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Abstract: In this study we investigate alternative interpretable machine learning (“IML”) models in 

the context of probability of default (“PD”) modeling for the large corporate asset class. IML models 

have become increasingly prominent in highly regulated industries where there are concerns over the 

unintended consequences of deploying black box models that may be deemed conceptually unsound. 

In the context of banking and in wholesale portfolios, there are challenges around using models where 

the outcomes may not be explainable, both in terms of the business use case as well as meeting model 

validation standards. We compare various IML models (deep neural networks and explainable 

boosting machines), including standard approaches such as logistic regression, using a long and robust 

history of corporate borrowers. We find that there are material differences between the approaches in 

terms of dimensions such as model predictive performance and the importance or robustness of risk 

factors in driving outcomes, including conflicting conclusions depending upon the IML model and the 

benchmarking measure considered. These findings call into question the value of the modest pickup 

in performance with the IML models relative to a more traditional technique, especially if these 

models are to be applied in contexts that must meet supervisory and model validation standards.  
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1. Introduction and summary 

Machine learning (“ML”) models and algorithms have become predominant in several industries, 

notably including credit risk management. Following a long period of resistance from supervisors and 

model risk managers, there is at present a transition from academia to the credit risk practice, ranging 

from model development to various other applications in this domain. Since with this movement comes 

a new set of uncertainties and other difficulties (e.g., transparency around what drives model outcomes), 

the current focus of research is in the design of ML models that meet business requirements and 

supervisory expectations. 

A view gaining acceptance is that there is no bright line between ML and traditional statistical 

models, considering that even standard regression models may be extremely complex and not readily 

interpretable (Breeden, 2021). Some examples include factor variables, spline approximations, 

interaction terms and numerous descriptive input variables. Therefore, it can be argued that what 

distinguishes ML from traditional statistical algorithms are optimization methodologies developed 

long ago in the context of fields apart from where we have applied standard econometric models. These 

include techniques such as bagging, boosting and random forests that are related to so-called ensemble 

methods (Clemen, 1989; Opitz and Maclin, 1999). We can gain further insight into these differences 

by considering the taxonomy proposed by Harrell (2018):  

• Uncertainty: Statistical models specify a probability law governing the data generation process 

that induces the model uncertainty. 

• Structure: A parametric specification is typically imposed in statistical models, for example the 

linearity of the target variable or the parameter estimate with respect to the explanatory variables. 

• Empiricism: ML has a greater more feature, in which interactions are admitted of high order that 

are not prespecified, in contrast to statistical models that identify key parameters. 

In the case of credit risk modeling, particularly for non-retail asset classes such as commercial 

and industrial, the datasets at hand are usually limited in depth. This is illustrated by the survey of 

credit scorecard models performed by Lessmann et al. (2015), who find that in about 90% of the studies 

reviewed there where less than 10K observations. This stands in contrast to other “big data” domains 

where there is more emphasis on extreme non-linearities, such as image processing (Krizhevsky et al., 

2012) and natural language processing (Collobert and Weston, 2008). That said, ML has gained some 

traction in small dataset settings, for example through emphasizing concepts such as model robustness 

or the use of simplified interaction effects (Breeden, 2021).  

While ML techniques are generating traction in the wider domain of credit risk, the gains have 

been relatively more limited in PD modeling, and even less so in wholesale as contrasted to retail asset 

classes. Non-wholesale PD applications have been in areas such as alternative banking channels 

(Abdulrahman et al., 2014), social media (Allen et al., 2020) or mobile phone use (Bjorkegren and 

Grissen, 2020). Indirect applications in PD modeling include ML algorithms that preprocess deposit 

histories (American Banking Association, 2018), that create input factors that are used in traditional 

methods such as logistic regression. In looking at applications of ML to risk beyond credit, we find 

methodologically kindred areas such as fraud detection (Zhou et al., 2018) or anti-money laundering 

(li et al., 2020). 

The U.S. banking supervisors issued a request for information and comment on the use of ML 

(U.S. Banking Regulatory Agencies, 2021) where one of the top questions relates to lack of 

explainability (also termed interpretability) in some ML approaches and applications (e.g., fair 



3 

Data Science in Finance and Economics Volume 4, Issue 1, 1–52. 

lending). Furthermore, a less transparent and explainable approach might result in difficulties in 

evaluating the conceptual soundness of a model, which is an important model risk management 

consideration outlined in SR11-7/OCC11-12 (U.S. Banking Regulatory Agencies, 2011). In August 

2021, the Office of the Comptroller of the Currency (“OCC”) released the model risk handbook (OCC, 

2021) prescribing with respect to banks employing models that examiners are expected to determine 

if credit rating systems account for explainability and transparency as key considerations in managing 

the model risk of models deemed to be complex. While ML models that are not interpretable (or 

“black-box”) are by construction not explainable nor transparent, there are methods such as locally 

interpretable model-agnostic explanations that are model-agnostic (Ribeiro et al., 2016). Similarly, 

methods such as Shapley additive explanations (Lundberg and Lee, 2017) avail us of explanations that 

are approximate, but as with the former technique this has reason for us to exercise caution (Molnar et 

al., 2020). Analogous to the no free lunch theorem in finance in the context of ML, it can be shown 

that there exists no model-agnostic and universally applicable notion of explainability. Extensive 

academic literature criticizes the uncritical applications of these methods (Kumar et al., 2020; Rudin, 

2019, Slack et al., 2020). However, there is a class of inherently interpretable ML models with model-

based explainability, where this means that the model is transparent and self-explanatory (Sudjianto 

and Zhang, 2021). Yang et al. (2021a) argue the inherent interpretability of models deemed complex 

should rely on constraints of practical nature, which the authors extend to a methodology for qualitative 

assessment of the interpretability of ML models. 

Credit risk modeling in an ML context is typically assumed to involve large volumes of data for 

training purposes, which is more common in the common in the data rich domain of the retail asset 

classes, whereas in wholesale asset classes (e.g., corporate or commercial real estate) the situation is 

in fact similar albeit having less defaults as well as fewer risk factors of a standardized nature. While 

it is widely accepted that in the wholesale context one of the leading uses of ML is the standardization 

of risk factors that may be rather heterogeneous, in fact there exist several large datasets in this asset 

class, and there is a large body of published research that have applied ML in model building (Vahid 

and Ahmadi, 2016; Anagnostou et al., 2020). There is a distinction between bankruptcy and default, 

and since the former are public the focus of most research is on modeling that event (Odom and Sharda, 

1990, Coats and Fant, 1993, Mckee, 2000, Min and Lee, 2005; Vassiliou, 2013), with methods tested 

covering all ML techniques. Models for lending to small- and medium-sized enterprises (“SMEs”) fall 

in between consumer and commercial approaches, because the performance is more closely tied to a 

small group of owners. Although less data is available for SMEs there has been some research in 

applying ML in this domain (Li et al., 2016; Zhu et al., 2017), with findings commercialized by the 

novel fintech industry in this market leveraging ML methods and alternative data sources. 

In this study we investigate alternative interpretable machine learning (“IML”) models in the 

context of probability of default (PD) modeling using a dataset of corporate borrowers. IML models 

have become increasingly prominent in highly regulated industries where there are concerns over the 

unintended consequences of black box models that may be deemed conceptually unsound. In the 

context of banking and in wholesale portfolios, there are challenges around deploying models where 

the outcomes may not be explainable, both in terms of the business use case as well as meeting model 

validation standards. We compare various IML models, including standard approaches such as logistic 

regression, using a long and deep history of corporate borrowers sourced from Moody’s studied in 

Jacobs (2022a, 2022b). This data consists of approximately 200K observations at a quarterly frequency 

comprised of North American based large corporate obligors having public credit ratings in the period 
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1990–2015. This dataset contains a large set of potential explanatory variables, including financial and 

macroeconomic risk factors.  

In our comparison of various IML models (deep neural networks and explainable boosting 

machines), including standard approaches such as logistic regression, we find that there are material 

differences between the approaches in terms of dimensions such as model predictive performance and 

the importance or robustness of risk factors in driving outcomes, including conflicting conclusions 

depending upon the IML model and the interpretability or robustness measure considered. While we 

observe that the IML models all demonstrate some pickup in performance relative to a more traditional 

technique, the degree of this outperformance is modest, especially on an out-of-sample basis. We also 

observe in a comparison of interpretability measures across the IML models and a more traditional 

technique an overarching complete lack of consistency across both models and measures, which calls 

into question the value of this pickup in performance with the IML models, especially if these models 

are to be applied in contexts that must meet model validation standards. 

This paper shall proceed according to the following outline. A review the literature is presented 

in Section 2. In Section 3 we present modeling methodology, where we introduce the alternative IML 

frameworks that we will compare empirically. In Section 5 we describe the modeling data. Section 6 

encompasses the estimation results and benchmarking analysis. Section 7 we conclude, address 

implications for policy and propose related research for future work. 

2 Review of the literature 

In this review of the relevant literature, we will first cover some of the basic literature in credit 

risk modeling, and then proceed to ML research as they apply to this study.  

The seminal study in PD modeling that introduced the industry standard PD scoring model was 

presented by Altman (1968) who applied the methodology of multiple discriminant analysis (“MDA”). 

While MDA has the advantage of computational convenience since it assumes a Gaussian error 

structure and linear model specification, we note that this edge is marginal at best given recent 

advances in computational capabilities. Mester (1997) notes the prevalence and growth of such models 

in U.S. banking. Altman and Narayanan (1997) find that spanning geographies and borrower types 

that such approaches are remarkably similar. A popular vendor PD scorecard model, very common in 

banking, is the Moody’s Analytics (Dwyer et al., 2004; “MA”) model for private firms, which is 

considered very adaptable. 

Merton (1974) takes a rather different approach than credit scoring, modeling a levered firm’s 

equity as a call option on the assets of the firm, where the strike price is equal to the debt owed, an 

approach based on option pricing theory. The PD is estimated iteratively in a method that extracts 

unobserved value and volatility of assets, using the amount of debt owed at some point in the future, 

in the process deriving the distance-to-default (“DTD”) construct. DTD is understood as the quantity 

of standard deviations from asset value at a point in time from the value of the debt obligations, so that 

DTD is inversely related to the PD. There are strict assumptions associated with this construct that 

have been addressed in the subsequent literature. A popular vendor model based upon this approach is 

MA’s CreditEdgeTM (“CE”) model meant for firms with publicly traded equity, which is calibrated to 

stock process and observed defaults to derive the expected default frequency (“EDF”). Since the EDF 

is based upon equity market data it is more volatile measures as compared to PD ratings derived from 

credit scoring models. 
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An alternative to the above is the reduced form approach that applies intensity modeling to derive 

a stochastic hazard rate (Jarrow and Turnbull, 1995; Duffie and Singleton, 1999; Bonds, 1999). This 

approach differs from the structural models by eschewing the underlying economics driving the default 

process through decomposing prices of defaultable debt as a means of estimating a random intensity 

process. This features the benefit of not being restricted by the assumptions at play in the structural 

approach but has the downside of potentially measuring risks apart from credit such as liquidity risk 

premia that complicate the construct. The Kamakura Risk ManagerTM vendor model is in this class, 

which statistically implements the reduced form Jarrow-Chava Model (Chava and Jarrow, 2004) 

model. This version of the reduced form approach adjusts explicitly for the aforementioned liquidity 

risk premia, but at the cost of incorporating embedded optionality noise and other market distortions. 

There is substantial ML literature apart from the domain of PD modeling, where subsequently 

applications in the latter area have been found. Clemen (1989) surveys the considerable literature 

regarding the combination of forecasts and concludes that forecast accuracy can be substantially 

improved through the combination of multiple individual forecasts. This author considers 

contributions from the forecasting, psychology, statistics, and management science literatures. Opitz 

and Maclin (1999) consider an ensemble of a set of individually trained classifiers whose predictions 

are combined when classifying novel instances, such as bagging and boosting, and evaluate these 

methods on 23 datasets using both neural networks and decision trees as the classification algorithm. 

The authors find that bagging is almost always more accurate than a single classifier but sometimes 

much less accurate than boosting, while in boosting the performance is dependent on the characteristics 

of the dataset being examined.  

Turning to applications of ML techniques to non-wholesale PD modeling, fuzzy logic is applied 

in Abdulrahman et al. (2014) in the context of micro-finance in a developing country. The American 

Banking Association (2018; “ABA”) announced a new credit score, called the UltraFICO score as part 

of a bid to ensure that creditworthiness is better reflected through credit scoring, drawing on consumer-

contributed data (e.g., information from checking and savings accounts) that reflects responsible 

financial management. The ABA argues that the new score could improve credit access for the majority 

of Americans and is particularly relevant for those who fall in the grey area in terms of credit scores 

or fall just below a lender’s score cut-off. Allen et al. (2020) consider social networks associated with 

the demand for and supply of consumer and small business loans originated on lending marketplaces, 

finding that loan demand increases substantially with past borrowing activities of geographically 

distant but socially connected areas, whereas borrower-area social proximity to deposits increases 

funding likelihood by 5.61% and improves ex-post loan performance. The authors argue that social 

networks improve capital allocation by increasing the awareness of alternative lending platforms and 

facilitates the transmission of less accessible information complementary to loan-specific data.  

There is a deep stream of literature that considers applications of ML techniques to the prediction 

of corporate defaults or bankruptcies. Vahid and Ahmadi (2016) model a set of credit states (good, 

past due, overdue and doubtful) defined by the Iranian central bank to model solvency and insolvency 

rates. The model utilizes a hybrid a radial basis function neural network featuring a self-organizing 

map methodology that is found to perform better than methods such as a single- and four-step 

classifications as well as support vector machines (“SVM”). Anagnostou et al. (2020) propose a 

method to enhance credit portfolio models based on the model of Merton by incorporating contagion 

effects using Bayesian network methods while maintaining the convenient representation of factor 

models. A range of techniques are applied to learn the structure and parameters of financial networks 



6 

Data Science in Finance and Economics Volume 4, Issue 1, 1–52. 

from real default swaps data and the impact on standard risk metrics is estimated in a stylized portfolio. 

Odom and Sharda (1990) develop a neural network prediction of bankruptcy using financial data from 

various companies, which is compared to a multivariate discriminant model, where results show some 

potential for outperformance in this context. Coats and Fant (1993) build a neural network to 

discriminate solvent from distressed obligors using financial ratio risk factors with an application an 

early distress identification system. Mckee (2000) builds a bankruptcy prediction model based upon 

rough sets theory with variables identified in prior recursive partitioning research that is shown to be 

was 93% accurate in predicting bankruptcies on a large sample of U.S. public companies, as well as 

88% accuracy on a separate 100-company holdout sample, with for the same dataset a baseline 

recursive partitioning model shows only 65% accuracy. Min and Lee (2005) apply SVMs for the 

prediction of public large corporate bankruptcy, utilizing a grid-search methodology that features 5-

fold cross-validation, to estimate optimized coefficient estimates parameterizing the kernel function of 

the SVM. The authors find that on the same dataset this SVM approach has superior performance to 

MDA, logistic regression and three-layer fully connected back-propagation neural network models. 

Vassiliou (2013) studies the credit rating agency methodologies though applying fuzzy set theory, 

demonstrating that a fuzzy economy is admissible if and only if there exists an equivalent martingale 

measure exists, and further constructs a forward probability measure under which a default-free 

security price once discounted is a martingale. The author proceeds to apply these finding in modeling 

the credit migration dynamics of a defaultable bond as an inhomogeneous semi-Markov process having 

fuzzy states, and analyzes the consequences of switching from a physical to a forward probability measure, 

as well as implements parameter estimation and calibration on a sample of traded corporate bonds.  

There is also a growing literature that considers applying ML techniques to the prediction of SME 

defaults or bankruptcies. Li et al. (2016) introduce a PD modeling approach for SMEs that is hybrid 

model combining logistic regression and artificial neural networks (“ANN”) applied to Finnish firms 

from the fiscal years 2004 to 2012. Their results suggest that the proposed hybrid model is more 

accurate than either the ANN or logistic regression models in isolation. Zhu et al. (2017) applies six 

ML methods (one decision tree method, three ensemble ML methods, a random subspace method and 

two integrated ensemble ML methods (“IEML”)) to predict default for 57 SMEs listed on the Shenzhen 

and Shanghai Stock Exchanges during the period of 2012–2013. They find that IEML methods 

outperform either the decision tree or random subspace methods. 

There is a body of supervisory guidance for the financial industry that is a motivation for 

considering IML techniques in credit risk modeling. The interagency guidance on the management of 

model risk (U.S. Banking Regulatory Agencies 2011) provides comprehensive guidance for banks that 

transcends model validation, addressing standards for model development, implementation and use. 

Furthermore, this guidance encompasses governance and control mechanisms such as board and senior 

management oversight, policies and procedures, controls and compliance, and an appropriate incentive 

and organizational structure. The bank examiners handbook issued by the U.S. Office of the 

Comptroller of the Currency (OCC 2021) provides guidance in performing consistent and high-quality 

model risk management examinations. This guidance presents the concepts and general principles of 

model risk management, informs and educates examiners about sound model risk management 

practices that should be assessed during an examination and provides information needed to plan and 

coordinate examinations on model risk. The interagency request for information (U.S. Banking 

Regulatory Agencies 2021) gathers information and comments on financial institutions’ use of 

artificial intelligence (“AI”) models, including ML models. The purpose of this is to understand 
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respondents’ views on the use of AI by financial institutions in their provision of services to customers 

and for other business or operational purposes; including appropriate governance, risk management, 

and controls over AI; and any challenges in developing, adopting, and managing AI.  

We conclude this review by surveying the relevant literature in the field of IML. Ribeiro et al. 

(2016) propose the local interpretable model-agnostic explanations (“LIME”) technique. This 

approach forms predictions through discovering locally an interpretable in the neighborhood of the 

prediction. Lundberg and Lee (2017) propose Shapley additive explanations (“SHAP”) as a means of 

interpreting predictions, assigning an importance value to each feature corresponding to a prediction. 

SHAP identifies a novel additive feature importance class of measures and derives a unique solution 

to this problem having properties considered attractive. It is shown that SHAP subsumes six known 

techniques that lack such good qualities with the added benefit of more rapid calibration and a more 

intuitive expression. In a point-of-view piece, Rudin (2019) contrasts the explainability of black box 

ML models versus ML models that are inherently interpretable. The author highlights the dangers of 

using explainable black boxes for important decision making, challenges inherent in interpretable ML 

and identifies some applications where IML models are competitive with black box ML models. 

Molnar et al. (2020) point out some downsides in of ML model interpretation including poor 

generalization, feature dependence or spurious causal interpretation. Kumar et al. (2020) apply the 

game theoretic construct of a cooperative game to feature importance computation in an ML setting, 

where influence is distributed between input factors, deriving a form of the unique SHAP values 

characterizing the game. The authors justify this method based upon mathematical properties deemed 

desirable as well as the applicability of this construct in model explainability. They further demonstrate 

the mathematical issues that arise in using Shapley values in the context of feature importance, and 

that while there exist mitigating solutions to these problems, the latter give rise additional model 

complexity like the necessity of applying causal reasoning. Slack et al. (2020) put forth the argument 

that post hoc explanation methods reliant upon perturbations of inputs, such as LIME or SHAP, can 

be shown to be unreliable. Instead of those methods they propose a new scaffolding technique that 

masks the biases associated with a single classifier through enabling an adversary, resulting in 

construction of arbitrary needed explanations. Sudjianto et al. (2020) apply local linear representation 

“unwrapping” of the black box of deep ReLU networks, using the concept of an activation pattern 

capable of disentangling a complex network into a set of local linear models (LLMs) that are 

equivalent to the underlying network. As part of this process the authors develop a user-friendly 

package for implementing this construct that includes feature importance metrics, model diagnostics 

and the provision of a pre-trained deep rectified linear unit (“ReLU”) network that simplifies the 

original problem. The authors further propose visual interpretations and diagnostics, such as the local 

linear profile plot, and argue that these tools are an effective means for simplifying a network 

simplification. Finally, they implement these methods in simulation exercises, benchmark training and 

testing data, as well as a real world example mortgage credit risk modeling. Yang et al. (2021a) 

approach the explainability of a deep neural networks though employing various constraints on model 

architecture (projection pursuit with orthogonality constraints, sparse additive subnetworks and 

smooth function approximations), which gives rise to an enhanced explainable neural network 

(“ExNN”), and the authors argue that this construct strikes an improved balance amongst the 

interpretability and performance of the model. The authors further demonstrate sufficient conditions 

of identifiability of this ExNN model, and implement estimation of the model using a modified 

minibatch gradient descent method, featuring a backpropagation algorithm that computes the Cayley 
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transform and derivatives which preserving orthogonality of the projection. In a simulation exercise 

featuring six alternative scenarios the authors compare their method with a number of benchmarks 

(SVM, least absolute shrinkage and selection operator, extreme learning machine, random forest and 

multilayer perceptron), demonstrating that the ExNN model maintains the flexibility of favorable 

model performance while achieving augmented interpretability. Yang et al. (2021b) develop an ExNN 

model based on the generalized additive models with structured interaction (“GAMI-Net”) model and 

argue that this construct provides good balance between prediction accuracy and model interpretability. 

The authors point out that GAMI-Net is a decomposed feedforward network having multiple additive 

subnetworks, where each subnetwork consist of multiple hidden layers, where this construct is 

architected for the capture of one main effect or one pairwise interaction. Three interpretability features 

are analyzed (heredity, sparsity and marginal clarity) and they develop an adaptive training algorithm, 

in which first main effects are trained and second pairwise interactions are optimized with respect to 

the residuals. Numerical experiments on both real-world datasets and synthetic functions show that 

their model has augmented interpretability and favorable performance as compared to explainable 

boosting machines as well as other traditional ML models. 

3 Modeling methodology and econometric technique 

In this section we will describe the IML techniques that we will benchmark in our application to 

corporate PD modeling. We first describe the logistic regression modeling (“LRM”) technique, which 

widely understood in the literature and applied by practitioners, and serves as our base case model 

against which we compare the other IML models in this paper. Defining the classes 
2

1i i


=
 of the 

classification problem, we can write the log-odds (which is also called the logit function):  

𝑙𝑛 (
𝑃(𝜔1|𝒙)

𝑃(𝜔2|𝒙)
) = 𝜽𝑇𝒙,                                                              (1) 

where 𝒙 = (𝑥1, . . , 𝑥𝑘) ∈ ℝ𝑘 is a vector of risk factors having dimension k  and 𝜽 = (𝜃1, . . , 𝜃𝑘) ∈ ℝ𝑘 

is a vector of coefficients. Note that we set 1 1x = , which implies that the intercept is absorbed intoθ . 

As 𝑃(𝜔1|𝒙) + 𝑃(𝜔2|𝒙) = 1, we get that: 

𝑃(𝜔1|𝒙) =
1

1+𝑒𝑥𝑝(−𝜽𝑇𝒙)
= 𝜎(−𝜽𝑇𝒙),                                                (2) 

where the 𝜎(−𝜽𝑇𝒙) is the logistic sigmoid (also called the sigmoid link) function.  This function has 

properties mathematically equivalent to a cumulative distribution function, as it has range in (0,1) 

with the real line as the domain, and we may interpret as a PD conditioned upon 𝜽𝑇𝒙, where the latter 

can be viewed as a score since it is positively related to the risk of default.  

A standard method to estimate the vector of parameters 𝜽 is maximum likelihood estimation (“MLE”). 

In this construct we specify set of training samples defined by features {𝒙𝑛}𝑛=1
𝑁  and a classification 

target {𝑦𝑛}𝑛=1
𝑁 , with 𝑦𝑛 ∈ {0,1}, and specify the likelihood function as: 

𝑃(𝑦1, . . . , 𝑦𝑁|𝜽) = ∏ (𝜎(−𝜽𝑇𝒙𝑛))
𝑦𝑛

(1 − 𝜎(−𝜽𝑇𝒙𝑛))
1−𝑦𝑛𝑁

𝑛=1 .                           (3) 

Typically will have as our objective the negative log-likelihood function (also called the cross-entropy 

error), which has advantages in computation, a transformation of (3) that is monotonic and increasing:  

𝐿(𝜽) = − ∑ 𝑦𝑛
𝑁
𝑛=1 𝑙𝑛(𝜎(−𝜽𝑇𝒙𝑛)) + (1 − 𝑦𝑛) 𝑙𝑛(1 − 𝜎(−𝜽𝑇𝒙𝑛)).                     (4)  
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We minimize (4) with respect to 𝜽 by means of iterative methods, examples being Newton’s 

scheme or steepest descent. Importantly, this model has properties of computational convenience and 

in most cases the estimation is stable. The reason for this is that 𝜎(−𝜽𝑇𝒙𝑛) ∈ (0,1), which implies 

that the covariance matrix R  is positive definite, from which it follows in turn that the Hessian matrix 

𝛻2𝐿(𝜽) is positive definite. This means that 𝐿(𝜽) is convex and the optimization will have a unique 

minimum. A potential issue arises if the development data is linearly separable, a situation in which 

for any point on the hyperplane 𝜽̂𝑀𝐿𝐸
𝑇 𝒙 = 0, so in solving the problem the separation of the classes 

occurs perfectly. As a result, every point receives an assignment probability of identically one as 

𝝈(𝜽̂𝑀𝐿𝐸
𝑇 𝒙) =

1

2
, and the algorithm makes the estimates infinite (𝜽̂𝑀𝐿𝐸

𝑇 → ∞). In terms of geometry, 

rather than an s-curve the link function evolves toward a step shape. In this setting we are dealing with 

overfitting to the development data. Treatments for this problem include k-fold cross-validation, else 

regularization terms residing within a penalty function that restricts the size of the coefficient estimates, 

examples of the latter being the LASSO technique that features a linear penalty 𝐶(𝜽|𝜆) = 𝜆|𝜽| having 

cost parameter . 

We now will describe the ReLU-DNN model, among the most popular of DNNs, as the the ReLU 

activation function in the hidden layers is known to have better properties than DNNs using the sigmoid 

activation function as discussed above for the LRM. As detailed by Sudjianto et al. (2020), this model 

exhibits superior performance, rich expressivity, universal approximation ability, double descent risk 

curves under over-parameterization, as well as fast and scalable training algorithms by stochastic 

gradient descent.  is the symbol that denotes a feedforward ReLU network and we define an input 

layer  and  hidden layers with neuron sizes . In the case of each hidden neuron 

, denote its leftward input as and the rightward output as , then by the ReLU activation 

                                     (5) 

From layer  to , given the weight matrix of size  and the bias vector  of size 

, the layer  output  leads to the layer-  input  by the affine transformation 

                                      (6) 

where the layer zero corresponds to the input layer with ,  of size  and  of size 

 with respect to an output layer (i.e., layer ). At  layer we have the output  which 

predicts the final target  according to a generalized linear model (“GLM”), which in the case of 

classification can be the sigmoid link function as defined previously for the LRM: 

                                             (7) 

where a univariate formulation with a binary response is a row vector and  is 

a scalar. For convenience, let denote the set of network parameters by . In the 

case where y is “one-hot encoded” (i.e., categorical indicator that take the values zero or one) the 

softmax link may be utilized, and this construct may be readily extended. In the case of every hidden 

neuron there are two states in ReLU activation: active when  (“on”) or inactive when . We 

analyze these states pertaining to all of the hidden neurons in the ReLU network by leveraging the 

concept of an activation pattern (Sudjianto et al., 2020), which means that if we have a network  

having  hidden layers with sizes of neurons , the activation pattern is a binary vector 

                                              (8) 
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which indicates for each hidden neuron state (i.e., on vs. off). We term the component 𝐏(l) for l =
1, . . . , L  a layered pattern. In the case where there is at least one  for some l  we call the 

activation pattern 𝐏 trivial. , the count of the network’s hidden neurons, is called the activation 

pattern’s length. With respect to the input , through the feedforward neural network with fixed 

parameters, it would determine the values of  by (6) and (5) in sequence pertaining to 𝑙 =

1, . . . , 𝐿.  governing how every 𝒛
(𝑙)

 determines the layer 𝑙 neurons’ states, which is equivalent 

to a layered pattern. This implies that an instance of input 𝒙 is paired with a set activation pattern 

                                                (9) 

and we note that such may or may not be trivial.  Furthermore, the activation region associated with 

every distinct pattern is given by a convex polytope 

                                                           (10) 

having closed-form boundaries which we discuss in more detail later. The concept of the activation 

region is critical in grasping the way in which hidden layers are used to partition the entire space  

sub-spaces that are into disjoint. Therefore, in the general case of ReLU_DNNs in general, where 

 represents the set of distinct activation patterns, each may be paired 

with a convex activation region . The latter obeys a set of inequality constraints that is derived 

from layer-wise affine-transformed variables of the following form: 

                                                  (11) 

where is the Hadamard product. In the case of any pair of distinct activation patterns their associated 

activation regions are disjoint. This implies that the ReLU_DNN represents a partition of the 

underlying input space into a finite set of convex sub-spaces 

                                                                (12) 

Note that  is not yet determined and continues to be an ongoing research area in the so-

called in the study of DNN expressivity that is dictated by the upper and lower bounds of the aggregate 

count of distinct patterns (Sudjianto et al., 2020). The latter authors note the cardinality of  

has an upper bound of ( )dLO k  for a ReLU-DNN having L hidden layers with width of k . Any ReLU-

DNN performs a partition of the input space into multiple sub-regions determined by a particular 

activation pattern. The multi-layer propagation process transforms the original input sequentially 

according to (6) and constrained by the ReLU activation as defined in (5). At the end of the process 

linear prediction takes the form 

                                                           (13) 

up to a , a pre-specified link function. Then the final features are explicitly derived with 

respect to each sub-region, giving rise to closed form local linear models. If the activation pattern is 

trivial (i.e., at least one layer features all neurons that are all inactive) the output with respect to this 

layer is all zero. In the associated trivial region the prediction is constant value in each region as the 

final output is only influences by layer-wise bias terms and not by , the original input variables. 
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In the case where the activation pattern, is non-trivial we define a diagonal 

matrix corresponding to each layer, where diagonal feature identical values as in the case 

,  

                                             (14)   

so that the output in each layer after activation by the ReLU (5) may be expressed according to 

the chain rule vector notation, 

            (15) 

Thus, we may derive the final features recursively as follows, 

(16) 

It follows that the linear prediction (13) in the output layer has an explicit expression given by 

                      (17)  

in which  for notational convenience. This leads to the result that characterizes a ReLU-

DNN network and any of its expressible activation pattern on the activation region  in terms of 

an LLM: 

                                                  (18) 

with the following closed-form parameters 

           (19) 

Through combinations of the region partitioning in (12) and the LLMs in (19) this gives rise to 

the local linear representation with respect to ReLU-DNNs. This means that a ReLU-DNN has an 

equivalent representation as a finite set of LLMs, and each of these functions is defined only on one 

of these disjoint convex sub-regions. We can see from this that the activation pattern is a central 

concept in this local linear representation. It only remains to determine the activation patterns for 

purposes of interpretability of the network, where we refer the reader to Sudjianto et al. (2020) for the 

development an effective unwrapper for pre-trained ReLU-DNNs that we utilize in this paper. 

The 2nd IML model under consideration is the GAMI-Net. In this model we formulate a complex 

functional relationship through building up from lower-order representations. The latter include 

nonlinear main effects as well as pairwise interactions. We denote 1 2,S S  as a set of active main effects 

and its respective pairwise interactions. Then the GAMI-Net may be written as follows: 

 ( )( ) ( )
( )

( )
1 2

,

,

E , .j j j k j k

j S j k S

g y x h x f x x
 

= + +                                              (20) 
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In this set-up each of the main effects and the pairwise interactions are assumed to be quantities 

having zero mean,  

( ) ( )

( ) ( ) ( )

1

, 2

0, ,

, , 0, , ,

j j j

j k j k j k

h x dF x j S

f x x dF x x j k S

=  

=  




                                               (21) 

Where in (21) 𝑑𝐹(𝑥𝑗) and 𝑑𝐹(𝑥𝑗 , 𝑥𝑘) are the respective distribution functions. With a view to ensuring 

identifiability we enforce the near orthogonality of each pairwise interaction term 𝑑𝐹(𝑥𝑗 , 𝑥𝑘) with 

respect to their corresponding parent main effects ℎ𝑗(𝑥𝑗) and ℎ𝑘(𝑥𝑘). Note that this requirement is 

subject to a marginal clarity constraint that we will discuss below. 

The architecture of the GAMI-Net model features a main effect and pairwise interaction sub-

model. Every of the main effect ℎ𝑗(𝑥𝑗) in (20) consists of a sub-network having a single input node, 

multiple hidden layers and then a single output node. The pairwise interaction 𝑓𝑗,𝑘(𝑥𝑗 , 𝑥𝑘) in (20) are 

each represented by a sub-network having two input nodes. These networks are all combined linearly 

with an additional bias node to capture the intercept  , which produces the ultimate output. In 

particular, the sub-network of the main effect is projected upon a 1-dimensional curve, while the sub-

network of interaction terms is calibrated to a 2-dimensional surface. In the approximation of an 

arbitrary surface of curve, a single-hidden-layer feedforward neural network, having a sufficiently 

numerous quantity of hidden nodes, may be used. In this process we leverage the techniques of modern 

deep learning in order to facilitate the utilization of multiple hidden layers, which results augmented 

model performance. If the network is properly configured, this construct has enough flexibility to 

capture any functional form, including the admission of categorical variables that with one-hot 

encoding may be preprocessed. We may simplify this to many bias nodes with subnetworks used for 

fitting the main effects of categorical variables in which each node represents an intercept effect with 

respect to a corresponding categorical variable. Finally we note that sparsity, heredity and marginal 

clarity constraints are imposed upon the GAMI-Net model development. Sparsity and heredity 

constraints are meant to facilitate the interpretability of the estimated model, while the purpose of the 

marginal clarity constraint is to ensure that the main effects and their corresponding child pairwise 

interactions are uniquely identifiable.  

The final model that we consider is the explainable boosting machine (“EBM”) introduced by 

Lou et al. (2013), an IML model designed at the time to have accuracy comparable to widely used ML 

methods such as random forests or boosted trees, which we will describe at a high level and refer the 

reader to the reference for mathematical details. The EBM is tree-based and a cyclic gradient boosting 

GAM where the interaction detection is automatic. While this model takes more computational 

overhead to estimate as compared to other similar ML models, the EBM has the desirable features of 

extreme compactness and rapid time to produce predictions in execution. The EBM is a GAM of the 

same form as the GAMI-Net model, but there are some differences in that the constraints imposed 

above are not imposed in this setting. In this model the GAM link function is adapted to alternative 

objectives, such as the regression or classification problems, and when introduced it was recognized 

as an improvement over traditional ML models. Firstly, the EBM learns the functional form for each 

input variable through standard ML algorithms, for example techniques like gradient boosting or 

bagging. In the boosting process restrictions are imposed to train features one by one (a “round-robin”), 

in which the learning rate is very low, implying that the order of features is irrelevant. The algorithm 

then cycles across the features in order to mitigate collinearity effects while learning the optimal 

corresponding functional form. This process provides visibility into the manner in which feature 
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contributes to the prediction of the model. Second of all, the EBM automatically detects and then 

includes the pairwise interaction terms having the same form, a factor that further augments model 

accuracy while at the same time enhancing interpretability. Finally, implementation of the EBM is in 

a parallel manner with respect to the senses of multi-core as well as multi-machine architectures. Since 

the EBM is additive in input factors, every feature contributes to the prediction modularly, which 

facilitates comprehension of the relative individual contributions to the prediction. In making 

individual predictions each functions as a lookup table with respect to each feature, which producing 

in the process a quantification of the feature’s contribution. Such term contributions are then summed 

and entered into the link function in order to produce the final prediction. This additivity means that 

term contributions may be sorted and optically represented in order to demonstrate features having the 

greatest influence on any particular prediction. In order to enforce additivity of the individual terms 

there is a training penalty imposed upon the EBM, which augments training time as compared to 

similar techniques. But since the prediction process is a matter of lookups and arithmetic operations 

inside the GAMs of the feature, EBMs are amongst the most rapid ML models for prediction at the 

point of model implementation or time of production.  

4 Description of modeling data 

In this section we describe the data used in developing the models benchmarked in this paper.  

The primary source of data is Moody’s Default Risk ServiceTM (“DRS”) history of credit ratings, 

a comprehensive source for rating migrations, default and recovery rates spanning regions and 

industrial sectors. We obtain standardized financial statement line items and market data from the 

CompustatTM database. This includes the industry classification system identifiers Global Industry 

Classification Standards (“GICS”) and North American Industry Classification System (“NAICS”). 

This data is available starting in 1979 and spans several economic cycles. This database also provides 

indicators of company default to supplement DRS - namely types of bankruptcy, liquidation as well 

as default rating grades from the National Recognized Rating Agency’s (“NSROs”) - which are all 

considered standard industry definitions of default. We further supplement the latter default types in 

DRS and CompustatTM by a list of company defaults provided by New Generation Research, which is 

known in the industry as Bankruptcydata.com. In the remainder of this paper we will refer to this base 

dataset as the “Moody’s population” or “Moody’s rated obligors”. 

We then apply a series of filters to this Moody’s base dataset in order to obtain a population 

representative of a North American segment of large commercial & industrial (“C&I”) corporate 

borrowers having agency ratings. We accomplish this with a combination of NAICS and GICS 

industry codes, regional indicators and a floor for historical annual net sales amounts. Non-C&I 

obligors flagged for non-inclusion are defined by the NAICS codes indicating financial firms, 

commercial real estate, real estate investment trusts, public sector, government, dealer finance and not-

for-profit (see Figure 1 below). We perform a similar filter with respect to the GICS classification for 

education, financials and real estate (see Figure 2 below). Regional filters are applied to choose only 

obligors based in the U.S. and Canada and only obligors having a maximum historical annual net sales 

of a minimum $1B. There are further exclusions for cases of missing or invalid GICS or NAICS codes. 

We consider only observations after the 1st quarter of 1991, for the rationale that market and accounting 
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regulations were rather different prior to 1990’s, as well as that the macroeconomic data used in this 

study are only available starting in 1990. 

 

Figure 1. Moody’s obligors one-and three-year default rates. 

 

Figure 2. In-Sample performance measures for the estimated logistic regression model. 

There are also filters applied that are based upon the default markings. Records considered to be 

too near to an event of are excluded, an industry standard treatment, where the rationale is the records 

of a company in such time window do not reflect information about a future default but rather it is 

more likely existing problems are reflected in such information. We further limit ourselves to data that 

are in a range of 6–18 (as opposed to 1–12) months prior to default, as this time frame is typically more 

reflective of period between when financial statements are issued and when credit ratings are refreshed 

(i.e., this process usually takes up to about six months depending on the time needed to receive 

complete raw financials, input processed financial ratios and then finalize the ratings). Another point 

is that while in general we do not consider obligors’ financial statements after the default date, there 
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are some cases in which an obligor may exit a default state or “cure” (e.g., emerge from bankruptcy), 

in which case only the statements between the default date and cure date are excluded. 

Table 1. Segment composition by GICS industry classifications for all vs. defaulted Moody’s obligors. 

GICS Segment Defaulted Obligors All Obligors 

Consumer Discretionary 30.9% 19.6% 

Consumer Staples 6.4% 8.4% 

Energy 5.9% 7.6% 

Healthcare Equipment and Services 2.9% 2.9% 

Industrials 15.1% 31.6% 

Materials 11.3% 10.5% 

Pharmaceuticals and Biotechnology 0.2% 2.7% 

Software and IT Services 1.8% 2.5% 

Technology Hardware and Communications 11.3% 4.3% 

Utilities 5.6% 7.6% 

The time period covered for the model development data extends to the 4th quarter of 2015. In 

Table 1 above we show the comparison of the modeling population according to the GICS industry 

sectors. In the case of each sector the defaulted obligors columns represents the proportion of the 

defaulted obligors comprising the sector in entire population. The observations are concentrated in 

Consumer Discretionary (20%), Industrials (17%), Technology Hardware and Communications (12%) 

and Energy except E&P (11%) sectors. We show a similar industry composition according to the 

NAICS classification system below in Table 2.  

Table 2. Segment composition by NAICS industry classifications for all vs. defaulted Moody’s obligors. 

NAICS Segment Defaulted Obligors All Obligors 

Agriculture, Forestry, Hunting and Fishing 0.4% 0.2% 

Accommodation and Food Services 2.9% 2.3% 

Waste Management and Remediation Services 2.1% 2.4% 

Arts, Entertainment and Recreation 1.0% 0.7% 

Construction 2.5% 1.7% 

Educational Services 0.2% 0.1% 

Healthcare and Social Assistance 1.6% 1.6% 

Information Services 12.1% 11.5% 

Management Compensation Enterprises 0.1% 0.1% 

Manufacturing 34.4% 37.7% 

Mining, Oil and Gas 8.6% 6.8% 

Other Services (excluding Public Administration) 0.6% 0.4% 

Professional, Scientific and Technological Services 2.5% 2.3% 

Real Estate, Rentals and Leasing 1.6% 0.9% 

Retail Trade 12.4% 9.6% 

Transportation and Warehousing 7.0% 5.4% 

Utilities 5.4% 8.3% 

Wholesale Trade 2.7% 7.0% 

The model development dataset is comprised of financial ratios and default indicators most 

recently available from in DRSTM, CompustatTM and bankruptcydata.com, and as a result we consider 

this data to be timely and of favorable quality to support the development of robust models. As the 

time period for model development of 1Q91–4Q15 spans two economic downturns (i.e., a complete 

business cycle), the length of the dataset is another factor that supports the good data quality. Related 
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to the latter point, we plot in Figure 1 below annual one- and three- year default rates in the model 

development dataset, and we can see that trends in the default rates are intuitive as they peak during 

the downturn periods. In developing the models in this paper we elect to use the 1-year default rate are 

the target variable, for reasons to be discussed in more detail in the following section. 

In Table 3 below shows summary statistics for the variables appearing in our final models. The 

final model were chosen based upon an exhaustive search algorithm along with 5-fold cross-

validation[1]. Observation counts are around 157K and the one-year default rate is about 1%. Below are 

the variable categories and variable names of the explanatory variables that appear in the final models[2]: 

• Size Change in Total Assets (“CTA”)  

• Leverage Total Liabilities to Total Assets Ratio (“TLTAR”) 

• Coverage Cash Use Ratio (“CUR”) 

• Efficiency Net Accounts Receivables Days Ratio (“NARDR”) 

• Liquidity Net Quick Ratio (“NQR”) 

• Profitability Before Tax Profit Margin (“BTPM”) 

• Macroeconomic S&P 500 Equity Price Index Quarterly Average Annual Change (“SP500EP”), 

Consumer Confidence Index (“CCI”) 

Table 3. Summary statistics of default indicators, financial and macroeconomic 

explanatory variables appearing in the final models. 

Variable Count Mean Standard 

Deviation 

Minimum  25th 

Percentile 

Median 75th 

Percentile 

Maximum 

Default 

Indicator 

157,353 0.01 0.10 0.00 0.00 0.00 0.00 1.00 

CTA 0.14 0.35 −0.40 −0.01 0.06 0.17 3.21 

TLTAR 0.60 0.23 0.12 0.45 0.59 0.71 1.53 

CUR 1.90 2.84 −22.43 1.41 2.06 2.65 19.00 

NARDR 130.25 101.44 11.26 68.98 106.74 159.43 754.09 

NQR 0.34 1.07 −0.85 −0.28 0.06 0.59 6.11 

BTPM 5.94 21.00 −146.67 1.85 7.09 12.85 48.70 

SP500EPI 1.91 6.09 −27.33 −0.19 2.19 5.68 12.81 

CCI 2.34 21.58 −60.97 −7.02 4.89 15.35 73.21 

Missing rates and the area under the receiver operating characteristic curve (“AUC”) statistics 

(measuring the power of the variables to distinguish default from non-default on a univariate basis) for 

the explanatory variables appearing in the final models are summarized below in Table 4[3]. Across 

 
[1] Clarifying our model selection criteria and process, we balance multiple criteria, both in terms of statistical performance 

as well as some qualitative considerations. Firstly, all models have to exhibit the stability of factor selection (where the 

signs on coefficient estimates are constrained to be economically intuitive) and statistical significance in k-fold cross 

validation sub-sample estimation. However, this is constrained by the requirement that we have only a single financial 

factor chosen from each category. Then the models that meet these criteria are evaluated according to statistical performance 

metrics such as AIC and AUC, as well as other considerations such as rating mobility and relative factor weights. 

[2] All candidate explanatory variables are Winsorized at either the 10th, 5th or 1st percentile levels at either tail of the sample 

distribution, in order to mitigate the influence of outliers or contamination in data, according to a customized algorithm 

that analyzes the gaps between these percentiles and caps / floors where these are maximal. 

[3] The plots are omitted for the sake of brevity and are available upon request. 
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risk factors the univariate AUCs lie in a range of around 0.6 to 0.8, which indicates a strong capability 

to rank order default risk amongst these variables on a univariate basis. As the rate of rate of missing 

observations lies in a range of 5 and 10% across risk factors, this indicates good data quality that 

supports development of robust models. 

Table 4. Missing Rates and AUCs for Financial and Macroeconomic Explanatory 

Variables Appearing in the Final Models. 

Category Explanatory Variables AUC Missing Rate 

Size CTA 0.726 8.52% 

Leverage TLTAR 0.843 4.65% 

Coverage CUR 0.788 7.94% 

Efficiency NARDR 0.615 8.17% 

Liquidity NQR 0.653 7.71% 

Profitability BTPM 0.827 2.40% 

Macroeconomic SP500EPI 0.603 0.00% 

CCI 0.607 0.00% 

5. Estimation results & model benchmarking 

Table 5. Estimation results for the logistic regression model. 

Explanatory 

Variable 

Parameter 

Estimate 

P-Value Factor 

Importance 

AIC AUC HL P-

Value 

Mobility 

Index 

CTA −0.4837 0.0000 0.0455 7,231.00 0.9312 0.5945 0.7184 

 

 

 
 

TLTAR 2.6170 0.0104 0.1091 

CUR −0.0428 0.0000 0.1545 

NARDR 0.0005 0.0000 0.2273 

NQR −0.4673 0.0000 0.0909 

BTPM −0.0161 0.0000 0.2736 

SP500EPI −0.0189 0.0000 0.0759 

CCI −0.0099 0.0000 0.0232 

We shall first describe the LRM model estimation results shown below in Table 5. The signs of 

the coefficient estimates are seen to be consistent with economic intuition and the levels of statistical 

significance indicate that the parameters are estimated very precisely. The AUC statistics indicate that 

the model has a strong ability to rank order default risk, in line with favorable performance by industry 

standards. Regarding a measure of predictive accuracy the p-value of 0.60 in the Hosmer-Lemeshow 

(“HL”) tests shows that the model fits the data well. The AIC corroborates the latter as it shows that 

the model has a favorable fit to the data. The singular value decomposition (“SVD”) mobility measure 

has a value of 0.72, demonstrating the expectation that PD implied ratings from this model are very 

sensitive to the state of the macroeconomy, as should be the case for a such a class of PD model, as 

discussed below. The relative sizes of the factor importance (“FI”) measures, measuring the percent 

of the model score in totality attributed to a risk factor, are also consistent with a model that is showing 

the expected characteristics of this type of PD model. The so-called rating philosophy reflected here is 

of a point-in-time (“PIT”) model, which predicts default within a relatively short horizon and used in 

early warning systems, and the factors that are expected to have more importance should span the 

dimensions of borrower profitability, liquidity or profitability. This contrasts to so-called through-the-

cycle (“TTC”) models, which predict default over a relatively long horizon and are suitable for credit 
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underwriting, and which tend to place more importance on dimensions such as capital structure, size 

or debt service coverage (Jacobs, 2022b). Accordingly, there is less weights on risk factors more 

critical to credit underwriting (i.e., factors in the categories Size/Scale, Leverage/Capital Structure and 

Debt Service Coverage) that would get higher weight in a TTC model, whereas this trend is reversed 

and there is greater emphasis on factors considered more critical to early warning or credit portfolio 

management (i.e., Liquidity, Profitability and Efficiency) in this PIT model. Note that we elect to 

choose a one- versus three- year prediction horizon, as we wish to construct a PIT model, as we believe 

this construct to make the most meaningful comparison to ML models, as PIT models tend to have 

stronger performance than TTC models in terms of predictive accuracy (Jacobs, 2022b).  

 

 

Figure 3. In-Sample residual diagnostic for the estimated logistic regression model. 

 

Figure 4. Out-of-Sample performance measures for the estimated logistic regression model. 



19 

Data Science in Finance and Economics Volume 4, Issue 1, 1–52. 

In the above figures we present additional in-sample and out-of-sample performance statistics and 

diagnostic plots for the final LRM model. We observe that in-sample that these optical diagnostics 

(e.g., time series and calibration plots; fit histograms) and additional goodness-of-fit statistics (e.g., 

binomial and Jeffrey’s p-values; OLS r-squareds) confirm the previously discussed results, in that the 

final model shows favorable fit to the data. However, other optical residual diagnostic measures (e.g., 

residual vs. fitted values, quantile-quantile plots, residual histograms and leverage plots) show that the 

model has some issues in predictive accuracy or model specification. Finally, the out-of-sample 

analysis shows that the final model performs adequately. 

Table 6. ML model benchmarking PD modeling analysis – comparison of AUC and 

accuracy performance measures.  

 Logistic 

Regression 

Model 

ReLU 

Activation Deep 

Neural Network 

Generalized 

Additive Model 

with Structured 

Interactions 

Explainable 

Boosting 

Machine Tree 

Training Sample AUC 0.9312 0.9508 0.9527 0.9870 

Accuracy 0.9935 0.9941 0.9943 0.9960 

Testing Sample AUC 0.9958 0.9677 0.9668 0.9506 

Accuracy 0.9958 0.9958 0.9955 0.9965 

We now present the benchmarking analysis of alternative IML models (ReLU-DNN, GAMI-Net 

and EBM) and the LRM baseline model. This analysis is developed using the Python PiML Toolbox 

(Sudjianto et al., 2023). In Table 6 above we show the comparison of the AUC and Accuracy (defined 

as the number of true positives and negatives over the number of observations) discriminatory power 

performance and measures. We can see that the IML models all demonstrate some pickup in AUC 

performance, albeit the degree of improvement is modest, especially on an out-of-sample basis, 

ranging in 2–5% (1–2%) in testing (training) samples. ReLU-DNN (EBM) shows the greatest increase 

(decrease) out-of-sample of 1.4% (0.4%), while EBM (ReLU-DNN) shows the greatest (least) increase 

in-sample of 5.6% (1.9%). This suggests that, on this basis, EBM (ReLU-DNN) is most (least) prone 

to overfitting. On the other hand, according to the Accuracy measure EBM performs best on both an 

in- and out-of-sample basis, whereas in the training (testing) sample LRM (GAMI-Net) performs worst, 

which leads to a rather different conclusion than AUC. That said, AUC is a more preferred measure 

in PD classification applications, so we have more confidence in the conclusions based upon AUC.  

We depict this analysis graphically in Figures 5 through 8 in the ROC and Precision-Recall plots below.  
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Figure 5. ML model benchmarking PD modeling analysis – comparison of the ROC and 

Precision-Recall plots for the LRM model. 

 

Figure 6. ML model benchmarking PD modeling analysis – comparison of the ROC and 

Precision-Recall plots for the ReLU-DNN model.  

 

Figure 7. ML model benchmarking PD modeling analysis – comparison of the ROC and 

Precision-Recall plots for the GAMI-Net model. 
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Figure 8. ML model benchmarking PD modeling analysis – comparison of the ROC and 

precision-recall plots for the EBM model.  

We now consider the concept of FI as discussed in the LRM model estimation results previously 

in more detail. The FI numeric value is interpreted as a score where a higher value indicates more 

importance of the factor. The concept is similar to that of the magnitude of a regression coefficient in 

OLS, or a sensitivity measure in other kinds of models, but note that there are various concepts of FI 

that provide slightly different information. FI is a commonly used as a tool for ML model 

interpretability, as from the FI scores it is in principle possible to explain why a ML model makes 

particular predictions and how we can manipulate features to change its predictions. We consider the 

following types of FIs: 

• Range FI (“RANGE-FI”) is commonly used in the industry in LRM applications and serves as 

our baseline, which is used in the previous estimation and shown in Table 5. The RANGE-FI is 

a post hoc explanation defined for each risk factors as the coefficient estimate multiplied by the 

range of the risk factors, scaled by the sum of the ranges of all the risk factors: 

𝑅𝐴𝑁𝐺𝐸 − 𝐹𝐼(𝑥𝑖) ≜
𝛽𝑖×[𝑚𝑎𝑥(𝑥𝑖)−𝑚𝑖𝑛(𝑥𝑖)]

∑ [𝑚𝑎𝑥(𝑥𝑗)−𝑚𝑖𝑛(𝑥𝑗)]
𝑝
𝑗=1

,  where i  is the 
thi  coefficient estimate 

corresponding to each risk factor : ,1,..., .ix i p=  While this gives us a sense of how influential a 

factor is as part of fitting the model, this measure is sample dependent as it only gives a particular 

view of importance, and furthermore does not measure sensitivity to the factor or how the factor 

contributes to some measure of model fit.  

• Permutation FI (“PERM-FI”) post hoc local explanations measure the influence of individual 

risk factors on the model prediction that calculates the increase in a loss measure (in this context 

of PD modeling the AUC) when they are permuted. When a factor value is randomly shuffled, 

the relationship between the feature and the target is broken, and the resulting drop in model 

performance indicates the feature’s significance. However, as different models can have very 

different FI rankings, this measure only reveals the importance of each feature to that specific model. 

• Shapley FI (“SHAP-FI”) additive post hoc local explanations are an ML tool that can explain the 

output of any model by computing the contribution of each feature to the final prediction based 

upon coalition game theory. SHAP-FI measures indicate how to justly allocate a “payout” (i.e., a 

prediction of the model) among the coalition of features as an average marginal contribution of a 
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feature value across all the possible combinations of features. SHAP-FI possesses several 

attractive properties, such as local accuracy, missingness and consistency. 

• Local Interpretable Model Agnostic FI (“LIME-FI”) post hoc local explanations are a model 

agnostic explanation tool. The procedure underlying this measure involves creating a surrogate 

interpretable model, such as a Lasso or decision tree, to explain how the original model makes 

predictions for a given input sample. The algorithm creates a simulated dataset by randomly 

perturbing the input sample with noise, evaluates the output of the original model on these 

perturbed samples and then fits an interpretable model (Lasso in our case) on this simulated data, 

with weights assigned to each perturbed sample based on its proximity to the original input sample. 

• Global FI (“GLOB-FI”) is an inherent explanation that measures the global relative importance 

of each feature calculated by measuring the variance of the marginal effect 𝑉𝑎𝑟[𝛽𝑖 × 𝑥𝑖] : 𝑖 =
,1, . . . , 𝑝. on the training dataset. In the case of categorical features, we aggregate the marginal 

effects of all of its dummy variables and then calculate the variance. Therefore, the GLOB-FI 

provides a measure of how much the feature contributes to the overall variability in the model’s 

predictions. In order to interpret the relative importance of each feature as a proportion of the total 

importance across all features, we normalize the feature importance so that their sum equals 1: 

𝐺𝐿𝑂𝐵 − 𝐹𝐼(𝑥𝑖) ≜
𝑉𝑎𝑟[𝛽𝑖×𝑥𝑖]

∑ 𝑉𝑎𝑟[𝛽𝑖×𝑥𝑖]𝑝
𝑗=1

.   

We show a comparison of FI measures across the three IML models and the LRM below in Table 7. 

While the overarching observation is the complete lack of consistency across both models and FI 

measures, we note that overall the SHAP-FI and LIME-FI measures are least inconsistent across 

models. We only show RANGE-FI for the LRM as that is our baseline and not computed for the IML 

models in the PiML package that we use. As we noted previously in the LRM estimation results the 

top three factors under RANGE-FI are NARDR, BTPM and CUR, which we deem to be a conceptually 

sound outcome for this type of PIT PD model where the factors that are expected to have more 

importance should span the dimension reflecting more short term default risk (borrower profitability, 

liquidity or cash management), in contrast to TTC PD models more suitable for credit underwriting, 

where the latter tend to place greater importance on longer term dimensions of default risk (i.e., capital 

structure, size or debt service coverage.) In the case of the other IML models or other FI measures such 

factors do not consistently show up as having the most importance, and the rank ordering are rather 

different depending on the combination of model and FI measure.  

First focusing on the LRM model, in the case of PERM-FI the most important risk factors are the 

macroeconomic factors CCI and MDY500EP at 1st and 2nd place, respectively, with NARDR at 3rd and 

the only risk factor that overlaps with the top three factors in the RANGE-FI ranking. That said, it can 

be argued that it makes sense for macroeconomic factors to carry more weight in PIT models, but the 

fact that such factors are ranked near the bottom in RANGE-FI is hard to justify. In the case of SHAP-

FI the top three are TLTAR, NQR and CTA in descending order – we see here that two of the factors 

are more suitable for PIT models, and while NQR is a PIT factor, it does not make the top ranking 

according to any of the other FI measures for the LRM. However, in LIME-FI the 2nd and 3rd ranked 

factors are NARDR and CUR, respectively, which are also ranked among the top three under 

RANGE-FI, but the 1st ranked factor under this measure is TLTR. Finally, for the LRM we get a 

completely different picture with GLOB-FI where NQR, TLTAR and CTA take the 1st, 2nd and 3rd 

places, respectively. 
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Table 7. ML model benchmarking PD modeling analysis – comparison of factor importance measures.  

  CTA TLTAR CUR NARDR NQR BTPM SP500EP CCI 

LRM Range 0.0455 0.1091 0.1545 0.2273 0.0909 0.2736 0.0759 0.0232 

Permutation 5.66E-06 5.10E-

06 

7.21E-

06 

1.26E-

05 

6.94E-

06 

6.64E-06 5.51E-05 4.81E-04 

Shapley 0.5332 0.5414 0.0166 0.1421 1.4116 0.0542 0.0677 0.4136 

LIME −0.0533 0.0025 0.0005 0.0012 −0.1178 −0.0125 −0.0007 −0.0137 

Global 0.1621 0.1069 0.0003 0.0069 0.6857 0.0018 0.0008 0.0356 

ReLU-

DNN 

Permutation 9.11E-06 4.90E-

06 

8.16E-

06 

3.21E-

04 

2.41E-

04 

8.90E-06 9.00E-05 8.00E-05 

Shapley 0.0011 0.0048 0.0001 0.0013 0.0026 0.0009 0.0005 0.0015 

LIME −0.0457 0.0297 −0.0006 0.0162 −0.0468 −0.0364 0.0038 −0.0018 

Global 0.3618 0.1584 0.0017 0.0235 0.3295 0.1181 0.0028 0.0043 

GAMI

-Net 

Permutation 1.13E-05 2.41E-

04 

3.21E-

04 

1.60E-

04 

8.00E-

05 

3.53E-04 3.98E-05 4.01E-04 

Shapley 9.50E-04 1.59E-

03 

6.30E-

04 

4.80E-

04 

1.57E-

03 

1.10E-03 1.50E-04 6.50E-04 

LIME −0.0497 0.0154 −0.0168 0.0079 −0.0234 0.0008 −0.0519 −0.0049 

Global 0.0949 0.0876 0.2061 0.0165 0.2783 0.0920 0.0084 0.0269 

EBM Permutation 1.44E-03 1.85E-

03 

1.30E-

03 

8.41E-

04 

1.61E-

03 

1.20E-03 8.00E-05 4.81E-04 

Shapley 6.60E-04 7.50E-

04 

4.80E-

04 

2.70E-

04 

1.23E-

03 

5.20E-04 2.20E-04 2.10E-04 

LIME −0.0231 0.0136 −0.0132 0.00476 −0.0154 −0.0265 0.0007 −0.0033 

Global 0.2033 0.1823 0.1273 0.0350 0.2783 0.1170 0.0168 0.0400 

Key: (across each row in the table) 

Top 
  

Bottom 
  

1 2 3 3 2 1 

We will conclude our discussion of FI by going over the comparison for the ReLU-DNN model, 

for the sake of completeness and to not belabor the point about complete inconsistency, as the 

comparisons for the GAMI-Net and EBM models are similarly incoherent. PERM-FI does feature two 

PIT risk factors as 1st and 2nd, NARDR and NQR, respectively; with the macroeconomic factors 

SP500EP and CCI coming in at 3rd and 4th, respectively. In contrast, the top risk factor under SHAP-

FI is the TTC risk factor TLTAR, with NQR coming in at 2nd and CCI at 3rd. LIME-FI also ranks 

TLAR at the top, but now we observe NARDR and SP500EP in the 2nd and 3rd slots, respectively. 

Finally, GLOB-FI ranks the PIT risk factors NQR and CUR at 1st and 2nd, respectively, with the TTC 

risk factor CTA coming in at 3rd.  

We next consider another mode of interpretability, partial dependence plots (“PDP”), a model-

agnostic tool that helps visualize the relationship between a subset of risk factors and the predicted 

dependent variable. This allows us to determine whether this relationship is linear, monotonic or 

something more complex. If we have a set of risk factors 𝑋 and a fitted model 𝑓 (which in this context 

of binary classification for PD modeling this would be the log-odds), then we form a partition into a 

subset of interest 𝑋𝑆  and its complement 𝑋𝐶 , and define the PDP function as 𝑃𝐷𝑃𝑠(𝑥𝑠) =

𝛦𝑋𝐶
[𝑓(𝑥𝑠, 𝑋𝐶)] = ∫ 𝑓(𝑥𝑠, 𝑋𝐶)𝑝(𝑋𝐶) 𝑑𝑋𝐶 . This integral is approximated by the summation 

1

𝑛
∑ 𝑓(𝑥𝑠, 𝑥𝐶

(𝑖)
)𝑛

𝑖=1 , where 𝑥𝐶
(𝑖)

 is the complementary set of risk factors in the 𝑖𝑡ℎ training sample. We 
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note here that PDPs have several limitations, the most critical being the assumption of independence 

amongst risk factors. If the risk factors are highly correlated then the outcomes may be inaccurate, as 

extrapolation of the dependent variable at predictor values required, that the result may lie far beyond 

the training data’s multivariate envelope. However, we have tested for collinearity and have not 

detected an egregious problem in this regard, so we do not deem this assumption to be a fatal flaw. 

Also, PDPs may result in inconsistencies between global and local explanations, as PDPs provide an 

average view of risk factors’ influence on the predictions, and local effects specific to certain subsets 

of data may differ from global ones.  

The PDPs are shown below in Figures 9 through 16 for each of the risk factors. While generally 

speaking the three IML models considered show relationships to default risk that are as expected, as 

compared to the LRM model there are several instances of non-monotonicities or non-sensical results. 

In regard to the latter observation, the ReLU-DNN model has results that are most intuitive, and EBM 

tends to display patterns that are most aberrant, while GAMI-Net is intermediate in this respect. 

Considering the CCI risk factor in Figure 9, the LRM and ReLU-DNN models show declines as 

expected, and very similar linear patterns, while the GAMI-Net model shows an increase at low levels 

of the factor and then linear decrease, while the EBM model has a similar early increase to the latter 

followed by a discontinuous drop to a flat-line pattern. In the case of the CUR risk factor shown in 

Figure 10, the LRM and ReLU-DNN models both show similar linear declines, whereas the GAMI-

Net model exhibits an inexplicable tent shape, and the EBM model shows a rather odd appearing blip 

in the middle range of the factor. The situation is rather different for the NQR risk factor in Figure 11 

as we observe an agreement across all models of exponential decays. The situation is again unique for 

the NARDR risk factor in Figure 12 as in contrast to the mildly convex and monotone increase of the 

LRM, for the other 3 IML models we observe all variations of a hump shape: smooth for the ReLU-

DNN model, tent shaped for the GAMI-Net model and a highly irregular kind of step function for the 

EBM model. Looking at the BTPM risk factor in Figure 13, again we see an agreement between the 

LRM and ReLU-DNN models in nearly linear decline, whereas both the GAMI.  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 9. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the Consumer Confidence Index risk factor.  
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LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 10. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the Cash Use Ratio risk factor.  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 11. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the Net Quick Ratio risk factor.  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 12. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the Net Account Receivables Days risk factor. 

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 13. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the before tax profit margin risk factor.  
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LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 14. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the Change in Total Assets risk factor.  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 15. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the total liabilities to total assets ratio risk factor.  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 16. ML model benchmarking PD modeling analysis – comparison of partial 

dependence plots for the S&P 500 Equity Price Index risk factor.  

GAMI-Net and EBM models show overall albeit non-monotonic decline, with again the pattern 

in the EBM model appearing very jagged. The CTA risk factor is shown in Figure 14, and across 

models there is agreement in version of an intuitive exponential decline. Similarly for the TLTAR risk 

factor in Figure 15 there is a consistent version of an intuitive exponential increase across models, 

where again EBM shows the most irregular pattern. Finally, for the SP500EP risk factor in Figure 16 

the patterns are the most divergent: the LRM shows a linear decline, the ReLU-DNN model a hump 

shape, the GAMI-Net model a flat line and the EBM model a pattern that is difficult to succinctly describe.  

Given the limitations of the PDPs noted, we consider an alternative that is robust to these 

assumptions, the accumulated local effects (“ALE”) plot explainability construct. ALE resolve the 

issues with PDP calculating differences in predictions instead of averages based on the conditional 

distribution of the features, showing how model predictions change in a small window of the factor 
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around a defined grid value for data instances in that window. ALE plots average the changes in the 

predictions and accumulates them over a grid, mathematically represented as  

𝑓𝐴,𝐴𝐿𝐸(𝑥𝑆) = ∫ 𝛦𝑋𝐶|𝑋𝑆=𝑥𝑆
[𝑓𝑆(𝑋𝑠, 𝑋𝐶|𝑋𝑆 = 𝑥𝑆)]

𝑥𝑆

𝑧0,𝑆

𝑑𝑧𝑆 

= ∫ ((∫ 𝑓𝑆(𝑧𝑆, 𝑋𝐶|𝑋𝑆 = 𝑥𝑆)
𝑋𝐶

𝑑 𝑃(𝑋𝐶|𝑋𝑆 = 𝑥𝑆)))
𝑥𝑆

𝑧0,𝑆

𝑑𝑧𝑆 

where the change is at point 𝑧0,𝑆is defined as the cross partial derivative 𝑓𝑆(𝑥𝑠, 𝑥𝑐) =
𝜕𝑓̂𝑆(𝑥𝑐,𝑥𝐶)

𝜕𝑥𝑠
. This 

is computed by replacing 𝑧0,𝑆  with a grid of intervals over which we compute the changes in the 

prediction, so instead of directly averaging the predictions, the ALE method calculates the prediction 

differences conditional on the factor set and integrates the derivative over them to estimate the effect.  

The ALE plots are shown below in Figures 17 through 24 for each of the risk factors. The first 

and rather obvious conclusion is that the shapes of the ALE plots differ radically from that of the PDP 

plots, as all of these exhibit extreme non-continuities of variations in step-functions, for example 

including in many cases “hockey-stick” or L- (reverse L-) shapes. This is by design as the y-axes are 

not interpreted as average PD estimates at some level of a factor but rather the marginal change in the 

log-odds for incremental changes in the factor at various levels; that said, the jumps are often hard to 

rationalize. Furthermore, as with the PDP plots, we are seeing inconsistencies across models and 

marginal changes that are in counter-intuitive directions. First considering the CCI risk factor in Figure 

17, in the LRM there in linear decrease in the 0.4–0.6 region, with flat lines out of this range. In the 

ReLU-DNN model we get a rotated hockey-stick that approximates linear decrease below 0.6, 

punctuated by flatness in the 0.2–0.3 region, and flat elsewhere. The GAMI-Net model shows a linear 

decline in a very narrow range of about 0.38 to 0.40, and is flat elsewhere. Finally for the CCI, the 

EBM model shows a completely erratic pattern, stepwise increases at high and low levels of the factor 

in the respective narrow ranges of about 0.20–0.25 and 0.55–0.60, with an almost straight drop in the 

middle at about 0.40. The CUR risk factor is shown in Figure 18, where in the case of both the LRM 

and GAMI-Net models the lines are flat at zero, as the ALE scores are identically zero throughout the 

range of the factor, whereas in the case of the ReLU-DNN model there is linear increase until about 

0.60 after which there is a step drop to a flat line at zero, while for the EBM model we see a similar 

pattern in the rage of up to about 0.50 and then a similar drop to zero. Considering the NQR risk factor 

in Figure 19 there are steep nearly L-shaped drops to a level of near zero in the narrow lows ranges of 

around 0.05–0.10 in the LRM, GAMI-Net and EBM models; while the ALE score is zero throughout 

in the ReLU-DNN model. Turning to the NARDR risk factor in Figure 20, for the LRM the effect is 

zero until a linear increase at about near 0.40, while for the ReLU-DNN model there is a stepwise 

increase until about 0.40 followed by linear decline, with a similar pattern in the GAMI-Net model 

albeit with a single step before around 0.40, and finally for the EBM a single step between flat lines 

occurring at around 0.05. In the case of the BTPM risk factor in Figure 21 in three models we have 

overall decrease, a linear increase up to a flat line immediately (after a nearly vertical drop) at around 

0.60 for the LRM (both the GAMI-Net and EBM models), and only for the LRM do we get an intuitive 

overall linear decrease throughout most of the range until at around 0.65 where it flat-lines. In all 

models for the CTA risk factor shown in Figure 22 we get agreement of L-shaped overall declines, 

steep linear decline in the low range below around 1.50 for the LRM, ReLU-DNN and GAMI-Net 

models; while the EBM model shows an almost stepwise decline at about the value 0f 1.80 to a flat 

line at a little below zero. Similarly for the TLTAR risk factor in Figure 23 there is a consistency of a 
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hockey-stick overall increase, with the linear rise all starting at just below the level of 0.60. Finally, 

for the SP500EP risk factor in Figure 24 the patterns are rather divergent, with zero ALE scores 

throughout in both LRM and GAMI-Net models, whereas we observe an overall hump shape (decline) 

of a stepwise increase (an erratic decrease) in the lower range up to around 0.40, with linear ascent to 

a peak at about 0.60 followed by linear decline (to a flat line in the ReLU-DNN (EBM) models. 

 

LRM                        ReLU-DNN                     GAMI-Net                      EBM 

Figure 17. ML Model Benchmarking PD Modeling Analysis – Comparison of 

Accumulated Local Effects Plots for the Consumer Confidence Index Risk Factor.  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 18. ML model benchmarking PD modeling analysis – comparison of Accumulated 

Local Effects Plots for the Cash Use Ratio risk factor.  

 
LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 19. ML model benchmarking PD modeling analysis – comparison of Accumulated 

Local Effects Plots for the Net Quick Ratio risk factor.  

 
LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 20. ML model benchmarking PD modeling analysis – comparison of accumulated 

local effects plots for the net account receivables days risk factor.  
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LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 21. ML model benchmarking PD modeling analysis – comparison of accumulated 

local effects plots for the before tax profit margin risk factor.  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 22. ML model benchmarking PD modeling analysis – comparison of Accumulated 

Local Effects Plots for the Change in Total Assets risk factor.  

 

LRM                       ReLU-DNN                     GAMI-Net                      EBM 

Figure 23. ML model benchmarking PD modeling analysis – comparison of Accumulated 

Local Effects Plots for the total liabilities to total assets ratio risk factor  

 

LRM                      ReLU-DNN                     GAMI-Net                      EBM 

Figure 24. ML model benchmarking PD modeling analysis – comparison of Accumulated 

Local Effects Plots for the S&P 500 Equity Price Index risk factor.  
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We will now describe prediction residuals between the default indicator dependent variable and 

the predicted PD estimates against the risk factor explanatory variables. Through an examination of 

these plots we can analyze patterns and trends in the residuals and assess how they vary with changes 

in the selected risk factors. As the response variable is binary, we plot the absolute residuals separately 

for classes of 0 (1) indicating non-default (default), and in addition we include smoothing curves for 

each class estimated using a locally weighted scatterplot smoothing (“LOWESS”) estimator. The 

accuracy plots are shown below in Figures 25 through 32 for each risk factor and model. In general, 

we observe that, as expected in the case of a relatively low-default setting (or said in the language of 

statistics, an unbalanced panel where the target rate is much lower than the non-incidence rate), the 

errors are much larger (much smaller) and closer to one for default (non-default). We also note that 

there are some differences in the patterns across models and risk factors that are in some cases hard to 

rationalize. First considering the CCI risk factor in Figure 25, in three of the models (LRM, ReLU-

DNN and GAMI-Net) we see a very similar pattern of a saw-tooth curve across most of the range of 

the factor very near one (a flat line very near zero) for default (non-default), whereas this pattern differs 

in EMB in that the trend line for default rather is lower than one in the lower range of the factor. The 

residual plot patterns are rather similar across all models for the CUR risk factor shown in Figure 26, 

where the errors all have a non-monotonic V-shaped spike for the default class in the middle range of 

around 0.50 to 0.70. The residual plot patterns are also rather similar across all models for the NQR 

risk factor shown in Figure 27, where the errors all have a non-monotonic jagged series of V-shaped 

spikes that resolve into a flat line for the default class in the low range of around below 0.30. The 

commonality across models for the NARD risk factor in Figure 28 is that the residual trend line for the 

default class spans the entire range, but there are some differences in the patterns, with all showing an 

early high and jagged pattern, followed by almost linear declines (V-shapes) at higher levels of range 

for both LRM and ReLU-DNN (GAMI-Net and EBM). The BTPM is shown in Figure 29, and for 

three of the models (LRM, ReLU-DNN and GAMI-Net) we observe a similar overall increase in the 

default class trend like of the residual across the entire range from about a level of 0.80 to very near 

1.00, punctuated by a V-shaped dip in the middle of the range, whereas EBM differs that this V plunges 

to a much lower level and at the higher part of the range there is another steep drop to a low level. The 

residual plots for CTA risk factor are shown in Figure 30 where we observe divergent patterns vis a 

vis the other factors, in three cases (ReLU-DNN, GAMI-Net and EBM) overall non-monotonic lack 

of increase or decrease at low levels of the factor, whereas for the LRM there is an overall linear 

decline over most of the range except for the low region as well as a slight linear trend in the non-

default class. In the case of the TLTAR risk factor shown in Figure 31, unlike the other cases in all 

case the default class residual trend is on the whole decreasing monotonically over most of the range 

(with LRM closest to linear, ReLU-DNN and GAMI-Net having V- shapes in the middle range and 

EBM showing a pronounced U-Shape in the middle range), as well as a mild linear increase to still a 

low level in the non-default trend over all the range. Finally, we consider the SP500EPI risk factor in 

Figure 32 and observe across all models that there is a non-monotonic lack of change over the entire 

range in the trend line for the default class, where in the case of EBM a reverse V-shaped dip is the 

most pronounced as compared to the other models. 
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LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 25. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the consumer confidence index risk factor.  

 

LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 26. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the Cash Use Ratio risk factor.  

 
LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 27. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the Net Quick Ratio risk factor.  

 

LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 28. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the Net Account Receivables Days risk factor.  
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LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 29. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the before tax profit margin risk factor.  

 

LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 30. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the Change in Total Assets risk factor.  

 
LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 31. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the total liabilities to total assets ratio risk factor.  

 
LRM                      ReLU-DNN                      GAMI-Net                     EBM 

Figure 32. ML model benchmarking PD modeling analysis – comparison of prediction 

accuracy plots for the S&P 500 Equity Price Index risk factor.  
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We now turn to an analysis of performance in terms of robustness. The performance of a model 

can be adversely affected when it encounters noisy data or experiences distribution shifts. Such data 

drift or shift may occur due to unexpected changes, which can alter the underlying patterns and 

relationships between the input and target variables. The robustness test assesses model performance 

through subjecting it to small changes in the covariate space by perturbing a covariate x with changes

x , calculating the model’s output ( )f̂ x x+  on the perturbed data and then evaluating the performance 

metric of ( )( )ˆ,Score y f x x+  according to the AUC. This process is iterated multiple times (we choose 

ten) for all the test samples, with performance metrics recorded for each repetition. It is important to 

note that the assumption is made that the response remains unchanged throughout. In the case of 

numerical features as in this setting, there are two perturbation options. Raw perturbation directly adds 

i.i.d. Gaussian noise ( )( )20, VarN x
 
to , where  is the perturbation size. However, this method may 

not be suitable when the data is skewed and has a long tailed distribution (as is the case with our risk 

factors), in which case the calculation of the standard deviation may become unstable, and it is 

relatively hard to choose a suitable perturbation size. Therefore, we choose to perform quantile 

perturbation in order to resolve this issue, which is implemented as follows. First, the feature is 

converted to the quantile space, and then a uniform noise ( )0.50 ,0.50U  − is added to perturb the 

quantiles, where  also represents the perturbation size. Finally, we transform the quantiles back to the 

original space. Note that we may perform this analysis on all the covariates or on subsets of the covariates.  

In Figure 33 below we show the robustness results where we perturb all the risk factors, where 

we note that in the key that “GLM_5” is the LRM model, and for each perturbation with sizes ranging 

from 0.10 to 0.40 in increments of 0.10 we show the box plots of the AUC for each model. We observe 

that as expected AUC deteriorates as we increase the perturbation size, and the ReLU-DNN and LRM 

models appear to hold up best as the variance of the AUC measure appears most stable with increasing 

size, while the GAMI-Net and EBM models show worse performance.  

In Figures 34 through 41 below we present the robustness plots for each risk factor separately, 

from which we conclude that for a given variable there is some material variation in robustness across 

models for some risk factors, and in general while the dispersion of the AUC consistently becomes 

greater with the shock the means of the distributions do not get materially worse. Also, in general the 

LRM, ReLU-DNN and GAMI-Net models are most consistent in patterns across risk factors, while 

the EBM is least consistent in this regard and in some cases shows counterintuitive patterns. 

In the case of the CCI risk factor shown in Figure 34, the degradation is greater and similar in the 

LRM and ReLU-DNN models with more downside, while the GAMI-Net and EBM models appear to 

be more similar, with less degradation as well as more asymmetry. In the case of the CUR risk factor 

shown in Figure 35, the degradation is greater and similar in the LRM and GAMI-Net models with 

more downside, while the ReLU-DNN model appears to show less degradation as well as asymmetry, 

and the EBM model actually shows an improvement at the greatest perturbation shock. The NQR risk 

factor is shown in Figure 36, and now we see that the EBM model is very resilient to shocks, whereas 

the LRM has the greatest drop in mean performance (although the variance of the distributions are 

rather stable), while the ReLU-DNN and GAMI-Net models are intermediate in robustness (although 

the variance of the later distribution is less stable as compared to the former). The NARD risk factor 

shown in Figure 37 has the mean AUC getting better or no worse with shock size, but in terms of 

increasing variability performance is worse in the LRM and GAMI-Net models, as compared to the 
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ReLU-DNN and EBM models with the latter actually becoming less dispersed at the largest 

perturbation size.  

 

Figure 33. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for all risk factors.  

 

LRM                    ReLU-DNN                   GAMI-Net                       EBM 

Figure 34. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the Consumer Confidence Index risk factor.  

 

LRM                    ReLU-DNN                   GAMI-Net                       EBM 

Figure 35. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the Cash Use Ratio risk factor.  
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LRM                    ReLU-DNN                   GAMI-Net                       EBM 

Figure 36. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the Net Quick Ratio risk factor.  

 

LRM                   ReLU-DNN                 GAMI-Net                      EBM 

Figure 37. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the Net Account Receivables Days risk factor.  

 

LRM                    ReLU-DNN                 GAMI-Net                  EBM 

Figure 38. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the before tax profit margin risk factor.  

 

LRM                    ReLU-DNN                 GAMI-Net                  EBM 

Figure 39. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the Change in Total Assets risk factor.  
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LRM                    ReLU-DNN                 GAMI-Net                  EBM 

Figure 40. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the total liabilities to total assets ratio risk factor.  

 

LRM                      ReLU-DNN                  GAMI-Net                  EBM 

Figure 41. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots for the S&P 500 Equity Price Index risk factor.  

The BTPM risk factor is shown in Figure 38, where the LRM, ReLU-DNN and GAMI-Net 

models have similar patterns of declining (increasing) mean (dispersion) of the AUC distribution, in 

order of improving overall performance; while the EBM model has a non-decreasing mean AUC and 

widening dispersion until the largest shock. In the case of the CTA risk factor shown in Figure 39, the 

patterns of decreasing mean and increasing dispersion with shock size are similar for the LRM, ReLU-

DNN and EBM models; whereas again we see an odd pattern in the EBM model, a stable or even 

improving mean coupled with rising dispersion as the shock increases. We see a somewhat similar 

pattern as the former case for the TLTAR risk factor shown in Figure 40, the patterns of decreasing 

mean and increasing dispersion with shock size are similar for the LRM, ReLU-DNN and EBM models; 

but this time we see a slightly different weird pattern in the EBM model, a stable or even improving 

mean (but this time for intermediate values of the shock and not the maximal value) coupled with 

rising dispersion as the shock increases. Finally, for the SP500EPI risk factor shown in Figure 41, yet 

again the pattern across models similar to the last two cases, in terms of the similarity of the first three 

models in the same way, as well as an anomalous pattern in the EBM model of a non-monotonically 

increase overall in the mean now paired with almost no increase in the dispersion. 

We will now discuss weak region overfitting analysis for each risk factor. In this technique, we 

evaluate the performance metric of choice (in this case the accuracy gap – “ACC”) for each sample 

(testing and training) as pseudo-responses, and then we use a decision tree (or tree ensemble) technique 

to segment the range of the variable of interest into sub-regions. In each sub-region we then identify 

those where the ACC exceeds a pre-specified threshold according to a minimum sample condition. 

In the overfit plots we identify these weak regions as positive bars as we take the negative of the 

ACC deviations. 



37 

Data Science in Finance and Economics Volume 4, Issue 1, 1–52. 

The results of the weak region overfit analysis are shown below in Figures 42 through 49. In 

general, there is a moderate degree of agreement amongst models as to which regions are weak, with 

a material amount of disagreement. In the case of the CCI risk factor shown in Figure 42, all models 

show the regions around 0.10–0.20 and 0.30–0.40 to be most weak, with EBM showing the least 

deviation in ACC among them; as well as the regions around 0.80–0.85 and 0.95–1.00, although the 

degree of weakness here is less. The CUR risk factor is shown in Figure 43, where we see identified 

weak regions of around 0.25–0.30 in the LRM, 0.30–0.35 in all models except the LRM and 0.50–0.55 

in all models. In Figure 44 for the NQR risk factor the only region identified as weak is around 0.00–

0.05 for all models, in the order of severity: the LRM, ReLU-DNN, GAMI-Net and EBM model. In 

the case of the NARD risk factor shown in Figure 45, the LRM and ReLU-DNN models find the 

regions around 0.60–0.65 to be weak, whereas this is the case and to a greater degree of severity for 

only the LRM around 0.85–0.90. In the case of the BTPM risk factor shown in Figure 46 we observe 

some regions of agreement as well as disagreement across models in terms of weakness, with all 

models identifying narrow regions around just below 0.20, just above 0.40 and just above 0.60 as such; 

while only the LRM identifies a narrow region around just above 0.30 similarly. Considering the CTA 

risk factor in Figure 47 we observe complete agreement across models of regions identified as weak, 

around below 0.10, 0.30–0.35 and 0.40–0.45. The story is the same as the latter for the TLTAR risk 

factor shown in Figure 48, where almost all models to varying degrees shows the region of around 

greater than 0.85 as weak, with the exception of the EBM model at around greater than 0.95. Finally, 

we see another case of almost near agreement amongst models for the SP500EPI risk factor in Figure 

49, where almost all models identifies the region around 0.40–0.70 as weak, with the exception of the 

EBM model for the subset of that around 0.55–0.60.  

 

Figure 42. ML model benchmarking PD modeling analysis – comparison of weak 

region overfitting analysis plots of the ACC deviation for the Consumer Confidence 

Index risk factor.  
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Figure 43. ML model benchmarking PD modeling analysis – comparison of weak region 

overfitting analysis plots of the ACC deviation for the Cash Use Ratio risk factor.  

 

Figure 44. ML model benchmarking PD modeling analysis – comparison of weak region 

overfitting analysis plots of the ACC deviation for the Net Quick Ratio risk factor. 

 

Figure 45. ML model benchmarking PD modeling analysis – comparison of weak region 

overfitting analysis plots of the ACC deviation for the Net Account Receivables Days 

risk factor.  
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Figure 46. ML model benchmarking PD modeling analysis – comparison of weak region 

overfitting analysis plots of the ACC deviation for the before tax profit margin risk factor.  

 

Figure 47. ML model benchmarking PD modeling analysis – comparison of weak region 

overfitting analysis plots of the ACC deviation for the Change in Total Assets risk factor. 

 

Figure 48. ML model benchmarking PD modeling analysis – comparison of weak region 

overfitting analysis plots of the ACC deviation for the total liabilities to total assets ratio 

risk factor.  
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Figure 49. ML model benchmarking PD modeling analysis – comparison of weak 

region overfitting analysis plots of the ACC deviation for the S&P 500 Equity Price 

Index risk factor.  

We now will discuss resiliency distance analysis (or weak region over-fitting analysis), where we 

assess the performance of the worst samples in a model across various out-of-distribution scenarios, 

according to the distributional distance between the worst test sample and the full test sample that is 

calculated for each risk factor that are then ranked by distance. We choose the PSI distributional 

distance measure and set the worst sample proportion to 10%. The resilience distribution analysis plot 

is shown below in Figure 50. We observe that there is general agreement across models in which risk 

factors have the greatest shifts in distribution, with all models identifying the TLTAR, NQR, BTPF 

and CTA features as being top four in terms of shift.  

 

Figure 50. ML model benchmarking PD modeling analysis – comparison of resiliency 

distance analysis plots of the 10% worst samples for all risk factors.  

We may also perform the resilience analysis in terms of a performance metric, such as AUC, for 

each risk factor in the plots showing resiliency performance. In this analysis we demonstrate the 

model’s performance in the “worst-sample” scenario, varying the worst sample ratios ranging from 

0.10 to 1.0, where a ratio of 1.0 implies that all test samples are treated as worst samples, while a ratio 

of 0.10 signifies that only 10% of the test samples are considered as worst samples. In the plot, the red 

dotted line represents the model’s performance on the entire test sample. If the curve depicted in the 

plot is monotonic this indicates that as the worst sample ratio increases, the model’s performance tends 
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to decrease, a visualization that allows for a clear understanding of how the model’s performance 

varies when different proportions of worst samples are considered. 

The resiliency performance plots are shown below in Figures 51 through 58, and all the plots are 

monotonic and show the expected degradation in performance as a higher proportion of samples are 

considered to be worst, with the rank ordering of the AUC generally similar across worse sample 

proportions. However, at the very lower proportions we do see some divergence in performance 

according to the model for some of the risk factors. While all these differences are generally minor 

there is a lack of consistency in the patterns across risk factors. In the case of the CCI risk factor shown 

in Figure 52, at the low proportions we observe the GAMI-Net model to be outperforming the ReLU-

DNN model, while the LRM and EBM models converge. In the case of the CUR risk factor shown in 

Figure 53 the LRM and EBM models converge to the downside at the low proportions, while the 

GAMI-Net model performs best in this region relative to the ReLU-DNN model. In the case of the 

NQR risk factor shown in Figure 54 all models converge at the lower proportions except for the EBM 

model that diverges to the downside. All models converge at the lowest proportions for the NARD risk 

factor shown in Figure 55. The LRM and EBM models converge, while the ReLU-DNN model 

diverges to the downside from the GAMI-Net model in this region, for the BTPM risk factor shown in 

Figure 56. In Figure 57 we can see for the CTA risk factor that all models diverge at the lowest 

proportions, in decreasing levels of performance the GAMI-Net, ReLU-DNN, LRM and EBM models. 

There is a similar pattern to the latter observed for the TLTAR risk factor as seen in Figure 58 at the 

lower proportions, with the EBM model also performing the worst and the ReLU-DNN model the best, 

while there is intermediate performance for the LRM and GAMI-Net models with the former crossing 

the latter to the upside. Finally, in the case of the SP500EP risk factor shown in Figure 59, all models 

converge at the lowest level of the proportion, with EBM diverging to the downside. 

 

Figure 51. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the Consumer Confidence Index risk factor. 

 

Figure 52. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the Cash Use Ratio risk factor.  
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Figure 53. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the Net Quick Ratio risk factor.  

 

Figure 54. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the Net Account Receivables Days risk factor.  

 

Figure 55. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the before tax profit margin risk factor.  

 

Figure 56. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the Change in Total Assets risk factor.  
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Figure 57. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the total liabilities to total assets ratio risk factor.  

 

Figure 58. ML model benchmarking PD modeling analysis – comparison of resiliency 

performance plots for the S&P 500 Equity Price Index risk factor.  

 

Figure 59. ML model benchmarking PD modeling analysis – comparison of robustness 

plots of the worst samples for all risk factors. 

In addition to the robustness test on all test samples, we also test model robustness on so-called 

worst-performing test samples. We achieve this by identifying a top percentage of test samples with 
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the largest absolute residuals. These samples are considered the worst-performing because they have 

the highest discrepancies between the predicted values and the actual values, and then we apply the 

perturbations to these samples. This analysis is shown below in Figure 59 for all risk factors 

simultaneously in terms of ACC and in Figures 60 through 67 for each risk factor individually in terms 

of AUC. 

In terms of the decline in mean ACC for the simultaneous analysis shown below in Figure 59 

across all risk factors, where we choose to vary the worse sample proportion in increments 10% from 

10% to 40%, the most robust model is the GAMI-Net. However, in these terms and also accounting 

for the dispersion of the distribution the best performing model is the ReLU-DNN, with the other two 

models intermediate in these regards, conclusions which differ slightly from the previously discussed 

robustness analysis.  

This worst sample robustness analysis can also be conducted individually for each risk factor, where 

we show the distribution shift density, where we interpret density to the positive side as iterations 

where there is degradation in a performance metric. We show these densities below in Figures 60 

through 67 for a 10% proportion of worst samples and the AUC performance metric. We observe in 

all cases that the densities vary in shape across risk factors, but for a given risk factor they have very 

similar in shape across models. In the case of the CCI risk factor in shown in Figure 60, we observe 

that the distributions are rather dispersed and for the 100% worst sample density a very multi-modal 

shape, with mean decrease in AUC ranging near 15% across models. In the case of the CUR risk factor 

shown in Figure 61, we observe that the distributions are rather concentrated in around the range of 

about 0.40 to 0.60, and for the 100% worst sample density a very similar shape, with mean decrease 

in AUC ranging around 13–15% across models. In the case of the NQR risk factor in shown in Figure 

62, we observe that the distributions are rather concentrated around the range of about 0.00 to 0.30 and 

very right skewed, and for the 100% worst sample the density has a very similar shape, with mean 

decrease in AUC ranging around about 11–18% across models. In the case of the NARD risk factor in 

shown in Figure 63, we observe that the distributions are rather concentrated in around about 0.60 to 

0.90 and very left skewed, and for the 100% worst sample density there is very similar shape, with 

mean decrease in AUC ranging around 11–18% across models. 

 

LRM                       ReLU-DNN                  GAMI-Net                   EBM 

Figure 60. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the Consumer Confidence Index risk factor.  



45 

Data Science in Finance and Economics Volume 4, Issue 1, 1–52. 

 

LRM                       ReLU-DNN                  GAMI-Net                   EBM 

Figure 61. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the Cash Use Ratio risk factor. 

 

LRM                     ReLU-DNN                  GAMI-Net                   EBM 

Figure 62. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the Net Quick Ratio risk factor.  

 

LRM                       ReLU-DNN                  GAMI-Net                   EBM 

Figure 63. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the Net Account Receivables Days risk factor.  

 

LRM                       ReLU-DNN                  GAMI-Net                   EBM 

Figure 64. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the before tax profit margin risk factor.  
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LRM                       ReLU-DNN                  GAMI-Net                   EBM 

Figure 65. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the Change in Total Assets risk factor.  

 

LRM                       ReLU-DNN                  GAMI-Net                   EBM 

Figure 66. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the total liabilities to total assets ratio risk factor.  

 

LRM                       ReLU-DNN                  GAMI-Net                   EBM 

Figure 67. ML model benchmarking PD modeling analysis – comparison of Robustness 

Plots of the 10% worst samples for the S&P 500 Equity Price Index risk factor.  

In the case of the BTPM risk factor in shown in Figure 64, we observe that the distributions are 

rather concentrated in around the range of about 0.00 to 0.40 and very right skewed, and for the 100% 

worst sample density a very similar shape albeit with a lower mode, with mean decrease in AUC 

ranging around about 17–20% across models. In the case of the CTA risk factor in shown in Figure 

65, we observe that the distributions are rather concentrated in around the range of about 0.00 to 0.40 

and very right skewed, and for the 100% worst sample density a very similar shape albeit with a lower 

mode, with mean decrease in AUC ranging of around about 17–20% across models. In the case of the 

TLTAR risk factor in shown in Figure 66, we observe that the distributions are rather concentrated in 

around the range of about 0.00 to 0.60 and very right skewed, and for the 100% worst sample density 

a very similar shape albeit with a lower mode, with mean decrease in AUC ranging around about 9–

21% across models. Finally, in the case of the SP500EPI risk factor in shown in Figure 67, we observe 
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that the distributions are rather dispersed with multiple modes in around the ranges of about 0.00 to 

0.40, 0.50 to 0.70 and 0.90 to 1.10. They are also very right skewed, and for the 100% worst sample 

density there is a very similar shape albeit with a lower mode, with the mean decrease in AUC ranging 

around about 23–25% across models. 

6 Conclusions and directions for future research 

This study has investigated alternative IML models in the context of PD modeling applied to the 

large corporate asset class. This is motivated by the fact that IML models have become increasingly 

prominent in highly regulated industries where there are concerns over the unintended consequences 

of black box models that may be deemed conceptually unsound. In the context of banking and in 

wholesale portfolios, we have noted the challenges around deploying models where the outcomes may 

not be explainable, both in terms of meeting business use cases as well as in satisfying model validation 

standards. We compared various IML model, including standard approaches such as logistic regression, 

using a history of corporate borrowers sourced from Moody’s, a dataset used in Jacobs (2022a, 2022b).   

In our comparison of various IML models (GAMI-Net, ReLU-DNN and EBM), including 

standard approaches such as LRM, we found that there are material differences between the approaches 

in terms of dimensions such as model predictive performance the importance of risk factors in driving 

outcomes. While we observed that the IML models all demonstrate some pickup in AUC performance 

relative to the LRM, the degree of this outperformance is modest, especially on an out-of-sample basis: 

the ReLU-DNN (EBM) models showed the greatest increase (decrease) out-of-sample, while the EBM 

(ReLU-DNN) models showed the greatest (least) increase in-sample. We also observed in a 

comparison of FI measures across the three IML models and the LRM an overarching complete lack 

of consistency across both models and FI measures, but we noted that overall the SHAP-FI and LIME-

FI measures were least inconsistent across models. This observation called into question the value of 

this pickup in performance with the IML models, especially if these models are to be applied in 

contexts that must meet model validation standards.  

In the analysis of PDPs for each of the risk factors we found that while generally speaking the 

three IML models considered showed relationships to default risk that are as expected, as compared to 

the LRM model there are several instances of non-monotonicities or non-sensical results. In regard to 

the latter observation, the ReLU-DNN model had results that are most intuitive, and the EBM model 

tended to display patterns that are most aberrant, while the GAMI-Net model was intermediate in this 

respect. Given the limitations of the PDPs that we have noted, we also considered the ALE alternative 

that is robust to certain restrictive assumptions underlying the PDP construct. We noted the primary 

and rather obvious conclusion that the shapes of the ALE plots differed radically from that of the PDP 

plots, as all of these exhibited extreme non-continuities of variations in step-functions, for example 

having included in many cases “hockey-stick” or L- (reverse L-) shapes. Furthermore, as with the PDP 

plots we observed inconsistencies across models and marginal changes that in counterintuitive directions.  

We analyzed prediction residuals between the default indicator dependent variable and the 

predicted PD estimates against the risk factor explanatory variables. In general we observed that, as 

expected this the case of a relatively low-default setting, the errors are much larger (much smaller) and 

closer to one for default (non-default), although there were some differences in the patterns across 

models and risk factors that were in some cases hard to rationalize.   
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In the robustness analysis where we perturbed all the risk factors, we observed that as expected 

AUC deteriorates as we increase the perturbation size, and that the ReLU-DNN and LRM models held 

up best as the variance of the AUC measure appeared most stable with increasing perturbation size, 

while the GAMI-Net and EBM models showed worse performance in this regard. In the robustness 

analysis for each risk factor separately we concluded that for a given variable there is some material 

variation in robustness across models for some risk factors, and in general that while the dispersion of 

the AUC consistently became greater with the shock, the means of the distributions did not get 

materially worse. Also, in general we observed that the LRM, ReLU-DNN and GAMI-Net models 

were most consistent in patterns across risk factors, while the EBM was least consistent in this regard 

and in some case has counterintuitive patterns. 

In the resilience distribution analysis, where we assessed the performance of the worst samples 

in a model across various out-of-distribution scenarios according to the PSI distributional distance 

between the worst test sample and the full test sample calculated for each risk factor, we observed that 

there is general agreement across models in which risk factors have the greatest shifts in distribution. 

In the related resiliency performance analysis in terms the AUC performance metric, where we 

demonstrated the model’s performance in the “worst-sample” scenario, all the plots were observed to 

be monotonic and to show the expected degradation in performance as a lower proportion of samples 

are considered to be worst, with the rank ordering of the AUC generally similar across worse sample 

proportions. However, at the very lower proportions we did see some divergence in performance 

according to the model for some of the risk factors, and while all these differences were seen to be 

generally minor there was an observed lack of consistency in the patterns across risk factors.  

We also tested a variation of the above, the model robustness on so-called worst-performing test 

samples, achieved by identifying a top percentage of test samples with the largest absolute residuals 

between the predicted values and the actual values, and then applying the perturbations to these 

samples. In terms of the decline in mean ACC for the simultaneous analysis for all risk factors, the 

most robust model was the GAMI-Net. However, in these terms and also accounting for the dispersion 

of the distribution the best performing model was found to be the ReLU-DNN, with the other two 

models intermediate in this regards, conclusions which differed slightly from the previously discussed 

robustness analysis.  

While there have been significant advances in IML that have opened the possibility for ML 

models to be more used in domains of heightened supervisory scrutiny, such as in credit risk modeling, 

these findings suggest that the industry may have a long way to go before this aspiration is fully 

realized. Furthermore, as can be seen in looking at the deep and rapidly growing literature on IML 

models, there are still many theoretical and technical questions that are yet unanswered, such as the 

interpretability measures and IML model variants that best achieve the promised objective of IML 

Given these considerations, depending upon the application of the PD model, we counsel practitioners 

to proceed cautiously in putting IML models into production in a champion capacity until these issues 

are resolved. That said, in spite of these limitations, we see scope for applying IML models in 

development or validation capacities as challengers or benchmarks as part of model testing and 

evaluation.   

Given the wide relevance and scope of the topics addressed in this study, there is no shortage of 

fruitful avenues along which we could extend this research. Some proposals include but are not limited to: 

• Asset classes beyond the large corporate segments, such as small business, real estate or 

even retail; 
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• applications to stress testing of credit risk portfolios[4];  

• the consideration of industry specificity in model specification; 

• different modeling methodologies, such as ratings migration or hazard rate models; and, 

• datasets in jurisdictions apart from the U.S., else pooled data encompassing different countries 

with a consideration of geographical effects. 
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