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Abstract: The South African financial market is developing with periods of high and low volatility.
Employing an adequate volatility model is essential to manage market risk. This research study was
designed to investigate the effectiveness of the fractionally integrated asymmetric power autoregressive
conditional heteroskedasticity contrasted with long-memory GARCH-type models, such as the fraction-
ally integrated generalized autoregressive conditional heteroskedasticity and the hyperbolic generalized
autoregressive conditional heteroskedasticity for producing the measure of market risk known as the
value at risk. These long-memory GARCH-type models assume that the distributions of the index
returns follow normal, student-t, skewed student-t and generalized error distributions. The historical
closing price time series of the Johannesburg Stock Exchange all share, the mining and the banking
indices are considered. The value at risk and its backtesting for short and long trading positions on the
different confident levels are computed and they correspond to the right and left quantiles of the return
distributions, respectively. The results reveal that FIAPARCH with a standard student-t distribution is
an appropriate model for producing a robust value at risk in the context of mining and banking indices.
Alternatively, FIGARCH with the assumed skewed student-t distribution model is a good fit to produce
a value at risk for the Johannesburg Stock Exchange All Share Index.
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1. Introduction

The historical financial crisis experienced across the world has prompted extensive research on finan-
cial risk management and its relative quantitative model usage. As such, practitioners and researchers
across the world from interdisciplinary sciences are working together to investigate and understand
key aspects and important characteristics of the long memory in the time series analysis and modeling.
Ma (2019) has alluded to the fact that the research testing for long memory impact on modeling time
series may be traced back to the 1990’s. Indeed, several studies published discoveries that the long
memory can be observed in the autocorrelation of the absolute or square returns of different financial
stock markets. It is, in this regard, that the fractionally integrated generalized autoregressive conditional
heteroskedasticity (GARCH) model was introduced (Baillie, 1996). The South African financial markets,
specifically the Johannesburg Stock Exchange (JSE) major indices, were susceptible to suffering losses
which spilled over to their financial market participants. This is attributed to the lack of assessment of
the stylized facts described by Cont (2001). First, there is slow decay of the autocorrelation function,
which denotes the presence of long memory. Second, there is volatility clustering, which describes that
large changes tend to be followed by large changes over time. Third, there is profit and loss asymmetry
and heavy tails, which indicate that the financial stock or index prices exhibit large downward changes
as opposed to upward changes. The analysis and assessment of these properties play an important role
in financial market applications and assessment of risk management through the value at risk (VaR)
modeling and optimal portfolio selection stemming from their developed diversification strategies.

The financial market returns data exhibit persistence or long-range dependence. According to Klar
et al. (2012), the traditional time series models are unable to incorporate the presence of long memory
into their quantitative analysis and modeling. Thupayagale (2011) investigated the existence of long-
range dependence in the South African fixed income market and evaluated its performance against
the basic GARCH model. The authors’ findings suggest that the basic GARCH model is accurate for
forecasting long-range dependence volatility and managing financial risk. The presence of long-range
dependence was explored for Brazil, Russia, India, China and South Africa index market returns and
volatility, with 19 years of history of time series implemented in both symmetric and asymmetric models
(Tripathy, 2022). Specifically, for the South African financial stock market index that considered the JSE,
it was discovered that the asymmetric-type model exhibits a high ability to forecast the index price due
to high levels of volatility persistence shocks. As such, the autoregressive fractionally integrated moving
average and fractionally integrated GARCH (FIGARCH) model performances were better than that of
the traditional GARCH models in terms of forecasting the volatility of the South African stock market.
The conditional volatility of equity returns in Bangladesh was modeled to assess the presence of risk-
return trade-off, asymmetric effects and long memory property from 2004 to the end of 2020 (Haque and
Farzana, 2021). The authors found that fractionally integrated exponential GARCH (FIEGARCH) and
fractionally integrated asymmetric power autoregressive conditional heteroskedasticity (FIAPARCH)
models outperform the other FIGARCH specifications in terms of modeling the conditional volatility of
the Dhaka Stock Exchange and Shariah index returns.

The long-memory GARCH-type models have become a generally better option for modeling the
volatility of many financial assets than the short-memory GARCH-type models (Baillie, 1996; Wu and
Shieh, 2007; Arouri et al., 2012; Chkili et al., 2014; Bentes, 2015). As a result, this study gives greater
emphasis on modeling alternative risk measurements, such as the VaR, using fractionally integrated
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GARCH-type models to better capture long memory, forecast conditional volatility and accurately
assess the behavior of South African financial market index. VaR is among the most significant market
risk indicators that are frequently used by institutions, such as regulators and portfolio managers, to
manage financial market risk (Jorion, 2007). This market risk measure is mostly utilized to determine
the maximum limit or trigger levels of portfolio profit or loss within financial institutions. However,
there are some drawbacks to it because of the return distribution that yields heavier tails than normal.
This can cause a significant bias in the VaR estimation because it affects the return distribution’s tail
properties. Recent empirical studies have uncovered that several financial return series exhibit a long
memory of market volatility over an extended period (Cheung, 1993; So, 2000). According to Tripathy
(2022), the trade between South Africa’s financial market and other global participants has always
been on the rise. Hence, the related studies have revealed asymmetric stock market tendencies, such
as negative shocks, which have a greater impact than positive shocks of equal magnitude and high
volatility persistence over time. This is an indication that the financial stock market return volatility
is a significant variable when long memory is realized. Thus, it is of paramount importance that the
modeling of return and volatility be carried out for South African financial market indices to determine
the risks related to different sectors of the market and give global investors appropriate information
for investment decision-making. There are limited previous studies that have researched the existence
of long-range memory in the South African stock return and volatility. This is especially true when
taking into account the risk measures (i.e., VaR) and the corresponding backtesting for risk management.
Therefore, the research study presented here serves as the foundation to fill this gap.

The question posed for this research study is as follows: Does considering the long memory, fat
tails, heteroskedasticity, volatility clustering and asymmetry in the financial time series allow for a
better VaR estimation? The suggested models to handle the aforementioned characteristics include
the hyperbolic GARCH (HYGARCH), FIGARCH and FIAPARCH. These models are combined
with various parametric distributions, such as the normal distribution, student-t distribution (STD),
generalized error distribution (GED) and skewed STD (SSTD). This research study investigates the
best-fit model of the long-memory GARCH-type in terms of the stylized facts, as they are applied for
risk management. The background of the long-memory GARCH-type models from the perspective of
the South African financial market, is introduced in this section. Section 2 outlines the prior research
work and concludes with the motivation of the study based on a literature review. Section 3 describes
the methodology followed to produce the results. Section 4 presents and discusses the results, while
Section 5 concludes the investigation of the study.

2. Literature review

Baillie (1996) introduced a FIGARCH model to advance some flexible processes for conditional
variance by describing and illustrating the observed temporal dependencies in financial market volatility.
Asymmetric responses of volatility to positive and negative shocks are captured by the FIAPARCH
model, which was developed by Tse (1998) as an improvement on the FIGARCH model. This allows
for the determination of the power on the returns for which the predictable structure in the volatility is
the strongest. To address the weaknesses of the FIGARCH model, Davidson (2004) further proposed the
HYGARCH model, which includes the hyperbolic decaying response coefficients. To model the VaR
on the JSE-ALSI, McMillan and Thupayagale (2010) used GARCH, exponential GARCH, threshold
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GARCH, integrated GARCH (IGARCH), FIGARCH and FIEGARCH. The results showed that models
incorporating both asymmetric and long memory attributes generally outperform all other methods
in terms of estimating the VaR across all three considered percentiles. However, the VaR for the
FIAPARCH model was not assessed.

Tang and Shieh (2006) investigated the long memory characteristics of the three stock indices futures
markets and found that the HYGARCH model with SSTD performed better. Wu and Shieh (2007)
analysed various GARCH-type VaR models for treasury bond interest rates and found that long-memory
GARCH-type models outperform short-memory GARCH-type models in terms of performance. Härdle
and Mungo (2008) estimated the VaR and expected shortfall for the two long-memory GARCH-type
models known as the FIGARCH and HYGARCH models, with various error distribution’s assumptions.
They found that models assuming asymmetric distributions in the volatility specifications and fractional
integration in the volatility process perform better one day in advance. The Turkish futures market’s
long memory property was examined by Kasman (2009), who applied the GARCH and FIGARCH
models. Assuming that the returns on these models follow normal, STD and SSTD distributions, the
VaR values were estimated. The estimation of FIGARCH with the SSTD and related VaR yielded more
effective results for the Istanbul Stock Index (ISE-30) futures returns.

In their analysis of the Stock Exchange of Thailand, Sethapramote et al. (2014) found that the VaR
estimation produced by the FIGARCH model under the assumption of a normal distribution is more
accurate than those produced by the short-memory GARCH models. Furthermore, to estimate the VaR,
Li et al. (2015) used the Hang Seng Index and South Korean Won to compare the performance of three
innovations, i.e., the HYGARCH, the new generalized autoregressive conditional heteroskedasticity and
FIGARCH models. The HYGARCH model with a normal distribution turned out to be a reliable model
for estimating VaR forecasts. In order to find the most suitable GARCH model for the Nigerian All Share
Index, Yaya (2013) used the models HYGARCH(1, d, 1), IGARCH(1, d, 1) and FIEGARCH(1, d, 1) for
the normal distribution, STD and GED, respectively. The most effective of the three models was found
to be HYGARCH(1, d, 1). The stationary GARCH model does not account for the observed persistence
in the conditional variance of financial time series because it assumes an exponentially decaying
autocorrelation for the squared returns (Bollerslev, 1986). As a result, long-memory GARCH-type
models have attracted a lot of interest. This study was purposed to determine how well the FIAPARCH
model performs as compared to FIGARCH and HYGARCH long-memory GARCH-type models. That
is, we assumed that the returns on the South African JSE indices follow the normal distribution, STD,
SSTD and GED. This was carried out by modeling the VaR of the major indices in South Africa’s
financial stock market, i.e., ALSI, MNGI and BNKI. All of these distributions, except for the normal
distribution, have heavy tails, suggesting that the SSTD may be appropriate to capture the asymmetry
parameter that other distributions lack. We conducted a further backtest of the results and calculated the
VaR for short and long trading positions at 0.3%, 1%, 5%, 95%, 99% and 99.7%, which correspond to
the right and left quantiles of the return distributions, respectively.

3. Methodology

The interesting feature of the volatility models is that GARCH models have the parameter d = 0,
IGARCH has d = 1 and volatility-purposed GARCH-type models have 0 < d < 1, which captures
long memory behavior. The time series have a short-memory if

∑n
i=1 |ρ(h)| < ∞, where ρ(h) is the
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autocorrelation at lag h. And, the time series is said to exhibit long memory range dependence if∑n
i=1 |ρ(h)| = ∞, where n is the total number of time series realizations.
Let y1, y2, . . . , yn be a stochastic time series. Thus, for a short-memory time series, Var(ȳn) goes to

0 as the size of the sample increases at the rate
(σ2

n

)
. But, with different multipliers the fractionally

integrated white noise process is given as

(1 − B)dyt = wt, 0 < d < 0.5, (1)

where the fractional difference operator (1 − B)d is defined by a binomial series as

(1 − B)d =

∞∑
k=0

(
d
k

)
(−B)k = 1 − dB −

d(1 − d)B2

2
−

d(1 − d)(2 − d)B3

6
− . . . , (2)

(1 − B)d =

∞∑
k=0

Γ(k − d)zk

Γ(−d)Γ(k + 1)
. (3)

The autocorrelation of the fractionally integrated series is defined as

ρ(h) =
Γ(h + d)Γ(1 − d)
Γ(h − d + 1)Γ(d)

∼ h2d−1. (4)

So, suppose that 0 < d < 0.5 and
∑∞

h=−∞ |ρ(h)| = ∞. Var(ȳn) decays like h2d−1 such that
(1+α

2

)
, gives

a rough empirical estimate of d, where α is the slope of the variance-time graph. The IGARCH
process, which considers infinite memory, is not appropriate given that the situation of a long memory
process is very unlikely to happen in the real world. An asymmetric power autoregressive conditional
heteroskedasticity (APARCH) model of volatility differs from existing GARCH-type volatility models
because it included the power term delta, which must be evaluated. The power term estimation is an
effort to account for the true distribution underlying volatility. Higher volatility is caused by the leverage
impact in the model, and vice versa. Since the assumption of normality, which limits delta to either the
value 1 or 2, is typically impractical when modeling financial time series because of high skewness and
kurtosis, the idea of introducing a power factor emerged. The following subsections briefly outline the
FIAPARCH, HYGARCH and FIGARCH models.

3.1. The FIGARCH model

According to Barkoulas et al. (2000), the presence of long memory term persistence in the time series
returns provided evidence against a weak type of financial market efficiency. Furthermore, research
done by Fama (1965) proved that financial markets are only considered efficient when asset prices
completely reflect the available information. As a result, the FIGARCH volatility model was designed
to reflect all available information of the time series. It is defined as

σ2
t = ω

[
1 − β(L) − ϕ(L)(1 − L)d]ε2

t + β(L)σ2
t , (5)

with the lag operator represented by L; the parameters of the model are ω, β, ϕ and d, where d lies
within 0 ≤ d ≤ 1. When d = 1, the FIGARCH(p, d, q) model is reduced to IGARCH(p, q) and the
GARCH(p, q) model provides the parameter d = 0.
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The necessary and sufficient criteria for the non-negativity of the conditional variance in the
FIGARCH(p, d, q) model was derived by Conrad and Haag (2006), along with the sufficient conditions
for the general model. These constraints use an infinity order autoregressive conditional heteroskedas-
ticity (ARCH) representation of the FIGARCH(1, d, 1) model. According to Tayefi and Ramanathan
(2012), the persistence of the conditional variance is simply characterized in terms of the impulse
response coefficients, and only when the conditional variance is parametrized as a linear function of
the past squared residuals. As a result, the FIGARCH model considers an intermediate level of long
memory captured by the parameter d. Thus, the FIGARCH model has the benefit of nesting both the
GARCH (d = 0) and IGARCH (d = 1) models as special instances, but it does not provide a covariance
stationary process.

3.2. The HYGARCH model

In order to accurately represent the long memory range dependency observed in the geometric or
hyperbolic decay of the coefficients in the ARCH(∞) model, Davidson (2004) recommended using the
HYGARCH model. The FIGARCH model’s conditional variance was increased by adding weights to
its difference operator. The HYGARCH model is defined as

σ2
t =

ω

(1 − β(L))
+

{
1 −
ϕ(L)(1 − L)d

(1 − β(L))

}
ε2

t , (6)

where L is the lag operator, 0 ≤ d ≤ 1, ω > 0 and β < 1.

The time series with leptokurtic, long memory and volatility clustering are properties of the aforemen-
tioned model. However, it ignores asymmetry and the fact that non-integer powers of the absolute value
of the observations are the best representations of conditional volatility. When α = 1, the HYGARCH
model simplifies to a FIGARCH model. Conrad (2010) provided detailed inequality constraints for the
HYGARCH(p, d, q) model, sufficient conditions for the HYGARCH(1, d, 1) model and more detailed
conditions for higher-order HYGARCH models. Furthermore, Conrad (2010) established that the
estimated parameters of the HYGARCH model are similar in structure to the FIGARCH parameter
estimators. The only difference been the two models is a result of the additional parameter that allows
the HYGARCH model to constitute a covariance stationary process. Hence, the model is considered to
capture the latter behavior in the context of this study.

3.3. The FIAPARCH model

The FIAPARCH model is an extension of the FIGARCH model that incorporates the APARCH
model (Ding et al., 1993). The FIAPARCH (p, d, q) model is defined as follows:

σδ = ω +
[
1 −

(
1 − β(L)

)−1(1 − ϕ(L)
)(

1 − L
)d](∣∣∣εt

∣∣∣ − γεt
)δ
, (7)

where ω > 0, δ > 0, −1 < γ < 1 and 0 < d < 1. When γ > 0, negative shock increases volatility
more than positive shock, and vice versa. The FIAPARCH model becomes a FIGARCH model when
δ = 2 and γ = 0. Additionally, (1 − L)d is the difference operator in terms of a hypergeometric function
(Bentes, 2015). When d = 0, the HYGARCH process reduces to the APARCH(1, 1) model. The model
can capture both long memory and asymmetry in the conditional variance.
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3.4. Heavy tailed distributions

The heavy tailed distributions employed in the study are the STD, SSTD and GED. The STD
resembles the normal distribution in that it is symmetrical and bell-shaped, but it varies from normal
distribution because it can capture the heavier tails of the series. However, due to the symmetric nature
of the STD, it is still unable to deal with time series observations that are asymmetric. The SSTD
deals with an asymmetry conferred by heavy tailed long memory time series. The SSTD distribution
includes a random variable with a location parameter of zero and a scale parameter of one; it tends
toward the STD if and given that the shape parameter is zero. Through the generalization of the parent
STD, to capture asymmetry, one acquires the SSTD by ranging the skewness parameter from -1 to 1 and
applying the positive parameters that control the kurtosis of the series. Lastly, the GED was considered
because of its more flexible generalizations of the normal distribution (Cerqueti et al., 2019). The
maximum likelihood estimation of the distributions was obtained through the application of numerical
optimization methods. The log-likelihood functions of the STD and SSTD have been defined by Peters
(2001). The approach to determine the estimates of the GED through maximum likelihood estimation
was given by Purczyński and Bednarz-Okrzyńska (2014).

3.5. Long memory tests

The long memory tests were used to detect the long-range dependence behavior in the daily log
returns. Here, we used the stationary process with long memory and asymptotic definitions provided by
Beran (2017). The long-range dependence tests used in the study are Geweke and Porter-Hudak (GPH),
Whittle estimation and Hurst exponent-type R/S tests.

• GPH test: The GPH estimator is widely used to distinguish between long memory and short-
memory effects, and is called the spectral regression method (Geweke and Porter-Hudak, 1983). It
is specifically used as an alternative method for estimating the fractional differencing parameter d
given in Equation (1). Geweke and Porter-Hudak showed that the least squares estimate d̂, using
regression, is normally distributed in large samples if n f (T ) = Tα, with 0 < α < 1.
• Whittle estimation: The long memory process is also characterized in the frequency domain with

the aid of a spectral density function proportional to λ−2d as the frequency λ approaches zero at a
rate dictated by the memory parameter d. The Whittle estimator is akin to the maximum likelihood
estimator in the frequency domain. The Whittle estimation method has become famous due to its
likelihood interpretation and asymptotic characteristics.
• R/S test: The Hurst (1951) method estimates H through spectral regression in the exploitation of

the relationship between β and the Hurst coefficient. The short-memory process has H = 0.5, and
the autocorrelation function also decays faster; however, when it is completely related to the long
memory process, it is characterized by the Hurst exponent in the interval 0.5 < d < 1. It can be
interpreted as follows: if H = 0.5, the time series assumes a random walk and it is independent.
If 0 < H < 0.5, the time series are anti-persistent and the process occupies only a small distance
as compared to a random walk. Else, if 0.5 < H < 1, the time series is persistent and the process
covers a larger distance than a random walk (i.e., a long memory process). The Hurst parameter is
understood to be a self-similarity parameter, and it is defined as H = d + 0.5.
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3.6. Model selection criteria

The best statistical model among all of the candidate models was selected by using only the Akaike
information criteria (AIC) and Bayes information criterion (BIC). The AIC applied the diagnostic
test to residuals to deduce which model is most preferable. They propose the measure of the model’s
goodness-of-fit and parsimony by balancing the error of fit against the number of parameters in the
model (Cavanaugh and Neath, 2019). The AIC is defined as AIC = 2q−2ln(L), where L is the likelihood
of the model and q is the number of parameters. The other measure similar to the AIC is the BIC, which
is defined as BIC = qlnT − 2ln(L), where T is the sample size. Notice that the models related to the
lower AIC and BIC are more adequate.

3.7. VaR and Kupiec’s LR test

The VaR is a measure of the maximum potential change in the value of an index or stock over a
predefined duration. Since it is a percentile of the distribution of the fitted values (y) from the model,
with reference to Mighri and Jaziri (2023) and Basel Committee on Banking Supervision (2013), we
define VaRp for a given probability as

VaRp = inf{y ∈ R : F(y) ≥ p}. (8)

The VaR of the STD is given as VaRt(1 − α) =
(
µ̂t + t−1

ν (α)
√
ν−2
ν
σ
)
, where ν denotes the degrees of

freedom and t−1
ν is the α-quantile of the standard STD with ν degrees of freedom.

The VaRs of the SSTD at the αth quantile for long and short positions, respectively, are VaRL =

µ̂t + sstdα,ν,ξσ̂t and VaRS = µ̂t + sstd1−α,ν,ξσ̂t. Here, sstdα,ν,ξσ̂t is the left quantile at α% for the SSTD
and sstd1−α,ν,ξσ̂t is the long position, with ν being the degrees of freedom, ξ an asymmetry coefficient
and µt the conditional mean process.

The VaR of the GED is VaRL = µ̂t + ϕ
−1
p (εt)σ̂t, where ϕ−1

p (εt) is the left quantile of the GED at the p
level. Once ν = 2, the normal distribution could be a special case of the GED. If ν < 2, then the GED
has fatter tails than the ordinary normal distribution.

Backtesting is a technique for simulating a model or strategy on a historical time series to gauge
its accuracy and effectiveness. In this study, we chose to use the Kupiec LR test to backtest VaR
(Kaya Soylu et al., 2020). The failure rate is the number of times the return series exceeds the forecasted
VaR. The assumption is that the range of exceedances over time follows the binomial distribution, and
the purpose of Kupiec’s test is to establish the consistency of these violations with the given confidence
level. If the range of exceedances differs drastically from what is expected, the risk model’s adequacy is
questionable. To perform the test, the wide variety of actual violations E, the number of observations
N and the VaR probability level (p) are needed. Assuming that E is distributed as Bin(N, p) the null
hypothesis is H0 : p = p0, and the alternative hypothesis is H1 : p , p0, where p is estimated by E

N . As
Kupiec (1995) proposed this test is based on the likelihood ratio test statistic given as

LR = 2log
[ (

1 − E
N

)N−E EE

N(
1 − p0

)N−E pE
0

]
∼ χ2

(1), (9)

where N is the number of observations used to forecast VaR values and E is the observed number of
actual exceedances.
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4. Numerical results and discussion

4.1. Data selection and transformation

The daily closing prices of the South African JSE ALSI, mining index (MNGI) and banking index
(BNKI) were used for the quantification of the VaR by using long-memory GARCH-type models. The
historical time series was obtained from INET Bridge and Bloomberg for the period June 7, 2008 to
June 7, 2018 with a total of 2,500 observations for each index. The daily natural logarithmic returns
were calculated, comprising a total of 2,449 return series for each index. This implies that the daily
returns for the three indices were expressed as a logarithmic first order difference between successive
business days. The natural logarithmic return (Rt) of the index is defined as

Rt = ln
( Pt

Pt−1

)
= ln

(
Pt

)
− ln

(
Pt−1

)
, (10)

with Pt and Pt−1 as the current and one lagged index price on day t and t − 1, respectively.
The statistical computations were executed by using R-Studio and Ox-Matrix packages.

(a) Daily closing price (b) Returns

Figure 1. The time series plots for the ALSI.

(a) Daily closing price (b) Returns

Figure 2. The time series plots for the BNKI.
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(a) Daily closing price (b) Returns

Figure 3. The time series plots for the MNGI.

Figures 1 to 3, present the time series prices and returns for the three indices. All of the index returns
show periods of high and low volatility, indicating that volatility clustering and heteroskedasticity
are present. The time series plot for the MNGI, generally shows decreasing tendencies. This can be
attributed to the slowdown in domestic economic conditions, including factors related to labor unrest,
electricity constraints and the political landscape in South Africa, which contributed to a downward
shock that took place during the period of March 2015. The ALSI and BNKI were observed to increase
in price over time.

4.2. Descriptive statistical analysis

The descriptive statistics for the log returns of the ALSI, BNKI and MNGI indices are revealed in
Tables 1 to 3. The BNKI contained 2,449 daily log returns ranging from −0.14521 to 0.08189, with
the highest mean return of 0.0005. The ALSI had a mean of 0.00025 with a range from −0.0758 to
0.0683; the MNGI had a mean of −0.00017, and it ranged from −0.11966 to 0.11616. The ALSI and
BNKI skewness values for the returns were negative, given as −0.1379 and −0.1757, respectively. The
negatively skewed returns indicate a greater likelihood of large decreases in the index price returns
during the sample period. All of the indices had a kurtosis larger than three, indicating heavy-tailed
distributions. A kurtosis of more than three indicates that volatile price movements occurred frequently
during the sampling period. Furthermore, the standard deviations of the log return series were higher
than the standard errors of their means, indicating the presence of volatility.

Table 1. Descriptive statistics of the log returns for the three indices.

Min Max Mean Std.Dev Skewness Kurtosis

ALSI −0.0758 0.0683 0.0002 0.0119 −0.1379 7.2814
BNKI −0.1452 0.0819 0.0005 0.0169 −0.1757 7.6664
MNGI −0.1197 0.1162 −0.0002 0.0203 0.0469 6.8978
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Table 2. Serial correlation, normality and heteroskedasticity results for the log returns.

Index Q(5) Q(10) JB SW Q2(5) Q2(10) ARCH-LM

ALSI 23.35 34.67 1917.2 0.9509 1085.0 2417.4 142.87
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

BNKI 44.87 55.18 2277.2 0.9586 344.15 543.92 48.292
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

MNGI 22.34 44.85 1582.9 0.9590 894.55 1986.8 115.49
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

Table 2 shows the tests of serial correlation, normality and heteroskedasticity for the log returns. The
Jarque-Bera and Shapiro-Wilk normality tests for all three indices’ log returns revealed p-values less
than 0.0001, rejecting the normality assumption at all levels of significance. The findings imply that the
heavy-tailed models should be considered when analyzing and predicting the given log return series.
Furthermore, the ARCH Lagrange multiplier (ARCH-LM) test statistic revealed a p-value less than
0.0001 for all three daily log returns. Thus, we reject the null hypothesis of the absence of potential
time-varying volatility (no ARCH effect) for at most lag 10. The serial correlation was analyzed by
using the Ljung-Box test statistic, which led to the rejection of the null hypothesis of no serial correlation
for both the log returns and squared returns.

Table 3. Unit root and stationary test results for the log returns.

Statistic Model Type ALSI p-value BNKI p-value MNGI p-value

ADF

No constant −48.5 <0.0001 −48.9 <0.0001 −47.5 <0.0001
No Trend −48.6 <0.0001 −48.9 <0.0001 −47.5 <0.0001

With Trend −48.6 <0.0001 −48.9 <0.0001 −47.5 <0.0001

PP

No constant −2151 <0.0001 −2079 <0.0001 −2145 <0.0001
No Trend −2149 <0.0001 −2074 <0.0001 −2145 <0.0001

With Trend -2148 <0.0001 −2074 <0.0001 −2145 <0.0001

KPSS

No constant 0.5130 >0.1 0.9970 >0.1 0.3340 >0.1
No Trend 0.1230 >0.1 0.0197 >0.1 0.1340 >0.1

With Trend 0.1100 >0.1 0.0815 >0.1 0.0674 >0.1

Table 3 presents the stationarity test results by using the augmented Dickey–Fuller (ADF) test
statistic, Phillips–Perron (PP) unit root test and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) for all the
three indices returns. The null hypothesis implies that the daily log return series is non-stationary, and
the alternative hypothesis implies that the daily log return series is stationary. All three daily log returns
rejected the null hypothesis of the unit root test. The p-values of the ADF and PP statistics for the three
indices were less than 0.0001, rejecting the null hypothesis at all significance levels. The KPSS test also
shows that we cannot reject the stationary null hypothesis for daily log returns. Therefore, this attests
that all three indices’ daily log returns are stationary. These findings led to the choice and usage of the
three integrated GARCH-type models with fat-tailed distributions, as discussed in Section 3.
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4.3. Long memory statistical test

Tables 4 to 7 reflect the tests for long memory. The Whittle estimator was utilized to determine the
existence of the long memory process for both log-returns and squared log returns (Table 4). The Hurst
index values for the three indices for the daily log-returns were close to 0.5, and the p-values were
less than 0.05, implying the absence of long memory features. The Hurst indices for the squared log
returns were considerably more than 0.5, with p-values less than 0.0001, indicating the presence of long
memory. The finding attests to some studies done on stocks and other portfolios of the financial market
analysis (Chinhamu et al., 2022; Mighri and Jaziri, 2023).

Table 4. Whittle estimator ( fGn) long memory test results.

Indices Hurst Standard Error t-value p-value

Returns
ALSI 0.4899 0.0124 39.4828 <0.0001
BNKI 0.4677 0.0123 38.0386 <0.0001
MNGI 0.5076 0.0125 40.6302 <0.0001

Squared Returns
ALSI 0.6615 0.0130 50.7236 <0.0001
BNKI 0.6373 0.0129 49.1413 <0.0001
MNGI 0.6564 0.0130 50.3995 <0.0001

Table 5. GPH’s long memory test results for returns.

Returns Bandwidths d Standard Error t-value p-value

ALSI
m = T 0.5 0.0307 0.0945 −10.2155 <0.0001
m = T 0.6 0.0232 0.0731 −13.3656 <0.0001
m = T 0.7 −0.0682 0.0469 −22.7351 <0.0001

BNKI
m = T 0.5 −0.1923 0.1008 −11.8332 <0.0001
m = T 0.6 −0.1357 0.0608 −18.6839 <0.0001
m = T 0.7 −0.1455 0.0403 −28.4297 <0.0001

MNGI
m = T 0.5 −0.0409 0.0681 −15.2742 <0.0001
m = T 0.6 −0.0063 0.0492 −20.3630 <0.0001
m = T 0.7 −0.0153 0.0414 −24.4951 <0.0001

The results of the GPH and Hurst tests for the returns and squared log-returns are shown in Tables
5 and 6. The bandwidths used are as follows: m = T 0.5, m = T 0.6 and m = T 0.7. The presence of
a long memory process is indicated by the squared log-returns, which implies that long memory is
mean-reverting but is not covariance stationary. The p-values less than 0.0001 display the presence
of the long memory. The Hurst exponent test results are shown in Table 7, and the findings reveal the
presence of the long memory for the squared log-returns.

4.4. Estimating long memory models with heavy-tailed distributions

The parameter estimation results for the FIGARCH, HYGARCH and FIAPARCH models with a
standard normal distribution as a base and the STD, SSTD and GED were generated; the selection
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Table 6. GPH’s long memory test results for squared returns.

Returns Bandwidths d Standard Error t-value p-value

ALSI
m = T 0.5 0.8497 0.0796 −1.8860 0.0297
m = T 0.6 0.7379 0.0511 −5.1375 <0.0001
m = T 0.7 0.6058 0.0412 −9.5639 <0.0001

BNKI
m = T 0.5 0.4150 0.0927 −6.3128 <0.0001
m = T 0.6 0.3293 0.0616 −10.8941 <0.0001
m = T 0.7 0.2210 0.0372 −20.9142 <0.0001

MNGI
m = T 0.5 0.7674 0.0731 −3.1839 0.0007
m = T 0.6 0.6913 0.0533 −5.7867 <0.0001
m = T 0.7 0.5605 0.0419 −10.4649 <0.0001

Table 7. Hurst exponent’s long memory test results.

Simple R/S Hurst Estimation

Returns Squared Log-Returns

ALSI 0.52956 0.73689
BNKI 0.46249 0.71008
MNGI 0.49765 0.72270

criteria for the model are presented in Table 8. The long-range dependence parameter of the GARCH-
type models was within 0.5 < dv < 1 for all models. This points to a strong case for long memory of
the time series. It also means that historical shocks appear to influence current shocks (Arouri et al.,
2012). The Q-statistic for squared standardized residuals was assessed; it revealed that, for all models,
the Ljung-Box test p-value exceeded 1% level of significance. This means that the null hypothesis
of independently and identically distributed standardized residuals cannot be rejected. As a result,
the volatility equations pass the Ljung-Box test for squared standardized residuals. The ARCH-LM
test revealed that the residuals are not heteroskedastic. Finally, we used the AIC and BIC to find the
optimum model for conditional dependency in the volatility process (Table 8). The FIGARCH-SSTD
model has been proven by both the AIC and BIC to be the best model for ALSI returns that represent
the conditional variance dependence. Both the AIC and BIC agree that the FIAPARCH-STD model is
the best model for BNKI returns. The AIC and BIC from the FIAPARCH-STD model indicates that the
model is appropriate for the MNGI returns.

As a result, our findings point to a few common facts in the volatility processes of stock index markets.
First, the empirical findings reveal that all of the three stock markets under investigation exhibit long
memory behavior to different degrees as a result of using FIGARCH-type models. Second, asymmetric
response parameter estimates indicate that index stock market volatility responds asymmetrically to
both good and bad news. When comparing the models, we find that the FIAPARCH process under STD
and SSTD offer a better fit than the other models in terms of the minimum values of the AIC and BIC
calculated by using the maximum log likelihood values for all of the markets displaying heavy tails,
volatility clustering, high kurtosis and skewness. Overall, Mabrouk and Saadi (2012), Gaye Gencer and
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Demiralay (2016) and Abuzayed et al. (2018) have all published studies in the realm of financial stock
markets that are consistent with our findings.

Table 8. Model selection criteria for the three index returns. N: normal distribution.

Returns Model
Selection criteria

FIGARCH HYGARCH FIAPARCH
AIC BIC AIC BIC AIC BIC

ALSI

N −6.3790 −6.3673 −6.3804 −6.3665
STD −6.3886 −6.3747 −6.3885 −6.3722

SSTD −6.3956 −6.3793 −6.3956 −6.3769
GED −6.3872 −6.3732 −6.3877 −6.3714

BNKI

N −5.5443 −5.5327 −5.5451 −5.5312 −5.5530 −5.5367
STD −5.5860 −5.5720 −5.5861 −5.5698 −5.5881 −5.5695

SSTD −5.5854 −5.5691 −5.5855 −5.5668 −5.5879 −5.5669
GED −5.5748 −5.5608 −5.5752 −5.5588 −5.5782 −5.5596

MNGI

N 2.2936 2.3053 2.2919 2.3059 2.2832 2.2995
STD 2.2865 2.3005 2.2858 2.3021 2.2778 2.2964

SSTD 2.2872 2.3035 2.2864 2.3051 2.2783 2.2992
GED 2.2868 2.3007 2.2857 2.3020 2.2781 2.2968

4.5. VaR estimation and backtesting models

The VaR method is essential for market risk management in most institutions and regulatory bodies
(Basel Committee on Banking Supervision, 2013). It plays an important role in ensuring that financial
institutions are able to meet the necessary capital requirements to cover the market risk that they incur
in the process of their daily financial stock market trading. The VaR forecasts for both long and short
trading positions at different significance levels using the FIGACH, HYGARCH and FIAPARCH
models were computed. The VaR estimates were then backtested by using the Kupiec LR test at the
significant levels of 0.3%, 1%, 5%, 95%, 99% and 99.7%; related results are presented in Tables 9 to 11.
The most effective and robust model is the one with the highest p-values at a given significant level.

The FIGARCH-N model for the ALSI returns was not adequate at 0.3%, 1% and 95% VaR levels.
While the FIGARCH-SSTD model was acceptable at all VaR levels of the long and short positions. The
VaR estimates for the FIGARCH-STD model produced the lowest p-values at the five levels and yielded
an adequacy level at 99.7%. The FIGARCH-GED model produced similar results to the FIGARCH-
STD model, with similar levels of lowest p-values and adequate level at 99.7%. The FIGARCH-STD,
FIGARCH-SSTD and FIGARCH-GED models for the BNKI returns produced adequate results at all
levels. Additionally, the FIGARCH-STD model was adequate at all VaR levels, while the FIGARCH-
N model was not adequate at the 0.3% and 95% levels. The BNKI returns conclude that all three
models, i.e., FIGARCH-SSTD, FIGARCH-GED and FIGARCH-STD, produced adequate results. The
FIGARCH-GED is adequate for the MNGI returns at all levels, except for level 95%. Alternatively,
the FIGARCH-SSTD model produced the highest p-values at all levels, except the 95% level. The
FIGARCH-N model was found to be inappropriate at the 95% and 99% VaR levels.

Data Science in Finance and Economics Volume 3, Issue 4, 380–400.



394

Table 9. In-sample VaR backtesting: FIGARCH with different distributions for the three indices.

Returns Model
p-values of Kupiec LR test

Long positions Short positions
0.3% 1% 5% 99.7% 99% 95%

ALSI

FIGARCH-N 0.0011 0.0003 0.1050 0.9205 0.0529 0.0001
FIGARCH-STD 0.0411 0.0242 0.0077 0.3349 0.0159 0.0003

FIGARCH-SSTD 0.7675 0.8401 0.7803 0.9205 0.1391 0.8915
FIGARCH-GED 0.0183 0.0378 0.0724 0.3349 0.0300 0.0001

BNKI

FIGARCH-N 0.0077 0.0580 0.5169 0.1674 0.2450 0.0229
FIGARCH-STD 0.6039 0.6836 0.9269 0.1473 0.6836 0.4034

FIGARCH-SSTD 0.6039 0.5382 0.6442 0.2961 0.8396 0.5789
FIGARCH-GED 0.9197 0.8396 0.4582 0.3444 0.5382 0.0737

MNGI

FIGARCH-N 0.7682 0.0580 0.2066 0.0861 0.0093 0.0295
FIGARCH-STD 0.0469 1.0000 0.5847 0.9197 0.6836 0.0134

FIGARCH-SSTD 0.0469 0.2079 0.7839 0.7682 0.6915 0.0176
FIGARCH-GED 0.1473 1.0000 0.7839 0.5019 0.8396 0.0056

Table 10. In-sample VaR backtesting: HYGARCH with different distributions for the three indices.

Returns Model
p-values of Kupiec LR test

Long positions Short positions
0.3% 1% 5% 99.7% 99% 95%

ALSI

HYGARCH-N 0.0004 0.0001 0.0077 0.5012 0.0300 0.0003
HYGARCH-STD 0.0411 0.0151 0.0127 0.3349 0.0159 0.0007

HYGARCH-SSTD 0.3012 0.5527 0.2758 0.5012 0.2986 0.2267
HYGARCH-GED 0.0183 0.0242 0.0162 0.6045 0.0159 0.0002

BNKI

HYGARCH-N 0.0184 0.0282 0.7122 0.1674 0.0580 0.0907
HYGARCH-STD 0.3344 0.8417 0.7839 0.3344 0.8396 0.5169

HYGARCH-SSTD 0.3344 0.6836 0.7269 0.3344 0.8396 0.4442
HYGARCH-GED 0.9197 0.6836 0.6442 0.4039 0.8417 0.1106

MNGI

HYGARCH-N 0.7683 0.0580 0.2066 0.0861 0.0093 0.0295
HYGARCH-STD 0.1473 0.3299 0.1060 0.9197 0.6915 0.0376

HYGARCH-SSTD 0.1473 0.5541 0.2403 0.5019 0.5514 0.1106
HYGARCH-GED 0.1473 0.3299 0.5242 0.3017 0.6915 0.0229
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The Kupiec LR test findings are shown in Table 10; for ALSI returns, the HYGARCH-SSTD model
had the highest p-values at all VaR levels. The HYGARCH-STD model had the lowest p-values at all
VaR levels, indicating that it is not a suitable model. The MNGI returns has the highest p-values at all
VaR levels, whereas the HYGARCH-STD model was insignificant at the 95% VaR level. At all VaR
levels, the HYGARCH-SSTD and HYGARCH-GED yielded the highest p-values for BNKI returns. At
all VaR levels, the HYGARCH-STD model had the highest p-values.

Table 11. In-sample VaR backtesting: FIAPARCH with different distributions for the three indices.

Returns Model
p-values of Kupiec LR test

Long positions Short positions
0.3% 1% 5% 99.7% 99% 95%

BNKI

FIAPARCH-N 0.0030 0.0093 0.5169 0.0030 0.0580 0.1603
FIAPARCH-STD 0.9197 0.8915 0.7839 0.8473 0.8417 0.3058

FIAPARCH-SSTD 0.6039 0.8396 0.7823 0.1473 0.6915 0.3442
FIAPARCH-GED 0.5019 0.6915 0.6442 0.1473 0.8322 0.1106

MNGI

FIAPARCH-N 0.6039 0.5541 0.4140 0.0412 0.2450 0.0176
FIAPARCH-STD 0.8473 0.8977 0.3193 0.7019 0.8417 0.9029

FIAPARCH-SSTD 0.1473 0.2079 0.5243 0.5019 0.8417 0.0737
FIAPARCH-GED 0.1473 0.0942 0.5243 0.5019 0.8417 0.0134

The Table 11 results show that, for MNGI returns, the FIAPARCH-N model offers the largest
p-values at all VaR levels, except at the 95% and 99.7% levels. The FIAPARCH-STD and FIAPARCH-
SSTD models yielded the highest p-values at all VaR levels. The FIAPARCH-GED model yielded
the largest p-values at all VaR levels, except the 95% level. For the BNKI returns, the FIAPARCH-
STD, FIAPARCH-SSTD and FIAPARCH-GED are adequate at all VaR levels. While, on the other
hand, the FIAPARCH-N model was not adequate at the 5% and 95% VaR levels. Overall, the long-
memory GARCH models combined with well-chosen parametric distributions were adequate in terms
of estimating the VaR of the three index returns at the levels of 0.3%, 1%, 5%, 95%, 99% and 99.7%.

The finding in the study draws attention to important practical implications for modeling long-
memory financial time series. First, the selected daily closing prices of the three South African market
indices exhibit positive serial-correlation behavior that is characterized by large changes that tend to be
followed by successive large changes over time. This phenomenon was depicted by Cont (2001) and
referred to as volatility clustering. Figures 1 to 3 show a very clear picture of the volatility clustering in
the daily log returns of the three indices during the period of 2008 to 2009 (i.e., the global financial
crisis), as well as during the year 2016 (uncertainty about several changes of the Minister of Finance
in the South African government). Enow (2023) has described some causes and implications as being
related to investor behavior, market sentiment, new information, market reactions, risk management,
derivatives pricing, trading strategies and financial stability. Hence, financial market participants and
stakeholders such as portfolio managers and the central banks have to ensure that appropriate measures
are implemented. That is, well understood and robust modeling are in place to enhance market liquidity
and high trading activities. Second, the log-return probability distributions for the three indices show a
departure from normal (i.e., leptokurtosis) distribution, which is due to the skewness and the excess
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kurtosis beyond the threshold of 3, as shown in Tables 1 and 2. Szczygielski and Chipeta (2023) have
stated that the violation of normality assumption when the model is estimated should not be a concern.
Indeed, the other types of probability distributions, such as the SSTD may be assumed to capture the
tail behavior of the returns. Lastly, the indication of leptokurtosis might mean that there exists varying
variations of the return series overtime, which further implies non-stationarity and heteroskedasticity. In
the study, the log-return series were stationary, but conditional heteroskedasticity prevailed. Hence, the
long-memory GARCH-type models were selected as the modeling techniques. According to Haque
and Farzana (2021), all the FIGARCH-type models are not susceptible to the assumption violation of
non-constant variance of the return series. The same results were observed in this study, as these model
specifications were already built to capture conditional volatility. However, other implications may be
model misspecification through the choice of the long-memory modeling technique, coupled with the
probability distribution assumed to calculate the VaR. The application of the VaR model is centered
around the probability distribution theory. If the model and its properties are not carefully assessed
or chosen, then the probability estimation might not always produce an accurate forecast of the risk
measure. Patra and Padhi (2015) suggest that the mitigating steps include regular backtesting of the
model and evaluating the findings. Therefore, it is important to exercise proper caution and examine
alternate VaR models with the assumption of the appropriate distributions.

5. Summary

Empirical characteristics of the three indices, such as heavy tails, volatility clustering, and long
memory (squared returns), were uncovered. As a result, the study utilized long-memory GARCH-type
models, which included FIGARCH, HYGARCH and FIAPARCH models. The chosen heavy-tailed
distributions consisted of STD, SSTD, and GED. To evaluate the suitability of these models, the Kupiec
LR test was employed in sample backtesting. Among the models, the FIGARCH with the SSTD model
demonstrated overall appropriateness for JSE ALSI returns in both long and short positions, producing
the highest p-values at different VaR levels (0.3%, 1%, 5%, 95%, 99% and 99.7%). This indicated that
the FIGARCH with the SSTD model effectively estimated the VaR for both long and short positions.
The FIAPARCH with STD model yielded the highest p-values for JSE MNGI and BNKI returns at
various VaR levels. Consequently, the FIAPARCH with the STD model emerged as an appropriate and
robust choice of a modeling technique for both short and long trading positions.

Accuracy and performance take precedence when selecting a risk model nowadays. There is
a growing recognition of long-memory hybrid models as promising approaches to overcome the
constraints of single long-memory models to estimate extreme risk measures. The hybrid models
and Bayesian structural time series models demonstrate excellence in capturing various patterns and
relationships in time series, leading to improved accuracy in risk modeling and management. However,
it is of paramount importance that the model should be well understood, and that the decisions and
predictions made by a model should be well explained. Future research will utilize long-memory hybrid
models that incorporate parametric and semi-parametric distributions like the generalized Pareto, lambda,
generalized lambda and Pearson type-IV distributions to estimate the extreme risk market measures.
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Härdle WK, Mungo J (2008) Value-at-risk and expected shortfall when there is long range dependence.

Hurst HE (1951) Long-term storage capacity of reservoirs. T Am Soc Civil Eng 116: 770–799.
https://doi.org/10.1061/TACEAT.0006518

Data Science in Finance and Economics Volume 3, Issue 4, 380–400.



399

Jorion P (2007) Value at risk: the new benchmark for managing financial risk, The McGraw-Hill
Companies, Inc. Available from: https://thuvienso.hoasen.edu.vn/handle/123456789/10569.

Kasman A (2009) Estimating value-at-risk for the turkish stock index futures in the presence of long
memory volatility. Cent Bank Rev 9: 1. Available from: https://core.ac.uk/reader/6462820.
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