
http://www.aimspress.com/journal/dsfe

DSFE, 2(3): 237–253.
DOI:10.3934/DSFE.2022012
Received: 20 May 2022
Revised: 12 July 2022
Accepted: 18 July 2022
Published: 09 August 2022

Research article

Retrospective technology of segmentation and classification for GARCH
models based on the concept of the ϵ-complexity of continuous functions

Alexandra Piryatinska1,*, Boris Darkhovsky2

1 Department of Mathematics, San Francisco State University, 1600 Holloway ave, San Francisco, CA
94132, USA

2 FRC CSC RAS

* Correspondence: Email: alpiryat@sfsu.edu.

Abstract: We consider a retrospective segmentation and classification problem for GARCH models.
Segmentation is the partition of a long time series into homogeneous fragments. A fragment is
homogeneous if only one mechanism generates it. The points of "concatenation" of homogeneous
segments we call (by analogy with the term used in the stochastic literature) points of disorder or
change-points. We call classification the separation of two relatively short time series generated by
different mechanisms. By classification, we mean the way in which two groups of time series with
unknown generating mechanism (in particularly, generated by GARCH models) can be distinguished
, and the new time series can be assigned to the class. Our model free technology is based on our
concept of ϵ-complexity of individual continuous functions. This technology does not use information
about the time series generation mechanism. We demonstrate our approach on time series generated by
GARCH models. We present simulations and real data analysis results confirming the effectiveness of
the methodology.
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1. Introduction

The generalized autoregressive conditional heteroskedasticity models GARCH were developed
to address the problem of forecasting volatility in asset prices (Bollerslev T (1986)). They are a
generalization of the Autoregressive Conditional Heteroskedasticity (ARCH) models (see, Engle R
(1982)). Models ARCH and GARCH are used for modeling of the volatility of returns on a wide

variety of financial assets such as exchange rate, individual stock, and stock indices (see, e.g., Brooks C

http://www.aimspress.com/journal/dsfe
http://dx.doi.org/10.3934/DSFE.2022012


238

(2014)).
GARCH-models are non-linear models with multiple parameters. The moments of parameter changes

correspond to the moments of changes in the volatility of the process. Obtaining estimates for the
parameters of such models due to their non-linearity is a complex problem. If the model’s parameters
changed during data collection, then an important task is to detect the moments of change without using
estimates of the model parameters. Failure to take into account the change points in financial time series
results in many undesirable consequences. For example, Lamoureux CG, Lastrapes WD (1990) found
that the persistence of the change in the variance of stock-return data may be overstated if deterministic
structural shifts are ignored in the model.

We consider the problem of retrospective detecting the moments of changes in the parameters of
GARCH models and the problem of classification of GARCH models with different parameters. There
is extensive literature on the detection of change points. The extensive review of change-point detection
methods can be found in Truong C, Oudre L, et al. (2020).

In econometrics, the change points are are also called structural breaks. The review on this topic can
be found in Andreou E and Ghysels E (2009) and Aue A, & Horváth L (2013). An early attempt to
detect change points in GARCH was made in Chu C (1995) who studies the properties of supremum–
type F and Lagrange multiplier (LM) tests. He finds that these tests generally have good power but
are somewhat sensitive to the assumption of normality. For the comparison of the performance of the
different change point detection procedures in detecting structural breaks in GARCH models, see Smith
D (2008) and bibliography there. In Li Q, Wang L Qiu F (2015) the Bayesian methods have been
used to detect the change points. In Berkes I, Horváth L, and Kokozka P (2004) and Song J, Kang J
(2018) the quasi-likelihood score function was used to construct test statistics in GARCH models and
ARMA-GARCH models, respectively.

Time series classification (TSC) is a growing research topic due to the substantial amount of time-
series data being collected in various fields. This is important in many areas of research and applications
where the analysis of time-dependent or financial data might need to be analyzed to support a business
decision. TSC uses supervised machine learning to analyze multiple labeled classes of time series
data and then predict or classify the class that a new data set belongs. There are many algorithms
that are developed to perform time series classification. For the reviews of such algorithms see, e.g
Abanda A, Mori U, Lozano JA (2019), Faouzi J (2022). For application of time series classification
see, e.g. Bagnall A, Janacek G (2014), Susto GA, Cenedese A, and Terzi M (2018). The time series
classification problem is meaningful in finance too. For the application of TSC in finance see, e.g. Chao
L, Zhipeng J, Yuanjie Z (2019) and Majumdar S, & Laha A K (2020).

Time series classification methods can be divided into three main categories: feature-based, model-
based, and distance-based methods (see, Xing Z, Pe J, and Keogh E (2010)). In feature based
classification methods, the time series are transformed into feature vectors and then classified by a
conventional classifier such as a neural network or a decision tree. For overview of other methods see
Abanda A, Mori U, Lozano JA (2019).

In our paper, we consider the problem of binary classification of relatively short time series. Each
class is generated by the same generating mechanism and different classes are trajectories of different
mechanisms. As a generated mechanism the GARCH (1,1) models are used.

The main idea of our approach is to obtain a solution to segmentation and classification problems
without using the knowledge about the model and its parameters. In other words, the methodology we
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propose is model-free. Even we demonstrate the performance for GARCH(1,1) models, the information
about the model is not used in the technology. Our solution is based on the concept of the ϵ-complexity
of continuous functions. Such an approach enables us to develop model-free methods for segmentation
and classification of time series of arbitrary nature.

The paper is organized as follows. In Section 2, we present the basic concepts and results of the theory
of ϵ-complexity at a meaningful level, referring the reader to the exact formulations in Darkhovsky
B (2020). The main ideas of segmentation and classification of time series based on ϵ-complexity
coefficients are also given in Section 2. In section 3, we show the results of simulations. We detect
changes in the parameters of GARCH models. In section 4, we consider examples of segmentation and
classification of stock market data. Section 5 provides conclusions.

2. Methodology: Brief description of the ϵ-complexity theory and its application to segmentation
and classification problems

2.1. Basic principles of our approach

Our approach to the segmentation and time series classification problems is fundamentally different
from those described in the literature. Mainly, we do not use any information about the mechanisms of
generation of the time series to solve these problems. Thus, our technology is applicable to a series of
arbitrary nature (stochastic, deterministic, or mixed).

Obtaining a priori information about the mechanisms of the generation of a time series is a difficult
task. If the series is a concatenation of several different fragments, then in principle, such information
cannot be extracted without preliminary segmentation. Only for homogeneous (i.e., generated by
an invariable mechanism) fragments of time series one can perform statistical analysis based on the
laws of large numbers. As far as we know, most segmentation algorithms in the literature rely either
on knowledge of the series generation mechanism up to parameters or a priori known set of models
or on knowledge of which probabilistic characteristic (if we are talking about a stochastic process)
can change. Thus, a vicious circle is obtained: segmentation requires a priori information about the
generation mechanism, and such information can be extracted only from homogeneous (i.e., obtained
after segmentation) fragments. Therefore the development of model-free methods for detecting change
points is an important problem in this area. Recently model-free approaches have been developed, see
Darkhovsky B, Piryatinska A (2018), Truong C, Oudre L, and Vayatis N (2019). In Truong C, Oudre
L, and Vayatis N (2019) authors consider the search for change-points in a stochastic process under the
assumption that there exists a linear transformation of the process, in which the change-points of the
process turn into changes in the mathematical expectation after the transformation. In such a search, the
prior information about what type of changes took place in the process in order to be able to specify the
corresponding Hilbert kernel should be used. They also consider only examples in which the number of
change-point is known a priory.

We consider more general case. We provide characteristics, the ϵ-complexity coefficients, for which
the change in generating mechanisms leads to the change in the mean values of the ϵ-complexity
coefficient. This approach is applicable for all types of stochastic processes as well as for chaotic
deterministic or mixed processes Darkhovsky B, Piryatinska A (2018).

The situation is similar to the classification problem. For this problem, one needs to know a feature
space in which the series can be separated. The definition of this space must be based on a priori
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information about the mechanism of generation of the series.
Our model-free technology, based on the concept of ϵ-complexity of continuous functions, allows

us to break this vicious circle. In the next subsection, we describe this concept’s main definitions and
results at a meaningful level. In Section 3 the ideas of model-free segmentation and classification are
provided.

We apply our technology to GARCH models. However, we would like to emphasize that the
technology works for any time series model. Moreover, in contrast to all other methods in the literature,
it allows detecting changes not only in stochastic processes but in processes of arbitrary nature, e.g., in
chaotic deterministic or mixed processes (see, e.g Darkhovsky B, Piryatinska A (2018)). It is essential
for financial series since the set of models of such series is much richer than models of the GARCH
type. A researcher does not know a priori what kind of model should be sought to describe a particular
time series. Therefore, in the general case, the segmentation and classification of time series should be
carried out using model-free technology.

2.2. The ϵ-complexity theory

This subsection presents some results of the theory of the ϵ-complexity of continuous finite-
dimensional maps. We restrict ourselves to showing the results of the theory on a meaningful level
as applied to scalar functions of one variable, referring the reader to general precise formulations to
Darkhovsky B (2020). Firstly, the theory was developed and presented in Darkovsky B, Piryatinska A
(2014). In Darkhovsky B (2020) the definitions are more precise and theory is refined. Therefore, we
refer to this paper.

Consider a continuous function x(t) : [0, 1]→ R. Denote R = max
t∈[0,1]
|x(t)| and will assume that R > 0.

Let us denote by F a given at most countable collection of methods for recovering of a function x(t)
from a finite set of its values on some uniform grid of [0, 1].

The set of continuous functions that cannot be accurately reconstructed by any fixed set of methods
F is everywhere dense in the space of continuous functions on [0, 1].

Informally, we can say that the ϵ-complexity (more precisely, (ϵ,F )-complexity) of function x(t)
estimates the number of its uniform discrete samples (more precisely, the logarithm of this number),
which are necessary to recover this function by a given set of approximation methods F with the given
accuracy. In other words, this quantity estimates the minimum amount of information (in the language
of approximation theory) required to describe the function.

In this respect, the concept of ϵ-complexity is consistent with the concept of “complexity” of
objects proposed by A.N. Kolmogorov in the mid-60s. The main idea of the Kolmogorov approach (see,
for example, Kolmogorov A (1983)) is that: “complex” object requires a lot of information for its
description, and a “simple” object requires a small amount of information for this. It is advisable to
estimate the complexity of an object through the minimum amount of information required to describe
it.

Suppose a function is exactly reconstructed from a finite set of its values (e.g., such is a linear function,
since any reasonable set of recovery methods includes a linear or piece-wise linear approximation
method). In that case, we set its complexity to be zero. However, it follows from the above that “almost
any” (and in applications - any, due to the inevitable measurement noise) continuous function can not be
exactly reconstructed by any fixed set of approximation methods and, therefore, has a nonzero (ϵ,F ) -
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complexity for any fixed set of recovery methods F .
In majority of applications, a researcher deals with time series given by a discrete set of their values

on a uniform grid. Assuming that such a collection of values is the restriction of a continuous function
on some uniform grid, we can extend the theory of ϵ-complexity to this case.

Let a number 0 < S < 1 be chosen. We discard a part of the initial n values of the function so that
after discarding [S n] values will retain. The sample points should be discarded so that the remaining
sample points are approximately evenly spaced; here and below symbol [a] means the integer part of a.
Thus, S is the fraction (of the total n) of sample points that remain after discarding.

Denote by ϵ(n,F , S ) def
= ϵ(·) minimal recovery error for function x(t) (now it is a time series) with

the remaining [S n] time points. The recovery is performed by all methods of the list F . The recovery
error can be measured in any finite dimensional standard norm.

We set
log ρ = log

ϵ

R
+ log ϵ (1)

Let us present the main result of the theory of ϵ-complexity for the case when a continuous function
is given by its restriction on a fixed uniform grid:

For any Hölder function from an everywhere dense set, given by its restriction on a fixed uniform
grid, the following basic relation holds

log ρ ≈ A(n) + B(n) log S . (2)

The richer the set of approximation methods F and the greater the number of sample points n on a fixed
time interval, the more accurate recovery.

The coefficients A, B in (2) will be called the ϵ-complexity coefficients. The complexity coefficients
have nothing to do with the time series generation mechanism (i.e., it’s model). Therefore, the methods
which employ the ϵ-complexity will be automatically model-free.

2.3. Segmentation

Let X = {x(t)}Nt=1 be a time series with unknown change points ti, i = 2, . . . , k (it is not known whether
there are such moments). The mechanisms of generation of a time series are also unknown and can be
stochastic, deterministic or mixed.

Intervals [ti, ti+1], t1 = 1, . . . , tk+1 = N, on which the generation mechanism does not change, we call
homogeneous. We assume that the homogeneity intervals are sufficiently long.

The key assumption of the proposed segmentation methodology is the following hypothesis: on the
ith homogeneity interval [ti, ti+1] of the series X for ti ≤ t, (t + n) < ti+1 the two-dimensional vector of
ϵ-complexity coefficients satisfies the relation

Rt = Ri + ξ
i
t,

where ξt
i is a two-dimensional random process with zero expectation. Here n ≪ mini(ti+1 − ti)) is the

size of the sliding window in which the ϵ-complexity coefficients of the series are calculated.
Thus, if the above hypothesis is true, the problem of time series segmentation is reduced to the

problem of detecting the “disorder” in the mean value of the diagnostic vector sequence Rt.
To solve this last problem, we use a family of statistics, the first version of which was proposed

in 1979 in Brodsky BS, Darkhovsky BE (1979). In Brodsky B, Darkhovsky B (2013) it is shown
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that under broad assumptions about random sequences {ξi
t}, these statistics lead to asymptotically (for

N → ∞) minimax estimates of the moments of change in the generation mechanism.
A more detailed study of the procedure with a description of computational experiments can be

found in Darkhovsky B and Piryatinska A (2019).

2.3.1. Classification

We consider the classification problem of relatively short time series into two groups. In practice, the
following problem arises. Assume you observe two time series with unknown generating mechanisms
. We would like to identify whether these series are generated by the same mechanism or not. At the
same time, it is not known a priori that the series are described by GARCH models, their mechanisms
can be much more complicated. To solve such a problem, it is not necessary to look for series models.
It can be done using our model-free technology. Our technology makes it possible not to look for any
models, and this is essential for practical work.

Here we propose to use the ϵ-complexity coefficients of the time series itself and its finite differences
(the latter are analogs of derivatives) as a feature space. After that the standard classification algorithms
such as Random forest ( Breiman L (2001)) or support vector machine (SVM), Cortes C, Vapnik V
(1995) can be applied to get a classification. Such a feature space does not use any series models. For
detail description see Darkhovsky B, Piryatinska A (2017) . In the above work we were able to classify,
with an accuracy of the order of 85%, two groups of subjects - healthy and with signs of schizophrenia -
according to the 16-channel EEG records, in a feature space of dimension 4, composed of complexity
coefficients.

3. Simulations

An autoregressive moving average model (ARMA) is a model for forecasting of stationary time
series. It assumes that the time series is generated by the white noise by passing white noise through a
recursive and through a nonrecursive linear filter, consecutively. The ARMA model is a combination of
an autoregressive (AR) model and a moving average (MA) model-stealth. Autoregressive Conditional
Heteroskedasticity (ARCH) is a method that explicitly models the change in variance over time in a
time series.

In this paper, we consider Generalized Conditional Heteroscedasticity (GARCH) models. The
generalized autoregressive conditional heteroskedasticity (GARCH) process is an approach to estimating
the volatility of financial markets. In particular, we focus on GARCH(1,1) models.

A general GARCH(p,q) model is defined in Bollerslev T (1986).
Let us specify a GARCH(1,1) model:

ut = σtzt

σ2
t = ω + αu2

t−1 + βσ
2
t−1

here zt ∽ N(0, 1) are independent identically distributed random variables.
Let us notice that GARCH models have observable component ut and unobservable component σt ,

and we will work only with the observable component.
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3.1. Demonstration of basic relation

Firstly let us demonstrate the basic relation (2) on two examples of GARCH(1,1) models.
Example 1: GARCH(1,1) with coefficients ω = 0.0002, β = 0.15, α = 0.3.
Example 2: GARCH(1,1) with coefficients ω = 0.1, β = 0.7, α = 0.25.
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20 22 25 29 33 50
S (%), log scale
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g(

 )

GARCH(1,1), n= 300

Figure 1. Example 1. Example, GARCH (1,1) model, coefficients: ω = 0.0002, β = 0.15,
α = 0.3. Left: simulated time series, Right: Linear dependence, equation (2) . Circles
correspond to the points (log(S i), log(ϵi)), and the line is the linear regression line

Figure 2 left provides the original time series of the GARCH(1,1) with coefficients ω = 0.1, β = 0.7,
α = 0.25. as well as demonstration of the relationship (2) (right plot). In the right plot Circles correspond
to the points (log(S i), log(ϵi)), and the linear regression line.

3.2. Demonstration of our change-points algorithm

We consider the time series obtained by simulation of the non-homogeneous GARCH(1,1) model
trajectories. In particular, we simulated five homogeneous segments of the GARCH(1,1) of length
30000. The coefficients are presented in the following Table 1. We concatenated these segments.
After concatenation, we separate each time series into non-overlapping segments of length 300. For
each segment, the ϵ-complexity coefficients are calculated. As a result, we generate two-dimensional
diagnostic sequences. For each component of a diagnostic sequence, we will apply the 3-step non-
parametric change-point detection procedure of Brodsky and Darkhovsky (see, Darkhovsky B and
Piryatinska A (2019)). If we observe a change in at least one component of the diagnostic sequence, we
will assume that the change occurred. To ensure the stability of the results, we perform 1000 replications
of each numerical experiment.

Figure 3 provides an example of such simulations. The left plot shows the example of the simulated
time series ( the blue line). The right plot provides the diagnostic sequence, solid black line, and blue
line corresponds to the local means for homogeneous increments. The vertical red lines correspond to
the true change points.
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Figure 2. Example 1. Example, GARCH (1,1) model, coefficients: ω = 0.1, β = 0.7, α = 0.25.
Left: simulated time series, Right: Linear dependence, equation (2) . Circles correspond to
the points (log(S i), log(ϵi)), and the line is the linear regression line.

The percentage of the number of detected points is presented in Table 2.

Table 1. Coefficients of the GARCH(1,1) for the increments of the non-homogeneous time
series

ω α β

Segment 1 0.0002 0.36 0.15
Segment 2 0.0002 0.6 0.31
Segment 3 0.0002 0.6 0.1
Segment 4 0.001 0.6 0.1
Segment 5 0.001 0.01 0.1

Table 2. The percentage of the number of detected points

♯ of detected points coeff A(t) coeff B(t)

1 0% 6%
2 0% 65.9%
3 0% 1.9%
4 78.1%% 0.4%
5 18% 0%
6 3.5% 0%

One can see that only coefficient A is useful to perform a segmentation of non-homogeneous time
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Figure 3. Left: simulated time series, Right: Diagnostic sequence A(t)

series with segments from GARCH (1,1) models. Below we present results only for the coefficient A.
The true positive rate and bootstrap confidence intervals are given in the Table 3.

Table 3. The true positive rate and bootstrap confidence intervals

change-point true positive A CI, coeff A

1 97% ( 29100,32100)
2 91.1% (55582, 63900
3 96% (89250, 90600)
4 74.8 % ( 115800, 122400)

Let us notice that the first change point corresponds to the change in two parameters of the GARCH
(1,1) model, α and β. Our detection rate is 97%. The second point corresponds to the change in the
parameter β, and we detected this change 91 % of the time. The third point corresponds to the mean
value ω change, and the detection rate was 96%. The fourth point corresponds to the change in the
parameter α, and the detection rate is 74.8%. We obtained the best detection rate when both coefficients
α and β had been changed. We observe that only ϵ-complexity coefficient A helped to detect changes in
the coefficients of GARCH (1,1) model. Let us emphasize that we used the same approach to detect
these disorders and did not use any knowledge about the model.

3.3. Demonstration of our classification approach

We create two groups from GARCH(1,1) processes with the following coefficients.
Example 3.
Group 1: ω1 = 0.001, α = 0.4, β = 0.15
Group 2 a): ω2 = 0.003 α = 0.4, β = 0.15
Group 2 b): ω2 = 0.002 α = 0.4, β = 0.15
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Example 4.
Group 1: ω = 0.001, α1 = 0.015, β = 0.15
Group 2 (a): ω = 0.001 α2 = 0.5, β = 0.15
Group 2 (b): ω = 0.001 α2 = 0.3, β = 0.15
Example 5.
Group 1: ω = 0.001, α = 0.3, β1 = 0.1
Group 2 (a): ω = 0.001, α = 0.3, β2 = 0.43
Group 2 (b): ω = 0.001, α = 0.3, β2 = 0.3
Then we simulate 1000 realizations of length 300 for each process. For each realization, we estimated

complexity coefficients A and B. Then we plot them on the coordinate plane (A, B). In Figure 4, the left
plots corresponds to example 3 (the top one is (a) the bottom one is (b)), the middle plots to example 4,
and the right plots corresponds to example 5. Red circles represent the points of the first group. Black
points present the points in the second group.
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Figure 4. The points of the first group are represented by red circles. The points in the second
group are presented by black points. Top left: Example 3 (a), . Bottom left: Example 3 (b).
Top middle: Example 4 (a), Bottom middle: Example 4 (b). Top right: Example 5 (a), Bottom
right: Example 5 (b)

We applied support vector machine classifier to each example. The classification errors for the
10-fold cross-validation are presented in the Table 4, column 2. We also found ϵ–complexity coefficients
for the first order difference of the time series and employed SVM to 4-dimensional feature space of the
ϵ-complexity coefficients of time series and its first order differences. The classification errors for the
10-fold cross-validation are presented in Table 4.
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Table 4. The classification errors for the 10-fold cross-validation

Examples Classification error Classification error

2-D features space 4-D features space
3 a) 0% 0%
3 b) 1.35% 0.35%
4 a) 1.2% 1.1%
4 b) 20.3.67% 16.7%
5 a) 0.85% 0.8%
5 b) 17.4% 12.2%

One can see, that in Example 3 we have a perfect separation. In the Example 4 we got 98.8% correct
classification if we use only ϵ-complexity coefficients A and B. Let us notice that in the Example 3 we
changed the coefficient ω in the GARCH model.

The adding of the ϵ-complexity coefficients of first differences improve the classification accuracy
only on 0.1%. In the Example 4 we got 99.15% accuracy for the SVM classifier if we use only ϵ-
complexity coefficients. It is improved by 0.05% if the ϵ-complexity coefficients of first differences are
added to the feature space.

4. Applications to real data

4.1. Segmentation of Stock price data

We tested our approach on the high frequency Microsoft (MSFT) stock price data during the Flash
crash. The flash crash occurred on May 6, 2010. The flash crash started at 2:36 pm and lasted
approximately 36 minutes. The stock prices data were provided by nanex.net. In this example, we
consider data for five days from May 3, 2010 until May 7, 2010. This recordings are are collected every
five seconds. In this analysis, the median between bid, ask, last trade price values at each time point was
used. Figure 5 (left) presents MSFT stock price from May 3, 2010 until May 10 of 2010. The vertical
red line separates days. Figure 5 (right) presents corresponding log-returns data (difference of the log of
the original data).

We considered the disjoint intervals of length 120 (it corresponds to 10 minutes intervals). For each
interval we calculated the ϵ-complexity coefficients and used them as diagnostic sequences for the
non-parametric change-point detection procedure discussed above. The results are presented in Figure 6.
The left plot corresponds to the diagnostic sequence of the coefficients At and the right plot corresponds
to the diagnostic sequences of the coefficients Bt. We observe the diagnostic sequence of parameters At

detecting three changes in generating mechanisms.

We assume that that the intervals between points of disorders are homogeneous. Let us notice that
the third change point in the diagnostic sequence of the coefficient At is very closed to the change point

Data Science in Finance and Economics Volume 2, Issue 3, 237–253.
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Figure 5. Left: MSFT stock price, Right Log returns of MSFT stock price, May 3, 2010–
May 7, 2010. The vertical red line separates days.

of the coefficients Bt diagnostic sequence. Therefore we used the moments of changes in the generated
mechanism of the coefficients At as point of the separation into homogeneous intervals.

For each homogeneous interval we model data using GARCH models for the log return data. The
MATLAB build in function was used for the parameter estimation. We observe that for the first and
the last intervals GARCH models are not applicable. The p-values for coefficients α, β equal one.
For the second interval the ARCH(1) model is applicable. The estimated coefficient α = 0.01 and
the corresponding p-value is 2.8 · 10−5. For the third interval GARCH(2,1) model is applicable. The
corresponding estimated coefficients are α1 = 0.245 (p-val≈ 0), α2 = 0.135 (p-val= 2.5 · 10−10),
β = 0.232 (p-val≈ 0).

4.2. Application to classification problem

In this subsection, we use daily (at the end of the day) stock market prices for two companies
NVIDIA and AMD, during five years period (from 02/08/2013 until 02/07/18). This data can be found at
chttps://github.com/CNuge/kaggle-code/tree/master/stock_data. Firstly we found the
log returns of these data.

After that, we model the data of log returns using GARCH models. The GARCH(1,1) model turns
out to be the best model for these two data sets. We estimated coefficients of GARCH(1,1) using
MATLAB function and received the following result:

NVIDIA: ω1 = 0.0003, α1 = 0.2872, β1 = 0.1533
AMD: ω2 = 0.0004, α2 = 0.3836, β2 = 0.4455
After that, we simulated 1000 replications of GARCH(1,1) models with these coefficients, calculated

complexity coefficients A and B for each process replication, and plotted them on (A, B) coordinate
plane. We used SVM to classify the data. The classification error for the 10-fold cross-validation is 0.1%.
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Figure 6. Left: Coefficient A, Right: Coefficient B. Red vertical line separate days, horizontal
blue lines correspond to the local means between detected disorders

Figure 7 (left) provides plot of the stock price data of NVIDIA (solid blue line) and AMD (dashed
black line). The middle plot of Figure 7 shows the corresponding log-returns data for both companies.
Figure 7 (right) provides values of the ϵ-complexity coefficients for both groups of time series The blue
points corresponds to the coefficients (A, B) of time series simulated from the GARCH model which fits
NVIDIA data, and the black points correspond to the coefficients (A, B) of time series simulated from
the GARCH model which fits AMD data.

We observe the perfect separation between these two groups. We employed the support vector
machine classifier from a MATLAB. Classification error for the 10-fold cross validation is 0.25%. We
also calculated first order differences of the time series and found its ϵ-complexity coefficients. If we use
support vector machine classifier than the classification error for the 10-fold cross-validation is 0.1%.
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Figure 7. Left: Stock price data: NVIDIA (solid blue line) and AMD (dashed black line).
Middle: Log-returns data for NVIDIA (blue line) and AMD (black line) stock prices. Right:
The ϵ-complexity coefficients (A,B): for both groups of time series. The blue points correspond
to the coefficients (A,B) of time series simulated from the GARCH model which fits NVIDIA
data, and the black points correspond to the coefficients (A, B) of time series simulated from
the GARCH model which fits AMD data.

5. Conclusions

In this paper, we propose model-free technologies for a retrospective segmentation of time series
into the homogeneous increments and binary classification of the short time series. This approach was
demonstrated on GARCH(1,1) models.

To perform a segmentation of long time series we employed the ϵ-complexity coefficients calculated
for the disjoint segments (the sliding window also can be used) as a diagnostic sequence. The change in
the mean of the ϵ-complexity coefficients reflects the change in the generating mechanism of time series.
Subsequently, the change point detection algorithm of Brodsky B, Darkhovsky B (2013) is employed to
detect change points.

We apply this approach to GARCH (1,1) models and detect changes in coefficients of the model
without any knowledge about the model.

In our simulation study, we demonstrated the applicability of our approach for the data simulated
using GARCH(1,1) models with different coefficients and then concatenated. We apply this approach to
the high frequency stock market data.

Our approach was also applied to classify the short time series simulated by two GARCH(1,1)
models with different coefficients. We applied it to the real stock price data.

A key feature of our approach is independence from the model of the observed process. Let
us emphasize that most of the methods used in the literature (maximum likelihood, estimation of
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parameters in a window with subsequent monitoring of estimates, etc.) cannot be used in principle
without knowledge of the model. The independence from the process model is achieved by utilizing our
theory of the ϵ-complexity of continuous vector functions, which is consistent with the general idea of
A.N. Kolmogorov on how it is expedient to evaluate the complexity of an object.

However, the limitation of our method is that it requires a relatively long sequence of time series.
To calculate the complexity coefficient, we used segments of length 300. In the example with stock
market data the length of 100-120 were sufficient. Our approach is beneficial for the high-frequency
stock market data, when the time series are very long.

Our numerous experiments with different data types show that it is sufficient to use 100 points in
most cases. However, for GARCH(1,1), model 300 provides more stable results and helps us detect
better change points. To ensure that the limiting distribution for statistics from our 3-step algorithm will
start to work, the diagnostic sequence for each homogeneous increment should be several dozen. In our
examples, we used non-overlapping windows.

Note that when a non-overlapping window intersects any change-point, the mathematical expectation
of the sequence of complexity coefficient varies according to a particular transient process from one
constant to another. However, when the window size is much less than the length of any homogeneity
interval, such a transient process does not significantly affect the change point estimates.
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