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Abstract: The Bitcoin futures market is growing and, as such, becoming more sophisticated. A small
change in price may therefore have a large impact on the market. This paper investigates the propensity
of 18 different competing GARCH family models and error distributions to model and forecast the
volatility of Bitcoin futures returns. The study employs two different time periods (from January 2, 2018
to June 14, 2021; and March 11, 2020 to June 14, 2021). From the results, iGARCH(1,1)-Students’t-
distribution (STD) is selected as the best performing model among the constructed models for the first
period. By fitting the best three models from the first period to the second period, the iGARCH(1,1)-STD
is again selected as the optimal model. However, the iGARCH(1,1)-normal inverse Gaussian (NIG)
provides a significant variance forecast when used for in-sample and out-of-sample forecasts before
the financial crisis and during the financial crisis, respectively. Our results indicate the impacts of past
squared shocks on squared returns of Bitcoin futures and the ability of iGARCH(1,1)-STD to capture
such innovations and the propensity of iGARCH(1,1)-NIG to optimally forecast the variance of Bitcoin
futures returns.
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market; financial crisis
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1. Introduction

The first Bitcoin futures were offered on December 18, 2017 by the Chicago Board of Options
Exchange (CBOE) Cheng (2017) and have already gained control in the market. Investors who could
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not hold spot positions in the Bitcoin market because of compliance regulations can now trade on the
Bitcoin futures market because they are traded on an exchange regulated market with very low margin
requirements (Baur and Dimpfl, 2019). Bitcoin futures are cash settled without the need for a Bitcoin
wallet and do serve as a hedging instrument. Similarly to commodities/stocks futures, Bitcoin futures
permit investors to speculate on falling prices (“go short”). According to Shiller (2017), the inability
to go short was the reason for the bubble-like evolution of Bitcoin price in 2017. In 2017, the price
of Bitcoin doubled four times leading to uncertainty in the price of Bitcoin. Volatility which relates
to uncertainty about an assets value is therefore significant when modelling the price of an asset. The
concept of volatility is applied in different financial and economic areas such as asset pricing, monetary
policy, derivatives trading, and risk management. Volatility in the case of market uncertainty serves as a
measure of consumers’ and investors’ confidence in the market. Volatility modelling and forecasting is
therefore important in decision-making process of most investors on the futures market. The Bitcoin
futures market is growing and as such becoming more sophisticated. A small change in price may
therefore have large impact on the market.

Contrary to the vast number of studies on volatility modeling and forecasting of Bitcoin spot returns
(e.g. Katsiampa, 2017; Naimy and Hayek, 2018; Gyamerah, 2019) in the literature, there is scarcity of
research on the volatility of Bitcoin futures return. In this paper, we contribute to the limited studies and
literature on the volatility of Bitcoin futures returns Guo (2021a,b). Volatility modeling of Bitcoin return
series using time-varying GARCH models has gained a lot of attention. Katsiampa (2017) explored the
propensity of different generalized auto-regressive conditional heteroskedasticity (GARCH) type models
to account for the volatility in Bitcoin price returns. They concluded that the AR-CGARCH model is
the best fit model with respect to goodness-of-fit to the data. Naimy and Hayek (2018) estimated and
compared the forecasting ability of different GARCH type models and concluded that the exponential
GARCH(1,1) outperforms standard GARCH(1,1) model for both in-sample and out-of-sample forecast.
Using Bitcoin return series from January 01, 2014 to August 16, 2014, Gyamerah (2019) concluded that
threshold GARCH with normal inverse Gaussian error distribution is the optimal model to model and
estimate the volatility in Bitcoin return series. By studying the volatility term structure, Guo (2021b)
noticed that the price volatility of Bitcoin futures minimizes as the delivery date draws nearer. Their
result is in contrast to what is normally observed in the commodity futures market, called the Samuelson
effect. On the aspect of GARCH modeling, Guo (2021a) used GARCH type family models to explore
the quantitative risk management of Bitcoin futures via Value at Risk. They captured the residuals
of Bitcoin futures return using the normal inverse Gaussian distribution since it fully explained the
heavy-tailed distribution of the residuals. In their study on application of GARCH models on Bitcoin
futures option, Venter and Maré (2021) concluded that symmetric Heston-Nandi model is the optimal
model for Bitcoin futures option.

This study therefore seeks to model and forecast the volatility of Bitcoin futures returns. Specifically,
the study attempts to use different GARCH family models and different error distributions (Student’s
t distribution, normal inverse Gaussian, and generalized error distribution) to model and forecast the
volatility of Bitcoin futures returns from January 02, 2018 to June 14, 2021, which includes the 2020
financial crisis. From previous studies explored in the literature and to the best of our knowledge, this
paper is the first of its kind to comprehensively investigate the relative performance of six (6) different
GARCH family models and three (3) different error distributions. This paper derives its motivation
from the fact that Bitcoin futures as a financial asset are gaining a lot of attention in the cryptocurrency
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market. The interrupted transactions in futures contracts from December, 2017 with growing trading
volumes affirm the exceptional influence of Bitcoin futures.

This paper is organized as follows: Section 2 discussues the methods used for the study; Section
3 presents the descriptive statistics analysis; Section 4 presents the empirical analysis; and section 5
concudes the study.

2. Methods

2.1. Data and variable construction

The data of Bitcoin futures are downloaded from Yahoo Finance (https://finance.yahoo.com/)
and cover the period from the period 02/02/2018 to 14/06/2021. This period covers the first day that
Bitcoin futures data was publicly available on Yahoo Finance to the time this study was conducted.
Returns (logarithmic returns, Rt) are computed from the historical adjusted closing price of Bitcoin
futures using Equation 1,

Rt = log
( Pt

Pt−1

)
(1)

Logarithmic returns are used because of their statistical properties such as ergocidity and stationarity.
It should be noted that Bitcoin futures with the ticker BTC = F was taken because of the historical
completeness of the data. The Shapiro-Wilk and Anderson-Darling tests are used to test for the
normality of the residuals of the returns. The ARCH Lagrange multiplier (ARCH LM) and Ljung Box
(LB) are employed to test for the auto-regressive conditional heteroskedasticity (ARCH) effects in the
returns data of Bitcoin futures.

2.2. Specification of different GARCH models

To specify the variance equation to model the presence of volatility in differenced logarithmic
futures prices (i.e., futures price returns), we used six different GARCH family models, each of
which has a different purpose. In particular, we modeled the variance for a constant mean equation
using standard GARCH (sGARCH), threshold GARCH (tGARCH), integrated GARCH (iGARCH),
exponential GARCH (eGARCH) , asymmetric Power GARCH (apARCH) and Glosten-Jagannathan-
Runkle GARCH (gjr-GARCH) models. The sensitivity of the estimation results of the models was
checked by changing the distribution assumptions. More specifically, the sensitivity and appropriateness
of the estimation results were observed by changing the distribution assumption to the Student’s
t-distribution (STD), generalized error distribution (GED), and the normal inverse Gaussian (NIG)
distribution.

2.2.1. sGARCH

The standard GARCH (sGARCH) model is a generalization of ARCH model where it allows the
conditional volatility to be dependent upon its own lags. Suppose p and q are the number of lagged
squared return included and the number of lagged volatilities, then sGARCH(p,q) model is defined as

σ2
t = ω +

p∑
m=1

αmϵ
2
t−m +

q∑
n=1

βnσ
2
t−n, (2)

where ω > 0, αm > 0, βn ≥ 0 and for αm + βn < 1, sGARCH(1,1) is covariance stationary.
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2.2.2. tGARCH)

The conditional variance specification of tGARCH(p,q) is given as:

σ2
t = ω +

p∑
m=1

(αmϵ
2
t−m + γmIt−mϵ

2
t−m) +

q∑
n=1

βnσ
2
t−n (3)

where

It−m =

1, if ϵt−m < 0 (bad news)
0, if ϵt−m ≥ 0 (good news)

(4)

The effects of good news is αm and bad news is αm + γm. Leverage and asymmetry exist when γm > 0
and γm , 0 respectively. The leverage effect in the model helps to differentiate negative and positive
shocks.

2.2.3. iGARCH

The iGARCH model is persistent in variance due to the fact that present information remains
important for different forecasting horizons.

σ2
t = ω +

p∑
m

βmσ
2
t−m +

q∑
n

(1 − βn)σ2
t−n, (5)

where αm + βn = 1

2.2.4. Exponential GARCH (eGARCH)

Developed by Nelson (1991), the Exponential GARCH (eGARCH) model integrate the asymmetries
in how volatility reacts to past returns. An eGARCH(p,q) model assumes the form

log(σ2
t ) = ω +

P∑
m=1

αm|bt−m| + γmbt−m +

q∑
n=1

βn log(σ2
t−n), (6)

where bt =
ϵt−m

σt−m
. γm is the leverage or asymmetric effect parameter. For eGARCH models, it is not

necessary to impose non-negativity constraints since the modeling is done on the logarithm of the
conditional volatility it is covariance stationary when |βn| < 1.

2.2.5. Asymmetric power GARCH (apARCH)

Developed by Ding et al. (1993), apARCH is capable of capturing power effects, asymmetries, and
different structures that exists in the data. A apARCH(p,q) model is given as:

σδt = ω +

p∑
m=1

αm(|ϵt−m| − γmϵt−m)δ +
q∑

n=1

βnσ
δ
t−n, (7)

where ω > 0, δ ≥ 0, αm ≥ 0, βn ≥ 0,−1 ≤ γm ≤ 1. δ and γm denote Box-Cox transformation of the
conditional standard deviation and the leverage effect respectively. Negative innovation has an effect of
αm + γm and positive innovation has an effect of αm.
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2.2.6. Glosten-Jagannathan-Runkle GARCH (gjr-GARCH)

Similar to the eGARCH model, the gjrGARCH model is also able to capture asymmetries in volatility.
The gjrGARCH model was developed by Glosten et al. (1993) and it is an extension of sGARCH model
with an added term which helps to capture any asymmetries. The extra term is zero if the return is
greater than zero. Define a gjrGARCH(p,q) model as

σ2
t = ω +

p∑
m=1

(αmϵ
2
t−m + γmIt−mϵ

2
t−m) +

q∑
n=1

βnσ
2
t−n (8)

where

It−m =

1, if ϵt−1 ≤ 0
0, otherwise

(9)

where ω > 0, αm > 0, βn ≥ 0, αm + γm ≥ 0 and gjrGARC(1,1) is covariance stationary for γm <

2(1 − αm − βn)
In this study, maximum likelihood estimator is used to estimating the parameters of the GARCH models.

2.3. Error distributions

There is strong evidence that suggests that GARCH models with non-normal distributions are more
robust in what comes to volatility forecasting than other historical models (Liu and Morley, 2009).

From Table 2, it is clear that the random shocks (ϵt) of Bitcoin futures return are not normally
distributed. It is therefore appropriate to consider other types of distribution that can capture the
non-normality in the residual data. In this study, three distributions are considered: Generalized Error
Distribution, Student-t distribution and Normal Inverse Gaussian (NIG) types of distribution. These
distributions are capable of capturing any asymmetric effect, fat tails, and peaks in the residual data
(Gyamerah, 2019; Guo, 2021a).

2.4. Model selection criteria

Different information criterion (Akaike Information Criterion (AIC) and Schwarz-Bayesian Informa-
tion Criterion (BIC)) are used to compare the fit of the GARCH models. In selecting the best fit model
among the GARCH models, the model with the lowest AIC or BIC values is selected as the best model.

2.5. Model performance evaluation

In this study, two evaluation metrics(mean squared error (MSE) and mean absolute error (MAE)) are
used to evaluate the forecasting accuracy of the best three GARCH models, each obtained from the error
distributions. The lower the MAE value and MSE value, the better the forecasting accuracy of that model.

MAE =
1
N

N∑
i=1

|σi − σ̂i| (10)

MS E =
1
N

N∑
i=1

(σi − σ̂i)2, (11)

where N is the total number of forecasting horizon, σ and σ̂i are the the observed volatility (absolute
value of returns) and the forecast of the volatility.
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3. Descriptive statistics analysis

3.1. Basic statistical analysis

Figure 1 shows the price dynamics between 02/01/2018 to 14/06/2021. The minimum and maxi-
mum futures prices are, respectively, 3145 and 63840. These values were recorded on 14/12/2018 and
15/04/2021 respectively. The maximum price occurred about a month after WHO declared COVID-19
as a pandemic. From Table 1, the skewness (2.211) and kurtosis (3.682) values of Bitcoin futures price
indicate peakness in its price distribution. With a standard deviation of 13940, the price distribution is
spread out over a wider range.

From Table 1, the returns of Bitcoin futures have a daily mean of 0.001145 and a daily volatility
of 0.048363. That is, the daily mean is about 2.37% of the daily volatility. The kurtosis value is high
for Bitcoin futures returns, indicating the presence of extreme values in the return distribution. The
skewness value points toward asymmetrical properties of the returns’ distribution. This is validated
by the Anderson-Darling (AD) and Shapiro-Wilk (SW) tests (see Table 2). At 5% significance level,
AD and SW tests reject the null hypothesis that the returns of Bitcoin futures are normally distributed.
These indicate that the returns of Bitcoin futures are not likely to be normally distributed.

Figure 2 presents the plot of the returns series and 95% confidence interval of the returns series.
Clearly, we are 95% confident that the returns of Bitcoin futures will be between 0.09479 and −0.09479.
For the period under consideration, the maximum positive and negative returns occurred on 13/05/2019
and 12/03/2020 and with values of 0.2223577 and −0.2677255 respectively. These values have been
indicated in Figure 2 (right plot). From this, we can easily detect the financial crisis in 2020 with a
sharp negative return. Clearly, there is also a pattern of volatility clustering in the returns series.

Table 1. Descriptive statistics of Bitcoin futures price and return.
N Min Max Mean SE Mean Median Skewness Kurtosis SD AD test SW test

Bitcoin (BTCF)-Price 860 3145 63840 13730 475.3 8932 2.211 3.682 13940 p < 2e-16 p < 2e-16
Bitcoin (BTCF)-Return 859 -0.267726 0.222358 0.001145 0.001650 0.000801 -0.370932 4.537262 0.048363 p < 2e-16 p < 2e-16

N=number of sample; Min=Minimum; Max =Maximum; SE Mean =Standard Error of Mean; SD=Standard Deviation

Figure 1. Closing price of Bitcoin futures.
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Figure 2. Returns series (left) and 95% confidence interval (right) of Bitcoin futures.

3.2. Testing for normality of residuals and ARCH effects

At 5% level of significance, the null hypothesis of normally distributed residuals is rejected using both the
SW and AD tests (see Table 2). We can therefore conclude that the residuals are not normally distributed.

From Table 3, stationarity is rejected at 5% significance level. Using the ARCH LM test and at
5% level of significance, we can reject the null hypothesis of no ARCH effects. Also, at 5% level of
significance, we can reject the null hypothesis of independently distributed squared residuals of Bitcoin
futures return when the Ljung Box test is used. Both LM and Ljung Box test confirm the presence of
ARCH effects in Bitcoin futures returns; hence we can employ GARCH-type family models to model
the return series of Bitcoin futures.

Table 2. Results of normality test using Shapiro-Wilk’s and Anderson-Darling method.

Shapiro-Wilk Anderson-Darling
P-Value <2e-16 <2e-16

Test Statistics 0.93 16

Test was conducted on 5% α level of significance

Table 3. Results of ARCH LM, Ljung Box and ADF test for BTCF.

ARCH Lagrange Multiplier (LM) Ljung Box ADF
P-Value 0.00161 2e-08 0.01

Test Statistics 54 1.1 -20

4. Empirical analysis

4.1. Estimation of GARCH model

To evaluate the performance of different GARCH models in capturing the volatility in Bitcoin futures
returns, we tested the performance of the GARCH models in the time intervals 02/01/2018 to 14/06/2021
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and from 11/03/2020 to 14/06/2021. The first time interval covers the first time that Bitcoin futures
data was publicly available on Yahoo Finance from the time this study was conducted. The second
time interval covers the period when the World Health Organization (WHO) declared COVID-19 as a
pandemic, which caused the 2020 financial crisis. Since the ARCH effect was detected in the model,
GARCH estimation was performed with different error specifications. The Tables’ 4-6 present the
estimation results of GARCH family models with the three distributional assumptions for the return
series of Bitcoin futures. The maximum likelihood parameter estimates and the associated standard
errors, AIC, and BIC values are reported in these tables. The GARCH models were compared relative
to each other using the information criteria AIC and BIC. The BIC penalizes the number of parameters
more heavily than the AIC and therefore favours simpler models. The standard errors of the estimates are
presented in parentheses.

The sGARCH model was applied for the purpose of capturing variance dynamic. Clearly, from Table
A1, the stationary condition of α1 + β1 < 1 for sGARCH(1,1) has been met, hence GARCH process for
all the distribution assumptions are weakly stationary. The ARCH term (α1) and GARCH term (β1) are
positive for all the distribution errors.

4.2. Estimation based on the GARCH-GED model

Table 4 reports the results of fitting a different GARCH(1,1) model with conditionally t-distributed
innovations for daily Bitcoin futures returns. For GARCH(1,1) models with conditionally t-distributed
errors, the iGARCH(1,1) has the lowest AIC and BIC values. The QQ plot in Figure A1 is in congru-
ous with earlier observational values of AIC and BIC for iGARCH(1,1)-STD model. These results
demonstrate that iGARCH(1,1)-STD is optimal in modeling the effects of past squared shocks on the
squared returns and to also capture the residuals distribution in the return series of Bitcoin futures. All
the estimated parameters of iGARCH(1,1)-STD model are statistically significant at 5% significance
level. The sum of α1 = 0.106635 and β1 = 0.893365 is equal to 1 as required for any iGARCH model,
which indicates persistence of volatility. With an α1 = 0.106635, Bitcoin futures return is jumpy. News
of Bitcoin futures about past volatility have an explanatory power on current volatility. This is evident
from the positive and significant coefficients of α1 and β1.

Table 4. Estimation results of GARCH family models for Bitcoin futures return with Student-t
distributional assumption.

Model
Estimated Parameters

µ ω α1 β1 η11 γ1 δ shape AIC BIC
sGARCH(1,1) 0.001664∗ 0.000060∗ 0.105875 0.893125 - - - 2.999262 −3.5373 −3.5096

(0.001069) (0.000033) (0.026727) (0.021343) (-) (-) (-) (0.294213)
tGARCH(1,1) 0.001252 0.001258 0.163539 0.886712 -0.086243 - - 2.672477 −3.5390 −3.5058

(0.001254) (0.000716) (0.037106) (0.021241) (0.113943) (-) (0.277959) (0.277959)
iGARCH(1,1) 0.001663∗ 0.000059∗∗∗ 0.106635 0.893365 - - - 2.990437 −3.5397 −3.5175

(0.001068) (0.000030) (0.020543) (-) (-) (-) (-) (0.213747)
eGARCH(1,1)) 0.001303 -0.112149 0.015673∗ 0.980604 - 0.278848 - 2.721974 −3.5427 −3.5095

(0.000289) (0.041624) (0.030645) (0.007757) (-) (0.067328) (-) (0.305861)
apARCH(1,1)) 0.001340∗ 0.000588∗ 0.163180 0.890757 - −0.071496∗ 1.213898∗ 2.694736 −3.5371 −3.4983

(0.001107) (0.001094) (0.045643) (0.017330) (-) (0.130387) (0.590110) (0.311436)
gjrGARCH(1,1)) 0.001676∗ 0.000059∗∗ 0.108898∗∗∗ 0.893594 - −0.006984∗ - 3.005712 −3.5350 −3.5018

(0.001084) (0.000034) (0.034112) (0.021714) (-) (0.038282) (-) (0.293892)

Note: standard errors are in bracket, ∗∗∗, ∗∗, and ∗ imply statistical significance at the 1%, 5%, and 10% level, respectively.
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4.3. Estimation based on the GARCH-GED model

With the lowest AIC and BIC values of −3.5353 and −3.5132 respectively, iGARCH(1,1)-GED is
the optimal model among all the GARCH(1,1)-GED models (See Table 5).

Table 5. Estimation results of GARCH family models for Bitcoin futures return with general-
ized error distribution assumption.

Model
Estimated Parameters

µ ω α1 β1 η11 γ1 δ shape AIC BIC
sGARCH(1,1) 0.000681 0.000076∗∗∗ 0.086968 0.884133 - - - 0.900692 −3.5359 −3.5082

(0.000154) (0.000034) (0.023399) (0.027653) (-) (-) (-) (0.053196)
TGARCH(1,1) 0.000000∗ 0.002391∗∗∗ 0.128371 0.862617 −0.015097∗ - - 0.876118 −3.5318 −3.4986

(0.000048) (0.000939) (0.028177) (0.031352) (0.129982) (-) (-) (0.052555)
iGARCH(1,1) 0.000000∗ 0.000053∗∗∗ 0.111739 0.888261 - - - 0.848831 −3.5353 −3.5132

(0.000044) (0.000024) (0.026253) (-) (-) (-) (-) (0.047908)
eGARCH(1,1)) 0.00000∗ -0.29120 −0.00426∗ 0.95283 - 0.22056 - 0.87908 −3.5349 −3.5017

(0.000049) (0.101340) (0.026079) (0.016309) (-) (0.043414) (-) (0.052749)
apARCH(1,1)) 0.000493∗∗∗ 0.000187∗ 0.100026 0.879429 - 0.022567∗ 1.737045 0.898400 −3.5315 −3.4927

(0.000203) (0.000240) (0.030610) (0.028709) (-) (0.104785) (0.391820) (0.053134)
gjrGARCH(1,1)) 0.000000∗ 0.000079∗∗∗ 0.082188 0.882615 - 0.011581∗ - 0.891387 −3.5339 −3.5007

(0.000053) (0.000035) (0.028770) (0.028068) (-) (0.034613) (-) (0.053999)

Note: standard errors are in bracket, ∗∗∗, ∗∗, and ∗ imply statistical significance at the 1%, 5%, and 10% level, respectively.

4.4. Estimation based on the GARCH-NIG model

The best performing model among the different GARCH-NIG models is iGARCH-NIG. This is
evident from its lowest AIC and BIC values of −3.5416 and −3.5139 respectively.

Table 6. Estimation results of GARCH family models for Bitcoin futures return with normal
inverse gaussion distributional assumption.

Model
Estimated Parameters

µ ω α1 β1 η11 γ1 δ skew shape AIC BIC
sGARCH(1,1) 0.001215∗ 0.000059∗∗∗ 0.096789 0.890399 - - - −0.027705∗ 0.422959 −3.5398 −3.5066

(0.001427) (0.000028) (0.024861) (0.023035) (-) (-) (-) (0.074202) (0.088495)
TGARCH(1,1) 0.001220∗ 0.000058∗∗∗ 0.099548 0.890794 - −0.005154∗ - −0.028101∗ 0.422188 −3.5375 −3.4988

(0.001634) (0.000033) (0.038197) (0.018084) (-) (0.044743) (-) (0.080220) (0.104442)
iGARCH(1,1) 0.001169∗ 0.000049∗∗∗ 0.107657 0.892343 - - - −0.028807∗ 0.390402 −3.5416 −3.5139

(0.001457) (0.000022) (.022101) (-) (-) (-) (-) (0.077171) (0.069449)
eGARCH(1,1) 0.000542∗ -0.191458 0.009095∗ 0.968640 - 0.232120 - −0.055214∗ 0.397532 −3.5416 −3.5028

(0.001412) (0.073537) (0.025764) (0.011902) (-) (0.042221) (-) (0.075690) (0.082720)
apARCH(1,1) 0.000653∗ 0.000668∗ 0.129881 0.884082 - −0.050379∗ 1.252465 −0.051396∗ 0.398624 −3.5373 −3.4930

(0.001459) (0.001080) (0.030803) (0.025187) (-) (0.116375) (0.450200) (0.077003) (0.084866)
gjrGARCH(1,1) 0.001220∗ 0.000058∗∗∗ 0.099548 0.890794 - −0.005154∗ - −0.028101∗ 0.422188 −3.5375 −3.4988

(0.001427) (0.000029) (0.032236) (0.023174) (-) (0.037028) (-) (0.074273) (0.088494)

Note: standard errors are in bracket, ∗∗∗, ∗∗, and ∗ imply statistical significance at the 1%, 5%, and 10% level, respectively.

4.5. Estimation results of GARCH during financial crisis

The best GARCH model from Table 4(iGARCH(1,1)-STD), Table 5(iGARCH(1,1)-GED) and Table
6(iGARCH(1,1)- NIG) are fitted to daily Bitcoin futures from 11/03/2020 to 14/06/2021. This is
necessary to help select the optimal model that can effectively model the volatility and capture the
residuals of Bitcoin futures return during financial crisis. From Table 7, iGARCH(1,1)-STD is selected
as the optimal model since it has the lowest AIC and BIC values. The propensity of the student-t
distribution to capture the residual series of Bitcoin futures return are in congruence to the results
obtained by Wilhelmsson (2006). Wilhelmsson (2006) concluded in their studies that using leptokurtic
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error distribution to capture the residuals in Standard and Poor’s 500 index futures return is appropriate
in variance forecast as compared to normal distribution.

Table 7. iGARCH(1,1) model with different error distribution for a subsample from
11/03/2020 to 14/06/2021.

Model
Estimated Parameters

µ ω α1 β1 skew shape AIC BIC
iGARCH(1,1)-STD 0.005470 0.000043∗ 0.111565 0.888435 - 4.027443 −3.4869 −3.4392

(0.001965) (0.000031) (0.032094) (-) (-) (0.779175)
iGARCH(1,1)-GED 0.004706∗ 0.000033∗ 0.104315 0.895685 - 1.118081 −3.4652 −3.4176

(0.002971) (0.000023) (0.034135) (-) (-) (0.107730)
iGARCH(1,1)-NIG 0.004391∗∗ 0.000040∗ 0.109908 0.890092 −0.112198∗ 0.881824 −3.4769 −3.4173

(0.002338) (0.000027) (0.032952) (-) (0.120317) (0.303135)

Note: standard errors are in bracket, ∗∗∗, ∗∗, and ∗ imply statistical significance at the 1%, 5%, and 10% level, respectively.

4.6. Volatility forecasting

4.6.1. In-sample and out-of-sample estimation

The in-sample comparison tells us how well a model fits the entire data set.

The best GARCH models from Tables 4-6 are used for in-sample and out-of-sample forecast in order
to check their forecasting ability. The model with the lowest mean square error and mean absolute error
is selected as the optimal model among the three models. The in-sample forecast is performed for the
period between 02/01/2018 to 11/03/2020 (before financial crisis period) and an out-of-sample forecast
is performed from the period between 11/03/2020 to 14/06/2021 (during financial crisis period).

Figure 3 shows the in-sample volatility of iGARCH-STD, iGARCH-GED, and iGARCH-NIG.
The evaluation metrics (MAE of 0.016894 and MSE of 0.126090) values from Table 8 show that
iGARCH-NIG model has a good forecasting ability pre-Covid period.

Out-of sample forecast are performed to verify the performance of three models during financial
crisis period. For the purpose of the test, sample period from 11/03/2020 to 14/06/2021 (consisting of
314 data points) were considered for out-of sample forecast. From Table 9, iGARCH(1,1)-NIG has the
lowest mean square error and mean absolute error values of 0.002075 and 0.032820. Based on Tables 8
and 9, iGARCH(1,1)-NIG is selected as the optimal model using forecasting ability as a measure of
performance.

Clearly, the NIG distribution is able to capture the distributional properties of the Bitcoin futures return.
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Figure 3. In-Sample volatility of iGARCH-STD, iGARCH-GED, and iGARCH-NIG.

Table 8. In-Sample evaluation of iGARCH(1,1)-STD, iGARCH(1,1)-GED, and
iGARCH(1,1)-NIG.

iGARCH(1,1)-STD iGARCH(1,1)-GED iGARCH(1,1)-NIG
MSE 0.019705 0.017984 0.016894
MAE 0.135840 0.129950 0.126090

Table 9. Out-of-Sample Evaluation of iGARCH(1,1)-STD, iGARCH(1,1)-GED, and
iGARCH(1,1)-NIG.

iGARCH(1,1)-STD iGARCH(1,1)-GED iGARCH(1,1)-NIG
MSE 0.002078 0.002088 0.002075
MAE 0.032870 0.033000 0.032820

4.7. Discussion

From Tables A4, there is a positive correlation between volatility and return of Bitcoin futures since
the estimate for β1 is greater than zero for all eGARCH(1,1) model with different error distributions.
The presence of asymmetric response in the return series of Bitcoin futures is established given the
non-zero asymmetric and leverage parameter values in all the gjrGARCH(1,1) and eGARCH(1,1)
models. The positive and significant leverage effect parameter values of all the eGARCH models
(eGARCH(1,1)-STD = 0.278848, eGARCH(1,1)-GED = 0.220560, eGARCH(1,1)-NIG = 0.232120)
demonstrate that positive shocks (good news) increase volatility more than negative shocks (bad news)
of the same sign. The negative and significant* leverage effect values in the gjrGARCH models (with
the exception of gjrGARCH(1,1)-GED) demonstrate that positive shocks (market advances) lead to
increased volatility to a greater extend than negative shocks (market retreats) of the same magnitude.
These results are consistent to the results of Kuhe (2018) who noted that the presence of leverage

*significant at 1% and 5%
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impacts and shocks persistence for different distributional assumptions in the Nigerial stock market.
From Tables A1 and A6, the sum of parameters α1 and β1 for sGARCH and gjrGARCH is less than
1 for the three distributions. Nevertheless, α1 < β1 in both GARCH models for the three different
distributions. This signifies that negative shocks do not have a larger effect on conditional volatility
than positive shocks of the same magnitude. These results is consistent to the findings of Thalassinos
et al. (2015) who concluded in their studdies that volatility of returns on Czech Stock Market can be
described by signinificant asymmetric and persistence impacts. Further, in most of the GARCH models,
the estimate of γ1 is negative giving proof of an inverted reaction of the volatility. In general, GARCH
models with conditionally t-distributed errors performed well as compared to GARCH models with
generalized error distribution and normal inverse Gaussian. This is demonstrated from the low AIC and
BIC values recorded for all GARCH-STD models. Generally, iGARCH models are the best performing
GARCH model for modelling the volatility of Bitcoin futures return for the selected period (02/01,2018
to 14/06/2021).

Similarly to the results obtained by Gyamerah (2019), the Normal Inverse Gaussian (NIG) error
distribution captured adequately the leptokurtic and skewness in the bitcoin futures returns data. This
indicates the efficiency of the NIG distribution.

5. Conclusions

In this paper, we investigate the relative performance of different GARCH family models (sGARCH,
tGARCH, iGARCH, eGARCH, apARCH, and gjrGARCH) and different error distributions (student-
t distribution (STD), generalized error distribution (GED), and normal inverse Gaussian (NIG)) in
modeling and forecasting volatility of Bitcoin futures returns using two different time periods. The first
period is from January 2, 2018 to June 14, 2021; the second period extends from March 11, 2020 to June
14, 2021. From the results, iGARCH(1,1)-STD is selected as the best performing model among the 18
constructed models for the first period since it has the lowest AIC (−3.5397) and BIC (−3.5175) values.
Using the three best models selected from the first period, iGARCH(1,1)-STD is selected as the optimal
model for the second period. These indicate the superiority of iGARCH(1,1)-STD to model the volatility
and error distribution of Bitcoin futures returns. Our results indicate the effects of past squared shocks on
the squared returns of Bitcoin futures and the ability of iGARCH(1,1)-STD to model such innovations.

Using the best 3 models (iGARCH(1,1)-STD, iGARCH(1,1)-GED, and iGARCH(1,1)-NIG) among
the 18 constructed models from the first period, we investigated the in-sample and out-of-sample
predictive abilities. Based on two evaluation metrics (mean absolute error and mean square error),
iGARCH(1,1)-NIG is selected as the best performing model in-sample forecast for the period from
January 02, 2018 to June 14, 2021. The model also performed well, with the lowest MSE and MAE
values for out-of-sample forecast from 11 March, 2020 to 14 June, 2021 (during the COVID period).
These results imply that the iGARCH-NIG model can be more advantageous to the other two models
when carrying out risk management strategies for Bitcoin futures returns.
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