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Abstract: This study is a review of literature on machine learning to examine the potential of deep 

learning (DL) techniques in improving the accuracy of option pricing models versus the Black-

Scholes model and capturingcomplex features in financial data.  

Neural networks and other machine learning models have been proposed for option pricing and 

have improved accuracy compared withtraditional models. However, such use of machine learning 

also presents practical challenges such as data availability and quality, computational resources, 

model selection and validation, interpretability and overfitting. This study discusses several of these 

challenges and highlights the need for careful evaluation and validation of machine learning models 

in London option pricing during the Coronavirus disease 2019 pandemic. Moreover, to investigate 

the quality of the models used, we compare the performances of these algorithms in option pricing 

through the application of significance statistical tests. 
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1. Introduction   

Option pricing using deep learning (DL) is a relatively new and promising area of research that 

seeks to use artificial neural networks (ANN) to better model the complex dynamics of financial 

markets and price financial derivatives such as options. As a type of machine learning, DL uses 

neural networks with multiple layers to learn complex relationships between inputs and outputs. 

Traditional methods of option pricing such as the Black-Scholes model (BSM), rely on a few 

assumptions about the underlying asset and market dynamics such as constant volatility and log-

normal returns. These assumptions may not hold true in real-world markets, leading to inaccurate 

pricing and risk management (Huang, 2014). 

By comparison, DL approaches have the potential to capture complex, nonlinear relationships 

between market variables that can affect option prices. By training a neural network on historical 

market data, the network can learn to generalise for new market conditions and thereby make more 

accurate predictions. 

One approach to option pricing using DL is to train a neural network to predict the future price 

of an underlying asset and then use this prediction to price the option. Another approach is to directly 

train the neural network to predict the option price, given a set of market variables such as the 

current asset price, volatility and time to expiration (Li, 2023). 

However, using DL for option pricing presents several challenges including the need for large 

amounts of training data, potential for over fitting to noisy data and the difficulty of interpreting the 

neural network internal representations. Researchers continue to explore and refine DL approaches to 

option pricing and remain active in the area of quantitative finance. 

DL is an advanced technique of machine learning based on ANN algorithms. As a promising 

branch of artificial intelligence, DL has attracted considerable attention in recent years. Compared 

with conventional machine learning techniques such as support vector machine (SVM) and k-nearest 

neighbours (kNN), DL possesses the advantages of unsupervised feature learning, a strong capability 

of generalisation and robust training power for big data (Flórido, 2022) 

At present, modern advancements in mathematical analysis, computational hardware and 

software and availability of big data have allowed for the possibility of commoditised machines that 

can learn to operate as investment managers, financial analysts and traders. We briefly survey how 

and why artificial intelligence and DL can influence the field of finance in general. Revisiting 

original work from the 1990s, we summarise a framework within which machine learning may be 

used for this field, with specific application to option pricing. We train a fully-connected feed-

forward DL neural network to reproduce the Black and Scholes (1973) option pricing formula to a 

high degree of accuracy. We also offer a brief introduction to neural networks and details on the 

various choices of hyper-parameters that increase the model accuracy. This exercise suggests that DL 

nets may be used to learn option pricing models from the markets and can be trained to mimic option 

pricing traders who specialise in a single stock or index (Chang, 2022). 

One hypothesis for using DL in option pricing is that its models can better capture the complex 

nonlinear relationships of the underlying asset’s risk and uncertainty with the option price. 

Traditional option pricing models such as the BSM, assume that the underlying asset price follows a 

log-normal distribution and has constant volatility over time. However, in reality, the underlying 
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asset price is influenced by a complex set of factors including market sentiment, news events and 

macroeconomic conditions that can lead to its non-normal distribution and time-varying volatility. 

DL models, which are capable of learning complex relationships between input and output 

variables, have shown promise in capturing these complex dynamics and improving the accuracy of 

option pricing. DL models can also incorporate a wider range of input variables including 

unstructured data such as news articles and social media sentiment, which can provide additional 

insights into the underlying asset’s risk and uncertainty. 

Another hypothesis for using DL models in option pricing is their better adaptability to 

changing market conditions and capability to handle extreme events, such as market crashes or 

unexpected news events, than traditional option pricing models. DL models can be trained on large 

amounts of historical data including those from extreme market events, which can help better capture 

the tail risk associated with options. 

Overall, the hypothesis is that DL models can provide more accurate and robust option pricing 

predictions by capturing the complex and dynamic relationships between the underlying asset's risk 

and uncertainty and the option price and by being more adaptive to changing market conditions and 

handling extreme events. However, DL models require large amounts of high-quality data, rigorous 

validation and careful interpretation. In addition, their performance may depend on the specific 

problem and data characteristics. 

2. Background of the study 

Options occupy a certain position in the derivatives market. Researchers, speculators and other 

traders all hope to obtain a reasonable price for each option. Yet we can only obtain accurate 

solutions to the price of limited options, most of which must be defined numerically. The classical 

method has poor processing skills and slow calculation of large data sets and high-dimensional data. 

With the development of artificial intelligence in recent years, such as machine learning methods, 

optimisation of target values has gradually become easier. Thus, several scholars, investors and 

traders began to apply artificial intelligence to different kinds of option pricing. This study is a 

review of the use of different methods in the pricing of different options in the past years, including a 

comparison of their pros and cons, accuracy and robustness (Li, 2022). To better understand these 

methods, we present recent research and count the number of articles that use various DL models in 

exchange rate forecasting, as shown in Table 1. 

Nowadays, machine learning methods such as neural networks in financial market shave 

become a hot topic. Amongst these methods, derivatives pricing plays an important role in both 

academia and actual transactions. DL algorithms that keep pace with the times also have good model 

generalisation capabilities and their prediction accuracy has surpassed that of traditional financial 

models (Li, 2022). 
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Table1. Reviewed previous studies. 

Author(s)/Year Country Methodology Main findings 

Robert Culkin, Sanjiv R. Das (2017) USA BSM, ANN Best accuracy of ANN 

Andrey Itkin (2019) USA BSM, ANN Best accuracy of ANN 

Camilo Blanco Vargas (2019) UK BS, MC, ANN, GPU Best accuracy of ANN 

Salvador et al. (2020) USA BSM, ANN Best accuracy of ANN 

Ivascu (2020) USA BSM, SVM, LSTM, 

GBM, ANN, GA 

Best accuracy of LSTM 

Gabriel Adams (2020) USA BSM, MLP, LSTM Best accuracy of MLP and LSTM 

Alexander Ke, Andrew Yang (2021) USA BSM, MLP, LSTM Best accuracy of MLP and LSTM 

Codruț-Florin Ivașcu (2021) Romania BSM, ANN, SVR, 

LGBM, GA 

Best accuracy of NN and SVR 

Wenda Li (2021) Taiwan BSM, ANN Best accuracy of ANN 

Edward Chang (2022) Canada BSM, CNN-LSTM, ANN CNN-LSTM yields better results 

Diogo Pinto Flórido (2022) Spain BSM, MLP, LSTM Best accuracy of MLP and LSTM 

Yan Liu, Xiong Zhang (2023) China BSM, SVM, 

LSTM, RNN 

Best accuracy of LSTM 

Li, Yan (2023) China BSM, MC, 

MLP 

Best accuracy of MLP 

Source: Authors’ analysis from literature review (2023) 

Based on previous studies, we conclude that the LSTM model, derived from recurrent neural 

network (RNN), is one of the best methods to learn financial time series data. We re-examine the 

original model and make corrections on this basis, and obtain a learning model that is also applicable 

to financial data. For American options, an additional question is how to find the optimal stopping 

time and provide a reasonable explanation, given that the optimal exercise time cannot be learned 

directly from market information. 

Overall, these studies suggest that DL models have the potential to significantly improve option 

pricing accuracy and profitability, particularly when used in combination with large amounts of high-

quality data and careful validation and interpretation. However, we must note that DL models are still 

relatively new approaches to option pricing and their performance may depend on the specific 

problem and data characteristics. 

However, in comparing the performance of DL in options pricing, this study is characterised 

using gated recurrent unit (GRU) model as a new contribution in the field of computational finance. 

3. Materials and methods  

3.1. Black-Scholes model (BSM) 

In the spring of 1973, Fisher Black and Myron Scholes published an academic paper based on 

empirical evidence to price options on given assets and suggested that the value of an option is 

derived from a few variables: the price of the underlying asset, strike price and maturity of the option, 

volatility of the asset and the risk-free interest rate. 
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3.1.1. Assumptions of the black–scholes–merton model 

To use the BS formula, Black (1973) assumed ideal conditions for stocks: 

• Lognormal distribution: The Black–Scholes–Merton model assumes that stock prices 

follow a lognormal distribution based on the principle that asset prices cannot take a 

negative value. that is, they are bounded by zero. 

• No dividends: The model assumes that the stocks do not pay dividends or returns. 

• Expiration date: The model assumes that the options can only be exercised on its expiration 

or maturity date and thus cannot accurately price American options. Rather, the modelis 

extensively used in the European options market. 

• Random walk: The stock market is highly volatile and a state of random walk is assumed as 

the market direction can never truly be predicted. 

• Frictionless market: No transaction costs, including commission and brokerage, is assumed 

in the model. 

• Risk-free interest rate: The interest rates are assumed to be constant and thus the 

underlying asset is considered risk-free. 

• Normal distribution: Stock returns are normally distributed, implying that the volatility of 

the market is constant over time. 

• No arbitrage: Without arbitrage, the opportunity of making a riskless profit is avoided. 

3.1.2. Black–Scholes–Merton equation 

The Black–Scholes–Merton model can be described as a second order partial differential equation.  

∂V

∂t
+

1

2
σ2S2

∂2V

∂S2
+ rS

∂2V

∂S
− rV = 0 

A key financial insight behind the equation is that one can perfectly hedge the option by buying 

and selling the underlying asset and the bank account asset (cash) to eliminate risk. This hedge, in 

turn, implies that the option has only one right price, as returned by the Black–Scholes formula (see 

the next section). 

3.1.3. Black–Scholes formula 

The Black–Scholes formula calculates the price of Europeanput and call options. This price is 

consistent with the Black–Scholes equation, given that the formula can be obtained by solving for the 

corresponding terminal and boundary conditions(Chriss and Kawaller, 1997): 

C(0, t) = 0 for all t 

C(S, t) = S − K  as S → ∞    

C(S, T) = max {S − K, 0} 

The value of a call option for a non-dividend-paying underlying stock in terms of the Black–Scholes 

parameters is 

https://corporatefinanceinstitute.com/resources/knowledge/trading-investing/what-is-the-random-walk-theory/
https://en.wikipedia.org/wiki/Hedge_(finance)
https://en.wikipedia.org/wiki/Underlying
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#Black–Scholes_formula
https://en.wikipedia.org/wiki/European_option
https://en.wikipedia.org/wiki/Put_option
https://en.wikipedia.org/wiki/Call_option
https://en.wikipedia.org/wiki/Consistency
https://en.wikipedia.org/wiki/Equation_solving#Differential_equations
https://en.wikipedia.org/wiki/Boundary_Conditions
https://www.amazon.com/Neil-A-Chriss/e/B000APJ6BE/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Ira+Kawaller&text=Ira+Kawaller&sort=relevancerank&search-alias=books
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𝐶(𝑆𝑡 , 𝑡) = 𝑁(𝑑1)𝑆𝑡 − 𝑁(𝑑2)𝐾𝑒−𝑟(𝑇−𝑡)                                         (1) 

𝑑1 =
1

𝜎√𝑇−𝑡
[ln (

𝑆𝑡

𝐾
) + (𝑟 +

𝜎2

2
) (𝑇 − 𝑡)]                                         (2) 

𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡 

The price of a corresponding put option based on put–call parity with discount factoris [Figure 1] 

 

 

 

 

 

 

 

 

 

Figure 1. European call valued using the Black–Scholes pricing equation. 

𝑃(𝑆𝑡 , 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆𝑡 + 𝐶(𝑆𝑡 , 𝑡).                                             (3) 

     =  𝑁(−𝑑2)𝐾𝑒−𝑟(𝑇−𝑡) − 𝑁(𝑑1)𝑆𝑡 

Where N – Cumulative distribution function of the standard normal distribution; mean = 0 and 

standard deviation = 1 

T-t – Time to maturity (in years) 

St – Spot price of the underlying asset 

K – Strike price 

r – Risk-free rate 

σ – Volatility of returns of the underlying asset 

3.1.4. Limitations of the Black–Scholes–Merton model 

Limited to the European market: As mentioned earlier, the Black–Scholes–Merton model is 

an accurate determinant of European option prices, but does not accurately value stock options in the 

United States. The assumption is that options can only be exercised on its expiration/maturity date. 

Risk-free interest rates: The BSM assumes constant interest rates, which hardly ever occurs in reality. 

Assumption of a frictionless market: Trading generally comes with transaction costs such as 

brokerage fees and commission. However, the Black–Scholes–Merton model assumes a frictionless 

market, which implies no transaction costs that hardly ever occurs in the actual trading market. 

No returns: The BSM assumes that no returns are associated with the stock options, no 

dividends and no interest earnings. However, these are similarly rare in the actual trading market. 

The buying and selling of options are primarily focused on the returns.1 

 

1. https://corporatefinanceinstitute.com/resources/derivatives/black-scholes-merton-model/December(2022) 

https://en.wikipedia.org/wiki/Put%E2%80%93call_parity
https://en.wikipedia.org/wiki/Discount_factor
https://www.eurexchange.com/exchange-en/products/equ/opt
https://corporatefinanceinstitute.com/resources/careers/compensation/commission/
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3.2. Deep learning (DL) models 

This section is devoted to the brief description of the basic principle of four Non-linear machine 

learning models or DL models that are used later for exchange rate time-series forecasting, namely 

RNN, LSTM and gated recurrent unit (GRU). 

3.2.1. Recurrent neural networks (RNN) 

RNNs differe from traditional neural networks by introducing a transition weight to send 

information over time. This transition weight means that the next state is dependent on the previous 

one, indicating that the model now has memory. In RNNs, the hidden layers act as an internal storage 

of the information captured in the earlier stages. The term recurrent is derived from the fact that the 

model performs the same task to every element of the sequence using the previously obtained in 

formation to predict future values. RNN is represented in (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 2. Recurrent neural network with p time steps. 

Two powerful RNN models are efficient for time dependent in time-series data, namely, LSTM 

and GRU. These deep learning models have shown considerable success in modelling and 

forecasting compared with the classical time series models and traditional networks, demonstrating 

good results in many application domains with time series. 

3.2.2. Long short-term memory (LSTM) model 

LSTM is a sophisticated gated memory unit designed to mitigate the vanishing gradient 

problems limiting the efficiency of a simple RNN (Zeroual et al., 2020).  

Figure 3 shows a complete diagram of LSTM, similar to Figure 3 with RNN. The LSTM has 

four components: input gates, forget gate, cell state and output gate. 
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Figure 3. LSTM structure. 

The LSTM model is defined as follows. Let xt, ht and Ct be the input, control state and cell state 

at timestep t. Given a sequence of inputs (x1, x2,..., xm), the LSTM computes the h-sequence (h1 , h2,..., 

hm) and the C-sequence (C1 , C2,..., Cm) as follows: 

Input Gate: the goal is to take in new information xt by using two functions: rt and dt. The rt 

concatenates the previous hidden vector ht-1 with the new information xt. that is, [ht-1, xt] then 

multiplies it with the weight matrix Wr, plus a noise vector br. The dt has a similar function. Then, rt 

and dt are multiplied element-wise to obtain the cell state ct: 

rt = σ(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓 

dt = tanh(𝑊𝑑. [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑑 

Forget Gate: Looking very similar to rt in the input gate, the forget gate ft controls the limit up 

to which a value is retailed in memory: 

ft = σ(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖 

Cell State: An element-wise multiplication is calculated between the previous cell state Ct-1 and 

forget gate ft. Then, the cell state adds the results from the input gate rt times dt: 

𝐶t = ft. 𝐶𝑡−1 + 𝑟𝑡 . 𝑑𝑡 

Output gate: Here, ot is the output gate at time step t and Wo and bo are the weights and bias for 

the output gate. The hidden layer ht either moves to the next time step or up to output as yt, yt is 

obtained by applying another tanh to ht. Note that the output gate ot is not the output yt, but rather 

simply is the gate to control the output:  

𝑜t = σ(𝑊0. [ℎ𝑡−1, 𝑥𝑡]) + 𝑏0 

ℎt = 𝑜t tanh 𝐶t 

3.2.3. Gated recurrent unit (GRU) model 

Cho et al., (2014) invented GRU in company with RNN and LSTM, with the expectation that 

more variations of recursive network may continue to emerge. GRU also aims to solve the vanishing 

https://arxiv.org/abs/1406.1078
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gradient problem. Different from LSTM, GRU does not have the cell state and the output gate and 

thus has fewer parameters. GRU uses the hidden layers to transfer information and has two gates for 

reset and update. 

The parameters of GRU include Wr, Wz and Wh. The reset signal rt determines if the previous 

hidden state must be ignored while the update signal zt determines if the hidden state ht needs 

updating with the new one hat (ht). 

𝑧t = σ(𝑊𝑧. [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑧 

𝑟t = σ(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑟 

ℎ̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ. [𝑟t. ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) 

ℎℎ = (1 − 𝑧t). ℎ𝑡−1 + 𝑧t. ℎ̂𝑡 

Reset Gate: This gate achieves a similar function of the input and forget gates of LSTM. The 

gate rt determines if the previous hidden state must be ignored. The gate zt is generated for the update 

gate with hat (ht). Wz and Wr are the weight parameters to be trained while bz and br are the noise vectors. 

Update Gate: (Part 1): This part multiplies rt and ht-1. The multiplication means how much of 

ht-1 is retained or ignored. Thus, a temporal hat (ht) is created to be used for the update of ht. Wh and 

bh are weight parameters and the noise vectors, respectively. 

Update Grade: (Part II): This part computes the weighted average between ht-1 and hat (ht), 

according to the weight zt. If zt is close to zero, then the past information contributes little and new 

information contributes more.  

3.3. Evaluation metrics 

We used five different measures of forecast errors for evaluating the model performance and the 

accuracy of the methods: MAE, MSE, RMSE and MAPE, where ŷt are the forecasted values, yt the 

observed values, n is the number of forecasts andμis the average of measurements. 

Table 2. Evaluation Metrics. 

Evaluation Metrics Equation 

Mean square error (MSE) 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑡 − 𝑦�̂�)2

n

t=1

 

Root means square error (RMSE) 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑡 − 𝑦�̂�)2

𝑛

𝑛

𝑡=1

 

Mean absolute error (MAE) 
𝑀𝐴𝐸 = ∑

|𝑦𝑡 − 𝑦�̂�|

𝑛

𝑛

𝑡=1

 

Mean absolute percentage error (MAPE) 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑ |

𝑦𝑡 − 𝑦�̂�

𝑦𝑡
|

𝑛

𝑡=1

. 100 

R-squared 
R2 = 1 −

∑ (𝑦𝑡 − 𝑦�̂�)2n
t=1

∑ (𝑦𝑡 − μ)2n
t=1
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4. Results and analysis 

4.1. Data description 

This study implements and compares the two models by using the Historical CSV Data Sample, 

which includes 10000 observations of put and call European options traded on the London Stock 

Exchange2. The sample includes all data recorded Table 3 on 1 January 2020–2031 December 2021, 

which fall during the Coronavirus disease 2019 (COVID-19) pandemic, with the following features: 

Table 3. List of all features in the dataset, with an identification of the type of variable 

and a brief description of their meaning. 

Variable Class Description 

Time Numerical Settlement time of contract 

Strike price Numerical Strike price of the option 

Stock price Numerical Price of the underlying asset of the option 

Volatility Numerical Volatility of returns of the underlying asset 

Interest rate Numerical Actual total number of unsettled and outstanding options 

Type Binomial Whether the option is a call or a put 

Delta Numerical Derivative of the option price with respect to its underlying price 

Gamma Numerical Sensibility of the option price with respect to its delta 

Theta Numerical Derivative of the option price with respect to its time to maturity 

The models are implemented using Python 3.7 programming language. The choice has been made 

due to the simplicity of the language and all the pre-built libraries for machine learning, which allow for 

faster workflow and easier debugging. In particular, the libraries used throughout the empirical part of the 

study are: 

Table 4. The models implemented using Python 3.7. 

Packages Study Description 

Pandas (McKinney, 2022) Used to read, write and manipulate the dataset 

NumPy (Oliphant, 2006) Which uses arrays as the main data structure to perform computations; 

SciPy (Virtanen et al., 

2019) 

A large library, which includes various branches of science, used in this case 

for statistical tools; 

Time present in the Python 

Standard Library, 

Used to calculate the time of computation and training for the two models; 

Matplotlib (Hunter, 2007) Used to make the graphs and plots to have a visual interpretation of the 

models; 

TensorFlow (Abadi et al., 2015) An interface from Google made to implement machine learning, particularly 

DL models. The name derives from the fact that data are imported in 

TensorFlow using tensors, which speeds up the model training. 

 

 
2. https://www.londonstockexchange.com/ 



277 

Data Science in Finance and Economics                                                          Volume 3, Issue 3, 267–284. 

Here is a sample correlation heatmap matrix created to understand the linear relationship between 

different variables in the dataset Figure 4. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Correlation heatmap matrix amongst numerical features from the dataset. 

4.2. Models used and their specifications 

The standard BSM is used as the standard of comparison for the ML models. As we all know, 

BSM takes inputs of the price of the underlying asset, strike price of the option, time to maturity of 

said option, RF rate and the measure of volatility of the underlying asset. For the latter, we use the 

variable described in the model outputs an arbitrage-free price of an option. 

Once we have a working deep learning stack, we start the development by creating a python 

script to train ANNs with Keras and Tensor Flow for simple regression problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Deep learning option pricing solver development flowchart. 
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Many online resources can be used to achieve these first steps. In particular, the online 

documentation of TensorFlow is very clear and includes simple practical examples. The DL training 

and validating script, implemented for this project, is derived from a basic regression tutorial that can 

be found on https://www.tensorflow.org/tutorials/keras/regression. 

Similar to a class diagram for planning an OOP solution, flowcharts are tools used to describe 

procedural programs and processes. Figure 5 presents the iterative development that is implemented 

to create the DL option pricing solvers in this review. 

Here is a general flowchart for developing a DL option pricing solver: 

Problem Formulation: Define the problem statement and determine the project scope. 

Data Collection: Collect historical data on the underlying asset's price, including any relevant 

market data such as interest rates, volatility and dividends. 

Data Pre-processing: Clean, normalise and transform the data to prepare for use in the DL model. 

Model Selection: Choose an appropriate DL model architecture and design, considering the 

problem statement, data characteristics and available computational resources. 

Model Training: Train the DL model using the pre-processed data, using techniques such as 

gradient descent and backpropagation to optimise the model parameters. 

Model Evaluation: Evaluate the performance of the DL model using appropriate metrics such 

as RMSE or MAE and validate the predictions using test data. 

Model Tuning: Based on the results of the evaluation and validation, adjust the DL model 

parameters and architecture to improve its performance. 

Deployment: Deploy the DL option pricing solver in a production environment and test its 

performance under real-world conditions. 

Monitoring and Maintenance: Continuously monitor the performance of the DL option 

pricing solver and maintain and update the model as needed to ensure its accuracy and reliability 

over time. 

Note that the specific steps and details of the flowchart may vary depending on the specific 

requirements and objectives of the DL option pricing solver as well as the availability and quality of 

data. Additionally, the development of a DL model requires expertise in both finance and computer 

science, together with a solid understanding of the underlying data and market dynamics. 

We train the neural network with the following hyperparameters Table 5: 

- four hidden fully connected layers 

- each layer has200 neurons 

- batch size of 64 

- 200 training epochs 

- 80–20 train-validation split Figures 7,8. 

- MSE as loss function  
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Table 5. Hyperparameter of each model. 

Hyperparameter LSTM GRU 

Activation function RELU RELU 

Loss function MSE MSE 

Neurons [200,200,200,200,200,1] [200,200,200,200,200,1] 

Learning rate 0.001 0.001 

Optimiser Adam Adam 

Here, [200, 200, 200, 200, 200, 1] represents the number of neurons from the first to the last network layer. 

4.3. Pricing performance of benchmark models 

To investigate the quality of the models used, we compare the performances of BSM and the 

deep learning models such as LSTM and GRU. In terms of pricing European call options errors, 

Python routines were used. These algorithms forecast the price London Stock Exchange (JSE) for 

European call options through the application of significance statistical tests (MSE, RMSE, MAE). 

Results of benchmark models are measured with the metrics obtained on the dataset by using 

the BSM option pricing compared with the LSTM and GRU. The results are summarised to confirm 

the pricing performance of LSTM. Nevertheless, the results obtained with the benchmark machine 

learning models are used as an indicator of the possible error range. 

The first conclusion is that the quality of pricing with the benchmark models varies 

considerably across different states of moneyness for options Figure 6.  

 

 

 

 

 

 

 

 

 

 

Figure 6. Train and test loss of GRU model          Figure 7. Train and test loss of LSTM model. 
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Table 6. Deep learning error metrics compared with Black-Scholes prices. 

Options 

Type 

Model Train/Test (%) Epochs Time MAE MSE RMSE 

C
al

l 

BSM 80/20 200 1s 3ms/step 2.84 16.39 4.05 

LSTM 80/20 200 0s 4ms/step 2.33 13.58 3.69 

GRU 80/20 200 2s 13ms/step 2.65 15.21 3.90 

P
u
t 

BSM 80/20 200 0s 1ms/step 4.70 54.46 7.38 

LSTM 80/20 200 0s 6ms/step 4.44 54.30 7.37 

GRU 80/20 200 0s 4ms/step 4.60 55.16 7.43 

Note: All values are multiplied by a factor of 100.  

In terms of the pricing accuracy of the LSTM model, Table 4 reveals that the LSTM model 

presents the most excellent pricing performance except for put and call options, with remarkable 

nonlinear fitting ability. The BSM provides the least reliable pricing due to the maximum values of 

metrics in terms of MAE, MSE, RMSE of call and put options with 2.84%, 16.39% and 4.05 for call 

options and close to 4.70%, 54.46%, 7.38% for put options, respectively. From the GRU model, 

prices decrease by2.65%, 15.21% and 3.90%for call options and close to 4.60%, 55.16%, 7.43% for 

put options. However, the LSTM model has the most accurate pricing quality regardless of the 

pricing model with minimum values of metrics in terms of MAE, MSE, RMSE, with 2.33%, 13.58%, 

3.69% for call options and close to 4.44%, 54.30%, 7.37% for put options, respectively. 

Finally, we confirm our hypothesis and the results achieved by previous studies to forecast 

option pricing (Appendices). 

The COVID-19 pandemic has exerted significant impact on financial markets and option 

pricing in the United Kingdom (UK), including the pan increased uncertainty and volatility as well as 

changes in economic conditions and government policies that in turn affect the valuation of 

financial assets. 

One of the key effects on option pricing is the increase in volatility across asset classes. The 

implied volatility of many options has increased significantly since the start of the pandemic, 

reflecting higher levels of uncertainty and risk in financial markets. Thus, accurately predicting price 

options and managing risk, particularly for complex options and structured products, has become 

more challenging. 

The pandemic also caused changes in interest rates and monetary policy. To support the 

economy during this period, the Bank of England implemented a range of measures such as lowering 

interest rates and introducing quantitative easing. These measures have affected the pricing of 

options and other financial instruments, particularly those with longer maturities. 

The pandemic has also led to changes in market structure and trading practices. Many financial 

institutions have shifted to remote working and electronic trading, which has affected market 
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liquidity and trading volumes. This shift in turn affected the pricing of options and other financial 

instruments, particularly those with lower liquidity or trading volumes. 

Overall, the COVID-19 pandemic has caused significant impact on option pricing in the UK, 

with increased volatility and changes in economic conditions and market structure affecting the 

valuation of financial assets. Financial institutions needed to adapt their pricing models and risk 

management practices to account for these changes and continued monitoring and analysis are 

required to manage the evolving market risks and uncertainties. 

5. Conclusions 

In this study, we focus on the forecast option pricing during the COVID-19 period by proposing 

an ensemble of deep learning approach, specifically LSTM and GRU versus BSM. 

In conclusion, machine learning techniques have shown promise in improving option pricing 

accuracy and capturing complex features in financial data. Several studies have proposed neural 

network and other machine learning models for option pricing, achieving improved pricing accuracy 

compared with traditional models. 

However, machine learning models can suffer from overfitting and other issues and their use in 

option pricing and other financial applications require careful evaluation and validation. Furthermore, 

the use of machine learning techniques in option pricing may require significant amounts of data and 

computational resources, which may pose practical challenges for certain applications. 

Overall, machine learning has the potential to enhance option pricing models and provide more 

accurate pricing estimates, but further research and development is needed to fully realise its 

potential and address practical challenges. 

However, this increased volatility translates into more challenging options market predictions. 

We confirm our fundamental hypothesis that DL models still perform well compared with Black-

Scholes option pricing model in terms of the RMSE, MAE, MSE. 

The highly competitive prediction capacity of the proposed model during theCOVID-19 period 

is beneficial for policymakers, entrepreneurs and foreign exchange brokers. 

Finally, based on the current results, future research can predict a large performance 

improvement by optimizing the parameters of these algorithms for application in more common 

option pricing scenarios. 
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Figure 8. Test vs training data using BSM and DL models. 

 

 

 

 

 

 

 

 

 

 

 



284 

Data Science in Finance and Economics                                                          Volume 3, Issue 3, 267–284. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Prediction error (GBP). 
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