bitcoin shocks, Table 1 depicts 

the coefficient 𝛾𝑖,𝑖, and the results in most examined assets support the asymmetric movements, except 

for BTC/emerging and GB/emerging pairs. Additionally, to visualize the news impact curve (NIC) for 

the DCC-GJR-GARCH model, its graphs are generalized to the “news impact curve (NIC)” (Engle 

and Ng 1993). As observed in Figure 2, the NICs capture the asymmetric response to volatility news 

because the non-Bitcoin curves are plotted with a bit steeper slope on their negative side relative to the 

positive side. Briefly, the aforementioned news impact curves can be representative of the asymmetric 

or leverage effect by accessing either the center of the news impact curve located at a point where 

 𝜀𝑡−1 is positive or both sides of the slope of the news impact curve to distinguish. The NICs created 

for the GJR-GARCH model (Figure 2) also confirm our findings that a negative shock has the potential 

to enhance the volatility of returns by a bit steeper than a positive shock, except in the Bitcoin - 

emerging stock asset pairs (Figure 2d). Summarizing all, news impact curves in the six diagrams are 

similar to their trends across the examined assets.  

4.2. Illustration of assets’ allocation  

Subsequently, considering the optimal portfolio construction and hedging ratios in the existence 

of Bitcoin assets, the average portfolio weights suggest the optimal weights of Bitcoin and other assets 

for the risk-minimizing hedging strategies without reducing the expected returns. Regarding portfolio 

risk hedging strategies matters, Table 2 reports the average optimal weights and hedge ratios for the 

pairs of BTC / other assets during the sample periods, respectively. With the results calculated from 

these assets’ portfolios, the average optimal weights are 0.6888, 0.9977, 0.7657, and 0.98488 for 

BTC/carbon, BTC/GB, BTC/oil, and BTC/Stock assets’ portfolios, respectively. The observed findings 
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depict that the optimal weight is 0.6888 for the pair of BTC / carbon emission, suggesting that for a 

$100 portfolio of BTC - carbon emission, investors should invest $68.88 in Bitcoin and then keep 

$31.12 in carbon emission futures.  

For 100 dollars of the BTC-Stock portfolio, market participants may distribute $98.48 in Bitcoin 

with the remainder of $1.52 invested in emerging stock. Considering non-short selling constraints 

activity, these weight optimizations appear to have lower positions in terms of emerging stocks held 

(positions), suggesting that market participants should allocate low weight to emerging stocks in all 

BTC/assets portfolios. Overall, Khaki (2023) also documented that the leading crypto (Bitcoin) should 

outweigh the other centralized cryptocurrencies based on portfolio weight optimization. 

As shown in Table 2, the BTC/carbon portfolio reports an average hedge ratio of 0.065, which 

signifies that a long position (buying) of one dollar of Bitcoin could be hedged by a short position 

(selling) of 6.5 cents in carbon emission futures. In other cases, similarly, a long position of one dollar 

of Bitcoin requires investors to go short with the average hedge ratio of 0.23, which should be hedged 

by a short position of 23 cents in oil futures. The hedge ratios have low values apart from green bonds, 

indicating a highly effective hedge in the considered assets. However, a long position (buying) of one 

dollar of Bitcoin with an average hedge ratio of 0.837, could be hedged by a short position of 83.7 

cents on green bonds. There is a high value (0.837) of the hedge ratio in this BTC-GB portfolio pair. 

According to the observed findings, Bitcoin is not a valuable hedge to substitute green bonds in the role 

of decreasing the risk of climate change. Notably, these assets’ portfolios have above-zero hedge ratios.  

4.3. Application and interpretation of wavelet coherence (WC) analysis  

To distinguish the significant role of the dynamic linkages or spillover among these assets, we 

focus on the DCC and optimal weights for each portfolio. Subsequently, we study the time-scale co-

movement of Bitcoin, carbon, green bonds, oil, and emerging stock in bivariate settings using wavelet 

coherence analysis. The time-scale wavelet coherence degree, spectral quantities computed for levels, 

are captured by a color spectrum, with the navy-blue rectangles implying low coherence levels. The 

red/pale-red rectangles exhibit medium coherence, and pale-blue zones indicate high coherence. 

As shown in Figure 3a, the BTC-Carbon pair shows a significant co-movement at higher energies 

(frequencies) in 2020 and 2022.The scalogram in Figure 3a–3d shows the presence of weak coherence 

in the medium scale, as depicted by a preponderance of red zones. Accordingly, where weak inter-

linkage is recognized, Bitcoin is found to lead carbon asset. In the case of other asset pairs, Bitcoin is 

leading oil and emerging stock markets. Figure 3b reports that higher energies occur at the lower levels 

in the Bitcoin-Green asset pair. 
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Table 1. Estimates of DCC-GJR-GARCH model among pairs of Bitcoin vs financial assets. 

Information 

Criteria 

HQC. 

AIC. 

  

 

−15961.5 

−15986.9 

  

 

−21465.7 

−21491.0 

     

 

−16513.1           

−16538.6 

    

 

−18892.6 

−18917.8 

  

 

−20126.3 

−20151.5 

 

 

−26135.4        

      −26160.6 

SBC  −15918.9  −21423.4      −16470.6  −18850.1  −20083.8 −26092.2 

log likelihood    8006.451  10758.51       8282.29   9472.03  10088.87       13093.4 

Notes: 

1. * and † are significant at the 1% and 5% levels, respectively.  

2. HQC, AIC, and SBC denote Hannan-Quinn criterion, Akaike information criterion, and Schwarz Bayesian criterion, respectively.  

 

 BTC/ Carbon BTC/ Green Bond BTC/ Oil BTC/Stock Carbon/Stock Green Bond /Stock 

Parameter Estimate t-Value Pr > |t| Estimate t- Value Pr > |t| Estimate t-Value Pr > |t| Estimate t-Value Pr > |t| Estimate t-Value Pr > |t| Estimate t-Value Pr > |t| 

dcc a 0.0219  1.17 0.2431 0.0002 0.05 0.9565 0.0157 1.740 0.0828 0.0537* 5.55 0.0001 0.0062 1.64 0.1092 0.0331* 2.65 0.0081 

dcc b 0.8828 * 5.92 0.0001 0.9898* 17.65 0.0001 0.9617* 36.84 0.0001 0.9462* 95.84 0.0001 0.9814* 105.09 0.0001 0.9179* 27.38 0.0001 

dcc1_2 0.0423 1.30 0.1947 0.0565† 2.05 0.0408 0.1162* 2.660 0.0080 0.9201* 41.78 0.0001 0.1406* 3.31 0.0010 0.0276* 6.83 0.0001 

      𝑤11  0.0001 * 3.47 0.0005 0.0001* 3.50 0.0005 0.0001* 3.550 0.0004 0.0001 4.04 0.0001 0.0007* 3.22 0.0013 0.0001* 4.21 0.0001 

𝛼11 0.0574 * 3.19 0.0015 0.0644* 3.18 0.0015 0.0580* 3.240 0.0012 0.0678* 3.14 0.0017 0.0975* 3.77 0.0002 0.0845* 4.76 0.0001 

𝛼22 0.0982 * 3.71 0.0002 0.0623* 4.09 0.0001 0.0732* 4.250 0.0001 0.0705 0.63 0.5294 0.0116 0.87 0.3863 0.0184 1.29 0.1970 

𝛾11 0.0121  0.60 0.5481 0.0150 0.67 0.5043 0.0134 0.670 0.5043 -0.0001 −0.001 0.9974 0.0357 1.09 0.2746 −0.0062 −0.38 0.7074 

𝛾22 0.0401 1.20 0.2307 0.0464† 2.41 0.0161 0.1025* 3.780 0.0002 0.0067 0.07 0.9427 0.1441* 5.31 0.0001 0.1461* 5.44 0.0001 

𝛽11 0.8608*  27.46 0.0001 0.8434* 24.02 0.0001 0.8625* 28.74 0.0001 0.8788* 37.02 0.0001 0.7925* 19.16 0.0001 0.9128* 63.67 0.0001 

𝛽22 0.7848 * 18.69 0.0001 0.9027* 59.55 0.0001 0.8511* 49.70 0.0001 0.8869* 11.61 0.0001 0.8607* 32.11 0.0001 0.8537* 33.10 0.0001 
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Figure 2. Typical volatility news impact curves for BTC and financial assets. 

 

Fig.2a                                                                            

Fig.2b                                                                            Fig.2c                                                                            

Fig.2d                                                                            
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Figure 2. Typical volatility news impact curves for BTC and financial assets. 

Notes: An illustrative plot of the news impact curve is displayed in Figure 2 and consists of the news impact curves for 

three futures portfolio pairs. It is noticed that the x axes and y axes represent daily scales. 

Table 2. Descriptive statistics for optimal weights and hedge ratios among various financial assets. 

Note: 

1. ow is the optimal portfolio weight in a fully invested, no-shorting portfolio. Following Kroner and Ng (1998), 

the risk-minimizing optimal portfolio allocation for x (e.g., Bitcoin) and y (alternative) asset is determined by 

𝑤𝑥𝑦,𝑡 =
ℎ𝑦,𝑡−ℎ𝑥𝑦,𝑡

ℎ𝑥,𝑡−2ℎ𝑥𝑦,𝑡+ℎ𝑦,𝑡
 under the condition that 𝑤𝑥𝑦,𝑡= {

0
𝑤𝑥𝑦,𝑡
1

if
if 
if

𝑤𝑥𝑦,𝑡 < 0

0 ≤ 𝑤𝑥𝑦,𝑡 ≤ 1

𝑤𝑥𝑦,𝑡 > 1
      

where 𝑤𝑥𝑦,𝑡 denotes the estimated weight of first asset x in one dollar of two-asset portfolio (x, y) at time t, and ℎ𝑥𝑦,𝑡 

refers to the conditional covariance of the two assets (x, y). Apparently, the remaining weight of the second asset y equals 

1-𝑤𝑥𝑦 in this portfolio. 

2. Hr denotes the risk-minimizing hedge ratio. To determine the risk-minimizing of the overall portfolio, the 

optimal hedge ratio of Kroner and Sultan (1993) can be formulated as 

𝛿𝑥𝑦,𝑡 =
ℎ𝑥𝑦,𝑡

ℎy,𝑡
   

 Variable Mean Std Dev Std Error Minimum Maximum Variance 

Portfolio 1:BTC–Carbon ow 0.6888 0.1135 0.0030 0.2089 0.9742 0.0129 

 Hr 0.0657 0.0873 0.0023 −0.2466 0.8279 0.0076 

Portfolio 2: BTC–Green Bond  ow 0.9977 0.0030 0.0001 0.9819 1.0008 9.2E-6 

 Hr 0.8377 0.3095 0.0084 0.3554 2.0404 0.0958 

Portfolio 3: BTC–Oil ow 0.7657 0.1655 0.0044 0.0411 1.0006 0.0274 

 Hr 0.2278 0.1606 0.0043 −0.1032 1.0080 0.0258 

Portfolio 4: BTC–Stock ow 0.9848 0.0474 0.0012 0.8332 1.2689 0.0022 

 Hr 0.6641 0.92855 0.0249 −1.6625 4.1253 0.8622 

Portfolio 5: Carbon–Stock ow 0.9237 0.0604 0.0016 0.3244 1.0027 0.0036 

 Hr 0.4199 0.1643 0.0044 0.0747 1.0682 0.0270 

Portfolio 6: Green Bond ow 0.0610 0.1142 0.0030 −0.1117 0.5494 0.0150 

–Stock Hr 0.1050 0.0647 0.0017 −0.0388 0.3718 0.0041 

Fig.2e                                                                            Fig.2f                                                                            
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Where ℎ𝑥𝑦,𝑡 is the conditional covariance between the asset pairs (x, y), and ℎ𝑦,𝑡 refers to the conditional volatility for 

the alternative asset (y) at time t. A one-dollar long position in asset Bitcoin (x) can be hedged by a corresponding short 

position in asset y (alternative asset). 

In terms of Green Bond investment considering its association with Bitcoin, weak coherence is 

identified, as represented by many blue rectangles during the COVID-19 outbreak and 2022. This lack 

of correlation evidences predominant and substantial diversification options, especially to take 

advantage of green investment opportunities to diversify against Bitcoin and to neutralize the carbon 

footprint of Bitcoin mining. 

On the whole, there appears to be a lower correlation at the low scales in Figure 3f, and the 

interaction is relatively weak. From a portfolio optimization perspective, the evidence offers 

diversification benefits, which are likely to be realized by constructing a portfolio including negatively 

or weakly interrelated assets, obtaining better risk-adjusted performance. The substantive transformation 

from strong to the weak correlation of green bond – emerging stock thereby provides a good diversification 

opportunity by involving these two asset classes in a portfolio. The low or negative connection between 

green bonds and emerging stock markets can be found across most of the investment time frames, 

these results align with Chang et al. (2023). That is likely to yield the hedging benefit of green bonds 

against the volatile emerging stock asset. Our finding is consistent with the result of Reboredo et al 

(2020), who showed the diversification benefits of green bonds with the stock market. 

In general, a closer review of these dynamic optimal weights from Figure 4 (depicted in the upper 

part of the scalogram on each figure) suggests that more Bitcoin futures are necessary to minimize the 

risk of assets. Analogous results were documented by Haffar et al. (2022) finding that Bitcoin might 

have the crucial role of stabilizing portfolio performance, for time-varying dependence on risk 

exposure. Additionally, in terms of optimal weights for each portfolio, Figure 4a–4e shows that the 

yellow (bold) zones depict the increased volatility of BTC to impact other assets in 2020 due to the 

COVID-19 crisis.  

4.4. The impacts of portfolio management performance 

As illustrated in Table 3, portfolio performances report that the naïve strategy outperforms the 

max U strategy (simulation results from equation 8), measured by the average return as well as annual 

percentage yield (APY). Furthermore, the performance of equal weighs (EQ) outperforms those 

acquired from the max U strategy based on the Sharpe ratio (an indicator of risk-adjusted return). Over 

5 years, the final wealth in the simulation that results from applying the naïve strategy is about 4.6% 

more than the final wealth in performance resulting from the use of the max U strategy. Notably, we 

could acquire the Sharpe ratio values produced by the mean–variance (positive) strategy. As depicted 

in Table 3, the carbon emission futures in portfolios 1,5 generally outperformed the other assets, and 

the values are 0.03, 12.83, and 18.54 for Sharpe Ratio, Final Wealth, and APY (%), respectively.  

To visualize the wealth paths and portfolio performances of trading strategies, Figure 5 displays 

the evolution of wealth (or portfolio value) of each trading strategy with time. Overall, Bitcoin is an 

effective hedge against other assets and a weak safe haven during the COVID-19 crisis. We also have 

evidence that carbon asset alone depicts the blue trajectories (highest solid lines) in portfolio 1 (top 

Panel) of Figure 5, outperforming all strategies before and during the COVID-19 pandemic. Thus, carbon 

futures (assets) offer more diversification benefits than other assets during the COVID-19 period. 

Additionally, in portfolio 5 of Figure 5, the black line displays the highest trajectory over the last 

few years, which suggests that the carbon portfolio outperformed the stock assets and other strategies 
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in the medium-long run. This may be driven in part by the growing investor demand for climate-risk 

matters, as evidenced by Pastor et al. (2022). 

 

 

Figure 3a. Wavelet spectrum of BTC/carbon portfolio. 

 

 

Figure 3b. Wavelet spectrum of BTC/ green bond portfolio. 

 

 

Figure 3c. Wavelet spectrum of BTC/ oil portfolio. 
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Figure 3d. Wavelet spectrum of BTC/ Stock portfolio. 

 

 

Figure 3e. Wavelet spectrum of Carbon- Stock portfolio. 

 

 

Figure 3f. Wavelet spectrum of GB-Stock portfolio. 

Figure 3. Dynamic conditional correlations for BTC/financial assets through wavelet coherence. 
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Note: For each portfolio, the wavelet coherence allows one to quantify time-frequency dependence among asset classes. In 

each Figure, the warmer colors with reddish imply areas with higher interlinkages while colder colors with bluish signify 

lower interdependence. 

 

 

Figure 4a. Wavelet spectrum of BTC/carbon portfolio. 

 

 

Figure 4b. Wavelet spectrum of BTC/ green bond portfolio. 

 

 
Figure 4c. Wavelet spectrum of BTC/ oil portfolio. 
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Figure 4d. Wavelet spectrum of BTC/Stock portfolio. 

 
Figure 4e. Wavelet spectrum of Carbon- Stock. 

 

Figure 4f. Wavelet spectrum of Green Bond- Stock. 

Figure 4. Illustrative plot of dynamic optimal portfolio weights through wavelet coherence. 

Note: In each figure, the warmer colors with red imply areas with higher interlinkages while colder colors with blue signify 

lower interdependence. 
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Table 3. The portfolios’ performances for portfolios 1–6. 

Portfolio 1 Measure BTC Carbon  EQ max U 

BTC–Carbon Average Return 0.0071 0.0068 0.0069 0.0066 

(Emissions) Standard Dev. 0.2662 0.2444 0.2553 0.2444 

 Sharpe Ratio 0.0268 0.0277 0.0272 0.0271 

 Final Wealth 10.3762 12.8346 11.5986 10.7974 

 APY(%) 16.5492 18.5474 17.7498 17.1893 

Portfolio 2 Measure BTC Green Bonds EQ max U 

BTC–GBs Average Return 0.0073 0.0067 0.0070 0.0067 
 

Standard Dev. 0.2700 0.2460 0.2580 0.2460  
Sharpe Ratio 0.0272 0.0273 0.0272 0.0272  
Final Wealth 10.4397 9.8948 10.2034 9.6259  
APY(%) 16.5492 16.5092 16.7481 16.2954 

Portfolio 3 Measure BTC Oil EQ max U 

BTC–Oil Average Return 0.0071 0.0067 0.0069 0.0066 

 Standard Dev. 0.2662 0.2478 0.2570 0.2478 

 Sharpe Ratio 0.0268 0.0270 0.0269 0.0267 

 Final Wealth 10.3762 10.3083 10.3885 9.4852 

 APY(%) 16.5492 16.8277 16.8881 16.1814 

Portfolio 4 Measure BTC Stock EQ max U 

BTC– Stock Average Return 0.0071 0.0066 0.0069 0.0066 

 Standard Dev. 0.2662 0.2446 0.2554 0.2444 

 Sharpe Ratio 0.0268 0.0269 0.0269 0.0270 

 Final Wealth 10.3819 9.9974 10.2264 10.2367 

 APY(%) 16.8831 16.5894 16.7656 16.7734 

Portfolio 5 Measure Carbon Stock EQ max U 

Carbon– Stock Average Return 0.0068 0.0066 0.0067 0.0066 
 

Standard Dev. 0.2444 0.2446 0.2445 0.2444  
Sharpe Ratio 0.0277 0.0269 0.0273 0.0271  
Final Wealth 12.8346 9.9974 11.3439 10.7429  
APY(%) 18.5474 16.5894 17.5757 17.1497 

Portfolio 6 Measure Green Bonds Stock EQ max U 

GBs– Stock Average Return 0.0065 0.0066 0.0066 0.0066 

 Standard Dev. 0.2427 0.2446 0.2436 0.2446 

 Sharpe Ratio 0.0269 0.0269 0.0269 0.0268 

 Final Wealth 9.9178 9.9974 9.9593 9.8499 

 APY(%) 16.5273 16.5894 16.5597 16.4740 

Note: 

1.Table 3 reports descriptive statistics for portfolios’ performance, and APY % represents the annual percentage yield. 

2.EQ denotes equal weight, i.e., Naïve (1:1) hedge 

 

Particularly, carbon asset outperformed emerging stock assets amidst the COVID-19 crisis, while 

the stock market incurred significant losses (e.g., Mukanjari et al., 2020; Alexakis et al., 2021; Pastor 

et al., 2022; Yadav et al., 2023). Several factors can be explained for the outperformance during the 

epidemic phase. For instance, (i) there is an accelerating for carbon assets, and (ii) Since carbon asset 

offers environmental benefits of emission reduction, thus, investors may have consistent expectations 

of rising interest in offsetting these carbon emission instruments. 
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Portfolio 1. BTC–carbon (emissions). 

 

Portfolio 2. BTC–green bond. 

 

Portfolio 3. BTC–oil. 

 



181 

Data Science in Finance and Economics  Volume 4, Issue 1, 160–187. 

 

Portfolio 4. BTC–Stock. 

 

 

 

 

 

 

 

 

 

 

 

Portfolio 5. Carbon–Stock. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portfolio 6. Green Bond–Stock. 

Figure 5. Final wealth path and performance measures for various trading strategies. 

Notes: These figures report the performance measures of four trading strategies involving Naïve (1:1), hedge portfolio 

optimization weights (%) for each asset allocation which is estimated under an alternative MV framework. The vertical (y) 

axis represents the wealth path, and the wealth values are measured on quantitative scales. 
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In light of the COVID-19 crisis, policymakers and investors must assess the risk spillovers 

between Bitcoin and other assets when markets are bullish or bearish scenarios to construct optimal 

crypto-portfolios in regard to maximizing returns and minimizing risks, as shown in Table 3. Above 

all, as depicted in the yellow (bold) lines of Figure 5, the trajectories of this wealth path are found to 

plunge significantly due to the COVID-19 outbreak at the start of 2020. 

5. Conclusions and policy implications 

All in all, cryptocurrencies are undoubtedly here to stay and will surely continue to be prevalent 

as time passes. This is particularly true given the unpredictability of the economic environment and 

the advances of fintech streams.  

Summarizing all, this study synthesizes the above results and depicts an overview of the capability 

performance of Bitcoin with financial assets. Overall, this research offers practical implications for 

investors’ portfolios constructed from their crypto portfolios that include financial assets. 

First, the study presents new evidence of Bitcoin being a hedge against carbon emissions, oil, and 

emerging stocks. Comparably, Bitcoin provides greater hedging capability than most traditional assets. 

Second, empirically, carbon emission can play a role as a financial diversifier for most 

conventional assets and Bitcoin. 

Third, comparably, Bitcoin against green bond assets is lacking hedge effectiveness, indicating 

that Bitcoin is not a valuable hedge to substitute green bonds in the role of decreasing the risk of 

climate change, since the green asset is less volatile than crypto, oil, and stock assets. 

The study sheds light on the pairwise connectedness between Bitcoin, green/sustainable assets, 

energy, and emerging stock returns using more specialized techniques to simultaneously specify time 

and frequency variation. Firstly, we applied the DCC-GJR-GARCH model to capture the time-varying 

connectedness in volatility between Bitcoin and the prominent assets’ returns. Second, we employed 

wavelet coherence analysis to describe the time-frequency connectedness between these assets. Our 

findings highlighted some interesting insights, along with dynamics in conditional correction between 

the leading cryptocurrency, Bitcoin, and prominent financial assets. Ultimately, these findings have 

crucial implications for crypto enthusiasts, green investors, and portfolio managers regarding crypto 

allocation, hedging strategy, portfolio diversification, and risk management. 

Regarding future studies, a crucial question left is how to use more renewable energy to reduce 

Bitcoin’s carbon footprint. After the unprecedented COVID-19 pandemic, what should the position 

hold for carbon or green bond assets as a diversifier or a hedging instrument? Thus, this work will be 

left to further research.  
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