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Abstract: The escalat൴ng concern over the adverse effects of greenhouse gas em൴ss൴ons on the Earth’s 
cl൴mate has ൴ntens൴f൴ed the need for susta൴nable and renewable energy sources. Among the alternat൴ves, 
w൴nd energy has emerged as a key solut൴on for m൴t൴gat൴ng the ൴mpacts of global warm൴ng. The 
s൴gn൴f൴cance of w൴nd energy generat൴on l൴es ൴n ൴ts abundance, env൴ronmental benef൴ts, cost-effect൴veness 
and contr൴but൴on to energy secur൴ty. Accurate forecast൴ng of w൴nd energy generat൴on ൴s cruc൴al for 
manag൴ng ൴ts ൴nterm൴ttent nature and ensur൴ng effect൴ve ൴ntegrat൴on ൴nto the electr൴c൴ty gr൴d. We 
employed mach൴ne learn൴ng techn൴ques to pred൴ct w൴nd power generat൴on by ut൴l൴z൴ng h൴stor൴cal weather 
data ൴n conjunct൴on w൴th correspond൴ng w൴nd power generat൴on data. The dataset was sourced from 
real-t൴me SCADA data obta൴ned from w൴nd turb൴nes, allow൴ng for a comprehens൴ve analys൴s. We 
d൴fferent൴ated th൴s research by evaluat൴ng not only w൴nd cond൴t൴ons but also meteorolog൴cal factors and 
phys൴cal measurements of turb൴ne components, thus cons൴der൴ng the൴r comb൴ned ൴nfluence on overall 
w൴nd power product൴on. We ut൴l൴zed Dec൴s൴on Tree, Random Forest, K-Nearest Ne൴ghbors (KNN), and 
XGBoost algor൴thms to est൴mate power generat൴on. The performance of these models assessed us൴ng 
evaluat൴on cr൴ter൴a: R², Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), and Mean Absolute Percentage Error (MAPE). The f൴nd൴ngs ൴nd൴cated XGBoost 
algor൴thm outperformed the other models, ach൴ev൴ng h൴gh accuracy wh൴le demonstrat൴ng computat൴onal 
eff൴c൴ency, mak൴ng ൴t part൴cularly su൴table for real-t൴me appl൴cat൴ons ൴n energy forecast൴ng. 
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1. Introduction 

Energy plays a major role in human life and must be utilized with maximal effectiveness, minimal 
environmental harm, and the lowest cost. For the last few centuries, energy costs have been the main 
financial outlay for countries; yet, the growing need for fossil fuels has not been satisfied, and the 
environmental effects of depending on fossil fuels cannot be ignored [1]. 

There is greater awareness than ever before that the production of carbon dioxide from burning 
fossil fuels causes a rise in global temperatures, leading to efforts to reduce the use of these fuels. Many 
agreements have been signed between countries and organizations to achieve specific targets. The 
Kyoto Protocol, widely recognized as the most prominent among these agreements, was established 
with the primary aim of mitigating the release of greenhouse gases (GHGs) caused by human activities. 
This protocol acknowledges the diverse national disparities in GHG emissions, economic prosperity, 
and the capability to address these emissions. After a series of contentious conferences, participants of 
the 2015 COP21 summit in Paris reached a consensus to limit the global average temperature increase 
to a maximum of 2 ℃ above preindustrial levels. Additionally, they committed to sustaining the current 
temperature rise, which stands at 1.5 ℃ higher. This historic agreement effectively replaced the Kyoto 
Protocol and received signatures from all 196 UNFCCC signatories. To incentivize developing nations 
to adopt environmentally friendly technologies, the agreement also stipulated a periodic review of 
progress every five years and the establishment of a $100 billion annual fund by [2,3]. 

Global greenhouse gas (GHG) emissions have risen since the turn of the 21st century and up 
until 2019. This trend has primarily been driven by the rising emissions from China and other emerging 
economies. The natural greenhouse effect, which may negatively impact Earth’s life, is enhanced by 
significantly higher atmospheric concentrations of greenhouse gases. Global emissions decreased by 3.7% 
in 2020 compared to 2019 levels due to the COVID-19 pandemic, breaking an upward trend that had 
been ongoing for more than ten years. However, shortly after the pandemic’s peak, global GHG 
emissions began to increase once more, reaching a level of 53.8 Gt CO2 eq in 2022, which is 2.3% 
higher than in 2019 and 1.4% above 2021 [4]. 

Due to these problems, different energy types and technologies that can reduce emissions have 
become the focus of studies in the scientific community. For a long time, these investigations have 
centered on renewable energy technology. Renewable energy sources—biomass, geothermal, solar, 
tidal, wave, and wind power, among others—are expected to address the world’s energy problems 
without negatively impacting the economy, environment, or the resources of future generations. Clean 
energy solutions aim to achieve these vital targets for increased sustainability, including higher 
efficiency, effective resource use, lower costs, a better environment, energy security, and superior 
design and analysis. Wind energy has rapidly gained acceptance among society, industry, and politics 
for being a clean, viable, cost-effective, and eco-friendly option [5]. 

Wind energy power forecasting can be influenced by various factors. One of the most significant 
factors is wind speed, as higher wind speeds generally result in higher power generation. Additionally, 
wind direction can impact the efficiency of wind turbines, as turbines are designed to capture wind 
from specific directions. The design and specifications of the wind turbine itself, such as rotor diameter, 
blade length, and generator capacity, also influence power estimation. The surrounding terrain and the 
presence of obstacles like buildings, trees, or hills can cause turbulence and affect wind flow, leading 
to variations in power estimation. Furthermore, changes in temperature and air density can impact the 
performance of wind turbines, with cold temperatures and higher air density increasing power output, 
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while warmer temperatures and lower air density decrease it. Finally, over time, wind turbines may 
experience performance degradation due to wear and tear, mechanical issues, or maintenance 
requirements, which can affect the accuracy of power estimation. 

Machine learning, which has strong capabilities in capturing nonlinear relationships between 
input and output, is used for short-term wind energy forecasting. Many methods and models have been 
developed to estimate wind power in past studies. Several studies indicate that machine learning 
algorithms hold potential for efficiently forecasting wind power generation [6]. Random forest is one 
of the prominent machine learning methods for short-term wind energy forecasting [7]. The random 
forest algorithm, which has a strong adaptive ability, produces a more suitable model because it can 
train on data without normalization, which meets the demands of wind energy forecasting [8]. 

The gradient boosting machine regression approach outperformed five other optimal machine learning 
techniques in Singh et al.’s comparison of short-term wind energy generation forecasts [9]. In 2019, 
Demolli et al. conducted a study showcasing the application of machine learning algorithms in 
estimating long-term wind power values [10]. By utilizing daily wind speed data, the researchers 
demonstrated the effectiveness of these algorithms. In a separate investigation conducted by Liu and 
Fan in 2021, three machine learning algorithms—Decision Trees, and Random Forests—were 
compared [11]. The findings revealed that the KNN approach surpassed decision trees in accurately 
predicting wind power. Extreme Gradient Boosting (XGBoost) and ensemble approaches have become 
popular for forecasting power generation from renewable energy sources, particularly in wind systems 
and short-term models [12]. The potential of machine learning algorithms, such as gradient boosting 
regression trees, decision trees, random forests, KNN, XGBoost and multiple linear regression has 
been highlighted in numerous papers [13,14]. Forecasting wind power methods can also employ 
various techniques beyond machine learning. Numerous researchers have utilized and developed 
neural networks, deep learning methodologies, and hybrid approaches that integrate these with 
machine learning techniques [15–18]. There are also studies on new algorithms and models to reduce 
the randomness and uncertainty of wind energy and increase forecast accuracy [19–22]. In addition to 
these studies, many authors continue to publish research that explores the advantages, disadvantages, 
and future prospects of these methodologies [23–30]. 

Accurate prediction of wind power is essential for ensuring the reliability of power systems and 
reducing costs associated with their operation. Additionally, precise predictions benefit governmental 
bodies, policymakers, and other responsible entities in making informed decisions and taking 
appropriate measures. We aim to forecast wind energy, considering meteorological factors, wind speed, 
turbine technology, and physical measurements taken from SCADA data for all turbine components. 

The study contributes to the literature in many ways. 
1. Real-t൴me data usage: The study prov൴des more up-to-date and accurate est൴mates based on current 

meteorolog൴cal cond൴t൴ons by us൴ng real-t൴me SCADA data to est൴mate w൴nd turb൴ne power generat൴on. 
2. Comb൴ned dataset: By cons൴der൴ng 77 d൴fferent parameters for w൴nd power generat൴on, we 

evaluate not only w൴nd speed but also other meteorolog൴cal factors such as temperature, hum൴d൴ty, 
pressure, and phys൴cal measurements of turb൴ne components. 

3. Deta൴led performance analys൴s: We comprehens൴vely evaluate the performance of the algor൴thms 
accord൴ng to var൴ous cr൴ter൴a such as R², MAE, MSE, RMSE, and MAPE, as well as computat൴onal cost. 
Th൴s ൴ncreases the rel൴ab൴l൴ty of the results and shows wh൴ch model ൴s more opt൴mal. 
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2. Materials and methods 

In the study, data analysis is performed using Python, one of the programming languages widely 
used for statistical calculation and data analysis. In the literature review, it is observed that decision 
tree, random forest, XGBoost, and KNN algorithms are frequently used [31]. For this reason, the model 
is obtained using these algorithms during the application phase of the study. Our aim here is to make 
predictions regarding electricity production from the wind turbine and to determine which algorithm 
makes predictions with higher performance, taking current weather conditions as input. Within the 
scope of the analysis, different Python libraries are used for various purposes. Accordingly, pandas is 
used for data analysis; matplotlib is utilized for visualizing various data, such as the representation of 
pairwise correlations; and sklearn is employed for machine learning algorithms and model 
performance evaluations. These are some of the most important libraries used. The Cross-Industry 
Standard Process for Data Mining, one of the widely used analytical models, consists of six stages: 
Defining the problem, understanding the data, preparing the data, modeling, model evaluation and 
selection, and implementing the model [32]. The application part of the study is carried out by 
following these steps. However, in this study, the “Implementation of the Model” step is not included. 

2.1. Defining the problem 

Wind power holds a significant position among numerous sustainable and eco-friendly energy 
sources. Accurate and dependable wind power prediction plays a crucial role in seamlessly integrating 
wind energy into the power grid [33]. Forecasts pertaining to wind energy production are indispensable 
for effectively strategizing and optimizing the placement of wind farms. By analyzing and making 
accurate predictions based on historical wind data, developers and policymakers can identify suitable 
locations for wind projects, estimate potential energy yield, and optimize the design and capacity of 
wind turbines. Reliable forecasts also help assess the economic viability of wind energy investments 
and secure financing for new projects. In recent years, the literature extensively explores the prediction 
of wind energy production using machine learning algorithms, making it a widely popular application 
in the renewable energy sector. As a result of the search in the Scopus database according to the 
TITLE-ABS-KEY (“wind power” and “prediction”) criteria, 10,746 studies are obtained. Figure 1 
shows the number of publications by year. 

 

Figure 1. Wind energy estimated number of publications by years. 
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According to the figure, the first studies date back to 1999 and before. According to the general 
view, the number of publications has continued to increase since the beginning. After 2017, the number 
of publications in the field has increased linearly every year, and the subject remains current today. 

Significant enhancements in meteorological models, data analytics, and machine learning 
methodologies have greatly enhanced the precision of wind energy predictions. These progressions 
encompass the assimilation of up-to-the-minute weather data, high-resolution modeling, ensemble 
forecasting, and the utilization of artificial intelligence algorithms to scrutinize intricate wind patterns. 
In the past three years, there has been a significant rise in the examination of wind energy prediction, 
with a notable progression in these investigations and an anticipation for further advancement in the 
future. Figure 2 presents a correlation chart, illustrating the interrelation of numerous studies, which 
our own study compares and incorporates. Additionally, the chart includes the names of researchers, 
with the size of their representation being determined by the number of citations they have received. 

 

Figure 2. Correlation chart of related studies. 

The pr൴mary ൴ssue addressed ൴n th൴s study ൴s the challenge of accurately forecast൴ng w൴nd power 
generat൴on due to ൴ts ൴nherent var൴ab൴l൴ty and dependence on d൴verse meteorolog൴cal factors. W൴nd 
energy product൴on ൴s subject to fluctuat൴ons caused by changes ൴n w൴nd speed, d൴rect൴on, temperature, 
hum൴d൴ty, and other env൴ronmental cond൴t൴ons. Trad൴t൴onal forecast൴ng methods often struggle to 
൴ntegrate these complex var൴ables, lead൴ng to unrel൴able pred൴ct൴ons that can h൴nder the eff൴c൴ent 
management of w൴nd resources. 

We a൴m to overcome these challenges by employ൴ng advanced mach൴ne learn൴ng algor൴thms that 
can analyze large datasets of h൴stor൴cal weather and power generat൴on data. By ut൴l൴z൴ng real-t൴me 
SCADA data from w൴nd turb൴nes, the research seeks to develop a robust pred൴ct൴ve model that not only 
൴mproves the accuracy of w൴nd power forecasts but also enhances the ൴ntegrat൴on of w൴nd energy ൴nto 
the electr൴c൴ty gr൴d. Thus, the central problem ൴s the need for a more prec൴se and eff൴c൴ent forecast൴ng 
method that can adapt to the dynam൴c nature of w൴nd energy product൴on. 
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2.2. Data understanding 

Two distinct datasets, the wind energy production dataset and weather data, including wind speed, 
wind direction, temperature, humidity, atmospheric pressure, and other pertinent variables, are utilized 
on Kaggle to assess the algorithms’ performance [34]. Dataset contains power (kW) that turbine 
produces in real time on 10-minute basis between January 1, 2019 and August 14, 2021. 

Understanding the data is the stage where the characteristics of the dataset are analized, such as 
the number of observations, number of attributes, and missing data. Figure 3 shows the raw version of 
the “Features” dataset, which has not been analized. 

 

Figure 3. Features dataset. 

Through the queries made, dataset reveals 154,262 observations and 77 attributes containing 
various variables. The timestamp is of object data type, while all other attributes are of float data type.  

The unit equivalents of the attributes in the dataset are provided in Figure 4. 

 

Figure 4. Feature units. 
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The “Power” data set is examined and shown in Table 1. 

Table 1. Power dataset. 

  Timestamp Power (kW) 
0 1.01.2019 00:00 705.876.648 
1 1.01.2019 00:10 884.711.670 
2 1.01.2019 00:20 982.875.000 
3 1.01.2019 00:30 1.115.943.359 
4 1.01.2019 00:40 1.263.841.675 
... ... ... 
136725 14.08.2021 23:10 2.757.728.271 
136726 14.08.2021 23:20 2.758.323.242 
136727 14.08.2021 23:30 2.759.243.408 
136728 14.08.2021 23:40 2.761.261.719 
136729 14.08.2021 23:50 2.758.593.262 

The analysis determines that there are two attributes in the power dataset: The timestamp and the 
amount of power produced in kW, with a total of 136,730 observations. “Power (kW)” in the power 
dataset is selected as the target attribute. At this stage, the box plot, which allows for a better 
understanding of the data, is shown in Figure 5 for the “Power (kW)” target attribute. 

 

Figure 5. Power(kW) box plot. 

The box plot, which basically shows how the values are distributed, also provides information 
about whether there are extreme values. Accordingly, it is possible to say that the Power(kW) target 
attribute does not contain extreme values. 

2.3. Data preparation 

A single data set is created by combining the data sets using the timestamp attributes from both 
sources. The new data set is checked for missing and repetitive data, and observations with missing 
data are removed. After this process, the number of observations in the data set is 136,730. Additionally, 
feature selection is conducted for the 77 attributes affecting the target attribute. Thanks to this method, 
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which allows the selection of the features that contribute the most to the target quality, the top 10 
predictors for the target quality were determined in the study. Accordingly, the attributes that are most 
effective in predicting the target attribute are ‘Temperature Transformer-3’, 
‘Gearbox_T1_Intermediate_Speed_Shaft_Temperature’, ‘Torque’, ‘Operating_State’, ‘Voltage A-N’, 
‘Voltage C-N’, ‘Torque Offset Tower Feedback’, It has been determined that there are ‘Blade-1 Actual 
Value_Angle-B’, ‘Pitch Offset-1 Asymmetric Load Controller’, and ‘Proxy Sensor_Degree-315’. The 
final feature selection version of the data set is summarized in Figure 6. 

 

Figure 6. Dataset summary. 

The mean, standard deviation, the minimum, the first quartile, the middle, and the third quartile 
values of the attributes of a total of 136,730 observations are shown. 

2.4. Modeling 

Within the scope of the study, the performance of Decision Tree, Random Forest, KNN, and 
XGBoost algorithms on the dataset is evaluated. Feature selection is conducted for 77 attributes that 
affect the target attribute. We consider both the 10 predictors that contribute the most to the target 
attribute and all attributes for model performance evaluation. The “hold-out” method is used for model 
performance evaluation, where the performance of the model is assessed by creating an 80% training 
dataset and a 20% test dataset. 

2.5. Modeling and evaluation 

At this stage, the performance values of the models that provide solutions to the problem defined 
at the beginning are evaluated. An application was carried out to make predictions about electricity 
production from wind turbines with Python programming language using Decision Tree, Random 
Forest, KNN, and XGBoost algorithms and to determine which algorithm makes predictions with 
higher performance by taking current weather conditions as input. 

Model performance evaluation is based on R², MAE, MSE, RMSE, and MAPE criteria. The 
performance criteria used are given below. 



116 

Clean Technologies and Recycling  Volume 4, Issue 2, 108–124. 

1

1 ˆ
n

j j
j

MAE y y
n =

= + −                                (1)            

( )2

1

1 ˆ
n

j j
j

RMSE y y MSE
n =

= − =                      (2)         

1

1 ˆ
n

j j
j

MAPE y y
n =

= −                           (3) 

( )

( )

2

12

2

1

ˆ
n

j j
j
n

j j
j

y y
R

y y

=

=

−
=

−




                             (4) 

3. Results 

Wind power is a notable type of sustainable energy that attracts global attention owing to its 
economical nature as an energy generation source. Wind energy is inherently variable, non-linear 
and weather dependent. This creates a problem in terms of accurate prediction. This article estimates 
Power (kW) based on the analysis of variables including wind speed, wind direction, temperature, 
humidity, atmospheric pressure, and other relevant attributes. CRISP-DM steps were followed in the 
article. However, since the obtained models were not integrated into any system, the last step of 
CRISP-DM, the implementation of the model, was not carried out. In order to estimate the power to 
be obtained within the scope of the study, Decision Tree, Random Forest, KNN, and XGBoost. The 
obtained results were compared using criteria for evaluating the model’s performance. In addition to 
R2, the MAE, MSE, RMSE, and MAPE criteria were also taken into account when monitoring the 
models’ performance. Model performance evaluations of the algorithms are summarized in Table 2. 

Table 2. Performance evaluation criteria. 

ALGORITHMS 

Performance 
evaluat൴on 
cr൴ter൴a  

Decision tree Random forest KNN XGBoost 
Feature 
selection 

Normal Feature 
selection 

Normal Feature 
selection 

Normal Feature 
selection 

Normal 

R2 0.99 0.99 0.99 0.99 0.99 0.78 0.99 0.99 
MAE 12.48 7.65 9.66 5.39 23.85 285.98 12.01 7.84 
MSE 3789.48 1788.94 2209.57 815.99 10572.79 244683.08 1954.09 678.22 
RMSE 61.55 42.29 47.00 28.56 102.82 494.65 44.20 26.04 
MAPE 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

R2 refers to the rate of change in the dependent variable that can be predicted from the independent 
variables. In the model obtained by feature selection, all of the algorithms used within the scope of 
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analysis are 99%. This shows that the resulting model can predict the target variable (Power(kW)) in 
the training data set with 99%. However, when examined without feature selection, it was observed 
that only the performance of the KNN model decreased. The fact that KNN is a lazy algorithm is 
thought to affect this result. R2 alone is not sufficient to explain the model’s performance. Other criteria 
also need to be evaluated for a better interpretation of the model’s performance. 

MAE shows how much the model’s predictions deviate from the actual values, on average. 
Accordingly, in the feature selection model, the Random Forest model gave the least deviation from 
the real values with 9.66. This model is followed by XGBoost with 12.01, Decision Tree with 12.48 
and KNN with 23.85, respectively. When looking at the MAE value of the model obtained without 
Feature Selection, it was seen that the Random Forest model gave the least deviation. The Decision Tree 
model came in second and XGBoost came in third. The KNN model has the highest deviation at 285.98. 

MSE shows how close the predictions are to the actual values. A lower MSE value means the 
prediction is more accurate. MSE is obtained by dividing the sum of the squares of the differences 
between the actual Power (kW) and the predicted Power (kW) by the number of observations. 
Accordingly, among the models created by feature selection, it was observed that the XGBoost model 
made a more accurate prediction with 1954.09. The XGBoost algorithm is followed by Random Forest 
with 2209.57, Decision Tree with 3789.48 and KNN with 10572.79, respectively. When we look at the 
models obtained without feature selection, it is seen that the XGBoost model comes first with 678.22. It is 
seen that the KNN model makes the prediction that is furthest from the real values. According to the 
results obtained, the XGBoost model gave the best result among all models. 

RMSE is the square root of MSE. It is used to find the difference between the values predicted 
from the model and the real values. Except for KNN, all algorithms gave better results without feature 
selection. The XGBoost model came first with 26.04, followed by the Random Forest and Decision 
Tree models, respectively. According to the obtained RMSE value, the model has an average error 
of 26 kW when it predicts Power(kW). Although the model has a bias problem, it is at a low level. 

MAPE is a statistical measure used to assess the accuracy of a forecast or prediction model. 
MAPE expresses the error as a percentage of the actual values, making it easier to interpret the forecast 
accuracy regardless of the scale of the data. the low MAPE across all models indicates that they 
perform well in terms of prediction accuracy, making them suitable choices for forecasting tasks in 
this context. 

Looking at the general situation of model performance metrics, the XGBoost model has high R2 
and low MAE, MSE, RMSE and MAPE values. This shows that the model fits the data well and the 
predictions are generally accurate. 

The algorithms are also examined in terms of computational cost. Computational cost means that 
the resources (time, memory, processing power, etc.) consumed by each model during its 
implementation and execution are calculated. It emphasizes that a balanced approach should be 
adopted in terms of both performance and resource usage during model selection and optimization. 
Therefore, evaluating the computational costs of each model is critical to developing more effective 
and efficient systems. Within the scope of the study, data analysis was performed in Jupyter Notebook 
via Anaconda Navigator and Python version 3.11.5 was used. The computational costs of the model 
were performed on an M1 Mac computer with 8 GB RAM. Table 3 shows the calculation costs. 
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Table 3. Calculation costs. 

Calculation costs 
Algorithms Time (SEC) Memory (MB) CPU usage before (%) CPU usage after (%) 
Decision tree 74.02 406.14 3.4 2.0 
Random forest 74.00 310.01 0.7 0.2 
KNN 74.72 403.39 2.2 7.2 
XGBoost 73.62 372.70 2.6 2.7 

XGBoost stands out as the most efficient algorithm in terms of both training time and memory 
usage. This makes it a suitable option for large datasets. Random Forest and KNN stand out with their 
high memory and CPU consumption. Therefore, these algorithms should be carefully evaluated before 
using them on larger and more complex datasets. Decision Trees and XGBoost can provide advantages 
in data processing with lower resource usage, which makes them more preferable in applications. 

According to the results, the XGBoost model stands out in terms of balancing both performance 
and resource consumption in model selection by offering high performance and low cost. 

A correlation matrix was created to determine whether the relationships between the dependent 
variables (Temperature Trafo-3, Gearbox_T1_Intermediate_Speed_Shaft_Temperature, Torque, etc.) 
and the independent variable (Power (kW)) obtained as a result of the feature selection made in line 
with the 10 predictors that have the most impact on the target variable are significant. The correlation 
matrix is given in Figure 7. 

 

Figure 7. Correlation matrix. 

When the correlation matrix was examined, it was seen that the dependent variable that had the 
most impact on the target attribute was Torque with 91%. That is, there is a strong and significant 
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relationship between Torque and Power(kW), and the most important predictor explaining the target 
attribute is the Torque attribute. On the other hand, it is seen that there is a moderate negative 
correlation of 71% between Proxy Sensor_Degree-315 and Power(kW) and there is a statistically 
significant relationship between these variables. 

Upon reviewing the literature, we find that Support Vector Regression, Random Forest, XGBoost, 
Decision Tree, Gradient Boosting, and KNN algorithms are frequently employed in machine learning 
studies. From January to December 2018, experimental data was gathered at a 10-minute sampling 
rate using a SCADA system as part of a study to estimate wind power based on wind speed and wind 
direction data. Using random forest, KNN, gradient boosting, decision trees, extra trees, and regression 
algorithms, the model was built for the study. It was found that the gradient boosting algorithm 
produced the best results [9]. In a different study, the Random Forest, Least Absolute Shrinkage 
Selector Operator, Support Vector Regression, KNN and XGBoost, algorithms were used to estimate 
wind power based on wind speed data from four distinct regions. Modeling was done using. The best model 
performance was shown by XGBoost and Support Vector Regression [10]. Additionally, our research 
findings are similar to another study comparing the performance of traditional, deep learning and 
ensemble learning models for short-term wind speed prediction, and the XGBoost model appears to 
outperform other models [35]. 

The energy produced by a turbine is influenced by various factors, including wind speed and 
location. However, these factors can have varying physical impacts on different components of the 
turbine. While researchers have focused solely on wind speed as a parameter for wind energy 
production, we consider 77 separate parameters, including meteorological effects and SCADA data. 
We identified the most significant parameters affecting wind energy production and incorporated the 
effect of wind speed on multiple turbine components as separate data in our algorithm, allowing for 
more accurate predictions.  

4. Discussion 

Forecasting wind energy production is of great importance in the renewable energy industry. 
Wind power forecasting enables energy providers to anticipate and strategize the potential electricity 
generation from wind turbines. Precise prediction aids in optimizing the seamless integration of wind 
power into the grid, thereby ensuring a consistent and dependable energy supply. It also enables better 
management of energy resources, reduces costs, and improves overall efficiency. By predicting wind 
energy production, operators can make informed decisions regarding energy distribution, storage, and 
backup power generation. Furthermore, the utilization of forecasting techniques plays a crucial role in 
effectively addressing energy demand, diminishing the dependence on non-renewable energy sources, 
and alleviating the adverse environmental consequences associated with energy generation. Machine 
learning techniques have exhibited significant potential in predicting wind power generation, which is 
vital for the effective management of renewable energy resources. A variety of methodologies have 
been investigated, encompassing both individual algorithms and ensemble techniques. 

Our findings of this study contribute significantly to the existing body of literature on wind power 
forecasting by employing machine learning techniques to enhance prediction accuracy. Our results 
indicate that the XGBoost model outperformed other algorithms, achieving a high R² value and low 
MAE, MSE, RMSE, and MAPE metrics. This reinforces the findings of previous studies, such as those 
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by Singh et al. and Demolli et al., which also identified XGBoost as a leading algorithm for wind 
power prediction [9,10]. 

Unlike prior research that primarily focused on wind speed as a solitary predictor, our study 
integrated 77 distinct parameters, including meteorological conditions and SCADA data from turbine 
components. By incorporating these diverse factors, we were able to achieve more accurate predictions, 
demonstrating that the performance of wind energy forecasting can be significantly improved through 
a multi-faceted data approach. 

Furthermore, the utilization of real-time SCADA data contributes to the novelty of our research. 
This real-time aspect is crucial, as highlighted by Anushalini and Revathi, who noted that timely data 
integration can lead to better decision-making in energy management [15]. Our findings support this 
assertion, as the use of real-time data allowed for more dynamic and responsive forecasting, ultimately 
aiding in the integration of wind energy into the grid. 

The comparison of model performances in our study also reveals crucial insights. While studies 
have shown that Random Forest and KNN algorithms can deliver reliable results, our analysis indicates 
that these methods may not perform as well under certain conditions, particularly when feature 
selection is not applied. This underscores the importance of feature selection, as shown by our 
findings where the Random Forest and Decision Tree models demonstrated improved accuracy with 
selected features. 

Overall, we not only confirm the efficacy of machine learning techniques in forecasting wind 
power generation but also enhance the literature by providing a detailed analysis of various algorithms 
and the significance of incorporating a broader range of influencing factors. The implications of our 
findings are substantial for energy providers and policymakers, highlighting the necessity for advanced 
forecasting methods that can adapt to the complexities of renewable energy generation. 

5. Conclusions 

We employ machine learning methods to predict wind power generation by utilizing historical 
weather data alongside corresponding wind power generation data. The dataset, sourced from real-time 
SCADA data of wind turbines, associates each weather data point with a specific time period, paired 
with the respective power generation output. A model was developed using Decision Tree, Random 
Forest, KNN, and XGBoost algorithms. 

The performance of these models was rigorously evaluated using metrics such as R², MAE, MSE, 
RMSE, and MAPE. Among the models assessed, the XGBoost algorithm demonstrated the highest R² 
value alongside the lowest MAE, MSE, RMSE, and MAPE values, indicating that it fits the data 
exceptionally well and provides accurate power generation predictions. 

In addition to performance metrics, the computational costs of each model were analyzed. The 
XGBoost algorithm stood out for its efficiency, exhibiting a balance between lower training time and 
memory usage compared to other models. This efficiency makes it particularly suitable for real-time 
applications in wind power forecasting. 

Overall, our findings affirm the effectiveness of machine learning techniques, particularly 
XGBoost, in accurately predicting wind power generation while highlighting the importance of 
computational efficiency in practical implementations. These results contribute valuable insights to the 
literature on renewable energy forecasting and suggest pathways for future research in optimizing 
predictive models across different energy types. 
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In this study, similar results were obtained with the literature. For future studies, it is 
recommended to explore the integration of advanced algorithms, such as deep learning models, to 
further enhance prediction accuracy. Additionally, the continued use of real-time SCADA data is 
essential, and future research should focus on developing frameworks for dynamic model updates as 
new data becomes available. Investigating multi-factor interactions among the 77 parameters identified 
in this study could yield further insights into forecasting accuracy. Regional case studies could also be 
valuable, as they would assess the impact of local geographic and climatic factors on wind power 
generation. Furthermore, incorporating economic feasibility analyses could provide insights into the 
cost-effectiveness of implementing these forecasting models. Last, research findings should be used to 
inform policymakers about the importance of predictive technologies in renewable energy, and 
comparative studies with other renewable sources could help develop a more comprehensive 
understanding of energy forecasting. 
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