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Abstract: This research presents a novel optimization modeling framework for the existing Soil and 
Water Assessment Tool (SWAT), which can be used to optimize perennial feedstock production. This 
novel multi-objective evolutionary algorithm (MOEA) uses SWAT outputs to determine optimal 
spatial placement of variant cropping systems, considering environmental impacts from land-cover 
change and management practices. The final solution to the multi-objective problem is presented as a 
set of Pareto optimal solutions, where one is suggested considering the proximity to the ideal  
vector [1,0,0,0]. This unique approach provides a well-suited method to assist researchers and 
stakeholders in understanding the environmental impacts when cultivating biofuel feedstocks. The 
application of the proposed MOEA is illustrated by analyzing SWAT’s example data set for Lake 
Fork Watershed. Nine land-cover scenarios were evaluated in SWAT to determine their optimal 
spatial placement considering maximizing biomass production while minimizing sediment yield, 
organic nitrogen yield, and organic phosphorous yield. 
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1. Introduction 

The Energy Independence and Security Act of 2007 (EISA) has pushed for the expansion of 
biofuel target volumes and extended the ramp-up through 2022 [1]. The new Renewable Fuel 
Standard (RFS), expanded and extended in the EISA, required the use and production of 9 billion 
gallons of biofuels for 2008 and a target of 36 billion gallons in 2022. Of these 36 billion gallons, at 
least 16 billion should be developed from cellulosic biofuels, and no more than 15 billion gallons 
derived from corn ethanol. Additionally, it is becoming more of a policy priority to identify 
sustainable approaches to bio-energy production. The EISA also requests that federal agencies begin 
to identify, and report environmental concerns linked to biofuel production, for example, water and 
soil quality and land productivity. 

In order to address the sustainability of feedstock production, assessment of environmental 
impacts is required. The Soil and Water Assessment Tool (SWAT) is perhaps the most comprehensive 
environmental modeling software available and most effective in predicting sediment, nutrient, and 
chemical yields to streams and rivers resulting from agricultural management practices in complex 
watersheds [2]. However, the SWAT model does not have an optimization method that will allow 
users to identify the optimal spatial placement of land-cover and management practices. Considering 
the mandated biofuel production levels in EISA, it becomes a challenge to select suitable feedstocks 
and locations for cultivation to achieve these production targets while preserving natural resources. 
Biofuel crop selection will not be uniform and will be based on regional factors, productivity, and 
sustainability, as crop yields respond differently to climate, soil, and management. To meet 
production demands and sustainability criteria, it is necessary to develop innovative strategies and 
optimization methods to assess production amounts and impacts. Biofuel production sustainability 
can be achieved by scientifically assessing potential effects of biofuel feedstock cultivation on water 
quality and quantity, sediment, and nutrient losses in runoff. 

In recent decades, corn starch from kernels has been the primary input in ethanol production [3], 
which are grown with the highest fertilizer and pesticide use than any major crop in the U.S. [4]. 
Manure or fertilizers used on croplands may increase Phosphorus (P) and Nitrogen (N) 
concentrations in streams and lakes, increasing eutrophication of surface waters. Runoff and erosion 
are the primary means of P movement in surface runoff [5]. The extent of a hypoxic zone in the Gulf 
of Mexico, caused by excessive nitrogen concentration, is a result of these practices [6]. Perennial 
warm-season grasses (WSG’s) are particularly effective in removing nutrients from runoff. For 
instance, a switchgrass barrier combined with a fescue filter strip can reduce organic N loss by 
57~70%, and particulate P loss between 50% and 68% [7]. Loss of organic N and particulate P in 
runoff is correlated with sediment loss. As the barrier of switchgrass width increases, the nutrient loss 
in runoff decreases exponentially. Besides removing nutrients from runoff, WSG’s lessens sediment 
transport in runoff. Sediment deposition is promoted with the slow movement and temporary ponding 
of runoff within grasses. McGregor et al. [8] reported that no-till soils under cotton lose 5.2 Mg/ha of 
sediment without switchgrass buffers, whereas only 2.2 Mg/ha is lost with switchgrass buffers. 
Furthermore, 91% of sediment was trapped with narrow switchgrass hedges [9,10]. 
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WSG’s have become a promising biofuel crop with many environmental benefits, including the 
displacement of fossil fuels, reduction in net CO2 emissions through soil organic carbon (SOC) 
sequestration, and improvements in soil and water quality [11]. However, bioenergy crops’ 
production may alter the hydrology and ecosystem services of a particular region, and the impacts 
may not always be the same. Impacts may be negative or neutral, depending on crop selection and 
management practices, while others may offer improvements in water quality and other positive 
benefits (e.g., afforestation and reforestation) [12]. Different agricultural management practices, such 
as the heavy use of nitrogen fertilizers, increased tillage, and the selection of crops for the given soil 
conditions and climate, have effects on watersheds and the environment. For instance, switchgrass 
and Miscanthus have the potential to reduce erosion and nutrient losses within the watershed [11]. 
On agricultural lands, erosion processes are the primary means of the movement of pollutants [11]. 
Excessive amounts of non-point source pollutants can contribute to eutrophication of the receiving 
water bodies and impair water quality. 

2. Background 

Recent articles have addressed the importance of developing decision support tools that include 
ecosystem services to reduce the environmental impacts associated with agricultural systems [13–17]. 
However, there is a lack of research or information that quantifies water and soil quality, and other 
ecosystem services, despite the expected increases in second-generation biofuel feedstock production. 
Related research has not identified the soil and water impacts associated with the conversion and 
cultivation of biofuel feedstock crops or investigated the approach to managing agricultural 
landscapes. Additionally, very few have used SWAT with evolutionary optimization algorithms to 
improve agricultural management in watersheds. Those that have integrated SWAT with genetic 
algorithms have developed decision-making models mainly for Best Management Practices (BMP’s) 
and detention basin locations to reduce pollutant loads and pesticide control. For example, Kaini et  
al. [18–20] and Artita et al. [21], developed a variety of methods for evaluating cost-effectiveness, 
optimum combination of detention ponds, parallel terraces, filter strips, and other BMP’s to reduce 
pollutant loads. They proposed a model that can identify least-cost combinations based on size, type, 
and BMP location [18–21]. Maringanti et al. [22,23] developed a multi-objective tool for the 
selection and placement of BMP’s for pesticide control by combining a genetic algorithm with a 
distributed parameter watershed model. According to Maringanti, other optimization models that had 
a dynamic linkage with water quality models could only analyze small-scale watersheds due to 
increased computational time. Instead of having a direct interface with the watershed model, 
Maringanti developed a database of pollution and cost information of the BMPs under analysis, 
allowing them to perform the optimization at a much larger scale. 

Tallis and Polasky [19] presented the Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST) as part of a computer-based model designed for decision making for biofuel feedstock 
cultivation, considering a comprehensive set of ecosystem services. Herman et al. [24] developed a 
strategy based on a genetic algorithm to maximize steam health by coupling several hydrological 
models, including SWAT. However, the optimization of biofuel crops and soil effect was not 
considered. Gitau et al. [25,26] utilized a BMP database to optimize BMP placement and cost with a 
genetic algorithm and SWAT. Additionally, Muleta and Nicklow [27] developed an integrative 
modeling approach to simultaneously limit sediment yield and maximize farm-level profit by 
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coupling SWAT with a Strength Pareto Evolutionary Algorithm (SPEA). However, the integrated 
model is simulated only at the approximate spatial scale of a farm, without addressing watershed 
management. Ng et al. [28] used SWAT to model four different land-cover change scenarios and their 
potential effects on riparian nitrate loads from cultivating Miscanthus instead of conventional crops 
in the Salt Creek watershed in East-Central Illinois. Nevertheless, the simultaneous optimization of 
multiple objectives was not considered. 

Physically testing all possible land-cover change combinations to determine their optimal 
placement is not cost-effective nor feasible. Therefore, the main purpose of this study is to present a 
multi-objective optimization methodology that can be applied in properly calibrated and validated 
SWAT projects to assist researchers and stakeholders in understanding the environmental impacts of 
agricultural management practices, particularly when cultivating biofuel feedstocks to meet 
legislative benchmarks. The proposed MOEA uses outputs from the SWAT model to find the optimal 
spatial placement of land-cover changes to identify a possible landscape scenario that potentially 
would minimize environmental effects while maximizing biomass yields. The functionality of the 
proposed model is demonstrated with the analysis of three perennial grasses, namely switchgrass 
(Panicum virgatum L.) eastern gamagrass (Trip-sucum dactyloides L.) and johnsongrass (Sorghum 
halepense (L.), Pers.), each with three nitrogen application levels [33 29]. These grasses and nitrogen 
application levels were selected to create multiple solutions to execute the MOEA. 

3. Materials and methods 

Multi-objective optimization problems require the simultaneous optimization of two or more 
objective functions that may conflict with each other. These problems usually find a set of Pareto 
Optimal solutions. The main idea behind the Pareto dominance criterion is to compare all solutions 
against each other, where the best-fitted solutions dominate the weaker ones, which is said to be 
dominated. The boundary defined by the set of non-dominated solutions is known as the Pareto-front 
that is presented as the solution set to the multiple objective optimization problems. The solutions 
that are part of the Pareto set belong to a category in which there is no mathematical foundation to 
discard any of those solutions over one another. Since they cannot be eliminated again, they are 
presented as a set of “options” that are all “equally” good at optimizing the desired objectives. The 
Pareto dominance criterion can be formulated as follows: 

A solution s dominates solution s’ if 𝑓𝑖 (𝑠) ≤ 𝑓𝑖 (𝑠′) ∀𝑖, 𝑖 ∈ {1, 2, … 𝑁} and there exists some   
𝑖 ∈ 𝑁 for which 𝑓𝑖(𝑠) < 𝑓𝑖(𝑠′). In other words, solution s dominates another solution s’ when solution 
s is no worse than solution s’ in all objectives and solution s is strictly better than solution s’ in at 
least one objective [30]. The next sections introduce the multi-objective optimization model 
developed for the existing Soil and Water Assessment Tool (SWAT). 

3.1. Soil and Water Assessment Tool (SWAT) 

The multi-objective optimization model developed in the present work, uses SWAT version 
2016/Rev 664, to quantify the environmental impacts associated with land-cover change at the 
watershed scale. SWAT was developed by the United States Department of Agriculture (USDA) and 
the Agricultural Research Services (ARS) with almost 30 years of effort and has gained international 
acceptance in hydrological and pollutant load assessments [31]. 
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SWAT is a physically-based model that effectively predicts sediment, nutrient, and chemical 
yields to streams and rivers resulting from agricultural management practices in complex watersheds. 
The model includes major components such as weather, hydrology, soil properties and temperature, 
land management, plant growth nutrient parameters, pesticides, bacteria, and pathogens. SWAT 
divides watersheds into multiple sub-basins, which are further subdivided into Hydrologic Response 
Units (HRUs). HRUs are subdivisions with similar land cover, soil characteristics, and slope class 
scattered throughout the sub-basin. This component makes the SWAT execution faster than those 
with single fields by evaluating each HRU separately and then adding them together to define the 
loadings from the sub-basin [32]. 

The flowchart in Figure 1 shows the optimization modeling approach for the SWAT model. The 
first step is to simulate the same management scenario for all HRUs in the SWAT interface. Several 
output files are created in every SWAT simulation. The proposed optimization modeling framework 
uses two files created by SWAT, namely output.std and ouput.hru. While the summary output file 
(output.std) provides average crop values for each HRU and their corresponding yield (kg/ha) and 
biomass (kg/ha), the HRU output file (output.hru) contains summary information for each HRU in 
the watershed. For a full description of all variables see the SWAT Input/Output Documentation 
version 2012 [32]. 

After the simulation is executed, the output.std and output.hru files are used to create an 
optimization table. This is performed by running a script coded in MATLAB, called “Optimization 
Tables”. This code requires to define four variables: (1) HRU numbers; (2) management code (MC); 
(3) HRUs included in the optimization study; and (4) three different response variables. The number 
of HRUs in the simulation allows the code to identify the location of average values for biomass in 
the output.std file. Since every management scenario simulated will create a new optimization table, 
the MC allows identifying the management scenario simulated in SWAT when possible solutions are 
evaluated by the MOEA. 

 

Figure 1. Optimization modeling approach for the SWAT model. 

The HRUs included in the optimization study allow excluding those HRUs that could not be 
optimized due to their natural characteristics (e.g., water or urban HRUs). The three different 
response variables allow the code to identify the location in the output.hru file of the SWAT output 
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values desired to be minimized. The MP, biomass, and response variables are saved in an 
optimization table later used in the MOEA script. This process is repeated until all the management 
practices in the study are executed in SWAT, and their output variables are extracted and saved in the 
optimization tables. The next step is to run the MOEA script, also coded in MATLAB. The MOEA 
starts by creating a random set of land-cover scenarios using the optimization tables. This initial set 
is called initial population. Next, the iterative process of the MOEA continues until reaching a 
predefined number of iterations, called generations. The final solutions are presented as a set of Pareto 
optimal solutions, and one solution is suggested based on its proximity to the ideal point [1,0,0,0]. 

3.2. Problem formulation 

A general formulation to quantify all possible landscape scenarios is based on the total number 
of management practices and the total number of Hydrologic Response Units (HRUs). 
Mathematically, this can be formulated as follows (Eq 1):  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ൌ 𝑋ுோ௎௦                    (1) 

where X = the total number of management practices, and HRUs = HRUs total − HRUs water − HRUs urban 
(excluding water and urban HRUs). For instance, if two management practices were to be evaluated 
in a watershed divided into three HRUs, the total number of combinations would be 23 = 8 and each 
combination should be evaluated to determine the combination with greater environmental 
performance. Testing these combinations may seem achievable. However, numerous management 
practices can be tested in a much broader space. In hydrological simulations, watersheds are divided 
into several HRUs, where for a simulation considering 50 HRUs, and six management practices, the 
total possible combinations would be 650 ≈ 8∗1038. Manually testing these combinations to obtain 
better environmental performance scenarios, even with simulation technology will be extremely time 
consuming and practically unfeasible. 

3.3. Multi-objective evolutionary algorithm (MOEA) 

Multi-objective evolutionary algorithms use a population-based search. A population is a 
collection of individuals representing a possible solution to the multi-objective problem, also called 
chromosomes. In order to demonstrate the functionality of the proposed multi-objective optimization 
model, two decision alternatives were considered. Such decision alternatives generate potential 
individuals or landscape scenarios, which are evaluated for optimal agricultural landscapes. These 
combinations are listed in Table 1. The land cover considers three different perennial grasses; 
switchgrass, eastern gamagrass, and johnsonsgrass. The amounts of nitrogen applications are 30, 60, 
and 90 Kg/ha. 
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Table 1. Land cover scenario for each HRU. 

Management practice code Land cover Fertilization amount 

1.3 Switchgrass 30 kg/ha nitrogen 

1.6 Switchgrass 60 kg/ha nitrogen 

1.9 Switchgrass 90 kg/ha nitrogen 

2.3 Eastern gamagrass 30 kg/ha nitrogen 

2.6 Eastern gamagrass 60 kg/ha nitrogen 

2.9 Eastern gamagrass 90 kg/ha nitrogen 

3.3 Johnsongrass 30 kg/ha nitrogen 

3.6 Johnsongrass 60 kg/ha nitrogen 

3.9 Johnsongrass 90 kg/ha nitrogen 

In this approach, a chromosome represents a possible landscape scenario that includes all HRUs 
in the SWAT simulation. Each chromosome is encoded to evaluate three response variables, which 
are SWAT average output values extracted from the output.hru file. Furthermore, the objective 
function also maximizes biomass yields, whose average values are extracted from the output.std file. 
In this context, the multi-objective optimization problem is formulated as follows (Eqs 2 and 3): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ሾ𝐵𝑌ିଵ, 𝑅1, 𝑅2, 𝑅3ሿ                           (2) 

𝐵𝑌 ൌ
∑ ஻௒೔

೙
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௡
, 𝑅1 ൌ

∑ ோଵ೔
೙
೔సభ

௡
, 𝑅2 ൌ

∑ ோଶ೔
೙
೔సభ

௡
, 𝑅3 ൌ

∑ ோଵ೔
೙
೔సభ

௡
                  (3) 

where: BY = average annual biomass yield, R1 = average annual first response selected, R2 = 
average annual second response selected, and R3 = average annual third response selected. 

The multiobjective optimization technique applied in the proposed optimization modeling 
framework was developed by Taboada and Coit [30], which adjusts various characteristics from 
numerous metaheuristic methods to achieve quality approximations to global optimal solutions. 
Figure 2 shows the MOEA flowchart. The algorithm starts by creating a random initial population 
composed of many individuals. These individuals are possible solutions representing different 
landscape scenarios. Every individual’s objective function is evaluated [BY, R1, R2 and R3], then the 
three fitness functions based on distance, dominance count, and an aggregated fitness metric are 
obtained. The aggregated results rank the entire population allowing the best-fitted individuals to 
populate the succeeding generation. The algorithm stops with a predefined number of generations or 
when the quality of the solutions reaches a steady-state. Finally, a recommended solution is selected 
from the Pareto set based on the proximity to the ideal vector [1,0,0,0]. 
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Figure 2. Multi-objective evolutionary algorithm flowchart. 

3.3.1. Initialization 

The initial population is randomly created to ensure a diverse population for an effective search 
space. The initial set of individuals (population size) is a fixed parameter that must be defined at the 
first stage of the algorithm and remains constant in every iteration. 

The configuration of an individual’s genes, or chromosome encoding, distinguishes one 
individual from others. The number of HRUs determines the number of genes of an individual. The 
management practice code is specified in each gene. Therefore, the information for each HRU 
corresponds to each of the individual’s genes. An individual and possible solution, as well as its 
chromosome encoding, is illustrated in Figure 3. Every square represents a gene. The HRU number 
is represented by the first numerical figure in the upper center of each gene. As previously stated, the 
number of genes represents the number of HRUs. Therefore, in this example, there are 15 HRUs. 
The number in the lower center of each gene is the management practice code listed in Table 1. In 
this example, the land cover in HRU 1 will change to eastern gamagrass, and 30 Kg/ha of nitrogen 
will be applied. Successively, the land cover in HRU 2 will change to switchgrass, and 60 Kg/ha will 
be applied, etc. 

 

Figure 3. Chromosome encoding for the multi-objective evolutionary algorithm. 
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A possible initial population is illustrated in Figure 4. In this example, eight individuals are 
randomly generated, and every individual contains 15 genes. 

 

Figure 4. Example of a random initial population in the multi-objective evolutionary 
algorithm. 

3.3.2. Evaluation and fitness assignment 

Every individual is evaluated according to the fitness functions, and the best fitted individuals 
will populate the following generation. The concepts of Pareto dominance and population diversity 
are considered in the algorithm. In this regard, the dominated individuals are not considered for 
reproduction, and only the non-dominated individuals are considered for the following generation. 
Additionally, population diversity is attained by assigning higher fitness to those solutions that are 
far away from other solutions. These two criteria are evaluated according to different fitness metrics: 
fitness metric 1-distance-based, 𝑓1(𝑖); and fitness metric-2: dominance count-based, 𝑓2(𝑖); Before 
calculating the fitness metrics, every objective’s result is normalized using Equation 4, to avoid 
discrepancies in units using the following equation (Eq 4). 

௙೔ሺ௫ሻି௙೔
೘೔೙

௙೔
೘ೌೣି௙೔

೘೔೙                                  (4) 

where:𝑓௜ሺ𝑥ሻ is the value in the nondominated set, 𝑓௜
௠௜௡  is the minimum value in the non-dominated 

set and, 𝑓௜
௠௔௫ is the maximum value in the nondominated set. 

The normalized values are used to calculate fitness metrics 1 and 2. the fitness metric 1, uses the 
Euclidean distances between the solutions, the sum of the distances from each solution to the rest of 
the solutions is obtained, and the maximum and minimum value of all the sums is calculated. These 
values are normalized and used to rank the individuals in order from the largest to the smallest. The 
fitness metric 2 is based on the dominance count concept, and it aims to obtain proximity to the true 
Pareto front. This metric assures that those individuals with the highest dominance count will have a 
higher ranking than those with the lowest dominance. Finally, the third fitness metric used is the 



112 

Clean Technologies and Recycling                                               Volume 2, Issue 2, 103–118. 

aggregated fitness metric, fa(x). The aggregated fitness metric is the result of the sum of fitness 
metric 1 plus fitness metric 2 [𝑓௔ሺ𝑥ሻ ൌ 𝑓ଵሺ𝑥ሻ ൅ 𝑓ଶሺ𝑥ሻሿ. It aims to weigh both metrics equally. At this 
point it is assumed that solutions with higher aggregated fitness value are solutions that are closest to 
the true Pareto front and farther away from other solutions. These values are used to rank the 
individuals in order from the highest to the smallest value obtained and then, they go through 
selection and crossover (Taboada and Coit [30]). 

3.3.3. Selection and crossover 

In every iteration, a fraction of the non-dominated solutions found in the current generation will 
survive into the succeeding generation. The remaining spots in the succeeding generation will be 
filled by mixing current non-dominated individuals creating new possible solutions, a process called 
reproduction. This research considers tournament selection for the reproduction process. Particularly, 
two random individuals are selected to compete against each other. The most fitted individual is 
chosen to be parent 1. The same concept is used to select parent 2. The first set of parents selected 
will produce two new individuals in a process called crossover. 

While reproduction can be attained with numerous crossover types, employing a suitable 
method that satisfies the chromosome encoding of the problem will determine its effectiveness. For 
this research, one crossover point is selected at random to exchange genes between parents. The 
process in which the crossover is executed is shown in Figure 5. Two segments of the chromosomes 
are divided by one random point. Offspring 1 is created using the first segment of parent 1 and the 
second segment of parent 2. Similarly, offspring 2 is created using the first segment of parent 2 and 
the second segment of parent 1. This process ensures that the order of the HRUs is maintained in the 
chromosome. The unoccupied places after elitism will be filled using this reproduction methodology. 

 

Figure 5. Crossover process in the multi-objective evolutionary algorithm. 

3.3.4. Mutation and stopping criteria  

A slight mutation chance prevents falling into a local optimum. When mutation occurs, four 
random genes switch places with each other. Figure 6 shows this process. In this example, offspring 
1 and 2 exchange the genes in HRUs 3, 6, 12, and 14. 
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Figure 6. Mutation process in the multi-objective evolutionary algorithm. 

The iterative process can end in different ways, including reaching a satisfying solution, 
selecting a certain number of iterations, or detecting a steady-state system. However, this approach 
uses a variable number of generations to end the MOEA’s iterative process. 

4. Results 

The SWAT example dataset (Lake Fork Watershed) was used to test the MOEA. This dataset is 
included in the download files of the ArcSWAT interface [33]. The latest ArcSWAT version stores 
this dataset in the directory C:\SWAT\ArcSWAT\Databases\Example1. The functionality of the 
MOEA is demonstrated by executing the landcover scenarios (Table 1) in SWAT and extracting the 
output variables in each scenario. All parameters have been set without any calibration, as described 
in Winchell [33]. 

4.1. Lake Fork Watershed 

The input dataset provides raster datasets for the Lake Fork Watershed into the Albers Equal 
Area projection with a resolution of 100 × 100 m: a Digital Elevation Model (DEM), a DEM mask 
(amask), a land-cover grid differing between six classes, and a soil map (U.S. general soil map 
STATSGO). The subwatershed is divided into 21 sub-basins, which we further divided into 25 HRUs. 
These are past (PAST), range-grasses (RNGE), and water (WATR) HRUs. Weather data was 
simulated using one Cooperative Observer Program (COOP) weather station. This input data enables 
the simulation to run for a period between January 1st, 1902, and January 1st, 2100. In our 
demonstration, we set the simulation period from January 1st, 2020, to January 1st, 2025. 

The multi-objective optimization methodology used to solve this example considers maximizing 
biomass production (BY, kg/ha) while minimizing sediment yield (SYLD, t/ha), organic nitrogen 
yield (ORGN, kg/ha), and organic phosphorous yields (ORGP, kg/ha). The Pareto-set of     
optimal solutions obtained using a population size of 1000 and 1000 generations consists of      
11 non-dominated solutions, all of which are suitable compromise solutions between objectives 
without degrading any of them. Figure 7 displays the three-dimensional representation of these 
solutions. However, in the case of the simultaneous optimization of these four objectives, in which 
one objective is maximized, and the rest are minimized, the suggested solution is selected 
considering the proximity of the normalized objectives to the ideal vector 𝑍௜ௗ௘௔௟ ൌ ሾ1 0 0 0ሿ. 
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Figure 7. Pareto-set results for the Lake Fork Watershed. Blue dots are non-dominated 
solutions, and the red asterisk is the suggested solution. 

The algorithm was fully coded in MATLAB and run on an HP computer, with an Intel® Core™ 
i5 6200U CPU processor, operating at 2.30 GHz 2.40 GHz and 8 GB of RAM. The computational 
time to evaluate these landscape scenarios and to obtain a suggested solution was 1120.3 seconds. 

The suggested solution obtained under these settings is displayed in Table 2. The management 
practice code identifies the landscape scenarios as described in Table 1. The succeeding columns 
correspond to the outputs obtained with the management scenario evaluated in each HRU. For 
instance, the land-cover change in HRU 1 to eastern gamagrass using 60 kg of N/ha, which 
corresponds to management practice code 2.6 in Table 1, produces 6,329.9 kg/ha of biomass, 3.449 
metric tons/ha of sediment, 7.832 kg of N/ha of organic nitrogen yield, and 0.95 kg of P/ha of 
organic phosphorous yield. 

Table 2. Suggested solution for the Lake Fork Watershed. 

HRU Management practice code Biomass1 Sediment yield2 Organic nitrogen yield3 Organic phosphorous yield4 

1 2.6 6329.9 3.449 7.832 0.95 

2 3.6 9551.8 6.444 12.972 1.664 

3 1.3 10861 1.375 4.099 0.507 

4 1.9 15350.7 1.257 3.962 0.483 

5 1.3 10854.6 1.502 4.63 0.572 

6 1.6 13241.1 1.349 3.968 0.487 

7 1.6 13220.5 2.788 6.685 0.82 

8 2.9 6417.7 2.854 7.42 0.9 

9 1.6 12660.2 0.058 0.196 0.024 

10 1.6 12204 1.844 5.898 0.724 

11 2.9 6354.3 2.172 7.25 0.88 

12 2.6 6331.1 2.498 6.346 0.77 

13 2.3 5147.2 0.113 0.356 0.043 

14 1.6 13241 1.627 4.365 0.536 

15 1.9 15333.1 3.541 6.822 0.831 

Continued on next page 
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HRU Management practice code Biomass1 Sediment yield2 Organic nitrogen yield3 Organic phosphorous yield4 

16 1.9 15354.2 1.486 3.89 0.474 

17 1.9 15345.8 1.611 4.598 0.56 

18 3.6 8665.4 8.993 17.83 2.283 

19 1.3 10857.8 1.427 4.45 0.55 

20 2.3 5467.7 2.617 6.623 0.808 

21 1.3 10858 1.33 4.214 0.521 

22 1.3 9962.6 1.86 6.61 0.817 

23 2.3 5274.4 3.757 10.528 1.284 

24 2.3 5276.5 2.742 8.888 1.084 

25 0 0 0 0 0 

1kg/ha; 2metric tons/ha; 3kg of N/ha; 4kg of P/ha. 

Finally, the spatial location of the suggested solution in Table 2 is graphically represented in the 
Lake Fork Watershed map in Figure 8. 

 

Figure 8. Spatial placement of the suggested solution in the Lake Fork Watershed. 

5. Conclusions 

This work presents a novel MOEA, which uses outputs from the SWAT model to determine the 
optimal spatial placement of management practices at the watershed scale. This model was coded in 
MATLAB, and it was scripted to be suitable for any SWAT project. The application of the proposed 
MOEA in properly calibrated and validated SWAT projects can assist researchers and stakeholders in 
understanding the environmental impacts of various management practices, particularly for those 
involving biofuel feedstock production. The functionality of this optimization framework was 
demonstrated for perennial grasses instead of regional crops in the Lake Fork Watershed (SWAT’s 
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example data set). Specifically, this demonstration evaluated switchgrass (Panicum virgatum L.) 
eastern gamagrass (Trip-sucum dactyloides L.) and johnsongrass (Sorghum halepense (L.), Pers.) 
each with three levels of nitrogen application considering the minimization of sediment yield, 
organic nitrogen yield, and organic phosphorus yield while maximizing biomass production. 

Nevertheless, there are significant limitations in our approach. First, while our model 
maximizes biomass yields, most landowners select crops according to market prices and crop 
cultivation experience. Even when our aim is focused on environmental impacts, a market price 
optimization variable should be considered in future research to make the suggested solutions more 
attractive for stakeholders. Since market prices are not steady, and they are not considered in the 
SWAT model, a new approach is needed to satisfy the characteristics of the proposed MOEA. Second, 
to properly compare and select optimal management systems, a ranking weight system should be 
included to assign weights to intervals of crop yields based on market prices and optimize these 
ranks instead of yields. Third, this framework requires the output.std and output.hru files after 
management scenarios are evaluated in the SWAT interface; it may be more efficient if management 
scenarios were developed directly in MATLAB. These limitations can be approached with a 
Graphical User Interface (GUI) in which SWAT users are allowed to develop their landscape 
scenarios, management practices, and select optimization criteria. However, this approach was not 
considered in this work as the main purpose of this paper is the establishment of a multi-objective 
optimization framework for optimal spatial placement of agricultural management practices using 
the SWAT model. Future goals are to develop an open-source GUI that can handle these current 
limitations to exploit the capabilities of the proposed MOEA framework. 

Acknowledgments 

This work has been supported by the National Institute of Food and Agriculture, under the 
Hispanic Serving Institutions Program, under award numbers 2015-38422-24112 and 
2016-38422-25542. Any opinions, findings, conclusions, or recommendations expressed are those of 
the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. Congress US, Energy Independence and Security Act of 2007. Public Law 110–140. Congress 
Washington DC, 2007. Available from: https://uscode.house.gov/statutes/pl/110/140.pdf. 

2. Neitsch SL, Arnold JG, Kiniry JR, et al. (2011) Soil and Water Assessment Tool theoretical 
documentation version 2009. Texas Water Resources Institute Technical Report no. 406. 
Available from: https://oaktrust.library.tamu.edu/handle/1969.1/128050. 

3. Economic Research Service (ERS), U.S. Department of Agriculture (USDA). Food 
Environment Atlas, 2022. Available from: 
https://www.ers.usda.gov/data-products/us-bioenergy-statistics/. 



117 

Clean Technologies and Recycling                                               Volume 2, Issue 2, 103–118. 

4. National Research Council (2008) Water Implications of Biofuels Production in the United 
States, Washington DC: National Academies Press. 

5. Eghball B, Gilley JE, Kramer LA, et al. (2000) Narrow grass hedge effects on phosphorus and 
nitrogen in runoff following manure and fertilizer application. J Soil Water Conserv 55: 172–
176. 

6. Turner RE, Rabalais NN, Dortch Q, et al. (1995) Evidence for nutrient limitation on sources 
causing hypoxia on the Louisiana shelf, Proceedings of the 1st Gulf of Mexico Hypoxia 
Management Conference, 106–112. 

7. Blanco‐Canqui H (2010) Energy crops and their implications on soil and environment. Agron J 
102: 403–419. https://doi.org/10.2134/agronj2009.0333 

8. McGregor KC, Dabney S, Johnson JR (1999) Runoff and soil loss from cotton plotswith and 
without stiff-grass hedges. Trans ASAE 42: 361–368. https://doi.org/10.13031/2013.13367 

9. Blanco-Canqui H, Gantzer CJ, Anderson SH, et al. (2004) Grass barriers for reduced 
concentrated flow induced soil and nutrient loss. Soil Sci Soc Am J 68: 1963–1972. 
https://doi.org/10.2136/sssaj2004.1963 

10. Blanco-Canqui H, Gantzer CJ, Anderson SH, et al. (2004) Grass barrier and vegetative filter 
strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss. Soil Sci Soc Am 
J 68: 1670–1678. https://doi.org/10.2136/sssaj2004.1670 

11. Blanco‐Canqui H (2010) Energy crops and their implications on soil and environment. Agron J 
102: 403–419. https://doi.org/10.2134/agronj2009.0333 

12. Hannah L, Lovejoy TE, Schneider SH (2019) Biodiversity and climate change in context, 
Climate Change and Biodiversity, New Haven: Yale University Press. 
https://doi.org/10.2307/j.ctv8jnzw1 

13. Tallis H, Polasky S (2009) Mapping and valuing ecosystem services as an approach for 
conservation and natural‐resource management. Ann NY Acad Sci 1162: 265–283. 
https://doi.org/10.1111/j.1749-6632.2009.04152.x 

14. Engel B, Chaubey I, Thomas M, et al. (2010) Biofuels and water quality: challenges and 
opportunities for simulation modeling. Biofuels 1: 463–477. https://doi.org/10.4155/bfs.10.17 

15. Gallardo-Vázquez D, Valdez-Juárez LE, Lizcano-Álvarez JL (2019) Corporate social 
responsibility and intellectual capital: Sources of competitiveness and legitimacy in 
organizations’ management practices. Sustainability 11: 5843. 
https://doi.org/10.3390/su11205843 

16. Näschen K, Diekkrüger B, Evers M, et al. (2019) The impact of land use/land cover change 
(LULCC) on water resources in a tropical catchment in Tanzania under different climate change 
scenarios. Sustainability 11: 7083. https://doi.org/10.3390/su11247083 

17. Tang C, Li J, Zhou Z, et al. (2019) How to optimize ecosystem services based on a Bayesian 
model: A case study of Jinghe River Basin. Sustainability 11: 4149. 
https://doi.org/10.3390/su11154149 

18. Kaini P, Artita K, Nicklow JW (2007) Evaluating optimal detention pond locations at a 
watershed scale, World Environmental and Water Resources Congress 2007: Restoring Our 
Natural Habitat, 1–8. https://doi.org/10.1061/40927(243)170 

19. Kaini P, Artita K, Nicklow JW (2012) Optimizing structural best management practices using 
SWAT and genetic algorithm to improve water quality goals. Water Resour Manag 26: 1827–
1845. https://doi.org/10.1007/s11269-012-9989-0 



118 

Clean Technologies and Recycling                                               Volume 2, Issue 2, 103–118. 

20. Kaini P, Artita K, Nicklow JW (2009) Generating different scenarios of BMP designs in a 
watershed scale by combining NSGA-II with SWAT, World Environmental and Water Resources 
Congress 2009: Great Rivers, 1–9. https://doi.org/10.1061/41036(342)493 

21. Artita KS, Kaini P, Nicklow JW (2008) Generating alternative watershed-scale BMP designs 
with evolutionary algorithms, World Environmental and Water Resources Congress 2008: 
Ahupua’A, 1–9. https://doi.org/10.1061/40976(316)127 

22. Maringanti C, Chaubey I, Arabi M, et al. (2008) A multi-objective optimization tool for the 
selection and placement of BMPs for pesticide control. Hydrol Earth Syst Sci Discuss 5: 28–29. 
https://doi.org/10.5194/hessd-5-1821-2008 

23. Maringanti C, Chaubey I, Arabi M, et al. (2011) Application of a multi-objective optimization 
method to provide least cost alternatives for NPS pollution control. Environ Manage 48: 448–
461. https://doi.org/10.1007/s00267-011-9696-2 

24. Herman MR, Nejadhashemi AP, Daneshvar F, et al. (2016) Optimization of bioenergy crop 
selection and placement based on a stream health indicator using an evolutionary algorithm. J 
Environ Manage 181: 413–424. https://doi.org/10.1016/j.jenvman.2016.07.005 

25. Gitau MW, Veith TL, Gburek WJ (2004) Farm-level optimization of BMP placement for 
cost-effective pollution reduction. Trans ASAE 47: 1923–1931. 
https://doi.org/10.13031/2013.17805 

26. Gitau MW, Veith TL, Gburek WJ, et al. (2006) Watershed level best management practice 
selection and placement in the Town Brook Watershed, New York. J Am Water Resour As 42: 
1565–1581. https://doi.org/10.1111/j.1752-1688.2006.tb06021.x 

27. Muleta MK, Nicklow JW (2002) Evolutionary algorithms for multiobjective evaluation of 
watershed management decisions. J Hydroinf 4: 83–97. https://doi.org/10.2166/hydro.2002.0010 

28. Ng TL, Eheart JW, Cai X, et al. (2010) Modeling Miscanthus in the Soil and Water Assessment 
Tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44: 
7138–7144. https://doi.org/10.1021/es9039677 

29. USDA Plants Database, Natural Resources Conservation Service. United States Department of 
Agriculture, 2022. Available from: https://plants.usda.gov/home. 

30. Taboada HA, Coit DW (2012) A new multiple objective evolutionary algorithm for reliability 
optimization of series-parallel systems. Int J Appl Evol Comput 3: 1–18. 
https://doi.org/10.4018/jaec.2012040101 

31. Gassman PW, Reyes MR, Green CH, et al. (2007) The Soil and Water Assessment Tool: 
historical development, applications, and future research directions. Trans ASABE 50: 1211–
1250. https://doi.org/10.13031/2013.23637 

32. Arnold JG, Kiniry JR, Srinivasan R, et al. (2013) SWAT 2012 Input/Output Documentation. 
Texas Water Resources Institute. Available from: 
https://oaktrust.library.tamu.edu/handle/1969.1/149194. 

33. Winchell M, Srinivasan R, Di Luzio M, et al. (2010) ArcSWAT interface for SWAT 2009, User’s 
Guide, Blackland Research Center, Texas Agricultural Experiment Station, Temple. 

© 2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


