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Abstract: This study tried to demonstrate the role of Time Series models in a modeling and forecasting 

process using publicly available long-term records of monthly global price of bananas during the 

period of January 1990 to November 2021 reported in the International Monetary Fund. Following the 

Box–Jenkins methodology, an ARIMA (2,1,4) with a drift model was selected as the best-fit model for 

the Time Series, according to its lowest AIC value. Using the Levenberg-Marquardt algorithm, the 

results revealed that the NARNN model with 12 neurons in the hidden layer and 6 times delays 

provided the best performance in the nonlinear autoregressive neural network models at its smaller 

MSE value. The ARIMA and NARNN models are good at modelling linear and nonlinear problems 

for the Time Series, respectively. However, using the HYBRID model, a combination of the ARIMA 

and NARNN models that has both linear and nonlinear modeling capabilities can be a better choice 

for modeling the Time Series. The comparative results revealed that the HYBRID model with 11 

neurons in the hidden layer and 3 times delays yielded higher accuracy than the NARNN model with 

12 neurons in the hidden layer and 6 times delays, and the ARIMA (2,1,4) with a drift model, according 

to its lowest MSE in this study.  
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1. Introduction  

Like COVID-19, Tropical Race 4 (TR4), also known as Panama Disease, has adversely affected 

the global banana industry. Recently, TR4 has suddenly accelerated, spreading from Asia to Australia, 

the Middle East, Africa and Latin America, where the majority of the bananas are shipped globally. 

Currently, TR4 is now in more than 20 countries, prompting fears of a banana pandemic and shortages 

of the world’s favorite fruit bananas (Altendorf, 2019). 

Bananas, the world’s most popular fruit with different tastes, sizes, and colors, are the fourth most 

important food crop after wheat, rice, and maize in terms of production, and they are the world’s 

favorite fruit in terms of consumption quantity (Ruiz et al., 2017). Excluding plantains, 22.7 million 

tons of bananas were traded, which was almost 20% of global production in 2017. The value of this 

trading was $11 billion, which is higher than the export value of any other exported fruit (Voora and 

Bermudez, 2020). 

Asia is the largest banana-producing region, while India and China are the two leadings banana-

producing countries. The Asia-Pacific is the market leader with a 61% share of global consumption, 

while India is the world’s leading producer of bananas by accounting for nearly 25.7% of the total 

output. The Philippines consolidated its position as the second largest exporter of bananas behind 

Ecuador (Voora and Bermudez, 2020).  

Latin America and the Caribbean are the largest exporting regions, responsible for approximately 

80% of global exports. The global banana exports were estimated at 23.3 million tons in 2018, and 

Ecuador accounted for 24.7% of these global exports, as the largest exporter of bananas. Belgium, 

Costa Rica, and Columbia were the other top banana exporters in the world, while the United States was 

the leading importer of bananas with an 18% share of the world’s imports (Voora and Bermudez, 2020). 

The retail value of the banana sector was estimated to be between $20 billion and $25 billion in 

2016 (Voora and Bermudez, 2020). According to the Market Reports World (2019), the global banana 

sector should experience a compound annual growth of 1.21% in consumption from 2019 to 2024, reaching 

a global consumption volume of 136.0 million tons by 2025, compared to 116.2 million tons in 2017.  

According to the U.S. Bureau of Labor Statistics, the average consumer price of bananas (all fresh, 

traditional, first-quality organic and non-organic yellow bananas) was $0.53 (per pound on average in 

U.S.) with a standard deviation of $0.06 (minimum: $0.40, maximum: $0.64, and median: $0.51). 

Furthermore, the average consumer price for bananas was 39.91% higher in 2020 versus 1990 (a 

$13.29 difference in value). Between 1990 and 2020, bananas costing $33.30 in 1990 cost $46.59 in 

2020 for an equivalent purchase. Compared to the overall inflation rate of 2.30% during this same 

period, inflation for bananas was lower. 

Time Series forecasting a model to predict future values based on previously observed values is 

one of the most applied data science techniques in business. This model is used extensively in finance, 

supply chain-management, production, and inventory planning. It has a well-established theoretical 

grounding in statistics. Several articles have used Time Series techniques to forecast banana production 

(Hamjah, 2014; Hossain et al., 2016; Eyduran et al., 2020), but only a few studies have focused on 

banana price forecasting (Omar et al., 2014; Fatin et al., 2020).  

Neural networks have become one of the most popular trends in machine learning for Time Series 

modeling and forecasting. Recently, there is increasing interest in using neural networks to model and 

forecast banana harvest yields (Rathod et al., 2017; Rathod and Mishra, 2018; Rebortera and Fajardo, 

2019). Despite the importance of banana demand and supply in the global markets, there is still a lack 

https://en.wikipedia.org/wiki/Model_(abstract)
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of studies in the technical literature available on global banana price forecasting schemes. Hence, the 

primary purpose of this study was to apply an autoregressive integrated moving average (ARIMA) and 

nonlinear autoregressive neural network (NARNN) hybrid (HYBRID) model to forecast global price 

of bananas during the period of January 1990 to November 2021. The findings in this study may be 

able to bridge an important gap in Time Series forecasting by combining the best statistical and 

machine learning methods. The rest of the paper is made up of the following sections: Section 2 

introduces Time Series data and ARIMA, NARNN, and HYBRID models for this study, Section 3 

presents and analyzes the empirical results, and finally Section 4 concludes the study. 

2. Materials and methods 

2.1. Materials 

The long-term records of the monthly global price of bananas (units: U.S. dollars per metric ton, 

not seasonally adjusted) from January 1990 to November 2021 (Figure 1) are available to the public 

from the International Monetary Fund, retrieved from FRED, Federal Reserve Bank of St. Louis 

(https://fred.stlouisfed.org/series/PBANSOPUSDM). The average monthly global price of bananas 

was $726.15 per metric ton with a standard deviation of $281.88 (minimum: $250.51, maximum: 

$1,298.34, and median: $659.98). 

 

Figure 1. Time Series plot of global price of bananas, January 1990–November 2021 (R output). 

2.2. ARIMA model 

Time Series involves data collected sequentially in time. In a univariate Time Series, it is a set of 

single (scalar) observations recorded at a specific time t. The sequence of random variables {yt: t = 1, 

2, ⋯, T}, yt ∈ R where t ∈ T is the time indexing when the data was observed, is called a stochastic 

https://fred.stlouisfed.org/series/PBANSOPUSDM
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process. This stochastic process is often used in modeling Time Series data to find the parameters of 

the Time Series, and then use them as a model in predicting future values of the Time Series. 

Autoregressive Integrated Moving Average (ARIMA) is a statistical analysis model for modeling 

and forecasting Time Series data to predict future trends. The purpose of each of these parts is to make 

the model fit better to predict future points in the Time Series (Montgomery et al., 2008). Statistically, 

ARIMA (p, d, q) model can be expressed as: 

yt = ϕ1yt-1 + ϕ2yt-2 + ⋯ + ϕpyt-p + et + θ1et-1 + θ2et-2 + ⋯ + θqet-q 

= ∑i=1 p ϕiyt-i - ∑j=1 q θjet-j + et        (1) 

where p = the order of the autoregressive process (the number of lagged terms),  

d = the number of differences required to make the Time Series stationary,  

q = the order of the moving average process (the number of lagged terms),  

ϕ = (ϕ1, ϕ2, ⋯, ϕp) is the vector of model coefficients for the autoregressive process,  

θ = (θ 1, θ 2, ⋯, θq) is the vector of model coefficients for the moving average process, and  

et = the residual error (i.e., white noise).  

In backshift notation B, “backshift operator” or “lag operator”, is a useful notational device when 

working with Time Series lags: Byt = yt−1 (means “back up by one time unit”) and Bkyt = yt−k (means 

“backshift k times”). Thus, the ARIMA (p, d, q) model can be expressed in backshift notation as:  

ϕp(B) (1 – B)dyt = c + θq(B)et        (2) 

where ϕp(B) = (1 – ϕ1B - … - ϕpBp) = (1 – Σp 
i=1 ϕiBi), θq(B) = (1 - θ1B - … - θqBq) = (1 – Σq 

j=1 θjBj), c 

is a constant, and et is the error term. 

In Time Series forecasting, the Box–Jenkins methodology (Box & Jenkins, 1970) refers to a 

systematic method of identifying, estimating, checking, and forecasting ARIMA models (Box et al., 2016). 

It is used as the process to forecast the ARIMA model in this study based on its autocorrelation function 

(ACF) and partial autocorrelation function (PACF) as a means of determining the stationarity of the 

univariate Time Series and the lag lengths.  

In a Time Series, a common assumption is that the Time Series is stationary, which means that the 

statistical properties (i.e., mean and variance) of the process do not change over time. Therefore, the 

Box-Jenkins methodology starts with the assumption that the Time Series should be as on stationary 

status. Differencing can be used if the Time Series is not stationary. Empirically, plots and summary 

statistics can be used to identify trends and autoregressive elements to get an idea of the amount of 

differencing and the size of the lag that will be required for model identification.  

In order to figure out good parameters for the Time Series model, the Akaike’s Information 

Criterion (AIC) or the Bayesian Information Criterion (BIC) can be used to determine the orders of 

an ARIMA model when its minimized value is attempted. In the diagnostic checking step, plots and 

statistical tests of the residual errors can also be used to determine the model fitting, to evaluate the 

model fitting in the context of the Time Series data, and to check where the model can be improved. 

2.3. Nonlinear autoregressive neural network (NARNN) model 

The idea behind the autoregressive (AR) process is to explain the present value of the Time Series, 

yt, by a function of p past values, (yt-1, yt-2, ⋯, yt-p). Thus, the AR process of order p, AR(p), is defined 

by the equation: 

https://en.wikipedia.org/wiki/Time_series_analysis
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yt = ϕ1yt-1 + ϕ2yt-2 + ⋯ + ϕpyt-p + et = ∑i=1 p ϕiyt-i + et      (3) 

where ϕ = (ϕ1, ϕ2, ⋯, ϕp) is the vector of model coefficients for the autoregressive process, and et is 

white noise, et ~ N (0, σ2). 

The NARNN is a natural generalization of the classic linear AR(p) process. The NARNN of order 

p can be expressed as:  

yt = Φ (yt-1, yt-2, ⋯, yt-p, w) + ɛt        (4) 

where Φ (∙) is an unknown function determined by the neural network structure and connection weights, 

w is a vector of all parameters (weights), and ɛt is the error term. Thus, it performs a nonlinear 

functional mapping from the past observations, (yt-1, yt-2, ⋯, yt-p), to the future value, yt, which is 

equivalent to a nonlinear autoregressive model (Zhang, 2003). 

With the Time Series data, lagged values of the Time Series can be used as inputs to a neural 

network, which is called the NARNN model. Mathematically, the NARNN model (Benrhmach et 

al., 2020) can be written by the equation of the form as: 

yt = a0 + ∑j=1 k wj Φ (b0j + ∑i=1 d wijyt-i) + ɛt       (5) 

where d = the number of input units, 

k is the number of hidden units,  

a0 is the constant corresponding to the output unit,  

b0j is the constant corresponding to the hidden unit j,  

wj is the weight of the connection between the hidden unit j and the output unit,  

wij is the parameter corresponding to the weight of the connection between the input unit i and 

the hidden unit j, and Φ (∙) is a nonlinear function, so-called this the transfer (activation) 

function. The logistic function (i.e., sigmoid) is commonly used as the hidden layer transfer 

function, that is, Φ(y) = 1 / (1 + exp(-y)). 

The most common learning rules for the NARNN model are the Levenberg-Marquardt (LM), 

Bayesian Regularization, and Scaled Conjugate Gradient training algorithms. In this study, the LM 

algorithm was considered, because it works without computing the exact Hessian matrix, which 

increases the training speed, and it has stable convergence (Gavin, 2020). The LM algorithm, first 

published by Levenberg (1944) and then rediscovered by Marquardt (1963), has become a standard 

technique for nonlinear least-squares problems. The LM algorithm is an iterative technique that locates 

the minimum of an objective function F(x) that is expressed as the sum of squares of nonlinear 

functions (Madsen et al., 2004):  

F(x) = (1/2) Σi=1 n [fi(x)]2         (6) 

Furthermore, the LM algorithm steps to search the direction of the iteration given by the solution 

φi to the equations, 

(Ji
T Ji + λi I) φi = - Ji

T fi         (7) 

where Ji is the Jacobian of fi, I am the identity matrix, and λi are the non-negative scalars, called the 

combination coefficient.  

In the LM algorithm, for some scalar Δ > 0 related to λi, the vector φi is the solution of the 

constrained sub-problem of minimizing (1/2) || Ji φ + fi ||22 subject to || φ ||2 ≤ Δ (Gill et al., 1981, p. 136). 
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2.4. ARIMA-NARNN Hybrid (HYBRID) model 

The ARIMA and NARNN models are good at modeling linear and nonlinear problems for the 

Time Series, respectively. The Hybrid model, a combination of the ARIMA and NARNN models has 

both linear and nonlinear modelling capabilities, can be a better choice for modelling the Time Series. 

Assuming that an unknown function can be used to demonstrate the relationship between linear and 

nonlinear components in the Time Series, that relationship can be illustrated as follows:  

yt = f (Lt, Nt)              (8) 

where the linear component is represented by Lt, and the nonlinear component is shown by Nt. 

Assuming that the linear and nonlinear components in the Time Series have simple additive 

relationships. Zhang (2003) states that the Time Series can be considered as a combination of the linear 

and nonlinear components as follows: 

yt = Lt + Nt              (9) 

First, the linear component will be modelled by the ARIMA model. Then, the residuals from the 

ARIMA model will have only the nonlinear relationship, which can be obtained by taking the 

difference of the observed values and the predicted values as follows: 

et = yt - t              (10) 

where et is the residual of the linear model at time t, and t is the predicted value for time t. To find 

the nonlinear relationship, residuals can be modelled by the NARNN model in this study as follows:  

t = et = f (et-1, et-2, ⋯ , et-n) + ɛt        (11) 

where f is the transformation function modeled by the NARNN model, and ɛt is the random error. The 

forecasts from the ARIMA and NARNN models are combined to obtain the forecast of the Time Series 

ŷt, which is denoted by: 

ŷt = t + t          (12) 

3. Results 

3.1. ARIMA model 

R 4.0.2 for Windows, an open source for statistical computing and graphics supported by the R 

Foundation for Statistical Computing, was used as the tool to model and forecast global price of 

bananas during the period of January 1990 to November 2021 for this study. The function “decompose” 

in R can be applied to estimate the seasonal, trend and irregular components of a seasonal Time Series. 

The results revealed that the estimated trend component showed a steady increase over time, and the 

estimated seasonal component definitely displayed seasonality, with a pattern recurrence occurring 

once every 12 months (yearly). 

Seasonal adjustment is the estimation and removal of seasonal effects that are not explainable by 

the dynamics of trends or cycles from a Time Series to reveal certain non-seasonal features. This can 

be done by subtracting the estimated seasonal component from the original Time Series. After removed 

https://en.wikipedia.org/wiki/Statistical_computing
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the seasonal variation, the seasonally adjusted Time Series only contained the trend component and an 

irregular component. 

The ACF of the Time Series, seasonal adjusted global price of bananas from January 1990 to 

November 2021, showed a strongly positive correlations at up to 26 lags that never decay to zero. 

Meanwhile, the test statistic of the Augmented Dickey-Fuller Test was Dickey-Fuller = −3.1414 with 

lag order = 7, and the p-value of the test was 0.09806. This suggested that the Time Series was non-

stationary and needed to be differenced. This was also illustrated by the single spike at the first lag 

followed by small apparently random values after the first lag for the PACF. Since the PACF cut off 

after the first lag, it seems that the Time Series followed the autoregressive (AR) process. 

In Time Series analysis, differencing can be used to transform a non-stationary Time Series into a 

stationary one. When both trend and seasonality are present, both a non-seasonal first difference and a 

seasonal difference should be applied separately. According to the Augmented Dickey-Fuller Test, 

Dickey-Fuller = −10.352 with lag order = 7, and the p-value of the test was smaller than 0.01. It rejected 

the null hypothesis that was non-stationary, and suggested that the first difference of the Time Series 

was stationary. The ACF of the first differenced Time Series showed a significant positive spike at the 

first lag, followed by correlations that were statistically significant. The corresponding PACF of the 

first differenced Time Series showed a most likely gradual decrease after the first few negative lags. 

Since the ACF cut off after the first lag and the PACF decreased gradually, a reasonable conclusion 

was that the first differenced Time Series followed the moving average (MA) process. 

In order to find a solution, the function “auto.arima()” from the “forecast” package in R 4.0.2 

for Windows was employed to identify both the structure of the Time Series (stationary or not) and 

type (seasonal or not), and sets the model's parameters, that takes into account the AIC, AICc, or BIC 

values generated to determine the best fit ARIMA model. Consequently, the ARIMA (2,1,4) with a 

drift model was selected to be the best fit model for the Time Series, seasonal adjusted global price of 

banana from January 1990 to November 2021, according to the lowest AIC value (= 4313.15) in this 

study, and the parameters of the ARIMA (2,1,4) with a drift model were presented in Table 1. 

Table 1. Parameters of ARIMA (2,1,4) with Drift Model. 

Parameter Estimate Standard Error 

Constant 1.7817 0.8797 

AR Lag 1 −0.3986 0.1539 

AR Lag 2 0.1309 0.1281 

Difference   

MA Lag 1 0.1042 0.1484 

MA Lag 2 −0.3869 0.1159 

MA Lag 3 −0.1057 0.0822 

MA Lag 4 −0.2921 0.0564 

Sigma2 estimated as 4751, Log Likelihood = −2148.58 

AIC = 4313.15, AICc = 4313.54, BIC = 4344.72 

Training Set Error Measures: 

RMSE = 66.89923, MSE = 4475.50697, MAE = 47.63762, MAPE = 8.500749 

Source: own work 
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A common task when building a forecasting model is to check that the residuals satisfy some 

assumptions that they are uncorrelated, normally distributed, etc. The top figure of Figure 2 shows that 

the residuals from the ARIMA (2,1,4) with a drift model did not violate the assumption of constant 

location and scale. The bottom right figure of Figure 2 shows that the residual histogram did not reveal 

a series deviation from normality in this case. The ACF plot of the residuals (the bottom left figure 

of Figure 2) also shows that all sample autocorrelations were within the threshold limits, indicating 

that the residuals appeared to be random.  

The Ljung-Box Q-test (Ljung and Box, 1978) is a diagnostic tool used to test the lack of fit of a 

Time Series model. In this case, the test statistic of the Ljung-Box Q-test was Q = 20.292 with 17 

degrees of freedom, and the p-value of the test was 0.2596 with model degrees of freedom: 7 and total 

lags used: 24, indicating that the residuals were random and that the model provided an adequate fit to 

the Time Series. Combined with the Ljung-Box Q-test statistic, this suggested that the ARIMA (2,1,4) 

with a drift model appropriately modeled the dynamics for this Time Series. Forecasting process with 

the ARIMA (2,1,4) with a drift model also indicated a good fit of the model for forecasting at a constant 

increasing rate in the short-term (Figure 3). 

 

Figure 2. Residuals from ARIMA (2,1,4) with Drift Model (R output). 
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Figure 3. Observed and Forecasted Global Price of Bananas (R output). 

3.2. Nonlinear autoregressive neural network (NARNN) model 

In MATLAB, the NARNN model applied to Time Series prediction using its past values of a 

univariate Time Series can be expressed as follows: 

y(t) = Φ(y(t-1), y(t-2), ⋯, y(t-d)) + e(t)      (13) 

where y(t) is the Time Series value at time t, d is the time delay, and e(t) is the error of the 

approximation of the Time Series at time t. This equation describes how the NARNN model is used to 

predict the future value of a Time Series, y(t), using the past values of the Time Series, (y(t-1), y(t-2), 

⋯, y(t-d)). The function Φ (∙) is an unknown nonlinear function, and the training of the neural network 

aims to approximate the function by means of the optimization of the network weights and neuron bias. 

This tends to minimize the sum of the squared differences between the observed (yi) and predicted (ŷi) 

values (i.e., MSE = (1/n) ∑i=1 n (yi – ŷi)2) (Beale et al., 2019).  

In this study, the NARNN model was applied to model and forecast the Time Series, global price 

of bananas from January 1990 to November 2021. Furthermore, the logistic sigmoid and linear transfer 

functions at the hidden and output layers were used respectively. The number of hidden neurons and 

the number of delays was set experimentally after a data pre‐processing and analysis stage. The 

extracted features were trained using the LM training algorithm for the target Time Series in the 

MATLAB (2019a) Neural Network Toolbox: 383 timesteps of one element, global price of bananas 

from January 1990 to November 2021. 

The training target timesteps are presented to the network during training, and the network is 

adjusted according to its error. The validation target timesteps are used to measure network 

generalization and to halt training when generalization stops improving. The testing target timesteps 

have no effect on training and so provide an independent measure of network performance during and 

after training (Beale et al., 2019). The division of the Time Series in this analytical work was 70% for 
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the training, 15% for the validation, and 15% for the testing. Randomly, 383 data samples were divided 

into 269 data for the training, 57 data for the validation, and 57 data for the testing 

The development of the optimal architecture for the NARNN model requires determination of 

time delays, the number of hidden neurons, and an efficient training algorithm. The optimum number 

of time delays and hidden neurons were obtained through a trial-and-error procedure. Furthermore, the 

LM algorithms were employed for training of the NARNN model and its performance was evaluated 

under the optimal neural network structure. The prediction performance of the models was evaluated 

by its MSE. The error analysis showed that the NARNN model with 12 neurons in the hidden layer and 

6 times delays provided the best performance (MSE = 3058.11185) using the LM algorithm (Table 2).  

Table 2. NARNN model selection using Levenberg-Marquardt algorithm. 

Number of hidden 

neurons 

Number of delays (d) 

2 3 4 5 6 

8 5495.27669 4894.51856 5619.10430 4526.92313 3947.92018 

9 4957.78393 4824.05006 5716.89865 3964.32643 3212.59409 

10 5179.43173 5084.66744 4904.24470 4626.09369 6040.92292 

11 6407.52867 4092.28144 4162.03297 4210.05822 3305.64168 

12 5142.34650 4757.30244 4276.64426 3266.47802 3058.11185 

Source: Author’s work 

3.2.1. NARNN training output 

 

Figure 4. NARNN training output (MATLAB output). 
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In order to train the NARNN, open loop architecture (Figure 4) shows a block diagram of the 

NARNN generated during MATLAB processing in the MATLAB (2019a) Neural Network Toolbox. 

Figure 3 displays the training progress using the LM algorithm stopped when the validation error 

increased for six iterations with Performance = 2800, Gradient = 11862.397, and Mu = 10.00 at epoch 

16. In terms of processing time, the LM algorithm took 0:00:00 during training. The term epoch 

represents the number of iterations during training in which it is attempted to minimize the error 

function. The LM algorithm typically requires more memory but less time. Training automatically 

stops when generalization stops improving, as indicated by an increase in the mean square error of the 

validation samples (Beale et al., 2019). 

3.2.2. NARNN best performance 

The performance plot illustrated the relationship between the training, validation, and testing 

phases in forecasting global price of bananas, in terms of MSE versus the number of epochs. The 

performance was evaluated by taking MSE and epochs after the training was completed, and then the 

values were generated. The performance plot is a useful diagnostic tool to plot the training, validation, 

and testing errors to check the progress of training. It also illustrated that the training stopped when 

the validation error increased at the circled epoch. As illustrated in Figure 5, the best performance for 

the validation phase was 7321.0222 at epoch 10 for the NARNN model. The results showed a good 

network performance because the validation error and testing error have similar characteristics, and it 

did not appear that any significant overfitting had occurred. 

 

Figure 5. Performance plot of the NARNN model (MATLAB output). 

3.2.3. NAR NN regression 

In the regression plots, the dashed line in each plot represents the perfect result outputs = targets, 

which can be seen on the regression plots. The solid line in each plot represents the best-fit linear 

regression line between outputs and targets. On top of each plot, the regression R value measures the 
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correlation between the outputs and the targets. If R equals one, this indicates that there is an exact 

linear relationship between the outputs and the targets. If R is close to zero, then there is no linear 

relationship between the outputs and the targets.  

As illustrated in Figure 5, the regression R value for the training phase was 0.98054; for the 

validation phase, 0.95846; for the testing phase, 0.9628; and for all the samples, 0.97416 for the 

NARNN model. In the training phase, the all R values were above 0.9. This can be seen in Figure 6, 

indicating that all three models fit equally well statistically. Similarly, all the R values were above 0.9 

thus displaying acceptable fit from the testing phase perspective, which indicated good predictive 

abilities for all three models for the new datasets.  

 

Figure 6. Regression plots of the NARNN model (MATLAB output). 

 



266 

Data Science in Finance and Economics  Volume 2, Issue 3, 254–274. 

3.2.4. NAR neural network error histogram 

The error histogram gives an indication of outliers, which are data points where the fit is 

significantly worse than that of most of the data. In the error histograms (Figure 7), the blue bars 

represent the training data, the green bars represent the validation data, and the red bars represent the 

testing data. The results showed that there were a few training points and some testing points outside 

of the range. These outliers were also visible on the training and testing regression plots (Figure 6). If 

the outliers are valid data points but are unlike the rest of the data, then the network is extrapolating 

for these points. This means more data similar to the outlier points should be considered in training 

analysis and that the network should be retrained. 

 

Figure 7. Error histogram of the NARNN model (MATLAB output). 

3.2.5. NARNN time-series response 

The dynamic network time-series response plots were displayed in Figure 8 for the NARNN 

model, showing that the outputs were distributed evenly on both sides of the response curve, and the 

errors versus time were small in the training, validation, and testing phases. The results indicated that 

the all three models were able to predict the Time Series over the simulation period efficiently.  
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Figure 8. Network time-series response of the NARNN model (MATLAB output). 

3.2.6. NARNN error autocorrelation 

The error autocorrelation function describes how the prediction errors are related in time. For a 

perfect prediction model, there should only be one nonzero value of the autocorrelation function, and 

it should occur at zero lag (this is the MSE). This would mean that the prediction errors are completely 

uncorrelated with each other (white noise). If there is significant correlation in the prediction errors, 

then it should be possible to improve the prediction perhaps by increasing the number of delays in the 

tapped delay lines.  

The correlations for the NARNN model (Figure 9), except for the one at zero lag, all fell 

approximately within the 95% confidence limits around zero, so the models seemed to be adequate. 

There are, however, some exceptions which suggests that the created network can be improved by 

retraining it or by increasing the number of neurons in the hidden layer. If even more accurate results 

are required, retraining the network will change the initial weights and biases of the network, and may 

produce an improved network after retraining.  
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Figure 9. Error autocorrelation of the NARNN model (MATLAB output). 

3.3. ARMA-NARNN hybrid (HYBRID) model 

In MATLAB, the HYBRID model applied to Time Series prediction using its past residuals from 

the SARIMA model can be expressed as follows: 

e(t) = Φ(e(t-1), e(t-2), ⋯, e(t-d)) + ɛ(t)       (14) 

where e(t) is the residual of the Time Series at time t, d is the time delay, and ɛ(t) is the error term. This 

equation describes how the HYBRID model is used to predict the future residual of a Time Series, e(t), 

using the past residuals of the Time Series, (e(t-1), e(t-2), ⋯, e(t-d)).  

Similarly, the development of the optimal architecture for the HYBRID model requires the 

determination of time delays, the number of hidden neurons, and an efficient training algorithm. The 

results of the error analysis showed that the HYBRID model with 11 neurons in the hidden layer and 

3 time delays also provided the best performance (MSE = 2982.66655) with the LM algorithm 

(HYBRID) (Table 3). At the same time, the training progress using the LM algorithm for the Mixed-

LM model stopped when the validation error increased for six iterations with Performance = 2700, 

Gradient = 175.1257, and Mu = 10.00 at epoch 13 (Figure 10).  

Table 3. HYBRID model selection using Levenberg-Marquardt algorithm. 

Number of hidden 

neurons 

Number of delays (d) 

2 3 4 5 6 

8 3920.93665 3859.27889 3302.37490 4348.93180 4955.52066 

9 4341.29026 3843.05508 3645.42461 3062.75879 4927.80700 

10 3675.49724 3739.71316 3456.30464 3914.27581 5361.73173 

11 5313.30679 2982.66655 4256.62635 4250.12751 3101.86040 

12 3679.04563 3952.80522 3311.36531 3860.98596 4491.00417 

Source: Author’s work 
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Figure 10. HYBRID model training using Levenberg-Marquardt algorithm (MATLAB output). 

As illustrated in Figure 11, the best performance for the validation phase was 5943.2994 at epoch 

7 for the HYBRID model. The results also showed a good network performance because the validation 

and testing errors have similar characteristics, and did not appear that any significant overfitting has 

occurred. In the error histograms (Figure 12), the blue bars represent the training data, the green bars 

represent the validation data, and the red bars represent the testing data. The results showed that there 

had a few testing and validation points outside of the range.  

 

Figure 11. Performance plot of the HYBRID model (MATLAB output). 
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Figure 12. Error histogram of the HYBRID model (MATLAB output). 

 

Figure 13. Network Time-Series response of the HYBRID model (MATLAB Output). 

The dynamic network time-series response plots were displayed in Figure 13 for the HYBRID 

model, showed that the outputs were distributed evenly on both sides of the response curve, and the 

errors versus time were small in the training, validation, and testing phases. The results indicated that 

the HYBRID model was able to predict the Time Series over the simulation period efficiently as 

well.  For the HYBRID model, the correlations except for the one at zero lag, all fell approximately 

within the 95% confidence limits around zero, so the model was adequate (Figure 14). 
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Figure 14. Error autocorrelation of the HYBRID model (MATLAB Output). 

4. Discussion and conclusions 

Assuming normal weather conditions and no further spread of banana plant diseases, banana 

production and trade volumes are rapidly increasing in response to fast population growth in producing 

countries as well as expanding global import demand. Obviously, the future will provide more 

intensive knowledge, with a better understanding of the natural complexities of living systems. 

Bringing together a wide variety of perspectives and concepts requires holistic solutions that involve 

working across disciplines, principles, and methods to support interdisciplinarity and 

transdisciplinarity, to explore and formalize systems concepts, and to develop systemic methods for 

learning and change. 

Despite the importance of banana demand and supply in the global markets, there is a lack of 

studies in the technical literature available on global price of bananas forecasting schemes. Forecasting 

is a kind of dynamic filtering, in which past values of the Time Series can be used to predict future 

values. In Time Series forecasting, how to increase the prediction accuracy as much as possible with 

the non-stationary and noise data is a significant challenge. Experimentally, we hope to explore a 

hybrid model that can effectively improve the performance of global price of bananas throughput 

forecasting. In the proposed HYBRID model, a combination of statistical model in linear modeling 

and machine learning model to capture nonlinear pattern from the residuals of linear model, can be a 

better choice for modeling and forecasting the Time Series for this study. The fundamental idea is that 

this combination supports for the limitations of one model with the strengths of the other. 

Empirically, the ARIMA and NARNN models are good at modelling linear and nonlinear 

problems for the Time Series, respectively. In this study, the best choice Time Series model was an 

ARIMA (2,1,4) with a drift model as its lowest AIC values among other models. It was noticed that 

this ARIMA (2,1,4) with a drift model gave evidence about future global price of bananas would 

increase over time. Furthermore, the NARNN model with 12 neurons in the hidden layer and 6 times 

delays was evaluated as the optimal neural network structure using the LM algorithm. 
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This study not only wanted to find the best fit model for the Time Series, global price of bananas 

from January 1990 to November 2021, but also tried to evaluate the accuracy of the ARIMA, NARNN, 

and HYBRID models used in the forecasting of global price of bananas. The comparative results 

revealed that the HYBRID model with 11 neurons in the hidden layer and 3 times delays (MSE = 

2982.66655) yielded higher accuracy than the NARNN model with 12 neurons in the hidden layer and 

6 times delays (MSE = 3058.11185), and the ARIMA (2,1,4) with a drift model (MSE = 4475.50697) 

in this study (Table 4). 

Table 4. Time-Series model selection using mean squared error. 

 ARIMA (2,1,4) NARNN (Hidden Layer = 12, d = 6) HYBRID (Hidden Layer = 11, d = 3) 

MSE 4475.50697 3058.11185 2982.66655 

Source: Author’s work 

According to the results of this study, this HYBRID ARIMA-NARNN model can provide richer 

information which is important in the decision-making process related to the future global price of 

bananas, it can be employed in forecasting the future performance for global price of bananas change 

outcomes. Thus, this study may provide an integrated modeling approach as a decision-making 

supportive method for forecasting global price of bananas in advance. Understanding past global price 

of bananas is important for the analysis of current and future global price changes for bananas. 

In order to sustain these observations, research programs utilizing the resulting data should be 

able to improve significantly our understanding and narrow our projections of the future changes and 

variabilities in the global price of bananas. For further research tasks, the nonlinear autoregressive 

exogenous (NARX) neural network can consider past information of the same Time Series (global 

price of bananas), current and past information of the externally determined Time Series that influences 

the Time Series of interest (i.e., banana production, banana sales, weather information, disease impact 

information, etc.) in terms of forecasting accurately. 
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