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Abstract: The risk-return relationship is of fundamental significance in the field of economics and 

finance. It is used to structure investment strategies, allocate resources, as well as assist in the 

construction of policy and regulatory frameworks. The accurate forecast of the risk-return relationship 

ensures sound financial decisions, whereas an inaccurate one can underestimate risk and thus lead to 

losses. The GARCH-M approach is one of the foremost models used in South African literature to 

investigate the risk-return relationship. This study made a novel and significant contribution, on a local 

and international level, as it was the first study to investigate GARCH-M type models with different 

innovation distributions. This study analyzed the JSE ALSI returns of the South African market for the 

sample period from 05 October 2004 to 05 October 2021. Results revealed that the EGARCH (1, 1)-

M with the Skewed Student-t distribution (Skew-t) is optimal relative to the standard GARCH, 

APARCH and GJR. However, the EGARCH-M Skew-t failed to capture the financial data’s 

asymmetric, volatile and random nature. To improve forecast accuracy, this study applied different 

nonnormal innovation distributions: the Pearson Type IV distribution (PIVD), Generalized Extreme 

Value distribution (GEVD), Generalized Pareto distribution (GPD) and Stable. Model diagnostics 

revealed that the nonnormal innovation distributions adequately captured asymmetry. The Value at 

Risk and backtesting procedure found that the PIVD, followed by Stable, outperformed the Extreme 

Value Theory distributions (GEVD and GPD). Thus, investors, risk managers and policymakers would 

opt to use the EGARCH-M in combination with the PIVD when modelling the risk-return relationship. 

The main contribution of this study was to confirm that applying GARCH type models with the 

conventional and normal type distributions, to a volatile emerging market, is considered ineffective. 

Therefore, this study recommended the exploration of other innovation distributions, that were not 

included in the scope of this study, for future research purposes. 



392 

Data Science in Finance and Economics  Volume 2, Issue 4, 391–415. 

Keywords: risk-return relationship; GARCH-M type models; innovation distributions; asymmetry; 

Pearson Type IV distribution; Extreme Value Theory; Generalized Extreme Value distribution; 

Generalized Pareto distribution; Stable distribution 

JEL Codes: C32, C58, G11, G32 

 

1. Introduction 

The risk-return relationship topic has been studied from as early as the 1950s, with growing 

enthusiasm to date (Ma et al. 2020). The foremost model used to capture the risk premium is the 

Generalized Autoregressive Conditional Heteroscedasticity-in-Mean (GARCH-M) by Engle et al. (1987). 

The GARCH approach, originated by Engle (1982), assumes that price data and innovations follow a 

normal distribution. However, such an assumption is based on “simplicity and convenience” because in 

the real world, the nature of the financial market is subject to nonlinear properties, such as asymmetric 

volatility and asymmetric effects (Kuang, 2020; Ayed et al.  2020). As a result, the standard GARCH model 

evolved to asymmetric GARCH models such as EGARCH, APARCH and GJR, to capture asymmetric 

volatility and the asymmetric effects - volatility feedback and the leverage effect. While the GARCH 

approach has the ability to capture the volatile nature of financial data, the model is unable to effectively 

capture asymmetry, as sufficed by Mangani (2008), Mandimika and Chinzara (2012), Ilupeju (2016), 

Naradh et al. (2021) and Dwarika et al. (2021).  

Another extension that has gained popularity over the years, to assist with capturing asymmetry, is the 

combination of GARCH models with various innovation distributions (Delis et al. 2021; Kuang, 2020). 

According to Alqaralleh et al. (2020), innovation distributions that capture the empirical nature of returns, 

such as higher moment properties, skewness and excess kurtosis, make “excellent tools” in the estimation 

of accurate forecasts. While there is existing literature on different probability distributions, only one study 

by Delis et al. (2021), to the best of the authors knowledge, applied a different distribution to investigate 

the risk-return relationship. Drawn from Ma et al.  (2020) and Tsay (2013), a reason for the lack of literature 

is the limited ability to manipulate the modelling of the time-varying risk-return relationship. According to 

Tsay (2013), when modelling the GARCH approach in R, if the model is invalid by failing to converge or 

is insignificant, the mean and/ or constant can be dropped to make the model valid. Since the GARCH-M, 

as the name suggests, contains the risk premium within the mean, it cannot be dropped (Ma et al.  2020; 

Tsay, 2013). Hence, this presents a gap in literature for the exploration of different innovation distributions 

with the GARCH-M approach to investigate the risk-return relationship.  

By targeting this specific issue, this can improve the overall efficiency of the risk estimation ability of 

the GARCH approach. The problem statement is that due to the GARCH modelling assumption of 

normality, the risk-return relationship is underestimated, leading to inaccurate forecasts. This is especially 

relevant in the case of an emerging market, such as South Africa, which is subject to heavy tails due to high 

and persistent levels of market volatility (Dwarika et al. 2021; Naradh et al. 2021). At the same time, such 

a market presents “huge investment opportunities” for investors that seek a superior return (Ayed et al. 

2020). In other words, the higher the risk taken, the higher the expected rate of return. The relationship 

between risk and return provides valuable information to structure investment strategies, assist budget plans 

and allocate resources. Given the wide use of the GARCH approach in risk management, as documented 
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by Saddah and Sitanggang (2020) and Ayed et al. (2020), acknowledging and implementing improvements 

in stochastic volatility models can improve forecast accuracy and lead to more financially sound decisions. 

There is no existing study, to the best of the authors knowledge, that has conducted a comparative 

analysis of different innovation distributions in the context of the GARCH-M approach. Therefore, the aim 

of this study is to investigate the optimal GARCH-M model and innovation distribution, to determine the 

risk-return relationship. Hence, the primary aim is to determine the optimal GARCH-M type model to 

investigate the risk-return relationship. The secondary aim is to find an innovation distribution to optimize 

the GARCH-M tails, i.e., optimally capture risk. To ensure optimal model diagnostics, this study follows 

the international standard procedure, established by the regulatory framework - the Basel Accords. The 

Basel Accord I recommends Value at Risk (VaR) and backtesting methods to ensure the GARCH model’s 

efficiency (Ayed et al. 2020; Kuang, 2020). VaR computes the maximum loss of a portfolio over a specific 

period of time for a given confidence interval (Kuang, 2020). The backtesting procedure is used to test 

whether the actual losses are in line with the forecasted values (Ayed et al. 2020). Essentially, it is used as 

a tool to determine the optimal forecast power of the VaR estimates. 

This study consists of five sections. First, the Introduction provides an overview of the background 

and what this study aims to achieve. Second, the Literature Review outlines existing South African studies 

on the GARCH-M approach with different innovation distributions and then extends to international work. 

This section is concluded by identifying gaps found in the body of literature. Third, the Methodology covers 

the data, GARCH type models and innovation distributions employed in this study. Fourth, the Empirical 

Results and Discussion consist of the implications of the results alongside the model output. Finally, the 

key findings of this study are summed up in the Conclusions. 

2. Literature review  

According to Markowitz (1952), risk and return hold a positive and linear relationship in theory. 

Therefore, when an investor makes an investment in an emerging market that is characterized by high-

risk, the investor expects a higher rate of potential return, in compensation for investing in a volatile 

environment that does not guarantee a superior return. However, early studies by Mangani (2008), 

Mandimika and Chinzara (2012) and Adu et al. (2015) found no risk-return relationship in the largest 

South African stock market at the time - the Johannesburg Stock Exchange (JSE). All three studies 

employed the GARCH approach, but found limitations in the model’s ability to efficiently capture risk, 

especially by the model’s innovations.  

Dwarika et al. (2021) consolidated several limitations of the GARCH approach. The study 

analyzed the daily JSE All Share Index (ALSI) returns for the sample period from 15 October 2009 to 

15 October 2019. The models employed were GARCH (1, 1), EGARCH, GJR and APARCH, with the 

standard normal (NORM), Student-t (Stud-t), Skewed Student-t (Skew-t) and the Generalized Error 

distribution (GED). The study found EGARCH to be the optimal model, but the innovations showed 

that asymmetry remained uncaptured, in line with Mangani (2008), Mandimika and Chinzara (2012) 

and Ilupeju (2016). While the overall finding was a positive risk-return relationship, contrasting results 

were found for the Skew-t distribution, as GARCH-M found no relationship, whereas EGARCH-M 

found a positive relationship. Emenogu et al. (2020) also found that the Skew-t performance varied 

with the different GARCH models. Thus, this inconsistency highlighted the significance of the 

innovation distribution choice, as it has the ability to affect parameter estimation.   
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Ayed et al. (2020) investigated the optimal GARCH model and innovation distribution by 

analyzing daily data, over the sample period from 10 August 2006 to 14 December 2014, of the Islamic 

stock market. The study employed the standard GARCH and APARCH with the distributions - the 

NORM, Stud-t and Skew-t. The study found APARCH and the Skew-t to be optimal. From the VaR 

and backtesting procedure, at a 99% level of VaR, the Stud-t and Skew-t were optimal, whereas for a 

95% VaR, the forecast of NORM was more robust. However, the GARCH (1, 1) is critiqued by Saddah 

and Sitanggang (2020) for underestimating risk. This is because a simple GARCH model is unable to 

effectively capture higher moment properties (Mandimika and Chinzara, 2012; Kuang, 2020). 

Similarly, applying GARCH type models with the conventional and normal type distributions, to a 

volatile emerging market, is considered ineffective (Ayed et al. 2020; Bautista and Mora, 2020; Saddah 

and Sitanggang, 2020). Thus, other asymmetric properties need to be taken into account. 

For instance, Delis et al. (2021) found a positive risk-return relationship, in line with theoretical 

expectations, confirming the significance of accounting for skewness to assist with capturing 

asymmetry. The authors modelled the daily returns of the S&P500 index, over the sample period from 

02 January 1980 to 14 October 2020, using GARCH-M with a Skewed GED. The study concluded 

that skewness is vital in the estimation of the risk-return relationship, especially during periods of 

excess volatility such as the COVID-19 pandemic. However, Khan et al. (2021) investigated the recent 

effects of the pandemic on the Indian stock market using a different approach, namely, the Extreme 

Value Theory (EVT). This approach specifically focuses on tail behavior, where extreme events such 

as the 2008 financial crisis and COVID-19 occur. Khan et al. (2021) used the Generalized Pareto 

distribution (GPD) to model the high-frequency 5-min data of the NIFTY 50 returns for the sample 

period 11 March 2020 to 30 September 2020. During the pandemic, it was found that returns dropped 

by 9%, and that 5% of the data was above the specified threshold, indicating an asymmetric return 

distribution, in line with empirical expectations. Khan et al. (2021) concluded the efficiency of the 

GPD in the field of EVT to provide useful information during the period of a crisis. 

In contrast, Kuang (2020) found that the Pearson Type IV distribution (PIVD) outperformed the 

Stud-t, Generalized Extreme Value distribution (GEVD) and GPD using VaR. The GEVD is another 

innovation distribution from the EVT. The PIVD is flexible due to its ability to account for higher 

moment properties, particularly skewness and excess kurtosis. The author analyzed the daily data of 

the indices S&P500, FTSE100, CAC40, and DAX30 from 03 May 2002 to 31 December 2009. The 

study concluded the superiority of the PIVD in capturing skewness, which affects the accuracy of risk 

estimation, in line with Delis et al. (2021). Although not investigated in the study by Kuang (2020), 

the author mentioned another robust distribution, the Stable distribution, which accounts for heavy 

tails, skewness and excess kurtosis. Bautista and Mora (2020) applied VaR to the oil sector using 

GARCH with the distributions - NORM, Generalized Stud-t and Stable. The authors found that the 

NORM underperformed because the oil returns followed a heavy-tailed distribution. The Generalized 

Stud-t was more optimal than the NORM, but overall Stable was the most robust distribution, in line 

with Ilupeju (2016), Bautista and Mata (2020) and Naradh et al. (2021).  

In conclusion, it can be noted that there are two major research gaps in literature. Firstly, the South 

African studies are limited to the conventional innovation distributions: NORM, Stud-t, Skew-t and 

GED, in the context of the risk-return relationship, as sufficed by Mangani (2008), Mandimika and 

Chinzara (2012) and Dwarika et al. (2021). While the Stud-t, Skew-t and GED can account for some 

degree of asymmetry, it is vital to consider more flexible distributions that can take into account heavy 

tails and other higher moment properties such as skewness and excess kurtosis. In turn, this will 
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enhance the risk efficiency of the GARCH approach and improve the forecast accuracy of the risk-

return relationship. Secondly, only one existing study by Delis et al. (2021), investigated the GARCH-

M with a different innovation distribution - the Skewed GED. A possible reason for the lack of 

literature is due to limited model manipulation arising from software constraints. To overcome this 

limitation, it would be advisable to investigate several GARCH type models. In line with international 

literature, this study extends to the VaR and backtesting procedure since none of the South African 

studies employed this international regulatory framework, in the context of the GARCH-M approach. 

3. Methodology  

Figure 1 shows a flow chart diagram of the methodology employed in this study to determine the 

optimal GARCH-M and innovation distribution. 

 

Source: Authors own 

Figure 1. Methodological steps to find the optimal GARCH-M and innovation distribution.  

The JSE ALSI market returns are modelled by the GARCH-M (1, 1) type models - standard GARCH, 

GJR, EGARCH and APARCH with the innovation distributions: NORM, Stud-t, Skew-t and GED. The 

optimal GARCH-M model is selected by information criteria. The innovations are then extracted to 

determine if risk remains uncaptured by the “risk check”. If risk remains uncaptured, the more robust 

innovation distributions are employed: PIVD, GEVD, GPD and Stable. Model diagnostics are used to 

determine if the distributions are adequate in capturing asymmetry. Thereafter, the VaR and backtesting 

methods are employed to determine the optimal innovation distribution. 

3.1. Data 

Following Dwarika et al. (2021) and Naradh et al. (2021), this study will obtain the daily price 

data of the JSE ALSI from the Integrated Real-time Equity System (IRESS) database, previously 

known as the McGregor Bureau for Financial Analysis (BFA). The IRESS database is a reliable source 

of obtaining data and is hosted on the IRESS Research Domain, where market data is available for 

financial analysis and academic research purposes (IRESS, 2022).  

Following Emenogu et al. (2020), this study investigates a duration of 17 years made up of a total 

of 4251 observations. The updated sample period analyzed is from 05 October 2004 to 05 October 

2021. This period included the 2008 financial crises and COVID-19 pandemic. These are global 

economic events, but more importantly, extreme events that affect tail behavior which this study takes 

into account, in line with Kuang (2020) and Khan et al. (2021). 

Following Dwarika et al. (2021), the risk-free rate proxy is the South African T-bill, which shall 

be obtained from the South African Reserve Bank (SARB). The ALSI price data is converted to returns 
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by 𝑅𝑚 = ln⁡(
𝑃𝑡

𝑃𝑡−1
), where 𝑅𝑚 = market returns and 𝑃𝑡 = share price for the current day 𝑡 and 𝑃𝑡⁡−⁡1 = 

share price for the previous day 𝑡 − 1 . The annual risk-free rate is converted to a daily value by 

Daily⁡𝑅𝑓 = (1 + yearly⁡𝑅𝑓)
(
1

365
)
− 1 , given by Brooks (2014). Excess returns are computed as the 

difference between market returns and the risk-free rate (Delis et al. 2021). 

Following convention in literature, the data is tested for stationarity to ensure a valid time series, 

by employing the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski, Phillips, 

Schmidt and Shin (KPSS) test. The data is also tested for normality and heteroscedasticity to show the 

asymmetric nature of returns. Thus, substantiating the employment of the GARCH extensions which 

can account for such higher moment properties and consequentially improve forecast accuracy.  

3.2. GARCH-M Approach  

Following Dwarika et al. (2021), Naradh et al. (2021), Ilupeju (2016) and Mandimika and 

Chinzara (2012), the foremost GARCH-M type models are estimated by the Maximum Likelihood 

(ML) method, in combination with the four conventional innovation distributions: NORM, Stud-t, 

Skew-t and GED. The GARCH-M models follow the mean model of the standard GARCH by Engle (1982): 

𝑦𝑡 = ⁡𝜇 +⁡∑ 𝛿𝑗𝜎
2
𝑡−𝑗

𝑝
𝑗=1 + 𝑢𝑡⁡                                                    (1) 

where 𝑦𝑡 = conditional mean, 𝜇 = constant, 𝛿𝑗 = risk premium, 𝜎2
𝑡−𝑗 = variance and 𝑢𝑡 = innovation 

term.  

The conditional variance of the asymmetric GARCH-M models is listed respectively. GJR by 

Glosten et al. (1993): 

𝜎𝑡
2 =⁡𝛼0 +⁡∑ 𝛼𝑖𝑢

2
𝑡−1

𝑞
𝑖=1 ⁡+ ⁡∑ 𝛽𝑗𝜎

2
𝑡−𝑗

𝑝
𝑗=1  + 𝛾⁡𝑢2𝑡−1𝐼𝑡−1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   (2.1) 

where 𝛼0  = constant term, 𝑢2𝑡−1  = squared lagged innovation term, 𝛼1  = ARCH effect (short-term 

volatility persistence), 𝛽𝑗  = GARCH effect (long-term volatility persistence), 𝛾  = asymmetry 

parameter (to capture asymmetric volatility and asymmetric effects) and 𝐼𝑡−1 = interaction variable 

(accounts for positive and negative shocks).  

EGARCH by Nelson (1991): 

ln(𝜎𝑡
2) = 𝛼0 +⁡∑ 𝛼𝑖

𝑞
𝑖=1 [|𝑢𝑡−1| − 𝐸|𝑢𝑡|] +⁡∑ 𝛽𝑗

𝑝
𝑗=1 ⁡ ln⁡(𝜎2

𝑡−𝑗
) ⁡+ ⁡𝛾⁡𝑢𝑡−1⁡       (2.2) 

where 𝛼1⁡[|𝑧𝑡−1| − 𝐸|𝑧𝑡|]  = magnitude of the innovation and 𝛾⁡𝑧𝑡−1  = sign effect (accounts for 

positive and negative shocks).   

APARCH by Ding et al. (1993): 

𝜎𝑡
𝛿 =⁡𝛼0 +⁡∑ 𝛼𝑖⁡(|𝑢𝑡−𝑖| − ⁡𝛾𝑖 ⁡𝑢𝑡−𝑖)

𝛿 +⁡∑ 𝛽𝑗 ⁡𝜎𝑡−𝑗
𝛿𝑞

𝑗−1
𝑝
𝑖=1                    (2.3) 

where 𝛿 = is an exponent that allows the APARCH model to take on several GARCH models. For 
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example, in this study, the GJR-GARCH is implemented by setting δ of the APARCH model to 2, in 

line with Tsay (2013). 

The optimal GARCH-M is selected by model diagnostics, information criteria, Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC), following standard literature. 

The standardized innovations of the optimal GARCH-M and innovation distribution are then extracted.  

Following Dwarika et al. (2021), which built on Mangani (2008), Mandimika and Chinzara (2012) 

and Ilupeju (2016), the standardized innovations of the optimal GARCH-M are tested for normality, 

heteroscedasticity and randomness by a framework of preliminary tests. This study will formalize such 

testing as a “risk check” to determine the extent of uncaptured risk, more specifically, due to which 

property of risk is being underestimated (the asymmetric, volatile or random nature of the innovations). 

Table 1 shows the “risk check” framework.  

Table 1. Risk check. 

Test Name Abbreviation 

Normality Shapiro-Wilk SW 

Jarque-Bera JB 

Anderson-Darling AD 

Heteroscedasticity Ljung-Box LB2 

Autoregressive Conditional 

Heteroscedastic-Lagrange Multiplier 

ARCH-LM 

Randomness Bartels rank Bartels rank 

Cox-Stuart Cox-Stuart 

Brock, Dechert and Scheinkman BDS 

Source: Authors own formalization 

Based on the aforementioned South African studies, the GARCH-M model’s innovations are 

expected to show uncaptured risk, to substantiate the application of the more robust probability 

distributions: PIVD, GEVD, GPD and Stable. Following Bautista and Mora (2020), Bautista and Mata (2020), 

Naradh et al. (2021) and Ilupeju (2016), the innovation distributions are estimated by the ML method.  

3.3. Innovation Distributions  

3.3.1. PIVD  

According to Kuang (2020), the PIVD is described as flexible due to its ability to account for 

higher moment properties, particularly skewness. The PIVD is given as:  

𝑓(𝑥) = 𝑘(𝑚, 𝜈, 𝜃) (1 + (
𝑥−𝜆

𝜃
)
2

)
−𝑚

exp [−𝜈 𝑡𝑎𝑛−1 (
𝑥−𝜆

𝜃
)] , (𝑚 >

1

2
)           (3) 

where 𝜆 = location, 𝜃 = scale, 𝑘 = normalization constant, 𝑚 = kurtosis and 𝜈 = skewness. 

The location parameter 𝜆  is the mean and the scale 𝜃  is the standard deviation. The scale 

determines the width, whereas the location represents the shift of the mode of the distribution. The 

sign indicates the direction in which the distribution shifted. For example, if positive, then the 

distribution is shifted to the right. The purpose of the normalization constant 𝑘 is to ensure the function 

is a probability distribution function.  
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In the context of this study, focus is placed on the higher moment properties of the distributions. 

The kurtosis parameter 𝑚 controls the tail thickness, where low values indicate thin tails and large 

values indicate heavy tails. Specifically, values more than 2.5 indicate heavy tails (Ilupeju, 2016). The 

direction of skewness is indicated by the sign of the parameter 𝜈, where 𝜈 > 0 is positively skewed 

and 𝜈 < 0 is negatively skewed (Kuang, 2020). 

3.3.2. GEVD 

The aim of the EVT is to examine the behavior of outliers (extreme values) of a random variable. 

The advantage is that focus is placed on tail behavior instead of the entire distribution (Echaust and 

Just, 2020). Such an approach is relevant, given the recent COVID-19 pandemic, as sufficed by Omari 

et al. (2020), Khan et al. (2021) and Delis et al. (2021).  

Following Echaust and Just (2020), Kuang (2020) and Khan et al. (2021), the EVT is 

characterized by two modelling approaches, the Block Maxima Model (BMM) and Peaks Over 

Threshold (POT). The POT approach uses a predetermined threshold to determine extreme values, 

whereas the BMM chooses a maximum value for a given block which is defined as a specified period 

of time. The GEVD falls under the BMM, whereby the innovations are divided into equal lengths, 

representing consecutive blocks. The maximum innovation values are then selected from each block. 

The choice of block size is vital as a small value can indicate estimation bias, whereas a large value 

can result in estimation variance. A block value of five or ten is sufficient to ensure accurate results 

(Ilupeju, 2016). Echaust and Just (2020) give the GEVD as: 

𝑓(𝑥) = {

𝜃−1 exp (−
𝑥−𝜆

𝜃
) exp (−𝑒𝑥𝑝 (−

𝑥−𝜆

𝜃
)) , 𝜉 = 0,

𝜃−1 (1 + 𝜉 (
𝑥−𝜆

𝜃
))

−1−𝜉−1

exp (−(1 + 𝜉 (
𝑥−𝜆

𝜃
))

−𝜉−1

) , 𝜉 ≠ 0.
         (4) 

where 𝜆 = location, 𝜃 = scale and 𝜉 = shape.  

The shape 𝜉, also known as the tail index, describes the nature of the distribution. If 𝜉 < 0, this 

indicates a Weibull distribution, a short-tailed distribution defined as having a finite right tail. If 𝜉 > 0, 

the distribution is a Frechet type (inverse Weibull distribution) that is heavy-tailed, where examples 

include Stud-t and Stable. If 𝜉 = 0, this indicates a thin-tailed distribution such as NORM and log-NORM. 

Following Khan et al. (2021), model diagnostics in the form of normality tests are employed to 

determine whether the GEVD is an adequate fit for the innovations. This study employs the Anderson 

Darling (AD) test, probability plot (PP), quantile-quantile (QQ) plot, return level plot and density plot. 

The AD normality test focuses on tail behavior. If the AD test statistic is greater than the critical value, 

the null hypothesis that the innovations are normally distributed can be rejected. With respect to the 

plots, a major deviation between the empirical and theoretical distribution, would indicate 

nonnormality, thus an inadequate fit of the GEVD.  

3.3.3. GPD 

According to Echaust and Just (2020), the POT approach is considered more advantageous than 

the BMM, because it focuses on all possible events greater than the threshold and not just the largest 

events. The aim of POT is to assess the data and model all the data points that are above the specified 
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threshold 𝑢. Making an accurate selection of the threshold is vital for analysis.  

The conventional approach is to use graphical analysis - mean residual life plot and parameter 

stability plot - to determine the threshold value. The mean residual life plot shows the mean excesses 

against the threshold of the standardized innovations for both tails. The selected threshold would occur 

where there is an upward linear trend in the slope of the mean excess values (Khan et al. 2021). A 

parameter stability plot is employed to show the optimal shape and scale parameters against the 

threshold values that range from 1.0 to 2.0 (Naradh et al. 2021). Such methods consist of identifying 

stable regions in the graphs which are considered highly subjective, by Echaust and Just (2020). In 

order to confirm the threshold, a Pareto quantile plot is employed to state the respective number of 

positive and negative innovations above the threshold. The innovations are fitted to the GPD and then 

the shape and scale parameters are estimated by the ML method. Echaust and Just (2020) give the GPD as: 

𝐺𝜉,𝜃(𝑥) {
1 − (1 + 𝜉

𝑥

𝜃
)
−
1

𝜉
, 𝜉 ≠ 0

1 − exp (−
𝑥

𝜃
) , 𝜉 = 0

                      (5) 

where 𝜃 > 0 , 𝑥 ≥ 0  for 𝜉 ≥ 0  and 0 ≤ 𝑥 ≤ −
𝑥

𝜉
  for 𝜉 < 0 . The GPD has just two parameters, 𝜃  = 

scale and 𝜉 = shape.  

A thin-tailed distribution is indicated by 𝜉 < 0, whereas a heavy-tailed distribution such as Stable, 

is indicated by 𝜉 > 0. Similar to the GEVD procedure, the model diagnostics employed are a PP, QQ, 

return level and density plot.  

3.3.4. Stable  

The school of 𝛼 -Stable or Stable distributions is a widely documented class of probability 

distributions that can effectively model excess kurtosis, skewness, volatility clustering, asymmetry and 

heavy tails (Bautista and Mata, 2020; Kuang, 2020). Bautista and Mora (2020) give the Stable 

distribution as:  

𝐸[exp(𝑖𝑡𝑋)] = ⁡{
exp (−𝜃𝛼|𝑡|𝛼 [1 − 𝑖𝑣𝑠𝑖𝑔𝑛(𝑡) 𝑡𝑎𝑛 (

𝜋𝛼

2
)] + 𝑖𝜆𝑡) , 𝛼 ≠ 1

exp (−𝜃|𝑡| [1 + 𝑖𝑣
2

𝜋
𝑠𝑖𝑔𝑛(𝑡) ln |𝑡|] + 𝑖𝜆𝑡) , 𝛼 = 1

        (6) 

where −∞ ≤ 𝜆 ≤ ∞ ∈ 𝑅  = location, 𝜃 > 0  = scale, −1 ≤ 𝑣 ≤ 1  = skewness, and 0 < 𝛼 ≤ 2  = 

tail exponent. 

The sign of 𝑣 indicates the direction of skewness and is subject to the given constraint above. The 

tail exponent, also known as the index of stability, represents the rate at which the tails diminish or 

come to an end. When 𝛼 > 2, the mean is equivalent to the location 𝜆, but no mean exists when 𝛼 <

1. If 𝛼 < 2, this results in an infinite variance and the tails are thus heavy. 

Following Bautista and Mata (2020) and Naradh et al. (2021), the model diagnostics include the 

Kolmogorov-Smirnov (KS) and AD normality tests. KS computes the difference between the 

theoretical and empirical distribution, whereas AD computes the mean of square differences. A 

variance stabilized PP plot and density plot are employed to show a graphical analysis of the 

distribution fit.  
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The four fitted innovation distributions are analyzed by model diagnostics, thereafter the optimal 

distribution is determined by VaR and backtesting methods. 

3.4. VaR and backtesting  

3.4.1. VaR 

VaR is a well-known measure of market risk and is used in the fields of portfolio management 

and risk management (Bautista and Mata, 2020; Emenogu et al. 2020; Omari et al. 2020). Following 

Kuang (2020), the estimation of the VaR is made up of the GARCH-M in combination with the 

innovation distributions. VaR is given as 𝑃(𝑅𝑅𝑡 ≤ 𝑉𝑎𝑅𝑡(𝛼)) = ⁡𝛼, which is defined as the probability 

of the risk-return relationship 𝑅𝑅 at time 𝑡 less than or equal to the VaR estimate at the percentage of 

time 𝛼 . Delis et al. (2021) stated that there are both upper and lower tails of a distribution that 

correspond to 𝛼. In the context of this study, the upper tails are known as the short position, associated 

with gains, where the confidence intervals are defined as 97.5 and 99%. Similarly, the lower tails are 

known as the long position, associated with losses and are defined as 1 and 2.5%. The highest VaR 

estimates indicate high-risk potential losses and biased values, where the distribution is inadequate; 

the lowest VaR estimates indicate the opposite (Ayed et al. 2020; Bautista and Mata, 2020). 

3.4.2. Violation ratio  

Following several studies, such as Kuang (2020), Ayed et al. (2020) and Echaust and Just (2020), 

the backtesting procedure is used to analyze the forecast power of the VaR estimates. In this study, the 

backtesting procedure consists of the violation ratio (VR), the Kupiec unconditional coverage test, 

Christoffersen conditional coverage test and VaR duration-based test. The calculation of the violation 

ratio (VR) is given by Emenogu et al. (2020) as: 

𝑉𝑅 = ⁡
𝐴𝑐𝑡𝑢𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠
                (7) 

where if VR < 1, risk is underestimated and if VR > 1, risk is overestimated. If 0.8 ≤ VR ≤ 1.2, the 

forecasted risk is optimal, whereas 0.5 < VR < 1.5 is inadequate.  

The VR serves as a preliminary test as it is a very simple method to check model adequacy; 

therefore, more powerful tests are employed. According to Kuang (2020) and Ayed et al. (2020), an 

optimal VaR model satisfies the unconditional and conditional coverage properties. The unconditional 

property states that the observed number of violations should be in line with expected values at a given 

confidence interval. If the observed and expected values are inconsistent, this phenomenon would be 

referred to as the failure rate which is defined as the number of violations. The conditional property 

states that such violations are independent of each other. Thus, the more robust tests of the backtesting 

evaluation criteria consist of the Kupiec unconditional coverage test and Christoffersen conditional 

coverage test.  
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3.4.3. Unconditional test 

To investigate the unconditional property, the proportion of failure test by Kupiec (1995) is 

employed. The null hypothesis is that the observed number of violations is consistent with the expected 

values at a given confidence interval. The Kupiec test statistic is given as: 

𝐾𝑈𝐶 =⁡−2 ln[(1 − 𝑝)𝑛−𝑚] + 2 ln [(1 −
𝑚

𝑛
)
𝑛−𝑚

(
𝑚

𝑛
)
𝑚
]                          (8) 

where p = the assumed probability of occurrence, m = number of hits of the model (number of times 

the loss is greater than the VaR estimate) and n = number of tests. 

The test statistic 𝐾𝑈𝐶 follows a chi-squared distribution with one degree of freedom (𝑋2(1)). If 

𝐾𝑈𝐶 is less than the critical value, do not reject the null hypothesis and conclude model adequacy. If 

𝐾𝑈𝐶 is greater than the critical value, reject the null and conclude model inadequacy.   

3.4.4. Conditional test  

To investigate the conditional property, the conditional joint test by Christoffersen (1998) is 

employed, where the test statistic is given as: 

𝐿𝐶𝐶 =⁡𝐾𝑈𝐶 +⁡𝐶𝐼𝑁𝐷                                                (9) 

The test statistic consists of the Kupiec unconditional test and Christoffersen (1998) independence 

test. For the latter, the null hypothesis is that the failure rate is independent, indicating model adequacy. 

The test statistic is given as: 

𝐶𝐼𝑁𝐷 =⁡−2 ln[(1 − 𝜋̂2)
𝑛00+𝑛01𝜋̂2

𝑛01+𝑛11] + 2 ln[(1 − 𝜋̂01)
𝑛00𝜋̂01

𝑛01(1 − 𝜋̂11)
𝑛10𝜋̂11

𝑛11], 

𝜋̂01 =⁡
𝑛01

𝑛01+𝑛01
, 𝜋̂11 =⁡

𝑛11

𝑛10+𝑛11
 and 𝜋̂2 =⁡

𝑛01+𝑛11

𝑛00+𝑛10+𝑛01+𝑛11
           (10) 

where 𝜋̂𝑖𝑗  = number of times that state 𝑖  follows state 𝑗 , state 0 = independence and state 1 = 

dependence.   

The decision procedure for the test statistic 𝐶𝐼𝑁𝐷 follows the Kupiec unconditional test. It should 

be noted that for the joint decision procedure, the test statistic 𝐿𝐶𝐶 follows a chi-squared distribution 

with two degrees of freedom (𝑋2(2)). A limitation of the independence test is that it only tests for 

one-day violations instead of over multiple days (Echaust and Just, 2020). Thus, a VaR duration-based 

test is employed to investigate the time dynamics between the past and future violations. 

3.4.5. Duration-based test  

For the VaR duration-based test by Christoffersen and Pelletier (2004), the expectation is that 

given any day, future violations should not occur because of the past. The null hypothesis is that the 

probability of a violation on any day is subject to the no memory property, whereby it is independent 

of the effects of the previous day(s) and has a mean distribution of 1 𝑝⁄ .  
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To explain the latter, consider the Weibull parameter = 𝑏, where the Weibull distribution is of a 

school of continuous probability distributions that can take on several shapes. When 𝑏 = 1, it follows 

an exponential distribution which is the only distribution that is memory free. Thus, if the time between 

violations has no memory of each other, the average is 1 𝑝⁄  as defined by the exponential distribution. 

The Weibull distribution is a function of the failure rate to an index of time, given as: 

𝑓(𝑑) = 𝑎𝑏𝑏𝑑
𝑏−1 exp{−(𝑎𝑑)𝑏}      (11) 

where 𝑑 = number of days, 𝑏 = shape parameter and 𝑎 = scale parameter. 

The test statistic is defined as: 

𝐷 = 2(log 𝐿(𝑎̂) − 𝑙𝑜𝑔𝐿(𝑝))                            (12) 

where 𝐿 = likelihood, 𝑎̂ = estimated scale parameter and 𝑝 = probability of no memory violation.  

The decision procedure for the test statistic 𝐷 follows the Kupiec unconditional test.  

Following standard literature, this study uses the estimated p-values to make the decisions for the 

hypothesis tests. The highest p-value indicates the optimal model (Ayed et al. 2020; Omari et al. 2020). 

4. Empirical results and discussion 

4.1. Data exploration  

Following Dwarika et al. (2021) and Naradh et al. (2021), the daily closing price data of the JSE 

ALSI are obtained from IRESS for the sample period from 04 October 2004 to 05 October 2021. The 

ALSI price data is converted to market returns by taking the natural log form of the difference between 

closing prices of the current and previous day. Following Dwarika et al. (2021), the annual T-bill 

obtained from the SARB is converted to a daily value to compute excess returns. The ALSI (excess) 

return data is made up of a total of 4251 observations. The ALSI returns is confirmed to be stationary, 

by the ADF, PP and KPSS tests, to avoid a spurious regression and ensure a valid time series. The 

statistical properties of the ALSI returns are investigated by standard preliminary tests. Table 2 shows 

the preliminary test results of the ALSI returns. 

Table 2. Preliminary tests of the ALSI returns. 

Property Tests Test Statistic p-value 

Normality JB 5703.8000 < 0.0001 

SW 0.9436 < 0.0001 

AD 39.5940 < 0.0001 

Heteroscedasticity LB2 5397.4000 < 0.0001 

ARCH-LM 931.4000 < 0.0001 

From Table 2, since the p-values are less than 5%, the null hypothesis that the ALSI returns follow 

a normal distribution is rejected at a 5% level of significance. The null hypothesis that the ARCH effect 

is absent within the ALSI return series is also rejected at a 5% level of significance. In conclusion, the 

series of the ALSI returns are asymmetric, nonnormal and volatile in nature; thus, substantiating the 

employment of the GARCH-M type models. 

 



403 

Data Science in Finance and Economics  Volume 2, Issue 4, 391–415. 

4.2. GARCH-M approach  

Following Dwarika et al. (2021), Naradh et al. (2021), Ilupeju (2016) and Mandimika and 

Chinzara (2012), the foremost GARCH-M type models and innovation distributions are investigated. 

The GARCH-M models are shown for the four innovation distributions: NORM, Stud-t, Skew-t and 

the GED. Table 3 shows the relevant significant ML parameter estimates of the GARCH-M (1, 1) 

models with the different innovation distributions.  

Table 3. ML parameter estimates of the GARCH-M models with different innovation distributions. 

Model Estimates NORM Stud-t Skew-t GED 

GARCH-M 𝛼̂1 0.0952 *** 0.0734 *** 0.0883 *** 0.0739 *** 

𝛽̂1 0.8897 *** 0.9256 *** 0.8976 *** 0.9251 *** 

𝛿̂ 0.1165 ** 0.0964 ** 0.1116 ** 0.0999 ** 

GJR-GARCH-M 𝛼̂1 0.0450 *** 0.0396 *** 0.0359 *** 0.0416 *** 

𝛽̂1 0.9066 *** 0.9410 *** 0.9108 *** 0.9075 *** 

𝛾̂ 0.7425 *** 0.6829 *** 0.9186 *** 0.7971 *** 

𝛿̂ 0.0921 *** −0.0850 ** 0.0984 *** 0.1071 *** 

EGARCH-M 𝛼̂1 −0.1069 *** −0.1048 *** −0.1045 *** −0.1051 *** 

𝛽̂1 0.9777 *** 0.9793 *** 0.9799 *** 0.9781 *** 

𝛾̂ 0.1329 *** 0.1294 *** 0.1257 *** 0.1320 *** 

𝛿̂ 0.0744 *** 0.0902 *** 0.0699 *** 0.0928 *** 

APARCH-M 𝛼̂1 0.0700 *** 0.0672 *** 0.0634 *** 0.0691 *** 

𝛽̂1 0.9200 *** 0.9228 *** 0.9494 *** 0.9204 *** 

𝛾̂ 0.8637 *** 0.8817 *** 0.8047 *** 0.8617 *** 

𝛿̂ 0.1008 *** 0.1163 *** −0.1078 *** 0.1163 *** 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, respectively 

 

From Table 3, the GARCH-M models are valid since the ARCH and GARCH effects are 

significant at all the levels of significance (1, 5 and 10%). The sum of the ARCH and GARCH effects 

(𝛼̂1 + 𝛽̂1) is positive and high, indicating strong and persistent levels of volatility in the South African 

market. The only exception is for APARCH-M Skew-t, with a sum greater than one, indicative of an 

overestimation of risk, in line with Dwarika et al. (2021). All the models have an asymmetry parameter 

𝛾̂ > 0, which indicates the presence of asymmetric volatility and asymmetric effects. The presence of 

high levels of volatility, asymmetric volatility and asymmetric effects are in line with the empirical 

expectations of an emerging market and prior South African studies. 

The risk premium 𝛿̂  is statistically significant at a 5 and 10% level of significance for the 

GARCH-M approach. The majority of the GARCH-M models have a positive 𝛿̂, indicating a positive 

risk-return relationship. This finding is in line with Dwarika et al. (2021) but contrasts to earlier studies, 

by Mangani (2008), Mandimika and Chinzara (2012) and Adu et al. (2015), who found no relationship. 

The significance of the risk premium of the asymmetric GARCH-M models improved in comparison 

to the standard GARCH-M. This is due to the more robust fit of the asymmetric GARCH-M models 

to the asymmetric nature of the financial data, as suggested by Saddah and Sitanggang (2020).  

In terms of theoretical expectations, it follows that a positive risk-return relationship will exist. 

That is, since the South African market is characterized as high-risk, an investor can expect a superior 

rate of return. This was confirmed by the positive risk premium found by the majority of the GARCH-

M test results. The only exceptions are GJR-M Stud-t and APARCH-M Skew-t, where the risk 
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premium is negative. The change in sign is due to modelling adjustments made, such as the dropping 

of a constant, to ensure the model is valid. The optimal GARCH-M is investigated by model 

diagnostics. Table 4 shows the information criteria of the GARCH-M models with the different 

innovation distributions. 

Table 4. ML parameter estimates of the GARCH-M models with different innovation distributions. 

Model Criteria NORM Stud-t Skew-t GED 

GARCH-M AIC −6.3132 −6.3138 −6.3391 −6.3099 

BIC −6.3057 −6.3064 −6.3286 −6.3024 

GJR-GARCH-M AIC −6.3380 −6.3323 −6.3631 −6.3440 

BIC −6.3290 −6.3233 −6.3511 −6.3335 

EGARCH-M AIC −6.3397 −6.3482 −6.3642 −6.3453 

BIC −6.3308 −6.3377 −6.3523 −6.3348 

APARCH-M AIC −6.3412 −6.3500 −6.3519 −6.3468 

BIC −6.3322 −6.3395 −6.3414 −6.3363 

From Table 4, the consistent optimal fitting innovation distribution to the respective GARCH-M 

models is Skew-t, in line with Dwarika et al. (2021), Ayed et al. (2020) and Omari et al. (2020). This 

finding is in contrast to Emenogu et al. (2020), who found that the Skew-t performance varied with 

different GARCH type models. The NORM is the least optimal fit for EGARCH and APARCH, as 

expected by Mandimika and Chinzara (2012), Kuang (2020) and Saddah and Sitanggang (2020). The 

asymmetric financial data would make a more robust fit with distributions designed to account for 

heavy tails and other higher moment properties.  

EGARCH is found to be the optimal model in this study, in line with Dwarika et al. (2021), Naradh 

et al. (2021), Saddah and Sitanggang (2020) and Omari et al. (2020). This is in contrast to APARCH 

which was found to be optimal by Ilupeju (2016) and Ayed et al. (2020). Overall, Skew-t is the optimal 

fitting innovation distribution in combination with EGARCH-M, in line with Dwarika et al. (2021) and 

Omari et al. (2020). The risk check is employed to investigate the properties of uncaptured risk. 

Following Dwarika et al. (2021), which built on Mangani (2008), Mandimika and Chinzara (2012) 

and Ilupeju (2016), the standardized innovations of the EGARCH-M Skew-t model are investigated 

by the risk check to determine the extent of uncaptured risk. Table 5 shows the risk check test results 

for the innovations of the EGARCH-M Skew-t model.  

Table 5. Risk check for the innovations of EGARCH-M Skew-t. 

Test Name Results 

Normality SW 0.9912 *** 

JB 172.6900 *** 

AD 7.6300 *** 

Heteroscedasticity LB2 32.1690 ** 

ARCH-LM 99.6250 *** 

Randomness Bartels rank −0.9442 

Cox-Stuart 1033.0000 

BDS 0.4998 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, respectively 
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From Table 5, the normality tests show that the innovations are asymmetric in nature, indicating that 

asymmetry has been inadequately captured. Since the p-values of the heteroscedasticity tests are significant, 

this means that volatility is present within the innovations and remains uncaptured. This finding is in 

contrast to Dwarika et al. (2021) and Ilupeju (2016). It could be due to this study’s selected sample period, 

which included highly volatile periods, such as the 2008 financial crisis and recent COVID-19 pandemic.  

The randomness tests reveal that the innovations exhibit random behavior, hence, an indication 

of uncaptured risk. In conclusion, the asymmetric, volatile and random nature of the innovations is 

inadequately captured by EGARCH-M Skew-t. The overall finding of uncaptured risk is in line with 

Mangani (2008), Mandimika and Chinzara (2012), Ilupeju (2016) and Dwarika et al. (2021). The failed 

risk check motivates the employment of more robust nonnormal innovation distributions 

4.3. Different innovation distributions and model diagnostics 

4.3.1. PIVD 

The different innovation distributions are fitted to the standardized innovations extracted from 

EGARCH-M Skew-t. Table 6 shows the ML parameter estimates of the PIVD. 

Table 6. ML parameter estimates of the PIVD. 

𝑚̂ 𝑣̂ 𝜆̂ 𝜃 AD test 

(𝑝-value) 

8.9423 6.3842 1.4370 3.5814 0.2370 

(0.9768) 

From Table 6, 𝑚̂ is 8.9423 which indicates a positive and high kurtosis value. More specifically, 

a heavy-tailed distribution, as expected, in line with a PIVD and the market characteristics of an 

emerging market. The sign of the skewness parameter 6.3842 indicates a positively skewed distribution. 

The AD test indicates that the innovations follow a normal distribution. Thus, it can be concluded that 

the PIVD outperforms the Skew-t distribution and is a more robust fit for the innovations, in line with 

Ilupeju (2016) and Kuang (2020).  

4.3.2. GEVD 

Following Ilupeju (2016), the block size used in this study is five to ensure accurate results. Table 

7 shows the ML parameter estimates of the GEVD with the Standard Errors (SE) in brackets. Let 𝑧𝑡 = 

positive innovations and 𝑧𝑡
∗ = −𝑧𝑡 = negative innovations. 

Table 7. ML parameter estimates of the GEVD. 

 Maxima (𝑚) (𝜉) 

SE(𝜉) 

(𝜃) 

SE(𝜃) 

(𝜆̂) 

SE(𝜆̂) 

AD test 

(𝑝-value) 

𝑧𝑡 850.2000 −0.1441 

(0.0133) 

0.8652 

(0.0204) 

0.5538 

(0.0139) 

1.7572 

(0.1254) 

𝑧𝑡
∗ 850.2000 −0.0795 

(0.0210) 

0.8556 

(0.0257) 

0.6796 

(0.0181) 

0.2291 

(0.9803) 

𝑧𝑡 = positive innovations and 𝑧𝑡
∗ = −𝑧𝑡⁡=⁡negative innovations 
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From Table 7, the tail index represented by the shape parameter 𝜉 is less than zero for both the 

positive and negative innovations. This indicates a Weibull distribution, a short-tailed distribution 

defined as having a finite right tail. The AD test confirms that the GEVD is an adequate fit, since the 

innovations follow a normal distribution, in line with the PIVD above. Figures 2 and 3 show the model 

diagnostics of the GEVD for the standardized innovations. 

    

Figure 2. GEVD diagnostic plots of the 

positive innovations. 

Figure 3. GEVD diagnostic plots of the 

negative innovations.  

 From Figures 2 and 3, the PP plot shows a perfect fit of the innovations to the GEVD. However, 

from the QQ plots, the data points do show some departure from the theoretical straight line. From the 

return level plots, most of the points that deviate from the straight line still fall on or within the 

confidence bands; therefore, the fit is adequate. The density plot confirms the adequate fit as most of 

the points lie on the GEVD. According to Echaust and Just (2020), the GPD is considered more 

advantageous than the GEVD, because it focuses on all possible events greater than the threshold and 

not just the largest events. 

4.3.3. GPD 

The threshold selection is made, by graphical methods, before the GPD analysis. Figures 4 and 5 

show the mean innovation life plots for the standardized innovations.  
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Figure 4. Mean innovation life plot of the 

positive innovations. 

Figure 5. Mean innovation life plot of the 

negative innovations. 

From Figures 4 and 5, the selected threshold is estimated to be approximately 2. The parameter 

stability plots are further employed to explore the selected threshold values. Figures 6 and 7 show the 

parameter stability plots for the standardized innovations. 

  

Figure 6. Parameter stability plot for the 

positive innovations. 

Figure 7. Parameter stability plot for the 

negative innovations.  

From Figures 6 and 7, the stable region is from the threshold values 1.1 to 1.4, respectively. The 

Pareto quantile plots are employed to confirm the threshold values. Figures 8 and 9 show the Pareto 

quantile plot for the standardized innovations. 
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Figure 8. Pareto quantile plot for the positive 

innovations. 

Figure 9. Pareto quantile plot for the negative 

innovations.  

From Figures 8 and 9, the threshold for 𝑧𝑡  is 𝑢  = exp (0.1782694) = 1.1951 and 𝑧𝑡
∗ , 𝑢  = exp 

(0.3915099) = 1.4792. The selected threshold values are used to estimate the ML parameter estimates 

of the GPD. Table 8 shows the ML parameter estimates of the GPD. 

Table 8. ML parameter estimates of the GPD. 

 Threshold 

(𝑢) 

No of violations 

(𝑌) 

(𝜉) 

SE(𝜉) 

(𝜃) 

SE(𝜃) 

𝑧𝑡 1.1951 438 −0.0459 

(0.0442) 

0.4282 

(0.0279) 

𝑧𝑡
∗ 1.4792 326 −0.0351 

(0.0544) 

0.5989 

(0.0465) 

From Table 8, the number of observations above the threshold values is 438 and 326, respectively. 

These values are higher than those found in the studies by Naradh et al. (2021), Omari et al. (2020) 

and Ilupeju (2016), due to a larger sample period analyzed in this study. The scale parameters are 

significant and positive, in line with Naradh et al. (2021), Omari et al. (2020) and Ilupeju (2016). The 

shape parameters are negative, 𝜉 < 0 , indicating a thin-tailed Weibull distribution. This finding 

contrasts with the empirical expectations of an emerging market and the result of Naradh et al. (2021). 

However, such an exception was also found in the studies by Omari et al. (2020) and Ilupeju (2016). 

Figures 10 and 11 show the model diagnostics of the GPD for the standardized innovations. 

From Figures 10 and 11, the PP plot shows that the empirical and theoretical distributions are in 

alignment. However, similar to the case of the GEVD above, the data points from the QQ plots show 

deviation from the theoretical straight line, especially for the negative innovations. From the return 

level plots, the data points either lie on or fall within the confidence bands, indicating an adequate fit. 

The density plot confirms the adequate fit as most points lie along the GPD. In conclusion, the model 
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diagnostics of the EVT distributions, the GEVD and GPD, are in line with Naradh et al. (2021), Khan 

et al. (2021) and Ilupeju (2016).  

  

Figure 10. GPD diagnostic plots of the 

positive innovations. 

Figure 11. GPD diagnostic plots of the 

negative innovations. 

4.3.4. Stable 

Table 9 shows the ML parameter estimates of the Stable distribution and the normality test statistics.  

Table 9. ML parameter estimates of the Stable distribution. 

𝛼̂ 𝑣̂ 𝜃 𝜆̂ AD test 

(𝑝-value) 

KS test 

(𝑝-value) 

1.9104 −0.9571 0.6742 0.0715 1.3003 

(0.2323) 

0.0137 

(0.3993) 

From Table 9, skewness represented by 𝑣̂  is negative, indicating that the innovations are 

negatively skewed. Since 𝛼̂  < 2, this results in an infinite variance and heavy tails, in line with 

empirical expectations. Both normality tests show that the innovations follow a normal, or rather, a 

Stable distribution. Hence, Stable is a robust fitting probability distribution to the ALSI returns. Figures 

12 and 13 show the graphical model diagnostics of the Stable distribution. 

From Figure 12, there appears to be an almost perfect fit between the empirical and theoretical fit 

of the innovations to the Stable distribution. Figure 13 confirms an adequate fitting distribution by the 

empirical and theoretical lines being in perfect alignment. The optimal fit of Stable is in line with 

Naradh et al. (2021), Bautista and Mora (2020), Bautista and Mata (2020) and Ilupeju (2016). 
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Figure 12. Stable density plot of the 

innovations. 

Figure 13. Variance stabilized PP plot of the 

innovations.  

4.4. VaR and backtesting 

Following several studies, such as Kuang (2020), Ayed et al. (2020) and Echaust and Just (2020), 

the forecast power of the VaR estimates of EGARCH-M with the different innovation distributions are 

analyzed by the backtesting procedure, which consists of the VR, Kupiec unconditional test, 

Christoffersen conditional test and VaR duration test. Table 10 shows the relevant VaR estimates for 

different levels (1, 2.5, 97.5 and 99%).  

Table 10. VaR estimates for the different levels. 

Position Short Long 

Level 1% 2.5% 97.5% 99% 

EGARCH-M PIVD −2.6831 −2.1488 1.8037 2.1325 

EGARCH-M GEVD −0.2479 −0.0792 2.4455 2.7275 

EGARCH-M GPD 0.0060 0.0152 1.4532 1.7777 

EGARCH-M Stable −2.7607 −2.1076 1.8418 2.1738 

From Table 10, the highest VaR estimates are produced by the GPD and GEVD at the short and 

long positions, respectively. In contrast, the robust VaR estimates are produced by Stable at 1%, PIVD 

at 2.5% and the GPD at the long position. Overall, GEVD has the highest VaR estimate and Stable the 

lowest. The EVT distributions are considered inadequate in fitting the innovations for the short position. 

Khan et al. (2021) examined only the long position and found the highest VaR estimate for the GPD 

at 95% in the Indian stock market. With respect to South Africa, this finding is in line with Naradh et 

al. (2021), who found that the GPD had the highest VaR estimate, in the short position and long position, 

for the JSE Mining Index and ALSI, respectively.  

This finding supports Ilupeju (2016), who found the highest VaR estimate for the GPD at 1%, but 

contrasts to GEVD which had the lowest VaR estimates at 2.5%. In the study by Bautista and Mata 

(2020), the authors found that Stable had the lowest VaR estimates at the examined long position for 
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the Mexican Stock Exchange. Naradh et al. (2021) also found Stable to be optimal at the short and 

long positions. This contrasts with Ilupeju (2016), who found Stable with the highest VaR with the 

exception of the 1% level. The VaR estimates are examined by the backtesting procedure, as 

recommended by the Basel Accord, to determine the optimal innovation distribution. Table 11 shows 

the VR estimates for the different levels. 

Table 11. VR estimates for the different levels. 

Position Short Long 

Level 1% 2.5% 97.5% 99% 

EGARCH-M PIVD 0.9286 0.9811 0.9998 1.0005 

EGARCH-M GEVD 42.5476 19.7264 1.0203 1.0090 

EGARCH-M GPD 53.0476 21.1981 0.9681 0.9829 

EGARCH-M Stable 0.8333 1.0283 1.0024 1.0021 

 From Table 11, the majority of the VRs indicate an optimal forecast since they are between 0.8 

and 1.2. The GEVD and GPD in the short position are the exceptions, as the VRs are well above 1, 

indicating that risk has been overestimated. This is in line with the robustness of the EVT distributions 

as indicated by the VaR estimates above. Tables 12 and 13 show the p-values of the Kupiec 

unconditional and Christoffersen conditional joint tests, respectively. Table 14 shows the p-values of 

the VaR duration-based test.  

Table 12. p-values of the unconditional test. 

Position Short Long 

Level 1% 2.5% 97.5% 99% 

EGARCH-M PIVD 0.5832 0.8225 0.8658 0.8149 

EGARCH-M GEVD X X - < 0.0001 

EGARCH-M GPD X X X - 

EGARCH-M Stable 0.2324 0.7898 0.3552 0.1741 

NOTE: “X” = VaR-GARCH-M models that are inadequate, “-” = Kupiec unconditional test statistic is rejected at the 5% 

level of significance due to an underestimation of the realized values 

Table 13. p-values of the conditional test. 

Position Short Long 

Level 1% 2.5% 97.5% 99% 

EGARCH-M PIVD 0.5995 0.9364 0.4592 0.6526 

EGARCH-M GEVD X X - < 0.0001 

EGARCH-M GPD X X X - 

EGARCH-M Stable 0.3665 0.9577 0.4222 0.3018 

NOTE: “X” = VaR-GARCH-M models that are inadequate, “-” = Christoffersen conditional joint test statistic is rejected 

at the 5% level of significance due to an underestimation of the realized values 

 From Tables 12 and 13, it can be seen that the values of the conditional joint test and unconditional 

test are present for the same levels. Both the PIVD and Stable passed the conditional and unconditional 

coverage tests at the given levels of 1, 2.5, 97.5 and 99%. The optimal performance of Stable is in line 

with Naradh et al. (2021), Bautista and Mata (2020) and Ilupeju (2016). However, since the p-values 
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for the PIVD are the highest relative to Stable, PIVD is the optimal innovation distribution. Model 

inadequacy is indicated for the remaining levels, as well as both the EVT distributions for the overall 

short and long position, due to an over or underestimation of the realized values. The null hypothesis 

is rejected for the long position of the GEVD and 99% level of GPD, consolidating model inadequacy 

of the EVT distributions.  

Table 14. p-values of the duration-based test. 

Position Short Long 

Level 1% 2.5% 97.5% 99% 

EGARCH-M PIVD 0.9546 0.8800 - - 

EGARCH-M GEVD - - - - 

EGARCH-M GPD - - - - 

EGARCH-M Stable 0.6607 0.8288 - - 

NOTE: “-” = duration-based test is rejected at the 5% level of significance due to an underestimation of the realized values 

 From Table 14, the null hypothesis that the time between violations has no memory is rejected 

for all the innovation distributions of the long position. The same decision is made for both the GEVD 

and GPD in the short position, meaning that the EVT innovation distributions are incorrectly specified. 

The null is not rejected for the levels 1 and 2.5%, indicating model adequacy, where the majority of 

the p-values for the PIVD are higher than Stable.  

 In conclusion of the backtesting procedure, the PIVD is the optimal innovation distribution due 

to higher p-values relative to Stable and the EVT distributions which are found to be inadequate. The 

outperformance of the PIVD and Stable compared to the EVT distributions are in line with Naradh et 

al. (2021), Kuang (2020) and Ilupeju (2016). This is in contrast to Khan et al. (2021), who concluded 

the GPD is efficient and Omari et al. (2020), who concluded that the GARCH approach in the context 

of the EVT distributions is optimal. The sample periods used in the study by Khan et al. (2021) and 

Omari et al. (2020), were less than a year and fourteen and a half years, respectively. Therefore, the 

EVT distributions are considered more optimal in studies with smaller sample periods. In addition, it 

is vital to consider several innovation distributions and the backtesting procedure to determine which 

distribution optimizes the tails of any GARCH model. 

5. Conclusions 

The only known study, to the best of the authors knowledge, to investigate a different innovation 

distribution (Skewed GED) in the context of GARCH-M, was by Delis et al. (2021). Therefore, this 

was the first study, on a local and international level, to investigate different nonnormal innovation 

distributions in combination with GARCH-M type models. The aim was to investigate the optimal 

GARCH-M model and innovation distribution to determine the risk-return relationship. The primary 

aim was to determine the optimal GARCH-M type model. This study found EGARCH-M as the 

optimal model, in line with Naradh et al. (2021), Saddah and Sitanggang (2020) and Omari et al. (2020). 

More specifically, EGARCH-M Skew-t was found to be optimal. However, the innovations failed to 

capture asymmetry, in line with previous South African studies by Mangani (2008), Mandimika and 

Chinzara (2012), Ilupeju (2016) and Dwarika et al. (2021). Therefore, this study employed more robust 

innovation distributions, which led to the secondary aim, which was to find an innovation distribution 

to optimize the GARCH-M model tails, i.e., optimally capture risk. 
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The nonnormal innovation distributions employed were the PIVD, GEVD, GPD and Stable. 

These distributions were considered more robust and flexible because they have the ability to take into 

account heavy tails and other higher moment properties such as skewness and excess kurtosis. This is 

relevant in the case of emerging markets, such as South Africa, which are characterized by heavy tails 

due to high levels of volatility. Model diagnostics revealed that the employment of the different 

innovation distributions was robust as there were no major deviations between the empirical and 

theoretical distributions. As the Basel Accord I recommended, more rigorous testing, VaR and 

backtesting methods were employed. From the VaR and backtesting analysis, it was found that the 

EVT distributions, the GEVD and GPD, were found to be the least robust relative to Stable and the 

PIVD. While the results of Stable and the PIVD were close, the PIVD was the optimal innovation 

distribution as it had the higher p-values.   

Therefore, investors, risk managers and policymakers would opt to use the EGARCH-M in 

combination with the PIVD when modelling the risk-return relationship in the South African market. 

The robustness of EGARCH-M is supported by previous studies by Dwarika et al. (2021), Naradh et 

al. (2021), Saddah and Sitanggang (2020) and Omari et al. (2020). Stable was found to be an optimal 

innovation distribution by Bautista and Mora (2020), Bautista and Mata (2020) Naradh et al. (2021) 

and Ilupeju (2016). However, in the context of the risk-return relationship, this study found PIVD to 

be optimal, followed by Stable. This is in line with the study conducted by Kuang (2020), who found 

that the PIVD outperformed several other distributions, namely, the Stud-t, GEVD and GPD.  

The EVT distributions, the GEVD and GPD, were found to be suboptimal in this study, in line 

with Naradh et al. (2021), Kuang (2020) and Ilupeju (2016). Based on prior studies, Khan et al. (2021) 

and Omari et al. (2020), the EVT distributions were found to be optimal given that smaller sample 

periods were used. Thus, it would be optimal to consider several distributions to ensure an unbiased 

estimation of the most robust innovation distribution, irrespective of the sample period used in a study. 

To conclude, this study confirmed that the standard GARCH-M and conventional normal type 

innovation distributions are ineffective in fitting the asymmetric, volatile and random nature of 

financial data. It should be noted that this study focused on asymmetry and employed normality tests 

for the model diagnostics of the innovation distributions. Therefore, the first recommendation is to 

include heteroscedasticity and randomness tests to investigate other properties, such as the volatile and 

random nature of the innovations. In other words, to apply the complete risk check to the fitted 

innovation distributions. The second recommendation is to investigate the risk-return relationship 

using GARCH-M type models in direct combination with the more robust nonnormal innovation 

distributions. Finally, to explore other nonnormal innovation distributions in the context of GARCH-

M, that were not included in the scope of this study, such as the Inverse Gaussian, Generalized 

Hyperbolic, Johnson’s SU and Skewed GED. 
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