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Abstract: The Cowles-Jones test for sign dependence is one of the earliest tests of the random walk
hypothesis, which stands at the beginning of modern empirical finance. The test is still discussed in
popular textbooks and used in research articles. However, the Cowles-Jones test statistic considered in
the literature requires that the upward probability of the market or asset under consideration be specified
under the null hypothesis, which is only very rarely possible. If the upward probability is estimated
in advance, the resulting test is undersized (even asymptotically). This note considers a corrected
Cowles-Jones test statistic which does not require the upward probability to be specified under the null.
It turns out that the asymptotic variance is greatly simplified as compared to the uncorrected test. The
corrected test is illustrated with an application to daily returns of the Dow Jones Industrial Average
index and monthly returns of the MSCI Emerging Markets index. It is shown that the corrected and
uncorrected tests can lead to opposite conclusions.
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1. Introduction

The random walk hypothesis (RWH) states that it is not possible to construct nontrivial forecasts of
an asset price based on only the asset’s price history, and the desire to shed light on its validity played a
major role in the development of modern empirical finance (Lo, 2000). Cowles and Jones (1937) were
among the first to devise a statistical test for this purpose. This test became widely known through its
discussion and development in the popular textbook by Campbell et al. (1997) and is still frequently
used and cited, with about 250 citations in Google Scholar in the last decade.1

1Retrieved 28/05/2023.
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The Cowles–Jones (CJ) test is a test for the predictability of the sign of the return or price change,
i.e. for whether the conditional probability of the market rising or declining nontrivially depends on the
past return, or, more precisely, sign history. Absence of sign predictability means that the conditional
probability of an upward movement of the market is always equal to the unconditional probability,
but it does not imply any particular value of this probability. However, the CJ test described in the
literature requires that the upward market probability is specified under the null hypothesis, which poses
a problem for the applications. To overcome this problem, it is often suggested to estimate the upward
market probability in advance via the relative sample frequency of positive returns, but the effect of this
procedure on the distribution of the test statistic is not taken into account (e.g. Fiorenzani et al., 2012,
Ch. 1.3.2; Linton, 2019, Ch. 4.1.1; Tsinaslanidis and Guijarro, 2023).2 Therefore, a version of the test
that corrects for the use of an estimated upward probability of the market may be desirable, and the
current paper develops such a test statistic. It turns out that the uncorrected test is undersized, but only
moderately so if the upward probability is close to 0.5, which is often the case for daily stock returns.
The difference between the corrected and uncorrected tests is more significant in applications to returns
at lower frequencies, such as monthly, quarterly, or yearly. This is illustrated below in Section 3.2.

As set out in the previous paragraph, the aim of this paper is to derive a Cowles-Jones test statistic
which takes into account the typical practical situation where the upward probability is not specified
under the null hypothesis of no predictability. We will not go into the details of the discussion about
the advantages and disadvantages of the various tests of the RWH. Rather, in the current paragraph,
we only briefly mention some important aspects and provide references to the literature for further
details. A comprehensive analysis of the relation between sign predictability and conditional mean and
variance dynamics is provided by Christoffersen and Diebold (2006). An important result is that, in the
presence of conditional heteroskedasticity, it is possible to have sign predictability without conditional
mean predictability. Linton (2019, Ch. 4) compares sign predictability tests with tests based on the
sample autocorrelation function, such as the variance ratio test of Lo and MacKinlay (1988); see also
Charles and Darné (2009). An advantage of the sign–based tests is that they are robust to the fat
tails which characterize financial markets. For example, under conditional heteroskedasticity, standard
distributional results for the sample autocorrelation function require the finiteness of the fourth moments
(Mikosch and Stărică, 2000), which may be a questionable assumption for many financial return series
(for some evidence and a review of the literature, see Haas and Pigorsch, 2009). For an overview of
different tests of the RWH, see Chs. 5 and 6 of Taylor (2005) and Chs. 3 and 4 of Linton (2019). To
exploit sign predictability for actual forecasting, a variety of approaches have been developed. A recent
contribution, with a review of the literature, is Xie et al. (2023). Finally, recall that the RWH focuses
only on predictability by means of the assets’ own price history and thus does not exclude predictability
from other factors, see e.g. Li et al. (2023) for discussion.

The remainder of this article is organized as follows. The corrected CJ test statistic is developed in
Section 2. Section 3 presents two applications of the modified test, namely to the daily returns of the
Dow Jones Industrial Average index from 1928 to 2022 and the monthly returns of the MSCI Emerging
Markets index from 1988 to 2022. Section 4 provides a short summary of the results.

2Actually, Fiorenzani et al. (2012) fit a normal distribution to the returns and derive the upward probability from this estimated
Gaussian. This will typically result in a different numerical value of the estimate without affecting the above reasoning.
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2. The Cowles–Jones test with unspecified upward probability

Suppose that (rt) is a stationary time series of returns, and define a corresponding sequence of
indicators by

It =

1 if rt > 0
0 if rt ≤ 0.

(1)

Under the null hypothesis of no sign predictability, (It) is a sequence of independent and identically
distributed (iid) Bernoulli random variables, i.e.

H0 : It
iid
∼ Bernoulli . (2)

Note that the success probability of the Bernoulli distribution, i.e. the probability of a positive return, is
not specified under H0 in (2). Let this probability be denoted by

π := Pr(rt > 0) = Pr(It = 1), 0 < π < 1. (3)

The Cowles–Jones (CJ) test of (2) is based on the notion of sequences and reversals, where a sequence
is a pair of consecutive returns of the same sign, whereas a reversal is a pair of consecutive returns of
opposite sign.

Suppose we observe a stretch of T + 1 returns rt, t = 0, 1, . . . ,T . The number of sequences in the
sample is

NS =

T∑
t=1

Yt,

where
Yt = It−1It + (1 − It−1)(1 − It), t = 1, . . . ,T,

and the number of reversals, NR = T − NS . The CJ ratio is the ratio of sequences to reversals, NS /NR,
and the test is carried out by assessing whether this ratio is significantly different from the number we
would expect under (2). For the purpose of testing, it is convenient to write the ratio as

ĈJ =
NS

NR
=

NS

T − NS
=
π̂S

1 − π̂S
, (4)

where

π̂S =
NS

T
=

1
T

T∑
t=1

Yt (5)

is a consistent estimator of the unconditional probability of a sequence, πS , i.e.

πS := Pr(Yt = 1),

and (4) is a consistent estimator of the population CJ ratio

CJ =
πS

1 − πS
. (6)
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The asymptotic distribution of (4) under the null hypothesis has been calculated by Campbell et al.
(1997) and is given by

√
T (ĈJ − CJ0)

d
→ N(0, σ2

1), (7)

where CJ0 is the population value of the CJ ratio under the null, i.e.

CJ0 =
πS ,0

1 − πS ,0
=
π2 + (1 − π)2

2π(1 − π)
, (8)

where πS ,0 = π
2 + (1 − π)2 is the probability of a sequence under the null, and

σ2
1 =
πS ,0(1 − πS ,0) + 2(π3 + (1 − π)3 − π2

S ,0)

(1 − πS ,0)4 . (9)

Result (7) provides the basis for a test of the hypothesis

H′0 : It
iid
∼ Bernoulli(π). (10)

Note that, in contrast to (2), the upward probability π is specified under H′0 in (10). However, this is a
rather uncommon situation and usually we want to test the less restrictive null hypothesis (2).3 We now
develop this case, where a suitable test statistic is of the general form considered in Hausman (1978), i.e.

q =
√

T (ĈJ − ĈJ0), (11)

where ĈJ0 is the CJ ratio estimated under H0 in (2), i.e.

ĈJ0 =
π̂S ,0

1 − π̂S ,0
=
π̂2 + (1 − π̂)2

2̂π(1 − π̂)
, (12)

where

π̂ =
1
T

T∑
t=1

It. (13)

To find the limiting distribution of (11), note that, under H0, (It) is an iid sequence, and (Yt) is a
1–dependent process.4 Thus, we can invoke the multivariate central limit theorem for strictly stationary
processes with finite dependence (cf. Theorem 7.7.6 in Anderson, 1971) to conclude that

√
T

(
π̂ − π

π̂S − πS

)
d
→ N (0,Ω) , (14)

3Actually, Cowles and Jones (1937) argued that non-predictability entails π = 0.5. From a modern perspective, however, this is a
rather strong and undesirable constraint, as stock markets should be expected to have a higher probability of rises than declines in order to
compensate investors for risk.

4Under the null hypothesis, (Yt) has a first–order moving average (MA) representation with MA parameter

θ =
πS −

√
π2

S − (2πS − 1)2

2πS − 1
.
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where

Ω =

(
ω11 ω12

ω12 ω22

)
,

with

ω11 = π(1 − π) (15)
ω22 = πS ,0(1 − πS ,0) + 2(π3 + (1 − π)3 − π2

S ,0) (cf. (9))
ω12 = Cov(It,Yt) + Cov(It,Yt+1) (16)

= 2π(π − πS ,0),

where the covariance in (16) follows from Equation (31) on p. 429 in Anderson (1971), and
Cov(It+1,Yt) = 0.

From (14), the limiting distribution of (11) is normal with a variance that can be determined by
means of the delta method. To keep the calculations as simple as possible, note that, under H0, ĈJ0 is an
asymptotically efficient estimator of CJ, with asymptotic variance σ2

0 given by the Cramér–Rao lower
bound, i.e.

σ2
0 = π(1 − π)

(
d CJ0

dπ

)2

= π(1 − π)
(

2π − 1
2π2(1 − π)2

)2

=
2(2πS ,0 − 1)
(1 − πS ,0)3 . (17)

Thus, from Lemma 2.1 of Hausman (1978), the asymptotic variance of (11) is simply5

ν = σ2
1 − σ

2
0 =

1
(1 − πS ,0)2 =

1
4π2(1 − π)2 , (21)

where σ2
1 is given in (9).6

Quantities σ2
0, σ2

1 and ν can be consistently estimated by inserting π̂ in (13) for π in (17), (9) and (21)
respectively and a standard application of Slutzky’s theorem shows that the corrected CJ test statistic is

tCJ = 2
√

T π̂(1 − π̂)(ĈJ − ĈJ0)
d
→ N(0, 1), (22)

5For the case of a scalar parameter, as in our application, the result in Lemma 2.1 of Hausman (1978) was already given by Fisher
(1925). Fisher’s (1925) argument is essentially as follows. Consider two asymptotically normal estimators θ̂1 and θ̂2 of a parameter θ, with

asymptotic variances ν11 and ν22, respectively, i.e.
√

T (̂θ1 − θ)
d
→ N(0, ν11), and

√
T (̂θ2 − θ)

d
→ N(0, ν22). The linear combination

θ̂3 = x̂θ1 + (1 − x)̂θ2, x ∈ R, (18)

is likewise asymptotically normal, with asymptotic variance

x2ν11 + (1 − x)2ν22 + 2x(1 − x)ν12 = x2(ν11 + ν22 − 2ν12) − 2x(ν22 − ν12) + ν22, (19)

where ν12 is the asymptotic covariance between θ̂1 and θ̂2. The quadratic (19) attains its minimum when

x =
ν22 − ν12

ν11 + ν22 − 2ν12
. (20)

Now assume that θ̂2 is asymptotically efficient, so that (19) attains its minimum when x = 0 (because the variance of θ̂3 cannot be
made smaller than that of θ̂2). From (20) we can observe that this implies ν12 = ν22. Thus, the asymptotic variance of θ̂1 − θ̂2 is
ν11 + ν22 − 2ν12 = ν11 − ν22.

6See the appendix for a sketch of the (straightforward) calculations leading to the expression on the right–hand side of (21).
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with the limiting distribution being valid under (2).
The uncorrected CJ test used in the literature is carried out by considering the test statistic

√
T (ĈJ −

ĈJ0)/σ̂1, where σ̂1 is obtained by replacing π with π̂ in (9). Since σ2
1 > ν when π , 0.5, the uncorrected

test is undersized. For π = 0.5, CJ0 attains its minimum, and in this case ĈJ0 converges at rate T rather
than

√
T , so that the need to estimate π under the null has no effect on the limiting distribution of (22)

(cf. Lehmann and Casella, 1998).
The variances (9) and (21), as functions of π, are shown in Figure 1. As they are close to each other

as long as π is close to 0.5, the uncorrected test will be only moderately undersized for daily returns,
where positive and negative returns typically occur with roughly equal frequency. The differences
between the corrected and the uncorrected test will be more significant when applied to returns at lower
frequencies, such as monthly, quarterly or yearly. An illustration of this feature is given in the next section.
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Figure 1. Shown are the asymptotic variances of the Cowles-Jones test statistic both for the
case where π is specified (dashed line) as well as the case where π is unspecified under the
null (solid line).

3. Examples

In this section, we illustrate the modified CJ test statistic (22) with two empirical examples. Section
3.1 examines the daily returns of the Dow Jones Industrial Average (DJIA) index from October 1928 to
September 2022. The DJIA has been widely used in studies of stock market predictability and the results
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in Section 3.1 largely confirm the findings in the literature, namely that the predictability of earlier
decades appears to have disappeared since the 80s, most likely because markets have become more
efficient. The second example deals with the monthly returns of the MSCI Emerging Markets index
from January 1988 to October 2023. For monthly returns, the unconditional upward probability deviates
significantly from 0.5, which has a nonnegligible effect on the undersizedness of the uncorrected test (cf.
the discussion at the end of Section 2). In fact, for the first half of the sample, we find below in Section
3.2 that the uncorrected test incorrectly7 fails to reject the null hypothesis at the 5% level.

3.1. Application to the Dow Jones index

Considering Cowles and Jones (1937) and the availability of a long price history, the Dow Jones
Industrial Average (DJIA) index has often been used to test the predictability of stock market returns
and the profitability of trading rules, such as, in the influential paper by Brock et al. (1992).

Even though Charles Henry Dow (1851–1902) had published a stock market index since 1894, the
publication of the DJIA with 30 stocks commenced on October 1, 1928 and we select this as the starting
point of the series of daily data that we use in this section, with the endpoint being given by September
30, 2022.8 The level and the percentage log returns of the index over the sample period are shown in the
upper and lower panel of Figure 2, respectively.

7Here, “incorrectly” means that the test decision is caused by the use of an inappropriate asymptotic variance, leading to an undersized test.
8Information about the index, as well as the data, are obtained from Williamson (2023).
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Figure 2. Daily index level (log scale) and percentage log return time series of the Dow Jones
Industrial Average (DJIA) index. With the index level at time t denoted by S t, the percentage
log return is defined as rt = 100 × log(S t/S t−1).

Results are reported in Table 1 for nine subperiods as well as for the entire sample period (bottom
row), with the value of the test statistic (22) being given in the last column of the table. Over the entire
sample period from October 1928 to September 2022, the test rejects the null hypothesis (2), which
appears to be mainly due to the presence of sign predictability over roughly the first half of the sample.
Evidence for predictability of the daily DJIA returns is much weaker for the more recent decades. These
results are broadly in agreement with those in the literature examining predictability in long time series
of daily DJIA returns. For example, Brock et al. (1992) investigate the daily returns of the DJIA from
1897 to 1986 and find strong evidence for the predictive power of technical trading rules. Sullivan et al.
(1999) reconsider the results of Brock et al. (1999) and find that the predictive content of these rules has
disappeared in the decade following the sample used in Brock et al. (1992). As one possible explanation
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for this phenomenon, Sullivan et al. (1999, p. 1684) suggest that “[...] it is possible that, historically,
the best technical trading rule did indeed produce superior performance, but that, more recently, the
markets have become more efficient and hence such opportunities have disappeared. This conclusion
certainly seems to match up well with the cheaper computing power, the lower transaction costs and
increased liquidity in the stock market that may have helped to remove possible short-term patterns
in stock returns.” More recent results based on variance ratio tests pointing in the same direction are
reported in Linton (2019, Ch. 3.6), who provides a similar interpretation and further references.

Table 1. Cowles–Jones test results for the daily DJIA returns∗.

π̂ π̂S ,0 π̂S ĈJ0 ĈJ tCJ

Oct. 1928 - Sep. 1938 0.51 0.50 0.50 1.00 0.98 −0.55
Oct. 1938 - Sep. 1948 0.53 0.50 0.54 1.01 1.18 4.67
Oct. 1948 - Sep. 1958 0.55 0.50 0.56 1.02 1.30 7.08
Oct. 1958 - Sep. 1968 0.53 0.50 0.57 1.01 1.33 8.01
Oct. 1968 - Sep. 1978 0.49 0.50 0.57 1.00 1.31 7.80
Oct. 1978 - Sep. 1988 0.52 0.50 0.50 1.00 0.99 −0.32
Oct. 1988 - Sep. 1998 0.54 0.50 0.50 1.01 1.00 −0.24
Oct. 1998 - Sep. 2008 0.52 0.50 0.47 1.00 0.88 −3.04
Oct. 2008 - Sep. 2022 0.54 0.50 0.49 1.01 0.97 −1.41
Oct. 1928 - Sep. 2022 0.52 0.50 0.52 1.00 1.09 6.37

∗Shown are results of the Cowles–Jones (CJ) test applied to the daily DJIA returns for nine subperiods spanning the time from October 1928
to September 2022, as well as for the entire sample period (bottom row). Quantity tCJ reported in the last column is the test statistic defined
in (22), which has a limiting standard normal distribution under the null hypothesis (2).

3.2. Application to the MSCI Emerging Markets index

The second example we consider is for the monthly returns of the MSCI Emerging Markets (EM)
index (denoted in US$) from January 1988 (the first available observation) to October 2022.9 The level
and the percentage log returns are shown in the upper and lower panel of Figure 3, respectively. The
sample consists of 418 returns and we consider results for the entire sample period as well as for an
equal split into two subperiods of 209 observations each.

9The data have been extracted from the Refinitiv Eikon database.
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Figure 3. Monthly index level (log scale) and percentage log return time series of the MSCI
Emerging Markets (MSCI EM) index. With the index level at time t denoted by S t, the
percentage log return is defined as rt = 100 × log(S t/S t−1).

Results are reported in Table 2. In addition to the quantities reported in Table 1 for the DJIA, the
last column of Table 2 also reports the value of the uncorrected (uc) Cowles–Jones test statistic, i.e.
tuc
CJ =

√
T (ĈJ − ĈJ0)/σ̂1, where σ̂1 is as in (9) but with π replaced by π̂ in (13), see the discussion at the

end of Section 2. From the analysis at the end of Section 2, this test is undersized. In particular, for the
first subsample, the corrected test rejects the absence of sign predictability at the 5% significance level,
whereas the uncorrected test fails to do so. This illustrates that, when the relative frequency of positive
returns is not very close to 0.5, using the corrected version of the test may indeed lead to a revision of
the test decision from the uncorrected test.
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Table 2. Cowles–Jones test results for monthly MSCI Emerging Markets returns∗.

π̂ π̂S ,0 π̂S ĈJ0 ĈJ tCJ
(p–value)

tuc
CJ

(p–value)

Jan. 1988 - May 2005 0.64 0.54 0.60 1.16 1.48 2.11
(0.035)

1.84
(0.066)

June 2005 - Oct. 2022 0.56 0.51 0.53 1.03 1.14 0.82
(0.411)

0.80
(0.425)

Jan. 1988 - Oct. 2022 0.60 0.52 0.57 1.08 1.30 2.20
(0.028)

2.04
(0.041)

∗Shown are results of the Cowles–Jones (CJ) test applied to the monthly MSCI Emerging Markets (EM) returns for two subperiods spanning
the time from January 1988 to October 2022, as well as for the entire sample period (bottom row). Quantity tCJ reported in the penultimate
column is the test statistic defined in (22), and quantity tuc

CJ reported in the last column is the uncorrected Cowles-Jones test statistic, i.e.
tuc
CJ =

√
T (ĈJ − ĈJ0)/σ̂1, where σ̂1 is (9) with π replaced by π̂ in (13). Note that, for purpose of illustration, the p–value of the uncorrected

test has likewise been calculated under the (actually unwarranted) assumption that it has a limiting standard normal distribution under the
null, i.e. p-value = 2(1 − Φ(|tuc

CJ|)), where Φ is the cdf of the standard normal distribution.

4. Conclusions

The Cowles–Jones test for sign dependence is a classical test of the random walk hypothesis for
financial markets. The Cowles-Jones test currently discussed in the literature is not suitable for the
practically most relevant situation with an unspecified upward probability under the null hypothesis.
This article provides a corrected Cowles-Jones test statistic that can be used in this case. Somewhat
surprisingly, the resulting test statistic turns out to be simpler than the uncorrected version. The empirical
example in Section 3.2 shows that the corrected and uncorrected versions of the test can indeed lead to
opposite test decisions.

Appendix

We can express σ2
1 in (9) as

σ2
1 =

πS ,0(1 − πS ,0) + 2(π3 + (1 − π)3 − π2
S ,0)

(1 − πS ,0)4

=
πS ,0(1 − πS ,0) + 2(π3(1 − π) + (1 − π)3π − 2π2(1 − π)2)

(1 − πS ,0)4

=
πS ,0(1 − πS ,0) + 2π(1 − π)(π2 + (1 − π)2 − 2π(1 − π))

(1 − πS ,0)4

=
πS ,0(1 − πS ,0) + (1 − πS ,0)(2πS ,0 − 1)

(1 − πS ,0)4

=
3πS ,0 − 1

(1 − πS ,0)3 .

Subtracting (17), we get the expression after the second equality sign in (21).
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