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Abstract: In the realm of machine learning, where data-driven insights guide decision-making,
addressing the challenges posed by class imbalance in datasets has emerged as a crucial concern. The
effectiveness of classification algorithms hinges not only on their intrinsic capabilities but also on their
adaptability to uneven class distributions, a common issue encountered across diverse domains. This
study delves into the intricate interplay between varying class imbalance levels and the performance
of ten distinct classification models, unravelling the critical impact of this imbalance on the landscape
of predictive analytics. Results showed that random forest (RF) and decision tree (DT) models
outperformed others, exhibiting robustness to class imbalance. Logistic regression (LR), stochastic
gradient descent classifier (SGDC) and naı̈ve Bayes (NB) models struggled with imbalanced datasets.
Adaptive boosting (ADA), gradient boosting (GB), extreme gradient boosting (XGB), light gradient
boosting machine (LGBM), and k-nearest neighbour (kNN) models improved with balanced data.
Adaptive synthetic sampling (ADASYN) yielded more reliable predictions than the under-sampling
(UNDER) technique. This study provides insights for practitioners and researchers dealing with
imbalanced datasets, guiding model selection and data balancing techniques. RF and DT models
demonstrate superior performance, while LR, SGDC and NB models have limitations. By leveraging
the strengths of RF and DT models and addressing class imbalance, classification performance in
imbalanced datasets can be enhanced. This study enriches credit risk modelling literature by revealing
how class imbalance impacts default probability estimation. The research deepens our understanding
of class imbalance’s critical role in predictive analytics. Serving as a roadmap for practitioners and
researchers dealing with imbalanced data, the findings guide model selection and data balancing
strategies, enhancing classification performance despite class imbalance.
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Abbreviations: ADA: adaBoost; ADASYN: Adaptive synthetic sampling; ANN: Artificial neural
network; AUC: Area under the curve; AUROC: Area under the ROC curve; DT: Decision tree; GB:
Gradient boosting; kNN: k-Nearest neighbors; LGBM: Light gradient boosting machine; LGBM:
LightGBM; LR: Logistic regression; MCC: Mathews’ correlation coefficient; NB: Naı̈ve Bayesian; RF:
Random forest; ROC: Receiver operating characteristic; SGDC: Stochastic descent gradient; UNDER:
Under-sampling; XGB: Extreme gradient boosting

1. Introduction

The accurate estimation of credit default risk plays a critical role in the financial industry, enabling
banks and lenders to make informed decisions regarding loan approvals, credit limits, and pricing.
Traditionally, credit risk assessment has relied on statistical models and expert judgment. However, with
the advancements in machine learning techniques and the availability of large-scale credit data, there
has been growing interest in utilizing these methods for credit risk prediction.

One significant challenge in credit risk modeling is dealing with class imbalance, where the number
of default instances is significantly smaller than the non-default instances. This imbalance can lead
to biased models and poor predictive performance (Thabtah et al., 2020), as most machine learning
algorithms are designed to maximize overall accuracy and may struggle to accurately classify the
minority class. Consequently, misclassification errors related to defaults can have severe financial
implications. The consequences of misclassifying credit defaults can be significant. Khemakhem and
Boujelbene (2018) argued that false negatives (predicting a non-default when it is actually a default)
can expose lenders to potential losses and increased credit risk. On the other hand, false positives
(predicting a default when it is actually a non-default) can result in unnecessary restrictions on credit
access for borrowers and potential loss of business for lenders. The impact of class imbalance on credit
risk prediction has gained attention in recent research. It is crucial to understand the behaviour and
limitations of machine learning algorithms (Leo et al., 2019) under imbalanced conditions to develop
robust models that effectively capture the risk associated with credit defaults. This understanding can
help financial institutions enhance their decision-making processes, mitigate potential losses, and ensure
fair access to credit for borrowers.

The objective of this research article is to investigate the effect of class imbalance on the estimation
of default probabilities using machine learning algorithms. We aim to analyse the performance of
various algorithms under different class distributions and evaluate their effectiveness in capturing default
events accurately. Additionally, we will explore different techniques for addressing class imbalance,
such as over-sampling, particularly ADASYN sampling and under-sampling to assess their impact on
model performance. To achieve our research objectives, we will utilize a dataset of credit information,
including borrower characteristics, historical payment behaviour and other relevant factors. We will
compare the performance of different machine learning algorithms, such as logistic regression, random
forest, gradient boosting and decision tree in estimating default probabilities. Additionally, we will
evaluate the Mathews’ correlation coefficient (MCC) and F1-scores of the models using metrics like the
confusion matrix and area under the receiver operating characteristic curve (AUC-ROC).

The findings of this study will contribute to the existing literature on credit risk modeling by providing
insights into the effect of class imbalance on default probability estimation. This systematic investigation
provides a deeper understanding of the critical impact of class imbalance on predictive analytics. By
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evaluating ten distinct classification models using rigorous evaluation metrics such as the area under
the ROC curve, Mathews’ correlation coefficient (MCC) and F1-scores, this research offers empirical
insights into the strengths and weaknesses of these models in the context of imbalanced datasets. With
the evidence-based assessment of various classification models and balancing techniques, this study
serves as a valuable guide for practitioners and researchers dealing with imbalanced datasets. The
findings offer clear directions for selecting appropriate models and applying tailored data balancing
strategies, ultimately enhancing classification performance in the presence of class imbalance. It will
also shed light on the strengths and limitations of different machine learning algorithms in the context
of imbalanced credit data. The results will be valuable for financial institutions and regulators in
developing more accurate and reliable credit risk models, enhancing credit decision-making processes,
and promoting fair access to credit.

In summary, this research article aims to bridge the gap in understanding the impact of class
imbalance on credit risk prediction. By investigating the behavior of machine learning algorithms under
imbalanced conditions and exploring techniques to address the imbalance, we seek to improve the
accuracy and reliability of default probability estimation. The outcomes of this study will contribute to
the advancement of credit risk modeling and have practical implications for the financial industry.

2. Proposed architecture

One of the major challenges when building default prediction models, is the issue of imbalanced
data. Class imbalance occurs whenever one majority class’s training samples vastly outnumber those of
the other minority class. Research has revealed that algorithms trained on an imbalanced dataset tend
to suffer from a prediction biasedness and this often results in poor performance in the minority class.
This paper will be exploring the results across ADASYN sampling and under-sampling. Figure 1 below
outlines the proposed methodology that is adopted in this paper.

Figure 1. Adopted proposed approach.
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2.1. Pre-processing

The initial and fundamental step in dealing with any sort of data is to first clean the data thoroughly
and make sure that it makes sense (e.g. no nuisance entries). Given the nature of our dataset (see Section
4.), the first step was to standardise all the explanatory variables min/max scaling. The motivation for
this was that whenever training an algorithm with a variable such as salary, which can range from 10000
to 665000 while a variable such as credit utilization is captured as a ratio, the classifier might assume
salary is more important than credit utilization. Min/max scaling (Patro and Sahu, 2015), which was
done in R-studio, scales all the numerical variables to range between 0 and 1.

2.1.1. K-fold cross-validation

Cross-validation consists of developing models explaining relationships among variables based
on a subset of data, called the training data, and then testing the model on the testing data. K-fold
cross-validation splits the data (K) times into training and testing data and then identifies the model that
performs best in the aggregate (Cawley and Talbot, 2010). An even more refined approach reserves
another 20% of the data for a separate testing stage, which is not part of model development and testing,
but is used instead for out-of-sample testing of the model obtained on the basis of the training and
testing datasets. In cross-validation, the training and testing data are separated and the testing data are
used only when a best-fitting model has emerged (Anguita et al., 2012). In our case, we have used
5-fold cross validation on the 80% (in-sample) of the data and used the remaining 20% (out-of-sample)
of the data for model testing in order to get more accurate results.

2.1.2. Missingness

There are two different strategies for handling missing data (Han et al., 2012). The first strategy is to
simply ignore missing values and the second strategy is to consider imputation of missing values.

Omit missing values

The serious problem with omitting observations with missing values is that it reduces the dataset
size. This is appropriate when your dataset has a small amount of missing values. There are two general
approaches for ignoring missing data: listwise deletion (case deletion or complete case analysis) and
pairwise deletion (available case analysis) approach. Complete case analysis approach excludes all
observations with missing values for any variable of interest. This approach limits the analysis to
those observations for which all values are observed which often results in biased estimate and loss
of precision (Schafer and Graham, 2002). In pairwise deletion, we perform analysis with all cases in
which the variables of interest are present. It does not exclude the entire unit but uses as much data as
possible from every unit. The advantage of this method is that it keeps maximum available data for
analysis even when some of its variables have missing values. The disadvantage of this method is that it
uses different sample size for different variables (Schafer and Graham, 2002). The sample size for each
individual analysis is higher than the complete case analysis.
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Impute missing values

Missing data imputation is a procedure that replaces missing values with some plausible values
(Rubin, 1976). The various imputation techniques aim to provide accurate estimation of population
parameters so that power of data mining and data analysis techniques is not reduced. Optimal treatment
to be given to the missing data depends on amount of missing data. Although there is no general rule on what
percentage of missing data is bad, it is always better to do comparison of results before and after imputation.

In this paper we have adopted the median imputation method for handling missingness. Median
imputation is used for numerical data and our dataset was of this composition. Median imputation is
a method for handling missing values by replacing missing values in a dataset with the median value
of the non-missing observations of the same variable. This method assumes that the missing data are
missing at random and that the median is a good representation of the central tendency of the data. The
median is calculated by first ordering the nonmissing observations of a variable and then identifying the
middle value or the average of the two middle values, depending on whether the number of observations
is odd or even. This imputed median value is then used to replace all the missing values of that variable.

Initially, we present a comprehensive review of the relevant literature pertaining to the research topic.
Subsequently, we expound on the adopted methodology employed in this study. The models utilized are
discussed and references to additional research papers are provided for supplementary understanding.
Additionally, we furnish a detailed account of the analyzed dataset, coupled with an exploratory data
analysis. Finally, an extensive analysis of the results of our machine learning algorithms is presented,
along with recommendations for future research.

2.2. Hyper-parameter tuning

Hyper-parameter tuning in machine learning is the process of selecting the optimal values for
hyper-parameters, which are parameters set by the user that control the behaviour of the learning
algorithm. The goal is to find the hyper-parameters that result in the best balance of model complexity
and performance. This process can be time-consuming and computationally expensive but it is an
important step in developing accurate and reliable machine learning models. If default hyper-parameters
were used for the models in R, the opportunity to fine-tune the models and achieve optimal performance
for the specific task or dataset may have been missed.

In order to develop and evaluate the performance of our machine learning models, we utilized default
hyper-parameters in the R programming language. While this approach may not have allowed for the
fine-tuning of hyper-parameters to achieve optimal performance for our specific task and dataset, it
allowed us to establish a baseline level of performance and compare the relative performance of different
models. This information was valuable in guiding our model selection process and identifying areas for
future improvement.

2.3. ADASYN sampling and under-sampling

ADASYN and under-sampling are techniques used in machine learning to address class imbalance
in datasets. Under-sampling involves reducing the number of instances in the majority class to create
a more balanced dataset, allowing the classifier to learn effectively from both classes. This can be
achieved through methods such as random under-sampling or removing instances close to the decision
boundary. On the other hand, ADASYN sampling takes a more adaptive approach by generating
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Figure 2. Machine learning in statistics.

synthetic examples for the minority class, particularly focusing on difficult-to-learn instances. By
augmenting the minority class, ADASYN aims to improve the classifier’s performance and achieve
better predictive accuracy. While under-sampling can lead to loss of information from the majority
class, ADASYN sampling leverages the distribution of the minority class to generate synthetic samples
and overcome the imbalance issue. Both techniques aim to enhance the learning process in imbalanced
datasets, but they adopt different strategies to achieve a balanced representation of the classes.

3. Machine learning algorithms

In data analytics, (Breeden, 2021) machine learning is a set of computational methods which use
experience to improve performance or to make accurate predictions. Here, the word ”experience” refers
to past information available to the machine learning technique, classifier. In particular, data quality and
data size are at the core of machine learning and, since the success of a learning algorithm depends on
the data used, machine learning is strictly related to data analysis and statistics.

Learning is a wide domain, consequently it can be ranched into subfields dealing with different
types of learning. The most common partition is the one that distinguishes between supervised and
unsupervised learning according to the types of training data available to the classifier (Breeden, 2021).
Figure 2 depicts the word-cloud jargon of machine learning in credit risk modelling. In supervised
learning, an algorithm is trained using labelled data to make predictions; this is the most common
scenario when dealing with classification or regression problems. In unsupervised learning, an algorithm
is fed with unlabelled data where an algorithm is tasked with learning from the data on its own and be
able to make accurate predictions when given unseen data; this approach is popular in clustering and
association problems. Another type of machine learning is reinforcement learning, where an intelligent
agent ought to take actions in an environment in order to maximize the notion of cumulative reward.
This is used largely for classification and control problems.

Decision tree (DT): Decision tree algorithm is a popular method for default prediction due to its
simplicity, interpretability and its ability to handle large datasets with high dimensionality. It uses a
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tree-like model of decisions and their possible consequences, by recursively partitioning the feature
space into smaller regions, in which the most homogeneous set of outcomes is found. However, decision
trees are known to be sensitive to class imbalance since they tend to be biased towards the majority
class. Breiman et al. (1984) and Fayyad and Irani (1992) give full description of the model.

k-Nearest neighbor (kNN): The k-nearest neighbour classifier (kNN) is known to be most useful
instance-based learners. kNN is a non-parametric model. kNN (Yao and Ruzzo, 2006) is a non-
parametric method that makes predictions based on the majority class of the k-nearest points to a given
test point. It is simple and efficient but can be sensitive to the choice of k and the distance metric
used. kNN has been used in the literature for default prediction, mainly in the credit risk domain. A
comprehensive description of kNN is provided by Kelleher et al. (2020), Stephens and Diesing (2014)
and Wilson and Martinez (1997).

Logistic regression model (LR): One of the most commonly used statistical models is the logistic
regression model that explains the relationship of several covariates x to a binary response variable.
The primary objective of the logistic regression model (Zhang et al., 2017) with multiple predictors is
to construct a model to describe the relationship between a binary response variable and one or more
predictor variables. Logistic regression is widely used in various fields, including medicine, finance,
and social sciences, where binary classification tasks are common. It provides interpretable results
because the coefficients can be examined to understand the impact of the features on the probability of
the positive class. However, logistic regression assumes a linear relationship between the features and
the log-odds, and may not perform well when dealing with complex nonlinear patterns in the data.

Naı̈ve Bayesian approach (NB): The naı̈ve Bayes classifier is a probabilistic classification algorithm
based on Bayes’ Theorem that has been widely used for default prediction problems. It makes the
assumption that the predictors are independent given the class label, which is called the ”naive”
assumption. Despite its ”naive” assumption, it has been shown to be effective in several studies and it
can handle class imbalance by adjusting class weights or using techniques like oversampling, under-
sampling and synthetic data generation. A full description of the algorithm can be found in (De Campos
et al., 2011) and (Stephens and Diesing, 2014).

Light gradient boosting machine (LGBM): LGBM is a powerful machine learning model that
has gained popularity in both regression and classification tasks. It is a gradient boosting framework
that utilizes tree-based learning algorithms (Ke et al., 2017). LGBM is designed to handle large-scale
datasets efficiently, making it suitable for real-world applications with high-dimensional features. One
of the key strengths of LGBM lies in its ability to handle imbalanced datasets effectively. It employs a
technique called gradient-based one-side sampling (GOSS) to downsample the majority class during the
boosting process, which helps to improve the model’s performance on minority classes. This makes
LGBM particularly well-suited for classification tasks where class imbalances are common. Ke et al.
(2017) and Li et al. (2022) provide more context to the LGBM model.

Random forest (RF): As proposed by Breiman (2001), random forest is a combination of decision
trees (Ho, 1995) used as an ensemble learning method for classification, regression and other tasks that
operates by constructing a multitude of decision trees at training time and outputting the class that is
the mode of the classification or regression of the individual trees. Deng et al. (2018) defined random
forest as a type of learning method that can be used for both classification and regression problems.
Furthermore, random forests are suitable for large quantities of data with substantial noise, can prevent
over-fitting, and are able to distinguish important features in classification. Breiman (2001), Calderoni
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et al., (2015) and Booth et al., (2015) give a more detailed discussion on random forests, including a
more rigorous mathematical description.

Adaptive boosting (ADA): The Adaptive Boosting (ADA) Classifier is a popular machine learning
algorithm used for classification tasks. It is a type of ensemble learning method that combines multiple
weak classifiers to create a strong and accurate classifier. ADA iteratively trains a series of weak
classifiers, where each subsequent classifier is designed to focus on the instances that were misclassified
by the previous classifiers. This iterative process helps to improve the overall performance of the
classifier. Granström and Abrahamsson (2019) provides the full details regarding the implementation of
this algorithm.

Stochastic gradient descent classifier (SGDC): The stochastic gradient descent (SGDC) classifier
is a popular and efficient algorithm used in machine learning for solving classification problems. It is a
variant of the gradient descent optimization algorithm (Lokeswari and Amaravathi, 2018), specifically
designed for large-scale datasets. The SGDC iteratively updates the model parameters by taking small
steps in the direction of the steepest gradient, aiming to minimize the loss function. Unlike traditional
gradient descent (Liu et al., 2021), which calculates the gradient over the entire training dataset, SGDC
performs updates on randomly selected subsets of data called mini-batches. This stochastic nature of
SGDC allows for faster convergence and makes it highly suitable for working with massive datasets.

Gradient boosting (GB): Gradient boosting is a powerful machine learning algorithm that combines
multiple weak learners, typically decision trees, to create a strong predictive model. It operates by
sequentially adding new models to correct the errors made by the previous models, thereby gradually
improving its predictive accuracy. The algorithm works by optimizing a specific loss function through
an iterative process. Each subsequent model is trained to minimize the errors or residuals of the previous
models, using gradient descent optimization. Gradient boosting is known for its ability to handle
complex nonlinear relationships in data and is widely used in various domains, including regression,
classification, and ranking problems. It has gained popularity due to its high predictive performance and
robustness. Dorogush et al., (2018) and Bentéjac et al., (2021) expand more on the model.

Extreme gradient boosting (XGB): Another integration technique constructed by continuous
iterations of weak classifier is the extreme gradient boosting. According to Ogunleye and Wang
(2019), the model was proposed by Chen and Guestrin (2016) to optimize memory usage and exploit
the hardware computing power, XGB decreases the execution time with an increased performance
compared to many machine learning algorithms and even deep learning models. The main idea of
boosting is to sequentially build sub-trees from an original tree such that each subsequent tree reduces
the errors of the previous one. In this procedure, k number of regression trees are created to ensure that
the prediction of the tree cluster is as close to the actual value as possible and that the generalization
capability is as high as possible. More details about the procedure can be read by Dhieb et al., (2019),
Ogunleye and Wang (2019) and Chen and Guestrin (2016).

4. Data description

In this section we provide some information on the dataset utilised, exploratory data analysis and we
also motivate the aptness for the selection of our model choice. Kaggle dataset was used in this paper,
which contained 11 features and 150000 observations (Kaggle, 2023). Kaggle is a well-known platform
for data science competitions, collaboration and learning. It hosts a wide variety of datasets contributed
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Table 1. Credit risk dataset.

Classifier Method Type

SeriousDlqin2yrs Person experienced 90 days past due delinquency or worse Binary
RevolvingUtilizationOfUnsecuredLines Total balance on credit cards and personal lines of credit except real estate and no instalment

debt like car loans divided by the sum of credit limits
Ratio

Age Age of borrower in years Integer
NumberOfTime30-59DaysPastDueNotWorse Number of times borrower has been 30-59 days past due but no worse in the last 2 years

(Bucket 1)
Integer

DebtRatio Monthly debt payments, alimony,living costs divided by monthly gross income Ratio
MonthlyIncome Monthly income Numeric
NumberOfOpenCreditLinesAndLoans Number of Open loans (insta.0=lment like car loan or mortgage) and Lines of credit (e.g.

credit cards)
Integer

NumberOfTimes90DaysLate Number of times borrower has been 90 days or more past due (Bucket 3) Integer
NumberRealEstateLoansOrLines Number of mortgage and real estate loans including home equity lines of credit Integer
NumberOfTime60-89DaysPastDueNotWorse Number of times borrower has been 60-89 days past due but no worse in the last 2 years

(Bucket 2)
Integer

NumberOfDependents Number of dependents in family excluding themselves (spouse, children etc.) Integer

Table 2. Simulated sample sizes.
Response Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

UNDER Yes 10026 10026 10026 10026 10026 10026 10026 10026 10026
No 100260 66840 50130 40104 33420 28646 25065 22280 20052

ADASYN Yes 15553 24699 34994 46658 59989 75371 93316 114524 139974
No 139974 139974 139974 139974 139974 139974 139974 139974 139974

by the community, covering diverse topics and domains. These datasets are often used for data analysis,
machine learning projects and research. Kaggle datasets range from structured data in CSV files to
images, videos and more complex data types. Table 1, gives the dictionary to the dataset being adopted
in this paper.

Roughly 2% of the data was missing, particularly within the monthly income variable as well as the
number of dependents. This is shown visually in Figure 3. We thought it was worthwhile to check if
there is no relationship in our explanatory variables before attempting to fit any models. This task is
termed as checking for the existence of multicollinearity within the data. Figure 4 displays the results
that were obtained after the test was conducted. The results show a very strong correlation in the Bucket
1 through Bucket 3 variable. Moreover, a high correlation was also seen between Bucket 1 and Number
Real Estate Loans Or Lines.

The dataset had originally 7% (10026) positive cases and 93% (139974) negative cases. Since the
objective of this paper was to investigate the effectiveness of various machine learning models under
class imbalance, we have generated nine samples of different levels of class imbalance for each of the
sampling techniques discussed in Section 2.3. As a result, we ended up with eighteen (18) samples as
shown in Table 2. In under-sampling, the minority class was kept the same while the majority class
was under sampled to meet the desired class imbalance. On the other hand, in ADASYN sampling the
majority class was fixed at original observations while the minority class was over sampled to meet the
desired samples of different class imbalance.

4.1. Measures of performance

We adopt the widely used measures of performance in the fields of credit risk to evaluate our
classification algorithms. These include the area covered by the receiver operating characteristics (ROC)
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Figure 3. Missing values.

Figure 4. Multicollinearity.
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Table 3. Confusion matrix.

Actual
Positive Negative

Predicted
Positive True Positive (TP) False positive (FP)

Negative False Negative (FN) True Negative (TP)

curve. The ROC curve tells how much a model is capable of distinguishing between classes; an excellent
model will have an ROC close to 1, a poor model will have ROC close to 0.5. The ROC curve is
constructed by evaluating the fraction of “true positives”(TP) and “false positives” (FP) for different
threshold values. Table 3 shows the so-called confusion matrix that contains basic ingredients that we
usually report on.

We report on the following metrics,
Note:
These formulas are derived using 2x2 confusion matrix (Table 3) (Mitchell and Mitchell, 1997),

for multi-class classification or multi-label classification the formulas will be different. ROC-AUC
is a measure of the trade-off between the true positive rate (sensitivity) and the false positive rate
(1-specificity) in a binary classification problem. AUC of 1 represents a perfect classifier and AUC of
0.5 represents a random classifier. Recall gain is used when the data is imbalanced and the goal is to
improve recall and it is defined as: recall gain = (recall of model - recall of baseline)

5. Results

This section presents an overview of the evaluation measures obtained after training the classification
models in R. Prior to fitting the models, our dataset underwent a simulation process to create nine
samples with varying levels of class imbalance using both under-sampling and ADASYN sampling
techniques, as depicted in Figure 5. Each sample was characterized by a specific percentage of positive
target variables, such as 10% in the first sample and 90% for the remaining variables. Subsequent
samples followed a similar pattern, with increasing percentages of positive target variables.

The evaluation focused on five key metrics: the area under the ROC curve, Mathews’ correlation
coefficient (MCC), Gini coefficient, recall scores and F1-scores. The results by the Gini coefficient
and the recall scores can be found in Appendix 7. These metrics were analysed for the two sampling
techniques investigated in the study. The area under the ROC curve provided insights into the models’
performance in distinguishing between the positive and negative classes. MCC served as a measure
of the models’ overall performance, taking into account true positives, true negatives, false positives,
and false negatives. Last, the F1-scores provided a balanced assessment of precision and recall for the
models. These evaluation measures were instrumental in assessing the performance of the classification
models and drawing meaningful conclusions about their effectiveness under different levels of class
imbalance.

After generating and securely saving our simulated samples with varying degrees of class imbalance,
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Measure (Chicco and Jurman, 2020) Description

Mathews’ correlation coefficient The Matthews correlation coefficient
(MCC) is a measure used to assess the
quality of binary classification models,
particularly when dealing with imbalanced
datasets. It takes into account true
positives, true negatives, false positives,
and false negatives to provide a balanced
evaluation of the classifier’s performance.

F1-score Harmonic mean of precision and recall

ROC-AUC Receiver operating characteristic - area
under the curve

Gini coefficient This measures the area between the
model’s ROC curve and the baseline
(random guessing) line. It quantifies how
well the model can distinguish between
positive and negative instances.

Recall score Also known as true positive rate, it
evaluates the model’s ability to identify
actual positive instances out of all the true
positive instances. It is a measure of the
model’s sensitivity to detecting positive
cases.

Figure 5. Simulation of class imbalance samples.
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we proceeded to the modeling phase. Each simulated dataset was divided into two parts: 80% for
training the model and 20% for model testing. We employed 10 machine learning models (as discussed
on Section 3.) on each of the simulated samples and reported on Mathews’ correlation coefficient
to compare training sets. We further used F1-scores and area under the ROC curves to validate the
performance of the models on out-of-sample datasets. Table 4 below, summarises the results obtained
after training and the testing the models according to Mathews’ correlation coefficient.

First, it is imperative to highlight the exceptional performance of the random forest (RF) and decision
tree (DT) algorithms in both the training and testing phases. Even when trained on highly imbalanced
datasets (Sample 1), both algorithms achieved Mathews’ correlation coefficient (MCC) scores exceeding
99% and demonstrated slight improvements as the data approached balance. Remarkably, these models
appeared to be relatively insensitive to class imbalance during the training stage. Visually, the dominance
of RF and DT algorithms over other models is evident, as depicted in the line plots presented in Figure
6 and Figure 8. The second set of models that exhibited noteworthy performance included ADA, GB,
XGB, LGBM and kNN. These models showcased significant improvements as the data became more
balanced. With a 10% balanced dataset, these models achieved MCC scores ranging from 35.5–55.8%,
which escalated to 54.6–61.1% for a fully balanced dataset. This trend was consistent across both
sampling techniques. The line plots in Figure 6 and Figure 8 offer insights into the sensitivity of
imbalanced data to these models. In contrast, LR, SGDC, and NB algorithms exhibited the poorest
performance across both sampling techniques, scoring MCC values below 50% regardless of the class
imbalance in the data. Further analysis on this matter will be explored in the upcoming section.

The subsequent step of the analysis involved evaluating the performance of these models on separate
out-of-sample datasets, which were reserved for model testing. Once again, the standout performers were
the RF and DT models. When employing under-sampling, these models achieved scores ranging from as
low as 63.4% and 73.3% to as high as 65.7% and 75.5%, respectively. In the case of ADASYN sampling,
their scores ranged from as low as 70.8% and 80.5% to as high as 94.2% and 97.3%, respectively.
Although the scores decreased compared to the training sets, the RF and DT models continued to
outperform the other models. This trend is also visually represented in the line plots depicted in Figure
7 and Figure 9.

Similarly, ADA, GB, XGB, LGBM and kNN models exhibited comparable patterns in the out-of-
sample datasets as observed in the training samples, albeit with slightly lower scores. Notably, the kNN
model demonstrated the most significant improvements as the data became more balanced. Despite
fully balancing the datasets, the LD, LGBM, kNN, and NB models still scored MCC values below 50%
when utilizing under-sampling. However, the kNN model did exhibit some enhancements in prediction
quality when employing the ADASYN sampling technique, achieving an MCC score of 86.6%. On the
other hand, the LD, LGBM, and NB models remained below 50% in terms of MCC scores.

The F1-scores presented in Table 5 further reinforce the observation that the RT and DT models
were the top performers during the testing stage. When employing the under-sampling technique, these
models achieved scores as low as 66.7% and 74.6%, respectively, which improved to 75.5% and 83.1%
as the data became more balanced. In the case of ADASYN sampling, their scores improved from
73.5% and 81.6% to 96.1% and 98.2%, respectively. Across both sampling techniques, ADA, GB, XGB,
and LGBM models demonstrated gradual improvements in predictive power as the data distribution
approached equilibrium. SGDC and kNN models exhibited the most significant improvements as the
dataset became more balanced. At a 10% class imbalance, SGDC and kNN models achieved F1-scores

Data Science in Finance and Economics Volume 3, Issue 4, 354–379.



367

Table 4. Mathews’ correlation coefficient from training and testing sets.
Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

Tr
ai

ni
ng

Se
ts U

nd
er

-S
am

pl
in

g

LR 0.1717 0.2210 0.2259 0.2642 0.2840 0.3341 0.3062 0.4202 0.4117
DT 0.9977 0.9987 0.9988 0.9989 0.9990 0.9993 0.9991 0.9993 0.9994
RF 0.9975 0.9986 0.9987 0.9989 0.9990 0.9993 0.9991 0.9993 0.9993
ADA 0.3547 0.4298 0.4565 0.4893 0.5181 0.5190 0.5261 0.5353 0.5460
GB 0.4011 0.4743 0.4884 0.5217 0.5491 0.5552 0.5581 0.5658 0.5813
XGB 0.5842 0.6472 0.6645 0.6941 0.7101 0.7170 0.7284 0.7316 0.7546
LGBM 0.4700 0.5393 0.5570 0.5884 0.6049 0.6130 0.6222 0.6292 0.6388
SGDC 0.0934 0.1457 0.1155 0.2283 0.2959 0.3614 0.3845 0.4441 0.4415
KNN 0.5584 0.5888 0.5743 0.6001 0.6097 0.6046 0.6028 0.6049 0.6106
NB 0.1107 0.0984 0.0955 0.0942 0.1313 0.1296 0.1045 0.1392 0.1126

A
D

A
SY

N
Sa

m
pl

in
g

LR 0.1823 0.2143 0.2369 0.2769 0.2741 0.3415 0.3733 0.3712 0.3843
DT 0.9976 0.9981 0.9983 0.9984 0.9982 0.9987 0.9987 0.9988 0.9987
RF 0.9975 0.9980 0.9983 0.9984 0.9981 0.9987 0.9987 0.9988 0.9987
ADA 0.3741 0.4277 0.4588 0.4888 0.5035 0.5202 0.5325 0.5438 0.5421
GB 0.4081 0.4574 0.4930 0.5178 0.5354 0.5446 0.5586 0.5658 0.5644
XGB 0.5666 0.5987 0.6179 0.6387 0.6470 0.6541 0.6644 0.6690 0.6680
LGBM 0.4572 0.4996 0.5313 0.5514 0.5671 0.5782 0.5868 0.5959 0.5931
SGDC 0.0000 0.0924 0.1761 0.2688 0.2640 0.3902 0.4159 0.4330 0.4251
KNN 0.6121 0.7047 0.7576 0.8016 0.8307 0.8525 0.8694 0.8792 0.8886
NB 0.1012 0.1024 0.1065 0.1233 0.1299 0.1412 0.1260 0.1207 0.1257

Te
st

in
g

Se
ts

U
nd

er
-S

am
pl

in
g

LR 0.1813 0.2096 0.2388 0.2754 0.2617 0.3036 0.2967 0.4239 0.4164
DT 0.6337 0.6225 0.6324 0.6228 0.6349 0.6374 0.6567 0.6246 0.6240
RF 0.7333 0.7371 0.7393 0.7394 0.7387 0.7261 0.7551 0.7389 0.7472
ADA 0.3565 0.4099 0.4489 0.4863 0.4995 0.4919 0.5256 0.5470 0.5448
GB 0.3929 0.4356 0.4756 0.5064 0.5293 0.5177 0.5472 0.5742 0.5799
XGB 0.4706 0.4917 0.5258 0.5714 0.5754 0.5611 0.6095 0.6054 0.6275
LGBM 0.4159 0.4577 0.4973 0.5403 0.5443 0.5387 0.5753 0.5816 0.6061
SGDC 0.1024 0.1344 0.1272 0.2351 0.2958 0.3302 0.3936 0.4503 0.4548
KNN 0.3708 0.4109 0.3795 0.4279 0.4383 0.4115 0.3921 0.4213 0.4072
NB 0.1199 0.0944 0.1008 0.1135 0.1387 0.1279 0.1153 0.1243 0.0989

A
D

A
SY

N
Sa

m
pl

in
g

LR 0.1718 0.2050 0.2277 0.2747 0.2806 0.3399 0.3754 0.3701 0.3887
DT 0.7082 0.7999 0.8592 0.8806 0.9068 0.9211 0.9324 0.9363 0.9421
RF 0.8048 0.8815 0.9178 0.9349 0.9491 0.9612 0.9627 0.9677 0.9725
ADA 0.3641 0.4236 0.4544 0.4875 0.5113 0.5209 0.5324 0.5413 0.5444
GB 0.3940 0.4534 0.4771 0.5157 0.5322 0.5439 0.5549 0.5559 0.5666
XGB 0.4767 0.5319 0.5625 0.5861 0.6143 0.6237 0.6299 0.6369 0.6459
LGBM 0.4180 0.4814 0.5025 0.5331 0.5590 0.5632 0.5766 0.5784 0.5894
SGDC 0.0000 0.0894 0.1810 0.2768 0.2650 0.3921 0.4125 0.4273 0.4275
KNN 0.3950 0.4919 0.5875 0.6383 0.7005 0.7374 0.7684 0.7942 0.8164
NB 0.0895 0.1003 0.1065 0.1225 0.1296 0.1439 0.1157 0.1198 0.1209
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Figure 6. Under-sampling training set. Figure 7. Under-sampling testing set.

Figure 8. ADASYN sampling
training set.

Figure 9. ADASYN sampling
testing set.

Figure 10. Training and testing sample by Mathews’ correlation coefficient.
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Table 5. F1-score comparison for testing sets.
Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

U
nd

er
-S

am
pl

in
g

LR 0.1078 0.1426 0.1827 0.2357 0.2348 0.3123 0.3101 0.4820 0.4882
DT 0.6673 0.6727 0.6976 0.6995 0.7231 0.7357 0.7588 0.7449 0.7554
RF 0.7461 0.7633 0.7789 0.7866 0.7966 0.7958 0.8244 0.8181 0.8314
ADA 0.3604 0.4391 0.5002 0.5502 0.5782 0.5897 0.6342 0.6588 0.6687
GB 0.3937 0.4705 0.5298 0.5698 0.6103 0.6172 0.6561 0.6849 0.7045
XGB 0.4695 0.5244 0.5789 0.6349 0.6561 0.6599 0.7108 0.7157 0.7456
LGBM 0.4147 0.4894 0.5541 0.6064 0.6302 0.6404 0.6833 0.6956 0.7265
SGDC 0.0335 0.0591 0.0606 0.1611 0.2443 0.3261 0.4259 0.5126 0.5223
KNN 0.3898 0.4505 0.4440 0.5042 0.5344 0.5268 0.5320 0.5646 0.5721
NB 0.0680 0.0455 0.0530 0.0588 0.0933 0.0737 0.0709 0.0698 0.0573

A
D

A
SY

N
Sa

m
pl

in
g

LR 0.1059 0.1397 0.1713 0.2413 0.2557 0.3442 0.4043 0.4194 0.4580
DT 0.7349 0.8259 0.8826 0.9041 0.9282 0.9412 0.9517 0.9562 0.9614
RF 0.8162 0.8961 0.9315 0.9480 0.9610 0.9713 0.9734 0.9779 0.9817
ADA 0.3678 0.4535 0.4987 0.5510 0.5873 0.6087 0.6346 0.6552 0.6682
GB 0.3966 0.4870 0.5292 0.5838 0.6134 0.6353 0.6614 0.6734 0.6927
XGB 0.4776 0.5615 0.6083 0.6474 0.6867 0.7059 0.7239 0.7388 0.7557
LGBM 0.4181 0.5133 0.5559 0.6030 0.6397 0.6573 0.6822 0.6945 0.7130
SGDC 0.0000 0.0259 0.0956 0.2140 0.1999 0.3953 0.4495 0.4818 0.4879
KNN 0.4225 0.5467 0.6521 0.7108 0.7722 0.8078 0.8374 0.8607 0.8793
NB 0.0510 0.0486 0.0632 0.0646 0.0805 0.0862 0.0668 0.0705 0.0730

of 3.4% and 40.0% respectively, which increased to 52.2% and 57.2% as the data became more balanced.
This pattern held true for both sampling techniques employed in this study. On the other hand, LR and
NB models performed consistently regardless of the model or sampling technique used.

Finally, we present visualizations of the ROC curves, depicting the area under the curve (AUC),
for the testing stage across various sample sizes. The ROC curves, as shown in Figure 12, provide
further confirmation of the previous findings. While random forest (RF) and decision tree (DT) models
consistently exhibited superior performance compared to other classifiers across different levels of class
imbalance, it is crucial for readers to pay attention to the performance improvements of all models as the
data becomes more balanced. Notably, a noteworthy observation from the ROC curves is that the AUC
values for the under-sampling technique, as illustrated in Figure 13, appeared to be relatively flatter
and closer to the diagonal line compared to the AUC values for the ADASYN sampling technique, as
depicted in Figure 12. This observation implies that ADASYN sampling tends to produce more reliable
predictions compared to the under-sampling technique.

The visualizations of the ROC curves provide additional evidence of the strength of RF and DT
models throughout various class imbalance scenarios. Furthermore, the results highlight the importance
of considering the performance improvements of all models as data balance improves. Additionally, the
ROC curves suggest that ADASYN sampling may offer enhanced prediction reliability compared to
under-sampling.
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Figure 11. F1-Scores comparison.

Figure 12. ADASYN sampling
ROC curve comparison.

Figure 13. Under-sampling ROC
curve comparison.

In summary, the results highlight the superior performance of RF and DT models in both training
and testing stages, emphasizing their robustness to class imbalance. Other models, such as ADA, GB,
XGB, LGBM and kNN, showed improvements as the data became more balanced but did not surpass
the performance of RF and DT models. LR, SGDC and NB models consistently performed poorly
regardless of the sampling technique used. The findings also suggest that ADASYN sampling technique
yielded more reliable predictions compared to under-sampling technique.

6. Discussion

The results obtained in this study align with some findings reported in related work on the topic of
class imbalance and classification models.
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The superior performance of random forest (RF) and decision tree (DT) algorithms, especially in
the presence of class imbalance, is consistent with previous research. Alija et al., (2023) and Zhou and
Wang (2012) conducted a similar investigation under class imbalance and discovered that random forest
tend to outperform many state-of-art classifiers such as SVM, ANN, naı̈ve Bayes and C4.5. RF and
DT models are known for their ability to handle imbalanced datasets effectively by capturing complex
decision boundaries and handling both minority and majority classes well. In the paper written by Sun
et al., (2018), it was also discovered that decision tree significantly outperforms other models and is
effective for imbalanced enterprise credit evaluation. The high MCC scores achieved by RF and DT
models in this study support their suitability for imbalanced classification tasks, as reported in previous
studies. RF and DT algorithms perform well on imbalanced data due to their inherent robustness to class
imbalance (Singhal et al., 2018), the use of sampling and randomness, their ability to handle overlapping
regions and the benefits of ensemble methods. DT are less affected by class imbalance as they can
capture patterns in both minority and majority classes (Liu et al., 2010) during the splitting process.
RF, consisting of multiple decision trees trained on bootstrap samples, introduces randomness and
diversity, enabling the algorithm to learn from both classes. DTs can form partitions that help separate
the minority class instances, improving classification performance. Finally, the ensemble nature of RF
leverages the collective wisdom of multiple trees, further enhancing its ability to handle imbalanced
data (Liu et al., 2010).

The results also align with previous studies that have highlighted the challenges faced by logistic
regression, stochastic gradient descent classifier, and naı̈ve Bayes algorithms in imbalanced classification
tasks. These models often struggle to handle class imbalance, resulting in lower MCC scores and poorer
performance compared to other algorithms. Logistic regression, stochastic gradient descent classifier,
and naı̈ve Bayes algorithms face challenges in imbalanced classification tasks due to the skewed class
distribution (Aljedaani et al., 2022), loss function optimization, assumption of feature independence,
and sensitivity to data representation. According to Das et al., (2018), the skewed class distribution can
lead to biased models and difficulties in capturing patterns for the minority class. The loss functions
used by LR and SGDC may prioritize the majority class, resulting in biased decision boundaries and
poor performance on the minority class. NB’s assumption of feature independence can disregard
rare but discriminative features for the minority class. Additionally, these algorithms may struggle
to find sufficient evidence to accurately model the minority class (Das et al.,, 2018) due to its under-
representation. To overcome these challenges, techniques like resampling, adjusting class weights,
using different loss functions, or employing specialized algorithms designed for imbalanced data can be
applied. The consistent poor performance of LR, SGDC and NB models in this study reinforces the
need to carefully select appropriate classifiers when dealing with imbalanced datasets.

ADA, gradient boosting, extreme gradient boosting, light gradient boosting machine, and k-nearest
neighbors models can be sensitive to imbalanced data due to their underlying mechanisms and
characteristics:

1. Data weighting and boosting: Models like ADA, GB, XGB and LGBM utilize boosting
techniques, where multiple weak classifiers are combined to form a strong classifier. In the
presence of imbalanced data, these models tend to assign higher weights to misclassified instances
from the minority class during the training process. This weighting scheme can result in an
overemphasis on the minority class, potentially leading to misclassifications and biased decision
boundaries (Okey et al., 2022).
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2. Loss function optimization: Boosting algorithms aim to minimize a loss function by iteratively
fitting models to the training data. In imbalanced datasets, the loss function (Fernando and Tsokos,
2021) used may not adequately capture the cost of misclassifying the minority class. As a result,
the models might prioritize minimizing the overall loss (Laradji et al., 2015), which is dominated
by the majority class, leading to a bias towards the majority class and reduced performance on the
minority class.

3. Nearest neighbor-based approach: kNN algorithm makes predictions based on the class labels
of its nearest neighbors. In the presence of imbalanced data, the sparsity (Padmaja et al., 2007)
of the minority class can lead to situations where the nearest neighbors of a minority instance
predominantly belong to the majority class. This can result in misclassifications and a tendency to
favor the majority class during classification.

The gradual improvements observed in the performance of these models as the data became more
balanced are consistent with the notion that as the class distribution becomes more even, classifiers tend
to achieve better results. This observation supports the idea that balancing techniques, such as ADASYN
sampling, can alleviate the negative impact of class imbalance on the performance of classifiers.

Overall, the findings of this study align with existing research on the performance of classification
models in the presence of class imbalance. The superiority of RF and DT models, the challenges faced
by LR, SGDC and NB models, and the performance improvements with data balancing techniques
are consistent with previous findings. These results contribute to the growing body of knowledge on
class imbalance and provide further evidence of the effectiveness of certain algorithms in imbalanced
classification tasks.

7. Conclusions

In conclusion, this study investigated the performance of various classification models in the presence
of class imbalance. The results shed light on the impact of class distribution on the effectiveness
of different algorithms and the importance of data balancing techniques. The findings highlight the
outstanding performance of random forest and decision tree algorithms, which consistently outperformed
other models in both training and testing stages. These models demonstrated robustness to class
imbalance and achieved high Mathews’ correlation coefficient scores even when trained on highly
imbalanced datasets. The visual representations and area under the ROC curves further supported their
superiority over other classifiers.

On the other hand, logistic regression, stochastic gradient descent classifier, and naı̈ve Bayes models
exhibited poor performance regardless of the class imbalance in the data. These models struggled to
handle imbalanced datasets and scored lower MCC values compared to other algorithms. The study also
highlighted the performance improvements of models such as ADA, GB, XGB, LGBM, and kNN as
the data became more balanced. These models showed increased predictive power and achieved higher
MCC scores as the class distribution became more even. The results further emphasized the effectiveness
of ADASYN sampling techniques in producing more reliable predictions compared to under-sampling
techniques. The findings of this study align with prior research on imbalanced classification tasks,
providing further evidence of the superiority of RF and DT models and the challenges faced by LR,
SGDC, and NB models. The results contribute to the existing body of knowledge on class imbalance and
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highlight the importance of selecting appropriate algorithms and employing data balancing techniques
for improved classification performance.

Overall, this study emphasizes the need for careful consideration of the choice of classification
models and the implementation of data balancing techniques when dealing with imbalanced datasets.
The results can inform practitioners and researchers in selecting the most suitable models for imbalanced
classification tasks and guide the development of more effective approaches to address class imbalance
challenges. This thorough investigation provides a deeper comparison of class imbalance’s pivotal
influence on predictive analytics. Through assessing ten diverse classification models using robust
evaluation metrics, such as ROC curve area, Mathews’ correlation coefficient (MCC) and F1-scores,
this study furnishes empirical insights into these models’ strengths and weaknesses within imbalanced
datasets. Guided by data-driven model assessments and balancing approaches, this research serves
as a valuable roadmap for practitioners and researchers grappling with imbalanced datasets. The
results provide explicit guidelines for model selection and tailored data balancing techniques, ultimately
enhancing classification performance in the face of class imbalance.

However, this study has certain limitations that should be acknowledged. First, the analysis was
conducted using a specific dataset with its own characteristics, and the results may not generalize to
other datasets or domains. Therefore, it is crucial to validate these findings on different datasets to
ensure their applicability in diverse contexts. In our case, we have simulated eighteen (18) different
samples. Second, the study focused solely on the performance of classification models and did not delve
into the underlying reasons for the observed differences in performance. Future research could explore
the specific factors contributing to the effectiveness or ineffectiveness of different models in handling
class imbalance. This could involve examining feature importance, model interpretability, or identifying
specific patterns in the data that affect model performance.
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A. Appendix A: Additional training and testing results summarised by Gini and recall measures.

This section provides more results that were obtained from training and testing of the machine
learning models as summarised by the Gini score (Table 6) and the recall measure (Table 7). The results
also conformed with the findings obtained using MCC, F1-score and the AUROC measures in Section
5.Once again, decision tree and random forest models outperformed the rest of the models across various
samples of varying class imbalance regardless of the sampling technique used.

Table 6. Training results by the gini score.

Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

U
nd

er
-s

am
pl

in
g

LR 0.0558 0.0744 0.0968 0.1288 0.1254 0.1744 0.1704 0.3076 0.3088

DT 0.6574 0.6506 0.6652 0.6552 0.6602 0.6448 0.6756 0.6414 0.6502
RF 0.6432 0.6698 0.7030 0.7088 0.7154 0.7136 0.7504 0.7276 0.7426
ADA 0.2408 0.3064 0.3574 0.4054 0.4254 0.4312 0.4764 0.4986 0.5022

GB 0.2682 0.34 0.3904 0.4276 0.465 0.4658 0.5056 0.534 0.5506

XGB 0.3344 0.3936 0.4452 0.5074 0.5248 0.5232 0.9414 0.5784 0.6126

LGBM 0.2856 0.357 0.4194 0.4734 0.4934 0.4976 0.5436 0.5498 0.5834

SGDC 0.0266 0.0646 0.0824 0.1386 0.1094 0.1796 0.1768 0.2898 0.3068

KNN 0.2746 0.323 0.3044 0.3594 0.3792 0.3592 0.352 0.3804 0.3748

NB 0.033 0.0208 0.0238 0.027 0.0428 0.034 0.0312 0.032 0.0244

A
D

A
SY

N
sa

m
pl

in
g

LR 0.0544 0.0726 0.0898 0.1318 0.1394 0.1998 0.2438 0.2514 0.2804

DT 0.7322 0.8368 0.8952 0.9164 0.9362 0.9476 0.9534 0.955 0.9578
RF 0.7348 0.8616 0.9156 0.9424 0.9592 0.9708 0.9726 0.9768 0.9800
ADA 0.2472 0.3202 0.3546 0.4036 0.4344 0.4518 0.4744 0.4914 0.5006

GB 0.2716 0.3554 0.3906 0.4438 0.4682 0.4862 0.5104 0.516 0.5338

XGB 0.3432 0.4298 0.4754 0.5178 0.5592 0.5778 0.5946 0.6026 0.6242

LGBM 0.2892 0.381 0.4212 0.4686 0.5016 0.5168 0.5392 0.5454 0.5626

SGDC 0 0.0126 0.0486 0.1168 0.1076 0.2414 0.2824 0.3076 0.311

KNN 0.3122 0.4454 0.5638 0.64 0.7172 0.7624 0.7968 0.8236 0.843

NB 0.0236 0.0226 0.0282 0.0302 0.0368 0.0406 0.0298 0.0316 0.0328
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Table 7. Training and testing results by recall.

Model Sample 1 sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

Tr
ai

ni
ng

U
nd

er
-s

am
pl

in
g

LR 0.0613 0.0899 0.1304 0.1838 0.2603 0.3653 0.4479 0.5493 0.6505

DT 0.9957 0.9987 0.9986 0.9995 0.9995 0.9999 0.9998 0.9999 0.9999

RF 0.996 0.9989 0.9988 0.9995 0.9995 0.9999 0.9998 0.9999 0.9999
ADA 0.2868 0.375 0.4438 0.5088 0.5526 0.6044 0.6424 0.6988 0.7434

GB 0.3034 0.4183 0.4909 0.5481 0.5944 0.6394 0.6873 0.753 0.7894

XGB 0.3999 0.507 0.5876 0.6403 0.6897 0.7322 0.7717 0.8142 0.8494

LGBM 0.3264 0.4557 0.5279 0.5774 0.6328 0.6759 0.7209 0.7672 0.807

SGDC 0.0152 0.0283 0.0897 0.1911 0.2922 0.372 0.4042 0.4393 0.5186

KNN 0.4448 0.7002 0.8518 0.9336 0.9749 0.9918 0.9974 0.9994 0.9998

NB 0.0271 0.0315 0.0369 0.0329 0.0343 0.0357 0.039 0.0453 0.0442

A
D

A
SY

N
sa

m
pl

in
g

LR 0.0629 0.0853 0.1348 0.1904 0.2653 0.3608 0.4547 0.5487 0.6561

DT 0.6707 0.8811 0.962 0.9832 0.9928 0.9982 0.9994 0.9997 0.9999

RF 0.6531 0.8801 0.9579 0.9827 0.9934 0.9986 0.9994 0.9997 0.9999
ADA 0.2875 0.3687 0.4433 0.51 0.5583 0.606 0.6475 0.6948 0.7485
GB 0.2985 0.4083 0.4919 0.5444 0.6002 0.6434 0.6937 0.7492 0.7916

XGB 0.3302 0.4595 0.5568 0.6171 0.6761 0.727 0.7669 0.8031 0.8471

LGBM 0.3036 0.4405 0.5194 0.571 0.6315 0.6758 0.7232 0.762 0.8102

SGDC 0.0154 0.0288 0.0927 0.1949 0.2994 0.3703 0.415 0.4372 0.5213

KNN 0.2811 0.5047 0.6958 0.8272 0.9172 0.9674 0.9876 0.9973 0.9993

NB 0.026 0.0297 0.0346 0.0329 0.0354 0.0377 0.038 0.045 0.0441

Te
st

in
g

U
nd

er
-s

am
pl

in
g

LR 0.0525 0.0699 0.0762 0.0841 0.0978 0.0949 0.0976 0.0996 0.101

DT 0.9972 0.9975 0.9969 0.9974 0.9979 0.9975 0.9976 0.9982 0.998
RF 0.9969 0.997 0.9971 0.9974 0.9979 0.9971 0.9974 0.9984 0.9978
ADA 0.2419 0.313 0.3514 0.372 0.3808 0.3857 0.3951 0.4001 0.4004

GB 0.2576 0.3428 0.3884 0.3998 0.4218 0.4247 0.4336 0.4461 0.4465

XGB 0.3569 0.4476 0.4768 0.5018 0.527 0.5282 0.5345 0.5475 0.5546

LGBM 0.2789 0.3677 0.4191 0.4469 0.4628 0.4716 0.4784 0.493 0.4911

SGDC 0.0149 0.0149 0.0014 0.023 0.0467 0.0507 0.0147 0.0491 0.0511

KNN 0.2569 0.317 0.3387 0.3542 0.363 0.3588 0.3682 0.3782 0.3666

NB 0.0278 0.0276 0.033 0.0336 0.0336 0.0356 0.0392 0.0339 0.0327

A
D

A
SY

N
sa

m
pl

in
g

LR 0.0474 0.072 0.0943 0.089 0.0979 0.1003 0.1022 0.1037 0.1026

DT 0.3115 0.3724 0.3939 0.4327 0.4347 0.4062 0.4187 0.4269 0.4422
RF 0.2448 0.3229 0.3687 0.4122 0.4101 0.4072 0.4152 0.4107 0.4328
ADA 0.2409 0.3106 0.3495 0.3847 0.38 0.3892 0.3885 0.3865 0.3981

GB 0.2423 0.3248 0.3756 0.4232 0.4091 0.417 0.4253 0.42 0.4373

XGB 0.2483 0.3263 0.3766 0.4072 0.4061 0.4082 0.4152 0.4181 0.4417

LGBM 0.2473 0.3283 0.3727 0.4292 0.4292 0.4286 0.4424 0.4368 0.4517

SGDC 0.0138 0.0137 0.002 0.0285 0.0492 0.0458 0.0111 0.0469 0.0501

KNN 0.151 0.2126 0.2379 0.2656 0.2485 0.2655 0.2386 0.2572 0.2395

NB 0.0242 0.0265 0.041 0.035 0.0382 0.0326 0.0302 0.0296 0.0263
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