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Abstract: This contribution aims to expand insurability using partial linear information (LPI) on 

probabilities of the type, 𝑟1 ≥ 𝑟3 (with 𝑟1 + 𝑟2 + 𝑟3 + ⋯ 𝑟𝑛 = 1). LPI theory permits to exploit such 

weak information for systematic decision-making provided the decision-maker is willing to apply the 

maxEmin criterion in a game against Nature. The maxEmin rule is a natural generalization of expected 

profit (probabilities are known) and the maximin rule (probabilities are unknown). LPI theory is used 

to find out whether a crypto assets portfolio offered to an insurance company is insurable. In an 

example, an unfavorable future development of losses causes maximum expected loss to exceed the 

present value of premiums, rendering the portfolio uninsurable according to maxEmin. However, this 

changes when LPI concerning this development is available, while the integration of uncertain returns 

from investing the extra premium fails to achieve insurability in this example. Evidently, LPI theory 

enables insurers to accept risks that otherwise are deemed uninsurable. 
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1. Introduction 

Every few years, a new risk emerges which pushes insurers to the limits of insurability. Nuclear 

accidents, AIDS, climate change, crypto assets, cyber crime, and most recently pandemics such as 

Covid-19 are cases in point. It would be highly beneficial for society if individuals and businesses 

were able to transfer these risks to an entity that is better capable of bearing them. While there are calls 

for the government to step in as an insurer of last resort, on the long run insurance provided by the 

government is inefficient. Notably, it often fails to charge premiums scaled to risk, undermining the 
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insureds’ incentive to invest in prevention. For instance, the US National Flood Insurance Program 

created in 1968 has been charging subsidized premiums in an attempt to motivate the purchase of flood 

insurance but failed to adjust premiums to surging losses. This not only encouraged homeowners to 

settle in flood plains but prevented communities from zoning out tracts at risk (Hanscom, 2014). 

Already in their review of governmental coverage of catastrophes, Jaffee and Russell (1997) noted 

important shortcomings, in particular insufficient funding.  

Ever since Berliner (1982, 1985) the conditions for a risk to be insurable have been those listed 

in Table 1 below. The most important addition is criterion no. 7, which takes into account that an 

insurance company derives profit from two sources, risk underwriting and capital investment. It calls 

for a nonnegative correlation of losses with returns on the capital market, extended by Gründl et al. 

(2021) to the concept of positive co-skewness. Given positive co-skewness, a risk with a long tail in 

its loss distribution can be hedged with a positively skewed distribution of returns on the capital market. 

Whereas the original list of criteria in Table 1 focused exclusively on underwriting activity, it is 

important to note that high losses to be paid are potentially hedged by high returns on capital 

investment given a nonnegative correlation (co-skewness, respectively) between losses and returns on 

the capital market. 

For concreteness, let the decision at hand be whether a portfolio of policies covering crypto assets 

in a given country should be acquired. Munich Re (2019), for one, emphasized the limited insurability 

of crypto assets in view of the surge of cyber crime, once again applying the criteria of Berliner (1982, 

1985). Assume that a portfolio of this type is offered on the capital market in the guise of an alternative 

risk transfer (ART). The issue here is to evaluate the insurability of the portfolio for the acquiring 

company rather than for the insurance industry in general, in keeping with Karten’s (1997) argument 

that a risk is insurable if at least one company is willing to underwrite it. Therefore, the fact that a 

portfolio is for sale does not mean that it is generally uninsurable. The ceding company may e.g. have 

noted that while the losses within the portfolio offered occur independently (criterion no. 2 of Table 1), 

they are positively correlated with its remaining risk portfolio. For instance, theft of crypto assets may 

go along with the blocking of access to information bases that are vital for the operation of an enterprise, 

thus causing losses also in business interruption insurance. However, the acquiring insurer may be active 

in a number of countries where businesses have sufficiently invested in the protection of their data to 

make the simultaneous occurrence of the two types of risk improbable and the offered portfolio insurable.  

Importantly, most of the criteria listed in Table 1 cannot be ticked off as “satisfied” or “not 

satisfied”. For example, when is the maximum loss “moderate” (criterion no. 4 of Table 1)? One way 

to deal with this ambiguity is to introduce probabilities of criteria being satisfied. However, such 

probabilities are no more than rough estimates subject to considerable uncertainty. In the context of a 

risk transfer through ART, it is usually impossible to discern the reason why the ceding company 

decides to offer the portfolio in question. In the present context, it may not be the positive correlation 

with other types of risk but the fear of an unfavorable future development in the size of losses affecting 

crypto assets (which may materialize or not).  

In view of these ambiguities, the objective of this contribution is to apply the theory of linear 

partial information (LPI) to the concept of insurability. Developed by Kofler and Menges (1977), LPI 

theory permits to exploit very weak information for systematic decision-making. For instance, the 

restriction, 0.2 ≤ 𝑟1 ≤ 0.4 over three probabilities {𝑟1, 𝑟2,𝑟3} , while insufficient for conventional 
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maximization of expected profit or utility, constitutes useful information in LPI theory. The only 

condition is that the decision-maker is willing to apply the so-called maxEmin criterion, which will be 

stated in detail in Section 2.1 below. It reflects the assumption that humans are involved in a game 

against Nature, who is adversarial to the extent that she presents them with an urn (i.e. a probability 

distribution) with the minimum expected payoff whereas a true adversary would choose the action 

presenting them with the minimum payoff for certain. 

Table 1. Insurability criteria. 

 Category  Criterion Description 

 1  

 

Actuarial 

criteria 

Risk, uncertainty  Measurable 

 2 Occurrence of losses Independent 

 3 Maximum loss Within capacity 

 4 Average loss Moderate 

 5 Frequency of loss High 

 6 Moral hazard, antiselection Controllable 

 7 Correlation of loss with return on investment  Nonnegative 

 8  

Market  

criteria 

Insurance premium Adequate, reasonable 

 9 Guarantee limits Acceptable 

10 Underwriting capacity Sufficient 

11  

Societal 

criteria 

Public policy No strict premium 

regulation 

12 Judicial system Insurable interest given 

Source: Adapted from Berliner (1982, 1985) 

The remainder of this paper is structured as follows. Section 2.1 contains a literature review 

regarding decision-making under uncertainty and the contribution of LPI theory. In Section 2.2, LPI 

theory is applied to the issue of whether substantial uncertainty regarding the future losses to crypto 

assets (criterion no. 1 of Table 1) renders the portfolio uninsurable to the acquiring insurer, meaning 

that it would fail to generate a long-run profit on expectation. However, insurability may attain if 

management uses its past experience with acquisitions to formulate an LPI concerning the future 

development of losses. In Section 2.3, management draws upon the advice of a consultancy, who 

furnishes its own partial information regarding the development of future losses which however may 

be erroneous. This calls for the combination of two sources of partial information; depending on the 

credibility of the advice provided, management will be in a position to decide the insurability issue. 

Section 2.4 is devoted to the added criterion no. 7 of Table 1, i.e. the uncertain returns to the premium 

income invested that may make the risk portfolio insurable after all. This results in a convolution of 

two probability distributions each characterized by an LPI, which will have the form of an LPI as well. 

The final Section 3 contains a summary and an outlook on additional possibilities of applying LPI 

theory to evaluating insurability for decision-making by the management of insurance companies. 
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2. Materials and methods 

2.1. Literature review 

Ever since Knight (1921), the concept of risk (where probabilities are known) has been 

distinguished from uncertainty (where they are unknown). Strictly speaking, the criteria for insurability 

listed in Table 1 are not satisfied unless the associated probabilities are fully known. Otherwise, the 

uncertainty surrounding a loss is not measurable (criterion no. 1), the independence of losses cannot 

be verified (criterion no. 2), the maximum (probable) loss cannot be established and compared with 

underwriting capacity (criterion no. 3), and the frequency of loss is cannot be measured (criterion no. 5). 

Similar problems affect the other criteria as well, severely limiting the domain of insurability. 

In the case of complete uncertainty, the prudent decision-maker has to adopt the view of Wald 

(1945). Here, Nature is an adversary to humans, who are involved in a zero-sum game against her and 

therefore constrained to apply the pessimistic maximin decision rule. As a consequence, an insurance 

company would have to deem all risks non-insurable for which it lacks years of experience (in principle 

under unchanging circumstances yielding repeated observations). To avoid this impasse, management 

might adopt the Hurwicz criterion (Hurwicz, 1951), using a linear combination of the maximin and the 

maximax value (the highest of all possible maxima, whose ponderation reflects management’s degree 

of optimism, a purely subjective parameter). In addition, the Hurwicz criterion requires the intervals 

of payoffs to be known with certainty, a condition which is satisfied for a single insurance policy with 

a limit on payment in case of loss but may not hold when the frequency of losses covered is random.  

There are several additional decision-making criteria in a situation characterized by what is 

commonly called ambiguity [see Gilboa (2013), in particular chs. 7 and 15-17 for a survey]. A natural 

idea to overcome ambiguity is to define probabilities over probabilities, e.g. over 𝑟1  such as 

Prob(𝑟1 = 0.9) = 0.1 , Prob(𝑟1 = 0.8) = 0.1 , Prob(𝑟1 = 0.7) = 0.2 , etc. The resulting compound 

probability distribution could then be used to calculate expected profit (expected utility, respectively). 

However, actual decision-makers were found to evaluate the original compound lottery in a different 

way from the reduced-form one containing final outcomes and probabilities only (Bar-Hillel, 1973). 

This finding led to an extended literature on the axioms necessary to preserve the equivalence between 

the two settings and the importance of ambiguity aversion in the event these axioms are not satisfied 

[see Klibanoff et al. (2005) and the interchange between Epstein (2010) and Klibanoff et al. (2012)]. 

As will become evident in Section 2.4 below, LPI theory offers a much simpler practical alternative.  

Indeed, Kofler and Menges (1977) were able to show that a piece of information regarding 

probabilities of possible outcomes such as 𝑟1 ≥ 𝑟3  (with 𝑟1 + 𝑟2 + 𝑟3 +  … 𝑟𝑛 = 1 ) can be 

systematically exploited for decision-making. LPI theory has led to a series of publications, notably 

by Kofler and Menges (1979), Kofler (1988), Kofler and Zweifel (1981, 1988, 1991, 1993), 

Zimmermann et al. (1985), and Zweifel (2021). 

2.2. Uncertain development of future losses and insurability  

Let the portfolio of policies covering crypto assets mentioned in Section 1 be offered for USD 

300 mn, while the premium volume can be estimated at USD 1 bn in present value (PV) terms 
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(reflecting a planning horizon of five years, say). These values are assumed to be fixed, not subject to 

uncertainty in order to focus on the uncertain loss distribution. Let there be three loss categories; their 

average and aggregate values are displayed in Table 2, along with LPI1 and LPI2 regarding the 

associated current and future probability values. 

The simpler case of future values is examined first because only one restriction on probabilities 

is available for them, the LPI2: 0.1 ≤ 𝑟1
′ ≤ 0.3. It is depicted in Figure 1 below. On the left-hand side, 

the probability distributions satisfying the summation restriction, 𝑟1´ + 𝑟2´ + 𝑟3´ = 1 are displayed, 

represented by points on the triangular plane ABC. Note that along BC, 𝑟1
′ = 0. The same plane is 

shown as the triangle ABC on the right-hand side of Figure 1, with the single LPI2: 0.1 ≤ 𝑟1´ ≤ 0.3 

added. It is represented by two straight lines; the one depicting 𝑟1
′ = 0.1 lies at one tenth of the distance 

from CB to A; the one for 𝑟3
′ = 0.3, at three tenths of the distance. The set of distributions satisfying 

the LPI2: 0.1 ≤ 𝑟1´ ≤ 0.3 is shown as the shaded area. The linearity of the restrictions guarantees the 

convexity of this area, a requirement that will prove important below.  

Table 2. Loss categories for crypto assets portfolio. 

Category Average loss, 

USD 

Aggregate loss, 

USD mn 

LPI regarding probabilities 

Low, current values 10,000 100 
1

0 2 0 4. r .   

LPI1: 0.3 ≤ 𝑟2 ≤ 0.7 

3
0 1 0 2. r .   

Medium, current values 300,000 300 

High, current values 10,000,000 1,000 

Low, future values 15,000 150 
1

0 1 0 3. r .   

LPI2: n.a. 

n.a. 

Medium, future values 500,000 500 

High, future values 13,000,000 1,400 

In addition, the indifference curves reflecting Nature’ s preferences are drawn as dashed straight 

lines. Her survival being assured, she can act in a risk-neutral manner while her preferences by 

assumption are in terms of expected values which are linear functions of probabilities. Since she is 

assumed to present the decision-maker with the most unfavorable distribution, her preferred one would 

presumably be vertex C with (0,0,1), which however is out of reach in view of the LPI restriction. Her 

optimum cannot be in the interior of ABC either but must lie at one of the shaded area’s vertices in 

Figure 1. This follows from the fundamental equivalence between a zero-sum game and a linear 

program [Chiang (1984), Section 21.4]. The optimum solution to a linear program is given by one of 

the extreme points of the feasible region [Chiang (1984), Theorem II in Section 18.3]1. These extreme 

points (vertices) satisfy the condition that for a k-dimensional feasible space, the number of restrictions 

satisfied as exact equalities (including equality to zero and the summation restriction) is also k [Chiang 

(1984), Section 18.4]. Whichever the direction of Nature’s preferences, it is therefore sufficient to 

examine the vertices, corresponding to a set of extremal distributions.  

 
1 Since Nature’s preferences are linear, the decision maker’s solution to the linear program corresponds to Nature’s 

solution of the dual due to the equivalence of a zero-sum game and a linear program. Therefore, Nature necessarily 

selects a vertex point [Intriligator (1971, p. 75)]. 
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Figure 1. Probability distributions in three- and two-dimensional space with LPI2 (future 

values in Table 2). 

These extremal distributions are assembled in the matrix 𝑉[𝐿𝑃𝐼2]below, starting with vertex F in 

Figure 1 and proceeding in clockwise manner, 

𝑉[𝐿𝑃𝐼2] = [
0.3    0.1    0.1    0

0       0       0.9    0.7 

0.7    0.9    0       0.3

] .              (1) 

In view of Table 2, this gives rise to the following expected payoffs (with the minimum 

underlined),  

𝐸𝑃[𝐿𝑃𝐼2] = [−150  − 500  − 1,400] [
0.3    0.1    0.1    0

0       0       0.9    0.7 

0.7    0.9    0       0.3

]                                    

   = [−1,025   − 1,275
−−−−−

   − 465   −770] .                  (2) 

Under the maxEmin criterion and accepting an unfavorable future development of losses as certain, 

management has to brace itself with a loss amounting to USD 1,275 mn in expected PV, which exceeds 

the premium volume of USD 700 mn (after deduction of USD 300 mn for the acquisition). Therefore, 

it would have to deem the offered portfolio of crypto asset risks as non-insurable. 

However, the feared development of losses might not materialize. In that event, the current values 

entered in Table 2 are relevant. The set of distributions satisfying the pertinent LPI1 is depicted in 

Figure 2 below. It can be assembled in the matrix 𝑉[𝐿𝑃𝐼1], again proceeding in clockwise manner, 

 

 

 



7 

Data Science in Finance and Economics                                                              Volume 2, Issue 1, 1–16. 

𝑉[𝐿𝑃𝐼1] = [
0.4    0.2    0.2    0.4

0.4    0.6    0.7    0.5 

0.2    0.2    0.1    0.1

]  .                         (3) 

Figure 2. Probability distributions in two-dimensional space with LPI1 (current values in 

Table 2). 

Therefore, expected payoffs are given by 

𝐸𝑃[𝐿𝑃𝐼1] = [−100  − 300  − 1,000] [
0.4    0.2    0.2    0.4

0.4    0.6    0.7    0.5 

0.2    0.2    0.1    0.1

]    

 = [−360   −400
−−−−−

   − 330   − 290].         (4) 

With a maximum expected loss of USD 400 mn in PV and a premium volume of USD 700 mn, net of 

acquisition cost, the portfolio now appears to be eminently insurable. 

To resolve this apparent contradiction [see Equation 2 again], management may draw on past 

experience with portfolio acquisitions. Let its estimate be that the non-occurrence of the surge in future 

losses 𝑞2 is at least two times as likely as its occurrence, thus LPI3: 𝑞2 ≥ 2𝑞1,  𝑞1 + 𝑞2 = 1. The 

pertinent matrix of vertices is given by 

𝑉[𝐿𝑃𝐼3] = [
0.333    0

0.667    1  
] .        (5) 

Since Nature is assumed to always choose the distribution with the minimum expected payoff to the 

decision-maker, these vertices must be applied to the minimum expected payoffs in Equations 2 and 4, 

resulting in  
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𝐸𝑃[𝐿𝑃𝐼3] = [−1,275  − 400  ] [
0.333   0  

0.667   1 
]  = [−678

   −−−−
  − 400 ].       （6） 

As the portfolio generates a net premium volume of USD 700 mn in present value, its insurability 

is now given for this insurance company. The verdict would possibly have to be qualified if the future 

premium volume were also subject to uncertainty, calling for another application of the maxEmin 

criterion, an extension which is not pursued here. 

2.3. Combining two sources of partial information 

The difference between the maxEmin value of USD −678 mn in Equation 6 and the premium 

volume of USD 700 mn (after deduction of acquisition cost) is rather small. In this situation, it may be 

worthwhile to commission a management consultancy specializing in insurance markets to provide 

additional information concerning the future development of losses to crypto assets. The objective is 

to sharpen the LPI3: 𝑞2 ≥ 2𝑞1,  𝑞1 + 𝑞2 = 1concerning the likelihood 𝑞1of a future surge in losses as 

entered in the lower half of Table 2. Indeed, let the management consultancy come up with the more 

optimistic LPI4: 𝑞1
′ ≤ 0.2, 𝑞1

′ + 𝑞2
′ = 1, where 𝑞1

′  symbolizes the likelihood of the feared surge of 

future losses. The task at hand is to determine a weighting in the combination of the two sources of 

partial information, LPI3 and LPI4. The complication is that previous experience with the consultancy 

suggests that its projections sometimes fail to materialize. Let this less than perfect credibility be 

reflected by the  

LPI5:0.8 ≤ 𝑚1 ≤ 0.9, 𝑚1 + 𝑚2 = 1,thus 𝑚𝑖𝑛(𝑚2) = 0.1 and 𝑚𝑎𝑥(𝑚2) = 0.2 for later use. （7） 

with 
1

m  denoting the probability that the information provided will turn out to be true. 

Nature now presents the decision-maker with two urns, one characterized by the probability 

distributions compatible with LPI3, the other, compatible with LPI4. The assumption regarding 

Nature’s behavior calls for retaining the extremal distributions resulting in the respective minimum 

payoffs, i.e.  

1

eq  = [0.333  0.667]  ́and 
1

eq = [0.2  0.8]  ́         （8） 

[see Equations 5 and 6 again]. The best available estimates of the two urns being in place are 𝑚1and 

𝑚2, reflecting the credibility of the information provided by the consultancy. Therefore, the total 

probability e  of drawing one of the extremal distributions is given by the bilinear form [see Kofler 

and Zweifel (1988), Appendix 3 for details], 

𝑒 = 𝑚1𝑞1
𝑒′

+ 𝑚2𝑞1
𝑒. （9） 

The probability of drawing the first extremal distribution is given by 

𝑒1 =
𝑞1

𝑒′
𝑚1

𝑞1
𝑒′

𝑚1+𝑞1
𝑒𝑚2

.                                                         （10） 
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To obtain the LPI6 pertaining to 
1

e , one needs to determine its minimum and maximum value. 

This is most easily done by rewriting Equation 10 in the following way, 

𝑒1 =
𝑞1

𝑒′
𝑚1

𝑞1
𝑒′

𝑚1+𝑞1
𝑒𝑚2

 =
1

1+
𝑞1

𝑒𝑚2

𝑞1
𝑒′

𝑚1

=
1

1+
𝑚2
𝑚1

⋅
𝑞1

𝑒

𝑞1
𝑒′

= [1 +
𝑚2

𝑚1
⋅

𝑞1
𝑒

𝑞1
𝑒′]

−1

.        （11） 

Evidently, the minimum value of 
1

e  is attained when both 
2 1

m / m and 
1 1

e e
q / q   are at their maximum. 

Now according to Equation 7, 𝑚𝑎𝑥(𝑚2/𝑚1) = 0.2/0.8 = 0.25 , while according to Equation 8 

𝑚𝑎𝑥(𝑞1
𝑒/𝑞1

𝑒′
) = 0.667/0.2 = 3.335. Therefore, 

𝑚𝑖𝑛(𝑒1) = [1 + 0.25 ⋅ 3.335]−1 = 0.545.        （12） 

Conversely, 𝑒1 is maximum when both 𝑚2/𝑚1and 𝑞1
𝑒/𝑞1

𝑒′
 are at their minimum. According again to 

Equation 7, 𝑚𝑖𝑛(𝑚2/𝑚1) = 0.1/0.9 = 0.111, and 𝑚𝑖𝑛(𝑞1
𝑒/𝑞1

𝑒′
) = 0.333/0.8 = 0.416. Thus  

𝑚𝑎𝑥(𝑒1) = [1 + 0.111 ⋅ 0.416]−1 = [1 + 0.046]−1 = 0.956.      （13） 

One therefore obtains  

LPI6: 0.545 ≤ 𝑒1 ≤ 0.956, giving rise to the extremal distributions 

𝑉[𝐿𝑃𝐼6] = [
0.545     0.956

0.455     0.044  
]   （14） 

and hence expected payoffs 

𝐸𝑃[𝐿𝑃𝐼6] = [−678  − 400  ] [
0.231    0.706

0.769    0.294  
]   =  [−464.2

   
  − 596.3

−−−−−
 ]. （15） 

in view of Equations 6 and 4. Finally, one needs to determine the LPI pertaining to 𝑒2, the probability 

of drawing the second extremal distribution. This calls for the evaluation of 

𝑒2 =
𝑞1

𝑒𝑚2

𝑞1
𝑒′

𝑚1+𝑞1
𝑒𝑚2

 =
1

𝑞1
𝑒′

𝑚1

𝑞1
𝑒𝑚2

+1

=
1

1+
𝑚1
𝑚2

⋅
𝑞1

𝑒′

𝑞1
𝑒

= [1 +
𝑚1

𝑚2
⋅

𝑞1
𝑒′

𝑞1
𝑒 ]

−1

.      （16） 

This time, the minimum value of 
2

e  is attained when both 
1 2

m / m and 
1 1

e e
q / q   are at their 

maximum. According to Equation 7, 𝑚𝑎𝑥(𝑚1/𝑚2) = 0.9/0.1 = 9, while according to Equation 8, 

𝑚𝑎𝑥(𝑞1
𝑒 ′

/𝑞1
𝑒) = 0.333/0.2 = 1.665. Therefore, 

𝑚𝑖𝑛(𝑒1) = [1 + 9 ⋅ 1.665]−1 = 0.063.  （17） 

Conversely, 
2

e  is maximum when both 
1 2

m / m and 𝑞1
𝑒/𝑞1

𝑒 ′
are at their minimum. According again to 

Equation 7,  
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𝑚𝑖𝑛(𝑚1/𝑚2) = 0.8/0.2 = 4, and  （18） 

𝑚𝑖𝑛(𝑞1
𝑒′

/𝑞1
𝑒) = 0.2/0.667 = 0.3. （19） 

Thus  

𝑚𝑎𝑥(𝑒1) = [1 + 0.4 ⋅ 0.3]−1 = [1 + 0.12]−1 = 0.893.         （20） 

One therefore obtains from Equations 17 and 20 LPI7: 0.063 ≤ 𝑒2 ≤ 0.893, giving rise to 

𝑉[𝐿𝑃𝐼7] = [
0.063      0.893

0.937      0.107  
]  and in view of Equations 6 and 4 （21） 

𝐸𝑃[𝐿𝑃𝐼7] = [−678  − 400  ] [
0.063      0.893

0.937      0.107  
]  = [−417.5  − 648.3

−−−−−
 ]. （22） 

With the minimum guaranteed expected payoff of USD −648.3 mn and a net premium income of 

USD 700 mn, the portfolio can be judged insurable with some confidence thanks to the additional 

information obtained from the consultancy. It is noteworthy that LPI theory also provides an estimate 

of the value of this information, respectively). Indeed, the transition from LPI3 to LPI7 raises the maxEmin 

value of losses from USD −678 mn to USD 648 3.−  mn, a gain of USD 29.7 mn in expected value. 

2.4. Uncertain future losses, uncertain returns on investment, and insurability  

As pointed out in the Introduction, examining the underwriting side of the insurance business falls 

short of a full evaluation. Premiums earned can be invested to generate additional revenue. However, 

returns on investment are subject to uncertainty as well. For instance, during the decade from 2010 

to 2020, the rate of return on US bonds (an asset that insurers are mandated to hold) varied between a 

low of −3.6 percent in 2013 to a high of 6.3 percent in 2019 

(https://www.visualcapitalist.com/historical-returns-by-asset-class/, accessed on 8 Jan. 2022).  

This section is devoted to the question of whether in spite of uncertainty, a insurer’s investment 

activity can contribute to the insurability of a risk portfolio. The point of departure is the negative 

verdict based on Equation 2. As to the returns on investment of the USD 700 mn extra premium income, 

let management distinguish three possible outcomes, again in PV terms (see Table 3). 

Table 3. Returns on investment of the USD 700 mn premium. 

PV of returns from investing USD 700 mn LPI8 regarding probability 

Below average −50 p1 ≤ 0.2 

Average 50 0.4 ≤ p2 ≤ 0.8 

Above average 80 p3 ≤ 0.1 

PV: Present value 
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The LPI entered reflects the experience that a negative return of USD −50 mn on USD 700 mn. 

is unlikely, as indicated by p1 ≤ 0.2. With 0.4 ≤ p2 ≤ 0.8, most of the probability mass pertains to an 

average outcome, while there is also a small chance (p3 ≤ 0.1) of an above average outcome.  

In Figure 3, the convex polyhedron reflecting the distributions satisfying this LPI shrinks to two 

points. Therefore, the two extremal distributions are given by 

𝑉[𝐿𝑃𝐼8] = [
0.2     0.2 

0.7     0.8   

0.1     0

] ,  （23） 

and the expected payoffs, by  

𝐸𝑃(𝑅) = [−50   50   80] [
0.3    0.2 

0.7    0.8   

0.1    0

]  =  [33   30
−−

] .          （24） 

Figure 3. Probability distributions in two-dimensional space with LPI restrictions 

according to Table 3  

For evaluating the combined uncertainties characterizing losses and returns, the convolution of 

the two extremal distributions needs to be formed. A reasonable assumption is that losses and returns 

are independent of each other. Indeed, between 2012 and 2019 in the United States, the correlation 

coefficient between commercial losses paid and the rate of return on T-bonds was only 0.405 

(https://www.statista.com/statistics/429012/incurred-losses-for-commercial-insurance-usa/; 

https://www.calculators.org/math/correlation.php, accessed on 15 Jan. 2022). Another simplification 

is to neglect that the PV of losses depends on the discount factor and hence ultimately on the rates of 

return on the capital market, permitting to use the values of Equation 2. 

For obtaining the possible combinations of probability values associated with the payoffs, one 

needs to form the Cartesian product of the two extremal distributions (Kofler and Zweifel, 1991), 
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𝑉(𝐿𝑃𝐼2) × 𝑉(𝐿𝑃𝐼8) = [

(0.3, 0, 0.7; 0.2, 0.7, 0.1) (0.3, 0, 0.7; 0.2, 0.8, 0) ;

(0.1, 0, 0.9; 0.2, 0.7, 0.1) (0.1, 0, 0.9; 0.2, 0.8, 0) ;

(0.1, 0.9, 0; 0.2, 0.7, 0.1) (0.1, 0.9, 0; 0.2, 0.8, 0) ; 

(0, 0.7, 0.3; 0.2, 0.7, 0.1) (0, 0.7, 0.3; 0.2, 0.8, 0) 

]. (25) 

Table 4. Calculation of probabilities from Table 3 and Equation 25. 

Vector 

combinationa 

Associated probability Associated expected payoff 

1 1
r p  (0.3, 0, 0.7)′(0.2, 0.7, 0.1) = 0.13 −1,025+33=−992 

1 2
r p  (0.3, 0, 0.7)′(0.2, 0.8, 0) = 0.06 −1,025+30=−995 

2 1
r p  (0.1, 0, 0.9)′(0.2, 0.7, 0.1) = 0.11 −1,275+33=−1,242 

2 2
r p  (0.1, 0, 0.9)′(0.2, 0.8, 0) = 0.02 −1,275+30 = −1,245 

3 1
r p  (0.1, 0.9, 0)′(0.2, 0.7, 0.1) = 0.65 −465+33=−432 

3 2
r p  (0.1, 0.9, 0)′(0.2, 0.8, 0) = 0.74 −465+30=−435 

4 1
r p  (0, 0.7, 0.3)′(0.2, 0.7, 0.1) = 0.493 −770+33=−737 

4 2
r p  (0, 0.7, 0.3)′(0.2, 0.8, 0)= 0.56  −770+30=−740 

a 1 2 3 4:
i
r , i , , , =  Vector of probabilities taken from the 𝑉(𝐿𝑃𝐼2) matrix of extremal distributions 

𝑝𝑗
𝑀,  𝑗 = 1,2: Vector of probabilities taken from the 𝑉(𝐿𝑃𝐼8) matrix of extremal distributions 

It is noteworthy that all the expected payoffs entered in Table 4 can materialize only in a single 

way, obviating the aggregation of probabilities. For the application of the maxEmin criterion, one 

obtains the following LPI regarding the convoluted distributions from Table 3 (Kofler and Zweifel, 1991), 

LPI9: 0.02 ≤ 𝑉(𝐿𝑃𝐼2)  ×  𝑉(𝐿𝑃𝐼8) ≤ 0.74                                    (26) 

which gives rise to the extremal distributions 

𝑉(𝐿𝑃𝐼2) × 𝑉(𝐿𝑃𝐼8) = [
0.02     0.74

0.98     0.26
].                                         (27) 

One obtains the expected payoffs 

𝐸𝑃[𝐿𝑃𝐼2 × 𝐿𝑃𝐼8] = [−1,245 − 435 ] [
0.02    0.74

0.98    0.26
]  = [−451.2

   
  − 1,034.4

−−−−−−
 ] .  (28) 

While the integration of investment income does increase the minimum expected payoff from 

USD −1,275 mn according to Equation 2 to USD −1,034.4 mn, this value still falls short of the 

pemium income of USD 700 mn net of acquisition cost. Under the maxEmin criterion, management is 

therefore well advised to judge the offered risk portfolio as non-insurable unless it can somehow 

change the minimum expected payoff of USD −1,275 mn in underwriting.  

There are several ways to achieve this. One is to layer the risk portfolio, as advised by Karten 

(1997). For instance, it might be possible to cede USD 400 mn to an enterprise with excellent 
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diversification possibilities at a premium of USD 100 (say), thus limiting exposure to USD 1,000 mn 

in Table 1. Assuming unchanged probabilities, Equation 28 then becomes in view of Table 3 

𝐸𝑃[𝐿𝑃𝐼2 × 𝐿𝑃𝐼8] = [−845  − 435  ] [
0.02     0.74

0.98     0.26
]    =  [−443.2

   
  − 738.4

−−−−−−
 ].   (29) 

Evidently, with net premium income of now USD 600 mn, insurability fails to be attained.  

Alternatively, additional information concerning the probabilities pertaining to the three 

categories of future losses may achieve this. While LPI concerning 𝑟3
′  (the probability of high losses) 

may not be available, a look at Figure 1 reveals that shifting probability mass to the lowest category 

would be effective. Since small and medium-sized losses typically occur with high frequency, gaining 

experience with them in the aim of modifying the estimated loss distribution may be feasible. For 

instance, attaining the LPI9: 𝑟1
′  ≥  0.55 is just about sufficient. It leads to the matrix of extremal 

distributions 

𝑉[𝐿𝑃𝐼9] = [
0.55    0.55    1 

0         0.45    0  

0.45    0         0 

]       (30) 

and hence 

𝐸𝑃[𝐿𝑃𝐼9] = [−150  − 500  − 1,400] [
0.55    0.55    1 

0         0.45    0  

0.45    0         0 

]                                         

                 =  [−712.5
−−−−−

   − 307.5   − 150] ,      (31) 

rendering the risk portfolio almost insurable even before taking investment income into account.  

3. Conclusions and outlook 

The objective of this contribution is to expand the limits of insurability. Its point of departure is 

Berliner’s (1982, 1985) well-known criteria of insurability complemented by the requirement that 

income from premium revenue invested should serve as a hedge against losses. However, these criteria 

typically are not satisfied with certainty because e.g. future aggregate losses follow a probability 

distribution that is partially known at best. The existing literature has sought to solve this problem by 

defining probabilities over probability distributions [Klibanoff et al. (2005); Epstein (2010); Klibanoff 

et al. (2012)] or by applying fuzzy set theory, which however requires the specification of a function 

defining the exact likelihood that a given observation is a member of the set of interest [Zadeh (1965); 

Yager and Basson (2007)].  

As a practical alternative, the theory of partial linear information (LPI theory) is proposed. If the 

decision-maker is willing to assume to be engaged in a game against Nature, the maxEmin decision 

criterion becomes the natural choice. This criterion is a generalization of the maximin rule (where the 

adversary selects the course of action imparting maximum loss with certainty) on the one hand and 
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maximizing expected utility (which cannot be applied unless the probability distribution is fully known) 

on the other. The maxEmin rule enables the decision-maker to focus on a finite set of so-called 

extremal probability distributions, calculate the minimum expected payoff, and select the course of 

action that maximizes his or her expected payoff over these minima. 

LPI theory is illustrated using the decision problem of an insurance company who, being offered 

through ART a portfolio of policies covering crypto assets exposed to cyber crime, needs to find out 

whether the portfolio is insurable. This question is answered in three ways. First, when the future 

development of losses is known only very partially, the maximum expected loss exceeds turns out to 

exceed the present value of the future premium income net of the cost of acquisition, rendering the 

portfolio non-insurable under the maxEmin rule. The second step is the recognition that an unfavorable 

future development of losses may not be certain but have a maximum probability of occurring. This 

renders the risk portfolio just about insurable. Therefore, additional information provided by a 

management consultancy could enhance insurability. This is indeed the outcome, resulting in a 

maxEmin value of the consultancy’s advice even though it fails to be always correct. In a third step, a 

partially known probability distribution concerning the future income earned from investing the extra 

premium volume is introduced. However, given an unfavorable future development of losses, the 

crypto asset portfolio in question continues to be non-insurable. Interestingly, changing this verdict 

does not necessarily call for probability information regarding the high-loss category; a sufficiently 

modified LPI regarding the low-loss category may prove sufficient. 

Evidently, LPI theory can be useful for examining the insurability of other novel risks. An early 

contribution designed to expand the limits of insurability was by Karten (1997). In contrast to Berliner 

(1982, 1985) and in the spirit of this paper, the author emphasizes that it is the individual insurance 

company who needs to decide whether or not it deems a risk insurable or not. He also cites a number 

of internal risk management possibilities ranging from the design of policies to farming out (parts of) 

a risk portfolio to a large firm outside the insurance industry. This firm might be exposed to other risks 

which are uncorrelated (or even negatively correlated) with those of the portfolio. Obviously, both 

partners to such a risk transfer would benefit from applying LPI theory, permitting them to use all 

types of information available. 

Recently, Schanz (2020) concludes based on available premium and loss data and own estimates 

that business interruptions caused by the Covid-19 pandemic are uninsurable for the private property-

casualty (P&C) insurance industry. In particular, criteria no. 1, 2, and 10 listed in Table 1 are violated 

since lockdowns mandated by governments are unpredictable, governments tend to act in concertation 

causing positive correlation, and the magnitude of losses easily exceeds underwriting capacity. Yet 

partial information concerning the likelihood and duration of lockdowns in selected countries could be 

exploited. Moreover, a company’s Covid-19 pandemic portfolio can possibly be hedged using e.g. a 

real estate portfolio and coverage be limited or layered for partial cession, e.g. through ART 

(Hochrainer-Stigler and Reiter, 2021). Again, any partial information would be valuable to both parties. 

Hartwig and Gordon (2020) argue in favor of a general exclusion of communicable diseases in 

the aim of securing the stability of the P&C insurance industry. They emphasize criterion no. 12 of 

Table 1, which fails to be satisfied because of the risk of litigation seeking to obtain payment for losses 

caused by risks that were not explicitly excluded and the unwillingness of US regulatory authorities to 

file more restrictive policies. Their analysis concerns the industry as a whole, while some P&C insurers 



15 

Data Science in Finance and Economics                                                              Volume 2, Issue 1, 1–16. 

may well be in a different situation. An important consideration is the fact that US insurance is 

regulated at the state level, and some authorities may be more likely than others to accept the filing of 

such policies. Therefore, an insurance company who has the majority of its business in such states 

(which may in addition be less affected by the pandemic) could be in a position to benefit from partial 

information concerning the likelihood of obtaining permission to limit its risk exposure. As to the 

unwillingness of reinsurers to underwrite risks caused by communicable disease cited by Hartwig and 

Gordon (2020), at least some of them are engaged in business worldwide, allowing them to glean some 

partial information concerning possible correlations between a communicable disease portfolio in the 

United States and an auto reinsurance portfolio in Europe (say). 

Of course, this analysis is subject to a number of limitations. First, the market environment may 

not be correctly represented by a Nature who is satisfied to present the decision-maker with an urn that 

offers a minimum payoff on expectation. There might be a particular competitor who will select the 

strategy that minimizes the decision-maker’s payoff with certainty, rendering the maxEmin criterion 

too optimistic. On the other hand, Wald’s (1945) minimax rule would presumably condemn the 

management of an enterprise to complete inactivity. The second limitation is the requirement that all 

possible states of the world are known; there must be no “unkown unknowns” (former US Secretary 

of Defense Ronald Rumsfeld, 2 Sept. 2007). However, this requirement is common to all conventional 

variants of decision theory, while LPI theory permits to reach a decision even in the case where there 

is no probability information regarding a possibly neglected scenario (as in the lower half of Table 2 

in the text). Finally, insurability traditionally has been thought of as a concept applying to all 

companies active in a market [with the notable exception of Karten (1997)] whereas LPI theory makes 

it applicable to an individual company as well. Its management may evaluate objective information 

available to all insurers with a view to firm-specific (partial) information. In the case of the acquisition 

of a risk portfolio at least, the issue becomes of whether the new risks provide a hedging with the 

existing ones or whether they exacerbate the correlation between losses. In sum, LPI theory arguably 

provides a practical way forward to expand the limits of insurability in concrete situations.  
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