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1. Introduction

For many decades, business cycles remain among the most interesting and fruitful research areas
in macroeconomics. There have been numerous studies which attempt to: (a) model business cycles;
(b) shed light into the interconnection between business cycles and other economic features (for
instance, inflation, rate of unemployment, technological shocks etc); and (c) understand the behaviour
of business cycles (for instance, dominant frequencies, main business cycle drivers etc). Indicatively,
we refer to Angeletos et al.(2020), Barsky and Sims (2011), Beaudry et al.(2020), Bloom et al.(2018),
Dekimpe and Deleersnyder (2018), Galı́ (1999), Galı́ (2015), Hicks (1950), Jaimovich and Rebelo
(2009), Justiniano et al.(2010), Jump and Stockhammer (2022), Lucas (1975), Michaillat and Saez
(2022), Piiroinen and Raghavendra (2019), Puu (1989). Due to the complexity of the subject, many
studies focus on specific types of economies which share similar characteristics. It is also clear that
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business cycles and its characteristic features (i.e. length, severity, amplitude, frequencies) are deeply
connected with financial stability (or financial crises).

The growing complexity of economies has created new challenges in studying the business cycles.
The data, which have to be analyzed and understood in order to reveal their information about the
financial risk, are usually complex, non-linear and multi-dimensional. On the other hand, data science
and machine learning have provided new techniques which allow us to monitor and analyze big and
unbalanced data and retain all the information available (see for example Angeletos et al. 2020).

The main objective of the present paper is to apply data-driven and machine learning methods
from the theory of Koopman operators and Extended Dynamic Mode Decomposition in the study and
analysis of the business cycles. Although these techniques are extensively used in dynamical systems
and control theory, especially in the case of non-linear or unknown dynamics, they are (to the best of
our knowledge) underutilized in financial or economic studies.

Roughly speaking, the core idea underlying the Koopman operator theory (initiated in Koopman,
1931) in the following. Assume that we have a dynamical system, ˙x(t) = f (x(t)), where x(t) ∈ M,
which describes the evolution in time of the state variables x(t). The dynamics f of the system may be
non-linear or even unknown. The Koopman operator K acts on observables of the dynamical system,
where the term observable refers to functions g : M → C. More precisely, the operator updates every
observable according to the evolution of the dynamical system. Therefore, it “lifts” the dynamical
system from the state space to spaces of functions defined on the state space. The Koopman operator
is linear and captures the dynamics of the original system. Furthermore, this linearization is global,
in the sense that it does not hold in the are of a fixed point or a periodic orbit. Hence, methods from
the operator theory, such as spectral analysis (von Neumann, 1932; Halmos and von Neumann, 1942;
Halmos, 1951; Mezić, 2005), can be utilized in the analysis of the dynamical system.

The Koopman formalism is linear, albeit infinite-dimensional. Therefore, although theoretically
it is easier to analyze the Koopman operator, its computation, as well as its spectral analysis, is always
impossible, with only a few exceptions. Consequently, one wishes to find finite approximations of this
operator. This issue remains a challenge in the area of dynamical systems. The first attempts towards
this direction have had limited success. The most effective way for obtaining finite dimensional
approximations of the Koopman operator is the Dynamic Mode Decomposition (DMD) (Rowley et
al.2009; Schmid, 2010) and its generalization, the extended-DMD (EDMD). Both methods, in their
numerical versions, are based on data, they are easy to implement, mainly relying on least squares
regression, and computationally and mathematically flexible, enabling numerous extensions and
applications (see, for instance, Brunton and Kutz, 2019). The final outcome is a finite dimensional
linear dynamical system, which is necessarily defined in some augmented state space, and it
approximates the original system. However, there is no guarantee that the resulting models will have
good approximation properties.

Indeed, a clear drawback of the EDMD algorithm is the need to make an a priori choice of a finite
set of observables (which is called a dictionary). It is well-known that the choice significantly impacts
the approximation quality of the spectral properties of the system (see Williams et al.2015; Williams
et al.2015; Korda and Mezić, 2018). For high-dimensional and highly non-linear systems, it is often
not easy to make a judicious selection without prior information of the dynamics.

As it has been mentioned, our primary purpose is to apply the above described combination of
Koopman operators and EDMD to study the business cycle. This approach also incorporates data-
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driven algorithms and machine learning methods, such as the Gaussian interpolation method. The final
result is a linear model in some augmented state space whose projection is expected to approximate
the trajectories of the business cycle. We are interested in examine whether the linear model has good
approximation properties or not. It is also worth mentioning that the augmented state space contains
several functions (observables) which are naturally indicated by the model, but they have not used in
economic studies so far, since they do not seem to have some structural counterpart in the theory.

For simplicity of the presentation, and because we are mainly interested in the applicability of the
method in the case of business cycle and not in specific data, we will not use real data in our study.
Instead, we make use of a business cycle non-linear model to produce the data needed for applying the
method. However, we would like to stress once again that the Koopman operator and EDMD approach
can also be applied to real data of business cycles with no essential modifications. We choose the
particular approach because one of our goals is to examine the strength of the proposed model and
to which extend the linear model that is obtained is capable of approximating the trajectories of the
original model.

More specifically, we consider the multiplier-accelerator model which initiated by Samuelson in
1939. The original model of Samuelson was a linear two-dimensional model and it was capable of
producing cycles only under a very restrictive choice of the parameters of the model. A non-linear
model which is used in our work can be found in Puu (1989). The Samuelson-Hicks-Goodwin-Puu
(SHGP) model (Samuelson, 1939; Hicks, 1950; Goodwin, 1951; Puu (1989)) is a non linear
continuous dynamical model whose main merit is that in the appropriate parameter space sector
predicts intrinsically business cycles which in the phase space are structurally stable limit cycles. This
model is relatively simple and elegant. One of its characteristics is that it produces the business cycle
without the use of exogenous shocks.

We approximate the SHGP dynamics which exhibits a limit cycle with two methods. In the first
method, we extend, in continuous time, the two-dimensional state space of the SHGP model to a
nine-dimensional linear space of observables Obs and we so obtain an EDMD finite approximation of
the Koopman operator of the SHGP model. The elements of the vector of the residuals of the
approximation do not tend to zero in the neighbourhood of the limit cycle and, as a result, the
trajectories of the ensuing linear dynamical system are a good approximation to the flow of the SHGP
model only for a short time span of the horizon.

The second method is data-driven, it applies in discrete time, and it requires a finite number of
snapshots of the system as it evolves in time. We define data matrices with columns the values of a finite
set of observables at the aforementioned snapshots. The finite approximation to the Koopman operator
in this method is the shift operator which moves forward in unit time steps the vectors of observables
and is determined with least squares minimization. In both methods, it is the dynamics of the linear
dynamical system determined by the finite approximation to the Koopman operator which compares
with the dynamics of the SHGP model. In the second method by augmenting appropriately the set of
observables with more elements we are able to obtain an even better approximation, compared to the
one we obtained with the first method,to the trajectories in the phase space of the SHGP model.

Business cycle is a complex topic in economics which is non linear depends on several parameters
and it is difficult to analyze. Furthermore, there is a plethora of data available for every economy. The
latest developments in machine learning and computer science have provided new data-based methods
for analyzing such phenomena and revealing underlying structures and correlations. The data-driven
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approach of Koopman operators in combination with EDMD are ideal for system that combine those
characteristics. Therefore, it is natural to apply this methods to the study of the business cycle.

There have been other papers in the literature on DMD and business cycles, albeit with different
focus. Hua et al.(2015) used DMD to extract cyclic activity in financial markets whereas in Kuttichira
et al. 2017a, 2017b proposed a method for stock price prediction using DMD. In Mann and Kutz
(2015), the application of an algorithmic trading strategy is demonstrated based upon DMD.

This paper is organized as follows: In Section 2 we give the bare essentials of the Koopman
operator theory and of the associated EDMD method.In Section 3, we remind the numerical EDMD
algorithm which implements the finite-dimensional approximations of Section 2. In Section 4, we
propose a method, based on Gaussian process interpolation, for training the linear system that is used
to approach the non-linear one. In Section 5 we give all the necessary theoretical prerequisites of the
SHGP model. In Section 6 we apply the EDMD method to the SHGP model in continuous time. In
Section 7 we apply the numerical EDMD algorithm to the SHGP model in discrete time. In Sections 8
and 9 we study the eigenstructure of the linear model that have been obtained in Section 7. In Section
11 we use more complex periodic data. We explain how this method can be applied to this data and we
also describe a more general approach that can be used in real data. Finally, in Section 10, we apply
the interpolation-based method to the SHGP model and Section 12 concludes the paper.

2. Koopman operator theory and EDMD

We consider a continuous dynamical system

ẋ(t) = f (x(t)), x(t) ∈ M,

defined on some manifold M ⊆ Rd, through the function f : M → TM. The flow map Φ(t, x0)
describes the evolution of the system in time t ≥ 0 with initial condition x0, i.e. Φ(t, x0) is the state of
the system when we start from initial condition x0 after time t.

Alternatively, we may consider a discrete dynamical system

x(n + 1) = f (x(n)), x(n) ∈ M, n ≥ 0,

defined by some function f : M → M. In this case, we denote the flow map by Φ(n, x0). Discrete
systems are often more natural, especially when we consider measurements from data. Furthermore,
continuous system give rise to discrete ones by considering sampling in some time-step ∆t .

Any function g : M → C is called an observable of the system. We assume now that F is a
function space which is closed under composition with the flow Φ(t, x0). The Koopman operator
K t : F → F updates every observable g ∈ F according to the flow of the dynamical system,
i.e. K t(g) = g ◦ Φ(t, ·). It is clear that when we refer to the Koopman operator, we actually refer to a
set of operators (K t)t≥0. However, in accordance with the literature, we will use the term Koopman
operator. In the case of discrete systems, the definition is similar and simpler. The Koopman operator
is defined as K(g) = g ◦ Φ(1, ·). It should also be pointed out that in many applications the function f
defining the system is measurable and the space F is the Hilbert space of square integrable
complex-valued functions on Rd.

The Koopman operator associated to a dynamical system is clearly linear and the research has
shown that its spectral decomposition characterizes the behaviour of the dynamical system. Hence,
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this type of operators offer a linear representation of the original system which is also global, that is it
does not valid only in some area of a fixed point or a periodic orbit. However, this operator is inevitably
infinite dimensional and in the majority of cases it is impossible to be calculated. Consequently, several
methods have been developed for approximating the Koopman operator and its spectral properties with
finite dimensional linear operators. Dynamic mode decomposition (DMD) and Extended dynamic
mode decomposition (EDMD) have been proved very useful and they are the more successful methods
in this direction. These approaches, in their numerical versions, depend on data and their aim is to
produce a linear model which best fits the spatial measurements from one time to the next. This
model is not only linear but also finite dimensional and it is not defined in the state spaceM but on
some augmented spaceM of dimension bigger thanM. Hence, we somehow exchange linearity with
dimensionality. Although the original system is non-linear, one expects that this approach will be rich
enough to capture the spectral analysis of the Koopman operator and the trajectories of the original
system at some specific part of the state space.

This type of approximation (DMD method) involves the following steps.

(a) For a given non-linear dynamical system

ẋ = f (x) (1)

define a set of observables {ψ1, ψ2, . . . , ψm} (this set is called a dictionary) and consider the linear
space F̃ spanned by these functions.

(b) If F̃ is invariant with respect to the Koopman operator K , then the restriction of K to F̃ gives a
finite dimensional linear operator which can provide information about the eigenstructure of K .

(c) However, it is extremely rare to find a finite dimensional invariant space of observables.
Consequently, we have to consider the orthogonal projection of K to F̃ .

Koopman operator theory and EDMD is a systematic way to address problems from systems and
model identification, model expansion and model reduction by using tools from Operator Theory and
AI. In elementary terms, flows of dynamical systems Φ(t, x0) are decomposed as

Φ(t, x0) ≃
∑

i

mi(t)gi(x0)

where mi(t) are modes of a linear system, i.e combinations of exponentials, trigonometric and
polynomial functions and gi(x0) depend on the basis of EDMD which is taken from a superset of
observables called dictionary.

The quality of this approximation depends on the selection of observables, i.e the dictionary,
which for complex non-linear systems is created via AI and machine learning methods.

3. Data-driven EDMD algorithm for the Koopman operator of non-linear or unknown
dynamics

We next give a brief description of the EDMD algorithm for the Koopman operator which
numerically implements the approximations described in Section 2. We assume again that we have a
dynamical system of the form (1), i.e. ẋ = f (x), x ∈ Rn, where the dynamics f are non-linear or even
unknown. We cannot expect to obtain a linear approximation of the same dimension n and hence, we
need to construct an augmented state space. This algorithm consists of the following steps.
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1. Initially, we need data from the original system. We assume that k trajectories of the original
system are executed and they start from different initial conditions x0 j, j = 1, . . . , k. Each
trajectory is witnessed for some time horizon T and sampling points are collected at a fixed time
interval ∆t. Hence, T

∆t points of each trajectory are collected. It should however be noted that
uniform sampling in time is not necessary and one may consider different sampling methods for
collecting the data. Finally, our data are given by((

xs j

)n0

s=0

)k

j=1
.

2. We next choose number a m and some set ϕ1, . . . , ϕm of observables, which is called a dictionary.
This step is very important. A suitable dictionary leads to good approximation properties while a
“bad” choice may result in false conclusions. The choice of the dictionary remains a challenge in
the theory of Koopman operators and dynamical systems.
The augmented (or lifted) stated space consists of vectors of the form

y =
[
x, ϕ(x)

]T ,

where ϕ(x) =
[
ϕ1(x), . . . , ϕm(x)

]T . Hence, this space has dimension m + n. As it is expected, if
we wish to approximate the original non-linear system with a linear one, we have to pay in
dimensions. The number m of additional coordinates varies and depends on the behaviour of the
original system. If our data indicate that the dynamical system, although non-linear, has a
“smooth” behaviour, then it suffices to consider only a few additional coordinates. For systems
with extreme behaviour and complex trajectories, the number m should be large enough to
obtain good approximation properties (if this is possible). Each trajectory of the original system

corresponds to a trajectory in the lifted space. Therefore, the collected data
((

x js

)n0

s=0

)k

j=1
correspond to data in the augmented state space which have the form

y j0, y j1, . . . , y jn0

for initial values y j0, j = 1, 2 . . . , k. For any j = 1, 2, . . . , k, we set

Y j[0,n0−1] =
[
y j0, y j1, . . . , y j,n0−1

]
and Y j,[1,n0] =

[
y j1, y j2, . . . , y jn0

]
.

3. Finally, a best-fit (finite dimensional) linear operator Ã ∈ R(n+m)×(n+m) is obtained such that
Y j,[1,n0] ≈ ÃY j,[0,n0−1] for all j = 1, . . . , k. The matrix Ã is constructed with least square
regression methods. For instance, one may consider

Ã = argmin
A∈R(n+m)×(n+m)

k∑
j=1

∥∥∥∥Y j,[1,n0] − ÃY j,[0,n0−1]

∥∥∥∥2
.

The (finite dimensional) linear operator Ã can now be used to approximate the trajectories of the
original dynamical system. More precisely, given initial condition x0 ∈ R

n, one has to move into the
lifted space and to consider the initial condition y = [x0, ϕ(x0)]T . Then, the trajectory {yn} of the linear
system yn+1 = Ã · yn can also be obtained. The projection of this trajectory to the first n coordinates
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gives rise to an approximation of the trajectory of the original system, provided that the choice of
dictionary is proven to be suitable.

Roughly speaking, the above approach has the following characteristics. (a) If we isolate one of
the trajectories, starting at the point x0 j, then we expect that we will be able to reproduce the trajectory
of the original non-linear dynamics with a finite dimensional linear operator whose dimensions are
rather small. (b) However, if we consider another trajectory, starting at a different point, then it is
highly likely that the linear operator that approximates the previous one may not be able to catch the
new orbit. Therefore, if we consider many different trajectories, then, in order to obtain as accurate
results as possible, we may have to consider liner operators with much bigger dimensions. In other
words, we have to pay in dimensions, if we wish to have good approximations.

4. EDMD and learned approximations to Koopman operator

Motivated by the above observations of the previous section, we now propose a methodology
for obtaining relatively good approximations using however operators with low dimensions. The core
idea in this approach is to replace the matrix A with a matrix whose entries are functions rather than
numbers and to train these functions with some machine learning technique. In this approach, it is
expected that a smaller numbers of observables are needed to obtain good approximations.

More precisely, this methodology consists of the following steps.

1. We again execute k trajectories of the dynamical system with initial conditions x0 j, j = 1, . . . , k.
We collect the data as above. Again, it is not necessary to perform a uniform sampling.

2. We again consider some dictionary, i.e. a set of observables ϕ = (ϕ1, ϕ2, . . . , ϕm). These
measurements may be linear or non-linear and they may also contain the original state x.

3. For each trajectory, we consider the matrices

Y =
[
x0 j x1 j . . . xn0−1, j

]
and Y′ =

[
x1 j x1 j . . . xn0 j

]
.

Then, we find a best-fit linear operator that maps Y to Y′ by solving the regression problem

A j = argmin
A∈Rm×m

∥Y′ − AY∥.

As far, the method coincide with the previous one. The difference is that we apply the method for
each trajectory separately and thus we have obtained a set of linear operators A j corresponding to
the initial conditions x0 j, j = 1, . . . , k. The linear system produced by each one of these operators is
expected to provide a good approximation of the corresponding trajectory. However, it may present
poor performance in other trajectories under different initial conditions.

To overcome this inconvenience, we consider for every i, r = 1, 2, . . . ,m, the set of points(
x0 j, a

j
ir

)k

j=1
which associated each initial condition x0 j with the (i, r)-entry of the matrix A j. Applying

Gaussian interpolation process, we find a function air(x0) (x0 ∈ M should be interpreted as the initial
condition) which best fits the points that we have considered.

Consequently, the matrix
A(x0) = (air(x0))m

i,r=1

is constructed whose entries are functions on the state spaceM. Given some initial condition x0 ∈ M,
one may consider the linear system produced by the matrix A(x0) for the specific choice of x0. The
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projection of this linear system is expected to have good approximations properties at least along the
trajectory of the original system with initial condition x0.

5. The SHGP model

At the beginning of the thirties, the Great Depression shook the very foundations of the modern
world, causing great damage to virtually all advanced countries and laying a responsibility on the
international economics community to explain these frightening recurring downward movements in
the level of production and to possibly find a cure for them.

Culmination of the efforts to explain these recurring downward movements led to the advent of
Samuelson’s Samuelson (1939) multiplier-accelerator model in 1939 which gave birth to modern
business cycle theory. As demonstrated by Samuelson, the interplay between the multiplier analysis
and the principle of acceleration may generate temporary business cycles.

Samuelson’s model is based on the Keynesian multiplier, which is a consequence of assuming
that consumption intentions depend on the level of economic activity, and the accelerator theory of
investment, which assumes that investment intentions depend on the pace of growth in economic
activity.

Samuelson’s multiplier-accelarator model clearly displays the limitations of linear analysis. The
model is capable of either producing exponentially damped or exponentially explosive change, but
nothing else. Hicks Hicks (1950) and Goodwin Goodwin (1951) convincingly argued that
Samuelson’s model conforms better to reality if the linear investment function in it is replaced by a
nonlinear investment function.

Puu a few years later Puu (1989) suggested a model which also includes a nonlinear investment
function. Puu’s model subdues the models suggested by Hicks Hicks (1950) and Goodwin Goodwin
(1951) and it is epitomized in the following system of differential equations

Ẏ = I − sY, (2)

İ = v
(
Ẏ −

1
3

Ẏ3
)
− I. (3)

The meaning of the symbols Y, s and v is as follows: Y denotes the income. Savings, S , are a
given proportion s of the income. Investments, denoted I, are by definition the rate of change of capital
stock. Thus: I = v dY

dt and S = sY.
One can easily show that the dynamical system (2), (3) has one equilibrium point at (Y, I) = (0, 0).

A linearization of the system at (Y, I) = (0, 0) yields[
Ẏ
İ

]
=

[
−s −vs

1 −1 + v

] [
Y
I

]
. (4)

If r1 and r2 are the roots of the characteristic polynomial of the matrix
[
−s −vs

1 −1 + v

]
we easily find

that
r1 + r2 =

v − 1 − s
2

, r1r2 = s. (5)

If v− 1− s > 0 equation (5) implies that Re(r1) > 0, Re(r2) > 0. Therefore, the equilibrium point (0,0)
is unstable and the dynamical system exhibits Puu (1989) a stable limit cycle. If v−1− s < 0 equation
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(5) implies that Re(r1) < 0, Re(r2) < 0 and consequently the equilibrium point (0,0) is stable and the
dynamical system does not possess Puu (1989) any limit cycle.

For example, by choosing Y(0) = 3, I(0) = 1, and v = 2 and s = 0.3, by numerically integrating
(2), (3) we obtain for Y(t) and I(t) the plots shown in Figure 1.

Figure 1. Graph of the solutions Y(t) and I(t) of the system of differential equations (2) and
(3). The initial conditions are Y(0) = 3 and I(0) = 1, while the values of the parameters are
v = 2 and s = 0.3.

By plotting in phase space I against Y we obtain the diagram of Figure 2.

Figure 2. Graph of I against Y (phase plane) with initial conditions and parameters as in
Figure 1. We can observe the emergence of a stable limit cycle.

The main feature of the SHGP model which also constitutes its main merit is that in the appropriate
parameter space sector predicts intrinsically business cycles which in the phase space are structurally
stable limit cycles. The SHGP model cannot be solved in closed form. We approximate the SHGP

Data Science in Finance and Economics Volume 2, Issue 2, 117–146.



126

dynamics in the presence of a limit cycle with two methods. The first method is model based and it is
given in section 6. The second method is data driven and it is given in Section 7.

6. Koopman operator and observables for the non-linear business cycle model

In this section, we extend, in continuous time, the two-dimensional state space of the SHGP model
to a finite-dimensional linear space of observables Obs and we so obtain an EDMD finite approximation
of the Koopman operator of the SHGP model.

We consider the following set of observables (dictionary):

Zkr = IkYr, for all k, r ≥ 0.

For instance, Z10 = I, Z01 = Y , Z20 = I2, Z11 = IY , Z02 = Y2 and so on. Substituting Ẏ from Equation
(2) to Equation (3) and after some calculations, we obtain

İ = (v − 1)I − svY −
v
3

I3 + svI2Y − s2vIY2 +
s3v
3

Y3. (6)

Hence,

dI2

dt
=2I İ = 2(v − 1)I2 − 2svIY −

2v
3

I4 + 2svI3Y − 2s2vI2Y2 +
2s3v

3
IY3

d(IY)
dt
=(v − 1 − s)IY + I2 − svY2 −

v
3

I3Y + svI2Y2 − s2vIY3 +
s3v
3

Y4

dY2

dt
=2IY − 2sY2.

Similarly,

dI3

dt
=3(v − 1)I3 − 3svI2Y − vI5 + 3svI4Y − 3s2vI3Y2 + s3vI2Y3

d(I2Y)
dt

=I3 + [2(v − 1) − s]I2Y − 2svIY2 −
2v
3

I4Y + 2svI3Y2 − 2s2vI2Y3 +
2s3v

3
IY4

d(IY2)
dt

=(v − 1 − 2s)IY2 + 2I2Y − svY3 −
v
3

I3Y2 + svI2Y3 − s2vIY4 +
s3v
3

Y5

dY3

dt
=3IY2 − 3sY3

d(I2Y2)
dt

=2(v − 1 − s)I2Y2 − 2svIY3 + 2I3Y −
2v
3

I4Y2 + 2svI3Y3 − 2s2I2Y4 +
2s3v

3
IY5.

It follows that the space Obs generated by the observables (Zkr)∞k,r=0 is invariant. The above equations
can be written in the following form

Ż01 = − sZ01 + Z10

Ż02 = − 2sZ02 + 2Z11

Ż10 = − svZ01 + (v − 1)Z10 − s2vZ12 + svZ21 +
s3v
3

Z03 −
v
3

Z30
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Ż11 = − svZ02 + (v − 1 − s)Z11 + Z20 + svZ22 −
v
3

Z31 − s2vZ13 +
s3v
3

Z04

Ż12 = + (v − 1 − 2s)Z12 + 2Z21 − svZ03 −
v
3

Z32 + svZ23 − s2vZ14 +
s3v
3

Z05

Ż20 = − 2svZ11 + 2(v − 1)Z20 − 2s2vZ22 −
2v
3

Z40 + 2svZ31 +
2s3v

3
Z13

Ż21 = − 2svZ12 + [2(v − 1) − s] Z21 + Z30 −
2v
3

Z41 + 2svZ32 − 2s2vZ23 +
2s3v

3
Z14

Ż22 = + 2(v − 1 − s)Z22 − 2svZ13 + 2Z31 −
2v
3

Z42 + 2svZ33 − 2s2vZ24 +
2s3v

3
Z15

Ż03 = + 3Z12 − 3sZ03

In matrix form

Ż01

Ż02

Ż10

Ż11

Ż12

Ż20

Ż21

Ż22

Ż03


=



−s 0 1 0 0 0 0 0 0
0 −2s 0 2 0 0 0 0 0
−sv 0 v − 1 0 −s2v 0 sv 0 s3v

3
0 −sv 0 v − 1 − s 0 1 0 sv 0
0 0 0 0 v − 1 − 2s 0 2 0 −sv
0 0 0 −2sv 0 2(v − 1) 0 −2s2v 0
0 0 0 0 −2sv 0 2(v − 1) − s 0 0
0 0 0 0 0 0 0 2(v − 1 − s) 0
0 0 0 0 3 0 0 0 −3s


·



Z01

Z02

Z10

Z11

Z12

Z20

Z21

Z22

Z03


(7)

+



0
0
− v

3Z30

− v
3Z31 − s2vZ13 +

s3v
3 Z04

− v
3Z32 + svZ23 − s2vZ14 +

s3v
3 Z05

−2v
3 Z40 + 2svZ31 +

2s3v
3 Z13

+Z30 −
2v
3 Z41 + 2svZ32 − 2s2vZ23 +

2s3v
3 Z14

−2svZ13 + 2Z31 −
2v
3 Z42 + 2svZ33 − 2s2vZ24 +

2s3v
3 Z15

0


Hence, we may approximate the non-linear dynamical system with the following linear one:

Ż01

Ż02

Ż10

Ż11

Ż12

Ż20

Ż21

Ż22

Ż03


=



−s 0 1 0 0 0 0 0 0
0 −2s 0 2 0 0 0 0 0
−sv 0 v − 1 0 −s2v 0 sv 0 s3v

3
0 −sv 0 v − 1 − s 0 1 0 sv 0
0 0 0 0 v − 1 − 2s 0 2 0 −sv
0 0 0 −2sv 0 2(v − 1) 0 −2s2v 0
0 0 0 0 −2sv 0 2(v − 1 − s) 0 0
0 0 0 0 0 0 0 2(v − 1 − s) 0
0 0 0 0 3 0 0 0 −3s


·



Z01

Z02

Z10

Z11

Z12

Z20

Z21

Z22

Z03
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Figure 3 shows the eigenvalues of the 15 × 15 approximation of the Koopman operator. We
observe the appearance of eigenvalues whose real part is 1 or close to 1. On the other hand, there
are no eigenvalues with small real part, i.e. eigenvalues which is imaginary numbers. This implies
that the linear dynamical system has trajectories that diverge to infinity and it cannot give the limit
cyclic behaviour. Hence, it can be used for short term predictions of Y and I. Finally, Figure 4
shows the “true” Y(t) and I(t) and compares them with the corresponding functions obtained by the
previous approximation. It is clear that for short term, one has good approximations. However, the
solutions obtained with the aforementioned method do not exhibit the cyclic limit behaviour of the
“true” solutions Y(t) and I(t).

Figure 3. Eigenvalues of the finite-dimensional approximation of the Koopman operator.

The fact that one has short term good approximation of the “true” Y(t) and I(t) can be attributed to the
fact the elements of the vector of residuals which appear in (8) do not tend to zero at the neighbourhood
of the limit cycle.
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Figure 4. Comparison of the “true” Y(t) and I(t) with the ones obtained by the finite
dimensional approximations of the Koopman operator.

7. Extended Dynamic Mode Decomposition and trajectories of the business cycle

In this section we find a data-driven EDMD finite approximation of the Koopman operator of
the SHGP model. We consider a finite number of snapshots of the system as it evolves in time. We
define data matrices with columns the values of a finite set of observables at these snapshots. The finite
approximation to the Koopman operator in this method is the shift operator which moves forward in
unit time steps the vectors of the observables and it is determined with least square fit.

Figure 5. Graph of the solutions Y(t) and I(t) of the system of differential equations (2) and
(3). The initial conditions are Y(0) = 3 and I(0) = 1, while the values of the parameters are
v = 2 and s = 0.3.
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The task is to approximate these trajectories (shown in Figure 5) via EDMD through
discretization in the Horizon [0, 40]. We performed Sampling of 401 points within this horizon
together with the enhancement of state space from 2 to 15 dimensions as described by the following
vector of observables:

{Y,Y2,Y3,Y4, I, IY, IY2, IY3, IY4, I2, I2Y, I2Y2, I2Y3, I2Y4, I4}.

This gives rise to an X[0,400] ∈ R
15×401 observation matrix of the specific trajectories, in the extended

state space. The final step of the EDMD is the solution of the following matrix equation by matrix
inversion:

X[1,401] = AX[0,400].

“A” is the system matrix of a linear system in a 15-dim state space that may be used as an alternative
description for the above periodic trajectories defining the limit cycle of the original nonlinear system.
The location of the poles of the linear system as well as the distribution of their modulus’ are depicted
in Figure 6.

Figure 6. On the left: Eigenvalues of the matrix A in the complex plane. On the right:
Distribution of the modulus of the eigenvalues.

By using A and the same initial conditions we reconstruct Y in the horizon [0,40] which is shown
in the following graph where the periodic features of the trajectories are preserved and apparent as
shown in Figure 7.
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Figure 7. Graph of Y(t) as it is given by the EDMD approach. The periodic features of the
trajectory are apparent.

Furthermore the comparison of this trajectory with the original data used to “train” A is shown in
Figure 8.

Figure 8. Comparison of the original trajectory of Y(t) with the trajectory obtained with the
EDMD method. It is clear that, for one trajectory, we have good approximation properties.

This demonstrates

(a) the strong approximating power of the discrete EDMD method for a single trajectory;
(b) the existence of small deviations from the ideal data only at the peaks and troughs;
(c) sustained oscillation for an horizon of at least [0, 100] and then emergence of slow decay with
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time as shown in Figure 9 of the EDMD approximation in the extended horizon of [0, 800] (out
of sample).

Figure 9. Trajectory of Y(t) obtained with the EDMD method in the extended horizon
[0, 800], which is out of sample.

We note that the much better approximating power of the discrete EDMD method, given in this
section, as compared with the approximating power of the continuous EDMD method given in section
5 is made intelligible by the different nature of the two methods. In the continuous EDMD method
we approximate ab initio the non-linear SHGP model (2), (3) by a linear model (8) and it is this linear
model which we integrate. The residuals of the linear approximation which appear in (8) not only
do they not tend to zero in the vicinity of the limit cycle but also they propagate and become bigger
when we integrate (8). On the contrary, the data used in this section in order to construct the matrices
X[0,400], ∈ X[1,401] and thereby to derive the matrix A are obtained by integrating the exact Equations
(2), (3) and not a finite approximation of them.

Continuous EDMD from Discrete EDMD

Given the better approximating power of the discrete EDMD method as compared with the
continuous EDMD method we can use the finite approximation A to the Koopman operator derived
from the discrete EDMD in Section 7 to obtain a more efficient finite approximation A to the
Koopman operator in the continuous EDMD by requiring

eA∆t = A, (8)

where ∆t is the time step which separates the snapshots of the system in the discrete EDMD in Section
7. Solving equation (8), we obtain the matrix A. This can be used in Equation (8) to gibe better results
in the continuous case.
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8. Discrete EDMD with different initial conditions

To demonstrate the efficacy of the discrete EDMD we calculate the finite approximations of the
Koopman operator with discrete EDMD for various initial conditions inside and outside the limit
cycle. This set of initial conditions is described by the line segment
{(1 − t)(1, 1) + t(3, 3), t = 0.01k, k = 0, 1, ..., 100}. For these operators-finite approximations to the
Koopman operator we calculate the eigenvalues and a selection of the distribution of their
magnitudes. These are depicted in the Figures 10 and 11.

Figure 10. Distribution of the modulus of the 1st eigenvalue.

We note that all these operators have an eigenvalue with modulus very close to 1; it is the
oscillatory mode which leads to the limit cycle in the phase space. The other eigenvalues with various
degrees of volatility in their magnitudes, as depicted in Figure 11, are responsible for the transient
state which drives the SHGP system towards the limit cycle.
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Figure 11. Distribution of the modulus of the (a) 3rd eigenvalue; (b) 5th eigenvalue; (c)10th
eigenvalue; (d) 15th eigenvalue.

Figure 12. The average modulus of the eigenvalues.

Finally, a plot of the frequency corresponding on the average highest eigenvalue is shown in Figure
13.
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We observe that the range of values and the variances of the larger eigenvalues (that shape the
dominant frequency of the cycle) is much less than that of the smaller eigenvalues (that control the
transient behaviour of the trajectories). A plot of the average modulus of eigenvalues by size is given
in Figure 12.

Figure 13. The frequency of the highest eigenvalue.

We note that this mode which leads to the limit cycle dies off in a very slow pace well beyond of
the time horizon of the 40 years.

9. Evolution of the eigenvalues’ location of the EDMD operator on the same I,Y trajectory but
with variable initial conditions

As we have shown in Section 7, the (finite-dimensional) linear operator (matrix) obtained from
data with the EDMD method has strong approximation properties for a single trajectory of the non-
linear dynamical system of the business cycle. We have also studied the eigenvalues of this operator,
and we have observed the existence of eigenvalues in the unit circle, giving the periodic part of the
solutions, and the existence of eigenvalues located away from the unit circle, corresponding to the
transient part of the business cycle.

In this section, we focus on a single trajectory of Y and I and we examine the evolution of the
eigenvalues of the EDMD operators which are obtained from different initial conditions (on the same
trajectory).

We start with t = 0 and the initial condition Y = 30, I = 30 which is located away from the
business cycle and the trajectory in the horizon [0, 40] contains a significant transient part. The EDMD
operator has eigenvalues located close to the unit circle (capturing the periodic part of the trajectory)
and some eigenvalues away form it capturing the transient part. The eigenvalues in the complex plane
are shown in Figure 14.
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Figure 14. Eigenvalues of the finite-dimensional operator obtained with EDMD. The initial
conditions are Y(0) = 30, I(0) = 30 and the parameters are v = 2 and s = 0.3.

Figure 15. (a) Eigenvalues of the finite-dimensional operator obtained with EDMD. We
consider the same orbit as in Figure 14, however, we examine the window time [2, 42]. As
we can see, the eigenvalues have moved towards the unit circle. (b) Eigenvalues of the
operator obtained from the same orbit in the time window [30, 70]. The transient part of the
trajectory has vanished. As it is expected (because of the strong approximation properties for
a single trajectory, the eigenvalues of the EDMD operator lie on the unit circle.

We considered now the window of the horizon to move to [2, 42] on the same orbit as before. The
new trajectory segment moves deeper into the business cycle and captures more of the cyclic part. Thus
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the new EDMD operator eigenvalues approach further the unit circle (see Figure 15). Finally moving
the window to [30, 70], i.e. for initial condition at t = 30, the trajectory segment is fully periodic and
thus the EDMD eigenvalues are on the unit circle (see Figure 15).

10. The use of EDMD with varying initial conditions by interpolating EDMD matrices

So far we have demonstrated the use of state space augmentation by EDMD methods, as a new
form of linear representation and a tool for numerical simulations of the business cycle dynamic model
with cubic nonlinearity. If the initial conditions as well as the horizon are both fixed, then the results
(proximity of flows) are satisfactory and are achieved with a moderate state space augmentation from 2
to 15 in dimension. However, the use of a single EDMD matrix for a range of initial conditions seems
intractable without significantly increasing the dimension of the state space. In this section we propose
to interpolate EDMD matrices each of which fits a single trajectory starting from an initial condition
in a set of predefined points of the state space. Here for the specific example we study, we consider a
segment of initial conditions S [0,1] = {(1− r)(1, 1)+ r(3, 3) | r ∈ [0, 1]} parametrized by r ∈ [0, 1]. This
set parametrises a large part of the flows of the business cycle system in the proximity of the attractor
from both its inside and outside. We sample 101 equidistant points of this segment and calculated
101 EDMD matrices Ar, r ∈ {0, 0.01, 0.02, . . . , 1} approximating the trajectories starting from these
101 initial conditions. The purpose now is to interpolate these finite set matrices to a continuum of
matrices Ar with r ∈ [0, 1] so as we have an EDMD matrix for every initial condition in S [0,1]. By
plotting each entry of EDMD matrices Ar against r ∈ {0, 0.01, 0.02, . . . , 1} we observe that the graphs
vary significantly as shown in the following figures, a fact that suggests the use of a generic method
of interpolation. Here we consider the Gaussian process interpolation method recently popularized in
the machine learning community and created a 15 × 15 matrix of interpolatory functions covering all
S [0,1]. The results for three (out of 152) representative entries are shown in Figure 16.

Figure 16. (a) The discrete points show the (1, 1) entry of EDMD matrix Ar as r takes
values in {0, 0.01, 0.02, . . . , 1}. The continuous curve shows the (1, 1) entry of the matrices
Ar, r ∈ [0, 1] and it has been obtained with the Gaussian process interpolation. (b) The same
results for the (15, 15) entry of the matrices. (c) The same results for the (9, 3) entry of the
matrices.

The plots of Figure 16 show the existence of an overshoot of the values of the entries of the
matrices Ar when r located between 0.05 and 0.2. The Gaussian process interpolation traces all the
values of the entries correctly within the domain r ∈ [0, 1] apart from (possibly) the segment
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r ∈ [0.05, 0.2]. This segment is a neighborhood of the intersection of S [0,1] with the attractor and,
there, it seems that this generic interpolatory method may fail for some of the entries of Ar. Figure 17
demonstrates the cyclic path of the business cycle system along with the segment S [0,1] of initial
conditions and the exceptional subset of S [0,1] which is located in the vicinity of the attractor.

Figure 17. The business cycle in the phase space along with the segment of initial conditions
and the exceptional subset of S [0,1] located in the vicinity of the attractor.
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With this in mind, we proceeded to fit 152 = 225 interpolatory gaussian process functions
corresponding to every entry of Ar . Thus for every initial condition in S [0,1] we may calculate an
EDMD matrix Ar. Next we demonstrate some results on the performance of this method by
comparing the real trajectories with those taken by the EDMD interpolatory matrices both starting
from various initial conditions in S [0,1]. The two trajectories are plotted in the same graph for
comparison purposes. The results are shown in Figure 18

Figure 18. Comparison of the true trajectory of I(t) with the trajectory given by the
matrix Ar, which has been obtained with the Gaussian process interpolation method. (a)
For r = 0.537 and initial conditions (Y(0), I(0)) = (2.074, 2.074). (b) For r = 0.772 and
initial conditions (Y(0), I(0)) = (2.074, 2.074). (c) For r = 0.115 and initial conditions
(Y(0), I(0)) = (1.23, 1.23).

11. Application to real data

To apply the dynamic modelling approach presented for data arising from SH data to more general
cyclic data given by a time series I(t) one has to introduce an auxiliary variable Y(t) by exponentially
smoothing and scaling I and then to consider an EDMD basis of the form IkYλ, k, λ ∈ N∗. This
approach poses some conceptual and numerical challenges which will appear in the sequel.

The easiest approach to fit such dynamic models to data with noise or not is to consider basis of
the form I, İ, Ï, . . . , I(n) for continuous data, or I, L(I), L2(I), . . . , Ln(I) for discrete data and to explore
linear relationships between them for n large enough. This can be extended to vector or matrix data Gk

and the minimum order of dynamics required (which reflects the complexity of the data) is determined
ny the rank p of the infinite Hankel matrix H∞×∞(G), where

Hr,r′(G) =


G1 G2 . . . Gr′

G2 G3 . . . Gr′+1
...

...
...

Gr Gr+1 . . . Gr+r′−1


This leads to a minimal state space triple (C,A,B) where A ∈ Rp×p. The matrix A reflects the
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dynamics of the data with respect to the selected basis. In the case of cyclic data, A contains the
essential modes as described by the Fourier frequencies. C is a selection matrix which describes the
linear observables, i.e. the time series to be modelled. Furthermore, the pairs (C,A) and (A,B) are
observable and controllable respectively.

For a given set of observables, i.e. time series, the minimal triple (C,A,B) can be constructed in a
variety of ways (hence, it is not unique). Nevertheless, there is a similarity equivalence between these
triples that leaves the object C(I − λA)−1B invariant.

For a set of observed time series S = {I1, I2, . . . , Ik} one has to extend S to
S = { f j(I1, I2, . . . , Ik)}

p+λ
j=k+1

⋃
S . B is a single (p + λ) × 1 vector of initial values of the observables

basis S , C =
[
Ik, 0k×(p+λ)−k

]
and A is a transition matrix to be calculated with EDMD methods.

For the case of a single time series I1, which is the case in this paper, as we mentioned in the
beginning of the present section, we select a basis {I,Y, IkYλ}

p1 p2
k=1,λ=1, with p1·p2+2 ≥ p. We demonstrate

this use with the following toy example. For simplicity purposes, we consider a time series formed by
exactly two Fourier frequencies and no noise as shown in Figure 19(a).

Figure 19. (a) Time series I formed by a superposition of two distinct frequencies. (b) Time
series Y formed by exponentially smoothing I.

If the two frequencies are observable, one can easily model this time series as a sum of the outputs
of two independent harmonic oscillators, that is, the output of a four state dynamical system.

In this respect, in a time horizon t ∈ [0, 50], we sample I(t) in 510 points creating a time series
It and also subsequently an exponentially smoothed time series Yt. We calculate the transition matrix
A with matrix pseudo-inversion and we assess the results with two metrics: (a) The sum of squares of
errors of all variables in the selected basis; (b) The sum of squares of errors only for the target variable.
We insert and delete basis variables of the form IkYλ according to whether they improve or not the two
metrics. Finally, we end up to the following basis

(I,Y, I2Y, IY2, I3,Y3).

Figure 20 shows the eigenvalues of the 6 × 6 matrix A.
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Figure 20. Eigenvalues of the matrix A.

The estimated time series Îk is calculated by

Îk = [1, 0, 0, 0, 0, 0] Ak



I0

Y0

I2
0Y0

I0Y2
0

I3
0

Y3
0


The two plots of Îk and Ik are shown in Figure 21.

Figure 21. (a) Graph of Îk. (b) Comparison of I and Îk.

Therefore, to correct the inaccuracy of the modes of Îk and to reestablish periodicity, we may
either

(a) project the modes of A, located close to the unit circle, to the unit circle by radial projection
keeping the same eigenstructure of A; or
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(b) improve EDMD pseudo-inversion by weighted least squares by optimizing transition on all
significant peaks and monotonic parts of the time series.

Furthermore, we may reduce the states to four by extracting only the observable part of A. To this end,
we applied a radial correction to the eigenvalues of A which resulted to a new estimation Îk which is
almost identical to Ik as it was required (see Figure 22).

Figure 22. Comparison of I and Îk.

In the case of real periodic data with richer spectrum and stochastic noise the application of the
projection method used in the above example is challenging. A plain EDMD method utilizing the
aforementioned procedure produces poor results. The least one must require is a modified EDMD
construction that forces the location of the modes of A towards the unit circle. This is a demanding
problem which can however suboptimally calculated in two stages as follows.

(a) Calculate A by pseudo-inversion as A = Y′Y−1 and let T be a real eigenframe of A, i.e. A =
T−1ΛT, where Λ,T are all real matrices.

(b) Then, consider the orthogonal procrustes problem

min
U
∥Y2 − UY1∥,

where UUT = UT U = I and Y2 = TY′1, Y1 = TY.

The solution U in closed form is given by U = V1V2 where V1ΣV2 is the SVD of Y2Y
T
1 . Then,

a suboptimal EDMD solution of the original problem, i.e. min
A
∥Y′ − AY∥ under the condition that

spec(A) ⊆ S 1 is given by A = T−1UT. All the linear observables induced by the transition matrix A
will be periodic by construction and hence Îk is also periodic. Finally, given the minimality conditions
above, the obtained Îk is expected to be close to the original time series I(t).
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12. Conclusions

We have applied the theory of Koopman operators combined with EDMD in order to study the
trajectories and phase portrait of business cycles. Towards this aim, we have utilized the Samuelson-
Hicks model. The original model is a linear and two-dimensional and it is not capable of producing
cycles, except some rare cases. A non-linear version which was the base of our investigation, can be
found in Puu (1989). This model, despite being relatively simple, is convincing and distinguished
for its elegance. The periodic behaviour of Y and I is an endogenous characteristic of the model as it
follows from the equations themselves and not from some exogenous shock. Latest studies, utilizing
the strength of computers and programming, incorporate data from a plethora of economic variables.
However, Samuelson’s multiplied-accelerator model remains a standard reference and a topic of several
studies and research.

Our primary purpose is to approximate the two-dimensional, non-linear model with a linear
dynamical system which will be able to capture the main features of the business cycle and it will be
more suitable for prediction and control. In order to achieve this goal, we have to pay in dimensions.
Koopman operator has established as a standard tool for deriving a global linear representation of a
non-linear dynamical system, which is valid in the whole state space and not only near fixed points or
periodic orbits. This operator captures the dynamics of the original system and it is linear.
Nevertheless, it is infinite dimensional and it is usually not possible to calculate. Consequently, the
very next challenge is to obtain “successful” finite dimensional approximations of this operator.

Our first attempt is described in Section 6. We choose a set of observables, namely the set {Zkr}k,r≥0

which contains all possible products of Y and I. These functions may not have some true structural
counterpart in the the theory and, to the best of out knowledge, may have not been utilized so far.
However, our choice is induced by the form of the system of differential equations describing the
model, since this set of observables is invariant with respect to the Koopman operator.

We next have to consider a finite subset (which is called a dictionary) of the aforementioned
observables and the subspace they span. This step is very crucial. In the ideal case where the finite
subspace spanned by the dictionary is invariant with respect to the Koopman operator, one can project
the Koopman operator and obtain a finite approximation. This can be then used to calculate
eigenvalues, modes etc.

However, as it was demonstrated in Section 6, the finite subsets of {Zkr}k,r≥0 do not produce
subspaces close to being Koopman invariant. Therefore, the generated finite dimensional linear
operators can not capture the trajectories of the business cycle, except some small time horizon.
Consequently, they can be used only for short time analysis.

The second approach, along with its characteristics, main approximation results and properties, is
analyzed in Sections 7, 8, 9 and 10. This approach also uses the same dictionary, however it depends
on data and measurements. The main idea is to approximate the Koopman operator with a finite
dimensional matrix which best fits the high-dimensional data and advances spatial measurements from
one time to the next. The obtained linear system can then be used to approximate the trajectories of the
original non-linear system.

It should be pointed out that in our analysis we used data from the model itself. That is, we
integrated numerically the system of differential equations and we obtained some trajectories of the
non-linear system. Then, we consider data from these trajectories. However, the aforementioned
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EDMD approach can also be applied to real data and it has the advantage that it can also be used in the
case where the dynamics are unknown.

Our result exhibit that the second approach gives good approximation results if we consider one
trajectory and finite time horizon (which is a realistic scenario). We also have studied the eigenstructure
of the resulting linear system. In contrast to the original Samuelson’s linear model which has only two
modes, our augmented linear system has much more modes and a rich eigencontent. The complex
eigenvalues of the matrix are located close to the number 1 and on an arc of the unit circle symmetrical
with respect to 1. These eigenvalues correspond to the periodic part of the business cycle. We have
also witnessed the existence of eigenvalues which are away from the unit circle and which actually
correspond to the transient part of the business cycle. However, when we move the time window these
eigenvalues disappear, as it was expected.

The previous approach has good approximation properties when we consider one trajectory in
finite time horizon. In order to obtain results for several trajectories we applied the Gaussian
interpolation method. In particular, in Section 10, we considered a segment of initial conditions. We
sampled this segment and we calculated the corresponding EDMD matrices. Then, we applied the
interpolation method for each one entries of these matrices. This approach enabled to obtain good
approximation properties for trajectories with different initial conditions.

Finally, in Section 11 we apply the Koopman and EDMD approach to more complex periodic
data and we also described a general method that can be applied to real data. If we wish to apply the
method to real data, we should include a relatively small number of observables so that the algorithm
to be robust. The basis of observables is constructed by adding and deleting observables so that a
suitable choice is achieved. Furthermore, the method should be modified as it was described at the end
of Section 11.
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