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Abstract: This paper studies a special 2D anisotropic incompressible Boussinesq equation in T2 with
T = [− 1

2 ,
1
2 ] being a 1D periodic box. The system concerned here possesses vertical dissipation only

in the vertical component of the velocity and vertical heat diffusion. When the buoyancy forcing is
not present, the 2D Boussinesq equation is a 2D Navier-Stokes equation with vertical dissipation
only in the vertical component. The stability and large-time behavior problem on the solutions to
the 2D Navier-Stokes equation with only vertical or horizontal dissipation remains unknown. When
coupled with the temperature, the global regularity to the system with vertical dissipation and vertical
diffusion in R2 has been solved by Cao and Wu (Arch. Ration. Mech. Anal., 208(2013), 985-1004).
The stability with horizontal dissipation and horizontal diffusion in the periodic domain T × R has
also been established by Dong, Wu, Xu, and Zhu (Calc. Var. Partial Differential Equations, 60(2021))
recently. Now whether the solution of the 2D system remains stable has yet to be solved when
the velocity has vertical dissipation only in the u2 equation. This paper aims to solve the problem
and investigates the stability and large-time behavior of the solution to the special 2D Boussinesq
equations on perturbations near the hydrostatic equilibrium. The basic idea here is to decompose the
physical quantity f into its horizontal average, vertical average, and their corresponding oscillations.
By establishing the strong Poincaré-type inequalities and several anisotropic inequalities related to the
oscillations, we are able to obtain H2-stability of the solution under the assumptions that the initial
data is sufficiently small and obeys some symmetries. Furthermore, the exponential decay rates for
the oscillation parts in H1 are also established.
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1. Introduction

The Boussinesq equations model buoyancy-driven flows such as geophysical fluids and various
Rayleigh-Bénard convection (see, e.g., [1–4]). The Boussinesq equations are mathematically signif-
icant [3]. This paper concerns a special anisotropic 2D incompressible Boussinesq equation with
only vertical dissipations.

∂tU + U · ∇U + ∇P = µ

(
0

∂22U2

)
+ Θe2, x ∈ Ω, t > 0,

∂tΘ + u · ∇Θ = η∂22Θ,

∇ · U = 0,
U (x, 0) = U0 (x) , Θ (x, 0) = Θ0 (x) ,

(1.1)

where U represents the velocity field of the fluid, P the pressure, Θ the temperature, and e2 = (0, 1)
is the unit vector in the vertical direction. Here µ > 0 is the kinematic viscosity, η > 0 is the thermal
diffusivity and the spatial domain Ω is given by

Ω = T2

with T = [−1
2 ,

1
2 ] being a 1D periodic box.

This paper attempts to achieve two main goals. The first is to understand the stability and large-time
behavior of perturbations near hydrostatic fluid equilibrium given by

Uhe = 0, Θhe = x2, Phe =
1
2

x2
2.

It is easy to verify that hydrostatic fluid equilibrium(Uhe, Θhe, Phe) is a steady state solution of (1.1). We
consider the perturbation (u, θ) with

u = U − Uhe, θ = Θ − Θhe.

Then (u, θ) satisfies 
∂tu + u · ∇u + ∇p = µ

(
0

∂22u2

)
+ θe2, x ∈ Ω, t > 0,

∂tθ + u · ∇θ + u2 = η∂22θ,

∇ · u = 0,
u (x, 0) = u0 (x) , θ (x, 0) = θ0 (x) .

(1.2)

The second is to help better reveal the smoothing and stabilization effect of the temperature by consider-
ing the system (1.2) with the vertical dissipation in only the second component of the velocity.

The standard incompressible Boussinesq equations with full dissipation read as
∂tU + U · ∇U + ∇P = µ∆U + Θe2,

∂tΘ + u · ∇Θ = η∆Θ,

∇ · U = 0,
U (x, 0) = U0 (x) , Θ (x, 0) = Θ0 (x) .

(1.3)

Communications in Analysis and Mechanics Volume 17, Issue 1, 100–127.



102

The physical background and mathematical features of (1.3) make the model a rich area for mathematical
investigations. Over the past decades, the Boussinesq equations have attracted considerable interest from
mathematical scholars. Major concerns are oriented around the global well-posedness and finite-time
blow up of large-data classical solutions and global regularity for the Boussinesq equations with full
partial dissipation, i.e., µ = 0 or η = 0, or the mixed partial dissipation case (see, e.g., [5–13])

In recent years, the problems of stability and large-time behavior of its solutions has garnered a lot
attention, and significant progress have been made. For the 2D case, Doering, Wu, Zhao, and Zheng [14]
rigorously proved the global asymptotic stability near a special type of hydrostatic equilibrium without
buoyancy diffusion on a bounded domain subject to stress-free boundary conditions. Later, Tao and
Wu [15] resolved some of the problems left open in [14]. They studied the stability problem for
perturbations near hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffusion
in the periodic domain T2. Ben Said, Pandey, and Wu [16] solved the stability problem for a 2D
Boussinesq system with only vertical dissipation and horizontal thermal diffusion in R2. Furthermore,
when the dissipation is the opposite of that in [16], i.e. the horizontal dissipation and the vertical
thermal diffusion, [17] established the stability in the Sobolev space H2 and obtained algebraic decay
rates for the oscillation parts in the H1-norm when the spatial domain Ω is T × R. More results with
partial dissipation in two dimensions can be found in [15, 18–25]. For the 3D case, there are also some
developments on the stability of solutions (see, e.g., [26–32]). Here we recall a recent result obtained
by Wu and Zhang in [32]. They considered a 3D anisotropic Boussinesq system in the periodic domain
Ω = R2 × T. The stability and large-time behavior problem on perturbations near the hydrostatic
balance were established.

Our paper here focuses on the 2D Boussinesq equations with only vertical dissipations. In order
to better understand relevant progress and our difficulties, let’s review some related results, which
means the system with partial dissipation only in one direction. Cao and Wu [33] established the
global-in-time existence of classical solutions to the 2D anisotropic Boussinesq equations with vertical
dissipation in R2 and solved the global regularity problem. The stability of the 2D Boussinesq equations
with only horizontal or vertical dissipation remains an open problem. Some recent works are devoted
to this system in the periodic domain. Dong, Wu, Xu, and Zhu [34] investigated the stability and
exponential decay of the 2D Boussinesq equations with horizontal dissipation in the domain T × R.
Also, [35] proved the nonlinear stability of Couette flow in a uniform magnetic field with only vertical
dissipation in the same domain as [34]. Now whether the solution of the 2D system remains stable in a
periodic domain if the velocity has horizontal or vertical dissipation only in one component equation,
say, u1 or u2 equation.

Motivated by the above works related to only one-direction dissipation, we examine the 2D Boussi-
nesq (1.2) in T2 and establish the stability result and the exponential decay rates of the solution. Before
stating our results, we first assume that u0 and θ0 satisfy the symmetry as follows:

u01 is odd in x1, u02 and θ0 are even in x1. (1.4)

Theorem 1.1. Consider the 2D Boussinesq equation (1.2) with the initial data (u0, θ0) ∈ H2(Ω) satisfying
∇ · u0 = 0 and the symmetry condition (1.4). Then there exists δ > 0 such that, if

‖(u0, θ0)‖H2 ≤ δ,
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then (1.1) possesses a unique global solution satisfying, for any t > 0,

‖u(τ)‖2H2 + ‖θ(τ)‖2H2 + 2µ
∫ t

0
‖∂2u2‖

2
H2dτ + 2η

∫ t

0
‖∂2θ‖

2
H2dτ ≤ Cδ2 (1.5)

for some universal constant C > 0.

Remark 1.2. The symmetry property (1.4) for the solution (u, θ) at t = 0 can persist for any time t > 0,
namely,

u1 is odd in x1, u2 and θ are even in x1. (1.6)

A similar proof can be found in [32] and [36].

Remark 1.3. If we consider the 2D Boussinesq equation with horizontal dissipation
∂tu + u · ∇u + ∇p = µ

(
∂11u1

0

)
+ θe2, x ∈ Ω, t > 0,

∂tθ + u · ∇θ + u2 = η∂11θ,

∇ · u = 0,
u (x, 0) = u0 (x) , θ (x, 0) = θ0 (x) .

(1.7)

the stability result in Theorem 1.1 still holds provided that the symmetry condition (1.4) is replaced by

u01 is even in x1, u02 and θ are odd in x1. (1.8)

Theorem 1.1 assesses the global-in-time existence and stability of small solutions to (1.2). Due to
the lack of the horizontal dissipation, the proof of Theorem 1.1 is nontrivial. Especially, the velocity
equation involves only vertical dissipation of u2; it is extremely challenging to control the growth of the
Navier-Stokes nonlinear term, i.e., u · ∇u. In fact, when Navier-Stokes possesses the dissipation in one
direction, namely

∂tu + u · ∇u + ∇p =

(
0

∂22u2

)
,

the global existence in time of solutions in the whole space R2 remains an open problem. Here we
consider the periodic domain T2 , which will greatly help solve this problem. More precisely, our proof
will take advantage of the domain and explore many significant properties. Based on these properties,
several key anisotropic inequalities will then be introduced. There are two important observations.
The first is that by separating a physical quantity into its average, including both horizontal and
vertical directions and the corresponding oscillations, we are able to establish the strong Poincaré-type
inequalities, which are very powerful tools and also play a crucial role in the proof. The second
observation is that if (u0, θ0) satisfies the symmetry given in (1.4), then (u, θ) maintains the same
symmetries, namely,

u1 is odd in x1, u2 and θ are even in x1.

This can be achieved via the uniqueness of the solution. Specifically, define

U1(x1, x2, t) = −u1(−x1, x2, t), U2(x1, x2, t) = u2(−x1, x2, t),
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P(x1, x2, t) = p(−x1, x2, t), Θ(x1, x2, t) = θ(−x1, x2, t).

It easily verifies that U = (U1,U2), P, and Θ are still the solution of (1.2). Then the uniqueness
implies the symmetries (1.8). Based on the symmetric property, another strong version of the Poincaré
inequality can be obtained. With these properties and inequalities at our disposal, we can resolve all
the difficult items.

Let us briefly outline the sketch of the proof. The framework in the proof of Theorem 1.1 is
the bootstrapping argument. We first introduce some notations. For a sufficiently smooth function
f = f (x1, x2), we define its horizontal average f

(1)
and vertical average f

(2)
by

f
(1)

=

∫
T

f (x1, x2) dx1, f
(2)

=

∫
T

f (x1, x2) dx2, (1.9)

and the corresponding oscillation part

f̃ (1) = f − f
(1)
, f̃ (2) = f − f

(2)
. (1.10)

This decomposition is extremely useful due to some of the related properties (see Lemma 2.1). We

remark that the most important property is f̃ (i)
(i)

= 0 for i = 1, 2, which allows us to establish a strong
Poincaré-type inequality,

‖ f̃ (i)‖L2 ≤ C‖∂i f̃ (i)‖L2 . (1.11)

Meanwhile, from the symmetries (1.1) we can also obtain another strong Poincaré-type inequality

‖ f̃ (2)‖L2 ≤ C‖∂1 f̃ (2)‖L2 . (1.12)

Furthermore, to deal with the triple products that stem from the nonlinear terms, the anisotropic
inequality involving triple products associated with f̃ (2) is provided,∫

Ω

| f g̃(2)h| dx ≤ C‖ f ‖
1
2
L2(‖ f ‖L2 + ‖∂1 f ‖L2)

1
2 ‖∂2g̃(2)‖L2‖h‖L2 . (1.13)

To obtain the global existence of the solutions in the Sobolev setting H2, we now introduce the H2-energy
E(t) defined by

E(t) = sup
0≤τ≤t

(‖u‖2H2 + ‖θ‖2H2) + 2µ
∫ t

0
‖∂2u2‖

2
H2dτ + 2η

∫ t

0
‖∂2θ‖

2
H2dτ.

As aforementioned, the most difficult term is the integral involving the nonlinear term in the velocity, i.e.∫
∂2

1(u · ∇u) · ∇∂2
1u dx +

∫
∂2

2(u · ∇u) · ∇∂2
2u dx.

However, with the help of the strong Poincaré-type inequality and anisotropic inequalities, we are able to
settle the difficulty. Take one term for instance, by integrations by parts, (1.11) and (1.13), the following
nonlinear integral can be bounded as∫

∂2
1u1∂1u2∂

2
1u2 dx =

∫
∂1ũ(2)

2 ∂1∂2u2∂
2
1u2 dx +

∫
∂1ũ(2)

2 ∂1u2∂
2
1∂2u2 dx
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≤ C‖∂1ũ(2)
2 ‖L4‖∂1∂2u2‖L4‖∂2

1u2‖L2

+ C‖∂2
1∂2u2‖L2‖∂1u2‖

1
2
L2(‖∂1u2‖L2 + ‖∂2

1u2‖L2)
1
2 ‖∂1∂2ũ2

(2)
‖L2

≤ C‖u‖H2‖∂2u2‖
2
H2 . (1.14)

Therefore, through a series of subtle bounds, we can control the growth of all nonlinear terms and
establish the closed priori estimate:

E(t) ≤ C0E(0) + C1E
3
2 (t). (1.15)

Then applying a bootstrapping argument to (1.15) implies the uniform upper bound (1.5) for the initial
data is small enough.

Next, we show the second theorem assessing the large-time behavior of the solutions of (1.2). More
precisely, the exponential decay rates for the oscillation part of the solution are established.

Theorem 1.4. Assume the initial data (u0, θ0) ∈ H2(Ω) with ∇ · u0 = 0 satisfying the symmetry condition
(1.4) and

‖(u0, θ0)‖H2(Ω) ≤ δ

for some δ > 0 small enough. Let (u, θ) be the corresponding solution of (1.2). Then the oscillation part
(̃u(2), θ̃(2)) decays exponentially in time,

‖(̃u(2), θ̃(2))‖H1(Ω) ≤ Cδe−Ct, (1.16)
‖(∂2∇ũ(2)

2 , ∂2∇θ̃
(2))‖L2(Ω) ≤ Cδe−Ct (1.17)

for all t ≥ 0 and some constant C > 0.

Remark 1.5. Following the decay results from Theorem 1.4, the solution (u, θ) of (1.2) is asymptotically
close to the vertical average (u, θ) in H1(Ω) satisfying (u(2),θ

(2)
) satisfies

∂tu
(2)
1 + ∂1(u2

1

(2)
) + ∂2(u1u2

(2)) + ∂1 p(2)
= 0,

∂tu
(2)
2 + ∂1(u1u2

(2)) + ∂2(u2
2

(2)
) = θ

(2)
,

∂tθ
(2)

+ ∂1(u1θ
(2)

) + u2
(2)

= 0.

We explain the main idea in the proof of Theorem 1.4. Due to the degeneracy in the viscous
dissipation and the heat diffusion, especially, the very weak dissipation for the velocity, it is impossible
to establish the large-time behavior for (u, θ). We remark that classical approaches such as Schonbek’s
Fourier splitting method [37, 38] that solve the fully dissipated system in whole space no longer apply.
Therefore, we have to develop some new techniques. Based on one key observation, i.e., the strong
Poincaré-type inequality

‖ f̃ (2)‖L2 ≤ C‖∂2 f̃ (2)‖L2 ,

we are content to investigate the decay of (̃u(2), θ̃(2)) of the Boussinesq system (1.2) with ũ(2) and θ̃(2)

obeying 
∂tũ

(2)
1 + ∂1(u2

1 − u2
1

(2)
) + ∂2(u1u2 − u1u2

(2)) + ∂1 p̃(2) = 0,

∂tũ
(2)
2 + ∂1(u1u2 − u1u2

(2)) + ∂2(u2
2 − u2

2

(2)
) + ∂2 p̃(2) = µ∂2

2ũ(2)
2 + θ̃(2),

∂tθ̃
(2) + ∂1(u1θ − u1θ

(2)
) + ∂2 ˜(u2θ)

(2)
+ ũ(2)

2 = ∂2
2θ̃

(2).
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Our goal is to derive a differential inequality of the form

d
dt

X(t) + cX(t) ≤ 0,

which implies the exponential decay rates X(t) ≤ Ce−ct. The proof of Theorem 1.4 is divided into
two stages. The first stage proves the exponential decay rate for ‖(̃u(2), θ̃(2))‖H1 while the second is to
estimate ‖(∂2∇ũ(2)

2 , ∂2∇θ̃
(2))‖L2 . The estimates are more complicated than that of the stability. Besides

the inequalities (1.11), (1.12), and (1.13), we need to introduce two additional anisotropic inequalities
associated with the L4-norm and L∞-norm (see Lemma 2.4 for details), which will be frequently used in
the proof of the decay rates. After a long and delicate estimate, it is obtained that

d
dt

(‖̃u(2)‖2H1 + ‖̃θ(2)‖2H1) + min{µ, η}(‖∂2ũ(2)
2 ‖

2
H1 + ‖∂2θ̃

(2)‖2H1) ≤ 0,

and

d
dt

(‖∂2∇ũ(2)‖2L2 + ‖∂2∇θ̃
(2)‖2L2) + min{µ, η}(‖∂2

2∇ũ(2)
2 ‖

2
L2 + ‖∂2

2∇θ̃
(2)‖2L2) ≤ 0.

Using (1.11) again yields the desired exponential decay (1.16) and (1.17) in Theorem 1.4. More
technical details can be found in the proof of Theorem 1.4 in Section 4.

The rest of this paper is organized as follows. Section 2 presents four tool lemmas to be used in the
proof of Theorems 1.1 and 1.4. Section 3 is devoted to the proof of Theorem 1.1. Section 4 proves the
exponential decay estimate of Theorem 1.4. At the end, we claim that C may be different for each line
in this article.

2. Decomposition and anisotropic inequalities

To prepare for the proofs in the subsequent sections, we provide some preliminary lemmas. The
first presents some properties on f̃ (i), f

(i)
for i = 1, 2, and their derivatives. The second contains three

Poincaré-type inequalities, which provide the powerful tools for proving our theorems. The third
proposes an anisotropic upper bound for triple products, whereas the last states anisotropic inequalities
related to the L4-norm and L∞-norm that serve the proof of the large-time behavior.

We start with the properties of the composition for f , which can be derived via the definitions (1.9)
and (1.10).

Lemma 2.1. Let f̃ (i) and f
(i)

for i = 1, 2 be defined as in (1.9) and (1.10). Then we have
(1) The average operator and the oscillation operator can commute with the derivatives, i.e.

∂1 f
(1)

= 0, ∂2 f
(1)

= ∂2 f
(1)
, ∂̃1 f

(1)
= ∂1 f , ∂̃2 f

(1)
= ∂2 f̃ (1).

∂1 f
(2)

= ∂1 f
(2)
, ∂2 f

(2)
= 0, ∂̃1 f

(2)
= ∂1 f̃ (2), ∂̃2 f

(2)
= ∂2 f .

In particular, if ∇ · f = 0, then
∇ · f

(i)
= 0, ∇ · f̃ (i) = 0.
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(2) The corresponding average of the oscillation f̃ (i) is zero, for i = 1, 2

f̃ (i)
(i)

= 0.

(3) For any k ≥ 0, f̃ (i) and f
(i)

are orthogonal in Sobolev space Hk.

( f
(i)
, f̃ (i))Hk = 0, ‖ f ‖2Hk = ‖ f

(i)
‖2Hk + ‖ f̃ (i)‖2Hk .

The second lemma provides the strong Poincaré-type inequalities associated with the oscillation f̃ (i)

for i = 1, 2.

Lemma 2.2. Assume f ∈ H1(Ω). Then for i = 1, 2 it holds,

‖ f̃ (i)‖L2 ≤ C‖∂i f̃ (i)‖L2 . (2.1)

where C > 0 is a pure constant. In addition, if we further assume f
(1)

= 0, then

‖ f̃ (2)‖L2 ≤ C‖∂1 f̃ (2)‖L2 . (2.2)

Proof. Without loss of generality, we prove (2.1) for the case i = 2. Thanks to the fact that the vertical
average of f̃ (2) is zero, the proof for (2.1) is easy. In fact, by the integral mean value theorem, for any
x2 ∈ T, there exists y ∈ T such that∫

T

f̃ (2)(x1, x2) dx2 = f̃ (2)(x1, y) = 0.

Using Leibniz’s formula yields

( f̃ (2))2 =

∫ x2

y
∂2( f̃ (2))

2
(x1, s)ds = 2

∫ x2

y
f̃ (2)∂2 f̃ (2)ds.

By Hölder’s inequality,

( f̃ (2))2 ≤ C‖ f̃ (2)‖L2
x2
‖∂2 f̃ (2)‖L2

x2

Then integrating in space Ω, we obtain

‖ f̃ (2)‖L2 ≤ C‖∂2 f̃ (2)‖L2 .

(2.2) follows from f̃ (2)
(1)

= 0. By the definition of f̃ (2)
(1)

, f = f
(2)

+ f̃ (2) and f
(1)

= 0, we obtain

f̃ (2)
(1)

=

∫
T

f̃ (2) dx1 =

∫
T

( f − f
(2)

) dx1 =

∫
T

f dx1 −

∫
T2

f dx1 dx2 = 0.

Then a similar argument to (2.1) yields the desired strong Poincaré-type inequality (2.2) in x1-direction.
This concludes the proof of Lemma 2.2. �
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The third lemma assesses an anisotropic upper bound for triple products, which will be used
frequently in both Theorem 1.1 and 1.4. Similar anisotropic inequalities in R2 are also available (see
e.g. [39]). We are able to use a similar proof to that in [39] together with the Poincaré-type inequality
(2.1) to obtain the anisotropic inequality in periodic domain Ω.

Lemma 2.3. For any functions f , g, h, ∂2g, ∂1 f ∈ L2(Ω), then∫
Ω

| f g̃(2)h| dx ≤ C‖ f ‖
1
2
L2(‖ f ‖L2 + ‖∂1 f ‖L2)

1
2 ‖∂2g̃(2)‖L2‖h‖L2 . (2.3)

Proof. By Hölder’s inequality, Minkowski’s inequality, (2.1), (2.7), and (2.8), we have∫
Ω

| f g̃(2)h| dx ≤ ‖‖ f ‖L∞x1
‖L2

x2
‖‖̃g(2)‖L2

x1
‖L∞x2
‖h‖L2

≤ C‖‖ f ‖L∞x1
‖L2

x2
‖‖̃g(2)‖L∞x2

‖L2
x1
‖h‖L2

≤ C
∥∥∥∥‖ f ‖ 1

2

L2
x1

(‖ f ‖L2
x1

+ ‖∂1 f ‖L2
x1

)
1
2

∥∥∥∥
L2

x2

×

∥∥∥∥‖̃g(2)‖
1
2

L2
x2
‖∂2g̃(2)‖

1
2

L2
x2

∥∥∥∥
L2

x1

‖h‖L2

≤ C‖ f ‖
1
2
L2(‖ f ‖L2 + ‖∂1 f ‖L2)

1
2 ‖∂2g̃(2)‖L2‖h‖L2 .

�

We now state the last lemma, which provides two anisotropic upper bounds on L4-norm and L∞-norm
of f̃ (2). It can be achieved via 1D inequalities of L∞-norm and the strong Poincaré-type inequality in
Lemma 2.2.

Lemma 2.4. Assume ∂1 f ∈ L2(Ω) and ∂2 f ∈ H1(Ω). Then the following inequalities holds,

‖ f̃ (2)‖L∞ ≤ C‖∂2 f̃ (2)‖
1
2
L2(‖ f̃

(2)‖L2 + ‖∂1 f̃ (2)‖L2)
1
4

×(‖∂2 f̃ (2)‖L2 + ‖∂1∂2 f̃ (2)‖L2)
1
4 (2.4)

≤ C‖∂2∇ f̃ (2)‖L2 . (2.5)
‖∂2 f̃ (2)‖L4 ≤ C‖∂2∇ f̃ (2)‖L2 (2.6)

where C > 0 are some pure constants.

Proof. To prove inequality (2.4), we need the 1D inequalities of L∞-norm,

‖ f ‖L∞(T) ≤ C‖ f ‖
1
2
L2(T)(‖ f ‖L2(T) + ‖D f ‖L2(T))

1
2 , (2.7)

‖ f̃ (i)‖L∞(T) ≤ C‖ f̃ (i)‖
1
2
L2(T)‖∂i f̃ (i)‖

1
2
L2(T), (2.8)

which can be obtained through a slight modification of the proof for (2.1).
Applying Hölder’s inequality in one component and Minkowski’s inequality, combining (2.1) and

(2.8), we have

‖ f̃ (2)‖L∞ ≤ C
∥∥∥∥‖ f̃ (2)‖

1
2

L2
x2
‖∂2 f̃ (2)‖

1
2

L2
x2

∥∥∥∥
L∞x1
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≤ C
∥∥∥‖ f̃ (2)‖L∞x1

∥∥∥ 1
2

L2
x2

∥∥∥‖∂2 f̃ (2)‖L∞x1

∥∥∥ 1
2

L2
x2

≤ C
∥∥∥∥‖ f̃ (2)‖

1
2

L2
x1

(‖ f̃ (2)‖L2
x1

+ ‖∂1 f̃ (2)‖L2
x1

)
1
2

∥∥∥∥ 1
2

L2
x2

×

∥∥∥∥‖∂2 f̃ (2)‖
1
2

L2
x1

(‖∂2 f̃ (2)‖L2
x1

+ ‖∂1∂2 f̃ (2)‖L2
x1

)
1
2

∥∥∥∥ 1
2

L2
x2

≤ C‖∂2 f̃ (2)‖
1
2
L2(‖ f̃

(2)‖L2 + ‖∂1 f̃ (2)‖L2)
1
4

×(‖∂2 f̃ (2)‖L2 + ‖∂1∂2 f̃ (2)‖L2)
1
4 ,

which, combining with ‖ f̃ (2)‖ ≤ ‖∂2 f̃ (2)‖, derives (2.4).
(2.6) is the direct consequence of Hölder’s inequality and Poincaré inequality (2.1).

‖∂2 f̃ (2)‖L4 ≤ ‖∂2 f̃ (2)‖L2 + ‖∂2∇ f̃ (2)‖L2

≤ C‖∂2∇ f̃ (2)‖L2 .

This completes the proof of Lemma 2.4. �

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which claims the global existence and stability
of solutions of (1.2). To obtain this result, we need to establish a global priori estimate of the energy
E(t), as shown in Proposition 3.1. With the energy inequality at our disposal, we are then able to prove
Theorem 1 by using the bootstrapping argument (see [40, p.21]).

Proposition 3.1. Assume the initial data (u0, θ0) satisfies the conditions in (1.4). Let E(t) be an energy
functional defined by

E(t) = sup
0≤τ≤t

(‖u‖2H2 + ‖θ‖2H2) + 2µ
∫ t

0
‖∂2u2‖

2
H2dτ + 2η

∫ t

0
‖∂2θ‖

2
H2dτ.

Then there exist two constants C0 and C1, depending on µ and η such that, for 0 < t < T,

E(t) ≤ C0E(0) + C1E
3
2 (t). (3.1)

Proof of proposition 3.1. First, we have the L2-bound

(‖u‖2L2 + ‖θ‖2L2) + 2µ
∫ t

o
‖∂2u2‖

2
L2dτ + 2η

∫ t

o
‖∂2θ‖

2
L2dτ = ‖u0‖

2
L2 + ‖θ0‖

2
L2 . (3.2)

Note that the norm ‖(u(t), θ(t))‖H2 is equivalent to ‖(u(t), θ(t))‖L2 + ‖(u(t), θ(t))‖Ḣ2 . Thus it suffices
to bound ‖(u(t), θ(t))‖Ḣ2 . Applying ∂2

i (i = 1, 2) to (1.2), taking the L2-inner product of the resulted
equations with (∂2

i u, ∂2
i θ), and using divergence-free condition for u, we obtain

1
2

d
dt

2∑
i=1

(‖∂2
i u‖2L2 + ‖∂2

i θ‖
2
L2) + µ

2∑
i=1

‖∂2
i ∂2u2‖

2
L2 + η

2∑
i=1

‖∂2
i ∂2θ‖

2
L2
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= −

2∑
i=1

∫
∂2

i (u · ∇u) · ∂2
i u dx −

2∑
i=1

∫
∂2

i (u · ∇θ) · ∂2
i θ dx

:= I1 + I2, (3.3)

where we have used ∫
∂2

i∇p · ∂2
i u dx = 0.

To make full use of the anisotropic dissipation, by integrations by parts and ∇ · u = 0, we first split I1

into four parts.

I1 = −

∫
∂2

1u · ∇u · ∂2
1u dx − 2

∫
∂1u · ∂1∇u · ∂2

1u dx

−

∫
∂2

2u · ∇u · ∂2
2u dx − 2

∫
∂2u · ∂2∇u · ∂2

2u dx

:= I11 + I12 + I13 + I14.

We now bound I11 through I14 one by one. For I11, we further decompose it as follows:

I11 = −

∫
∂2

1u1∂1u1∂
2
1u1 dx −

∫
∂2

1u1∂1u2∂
2
1u2 dx

−

∫
∂2

1u2∂2u1∂
2
1u1 dx −

∫
∂2

1u2∂2u2∂
2
1u2 dx

:= I11,1 + I11,2 + I11,3 + I11,4.

Thanks to the dissipation of u2 in the x2-direction, direct applications of Hölder’s inequality, Sobolev’s
inequality, and ∇ · u = 0 can show that

I11,1 ≤ C‖∂1u1‖L4‖∂2
1u1‖L4‖∂2

1u1‖L2 ≤ C‖u‖H2‖∂2u2‖
2
H2 . (3.4)

According to Lemma 2.1, we obtain ∂1∂2u2 = ∂1∂2ũ(2)
2 . Then by integration by parts, Hölder’s inequality,

Sobolev’s inequality, (2.1), and Lemma 2.3, I11,2 can be bounded as

I11,2 = −

∫
∂1ũ(2)

2 ∂1∂2u2∂
2
1u2 dx −

∫
∂1ũ(2)

2 ∂1u2∂
2
1∂2u2 dx

≤ C‖∂1ũ(2)
2 ‖L4‖∂1∂2u2‖L4‖∂2

1u2‖L2

+ C‖∂2
1∂2u2‖L2‖∂1u2‖

1
2
L2(‖∂1u2‖L2 + ‖∂2

1u2‖L2)
1
2 ‖∂1∂2ũ2

(2)
‖L2

≤ C‖u‖H2‖∂2u2‖
2
H2 . (3.5)

Similarly,

I11,4 = 2
∫

ũ(2)
2 ∂2

1∂2u2∂
2
1u2 dx

≤ C‖̃u(2)
2 ‖L∞‖∂

2
1∂2u2‖L2‖∂2

1u2‖L2

≤ C‖u‖H2‖∂2u2‖
2
H2 . (3.6)
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For I11,3, with the help of the symmetry u(1)
1 = 0 together with (2.2), it is easy to obtain

I11,3 ≤ C‖∂2
1u2‖L2‖∂2u1‖L4‖∂2

1u1‖L4

≤ C‖∂2
1u2‖L2‖∂2∂1u1‖H1‖∂2

1u1‖H1

≤ C‖u‖H2‖∂2u2‖
2
H2 .

Combining all estimates above for I11,1 through I11,4 yields

I11 ≤ C‖u‖H2‖∂2u2‖
2
H2 .

I12 can be handled similarly to I11. We first rewrite it as follows:

I12 = −2
∫

∂1u1∂
2
1u1∂

2
1u1 dx − 2

∫
∂1u1∂

2
1u2∂

2
1u2 dx

−2
∫

∂1u2∂1∂2u1∂
2
1u1 dx − 2

∫
∂1u2∂1∂2u2∂

2
1u2 dx.

Then invoking (3.4), (3.5), and (3.6) and applying Hölder’s inequality, Sobolev’s inequality to the third
term yields

I12 ≤ C‖u‖H2‖∂2u2‖
2
H2 .

We proceed to bound I13. As I11, I13 is first divided into four parts.

I13 = −

∫
∂2

2u1∂1u1∂
2
2u1 dx −

∫
∂2

2u1∂1u2∂
2
2u2 dx

−

∫
∂2

2u2∂2u1∂
2
2u1 dx −

∫
∂2

2u2∂2u2∂
2
2u2 dx

:= I13,1 + I13,2 + I13,3 + I13,4.

Lemma 2.1, integration by parts, Hölder’s inequality together with (2.1) lead to

I13,1 = 2
∫

ũ(1)
1 ∂1∂

2
2u1∂

2
2u1 dx ≤ C‖̃u(1)

1 ‖L∞‖∂1∂
2
2u1‖L2‖∂2

2u1‖L2

≤ ‖∂2u2‖
2
H2‖∂

2
2u1‖L2 .

Similarly, I13,3 can be estimated as

I13,3 = −

∫
∂2ũ(1)

1 ∂1∂2u1∂
2
2u1 dx −

∫
∂2ũ(1)

1 ∂2u1∂1∂
2
2u1 dx

≤ ‖∂2ũ(1)
1 ‖L4‖∂1∂2u1‖L4‖∂2

2u1‖L2 + ‖∂2ũ(1)
1 ‖L4‖∂2u1‖L4‖∂1∂

2
2u1‖L2

≤ C‖u‖H2‖∂2u2‖
2
H2 .

By (2.3) and ‖u1‖L2 ≤ C‖∂1u1‖L2 , we obtain

I13,2 ≤ ‖∂
3
2u2‖L2‖∂1u2‖

1
2
L2(‖∂1u2‖

1
2
L2 + ‖∂2

1u2‖
1
2
L2)‖∂

2
2u1‖L2

≤ C‖u‖H2‖∂2u2‖
2
H2 .
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Also, we have
I13,4 ≤ ‖∂2u2‖L4‖∂2

2u2‖L4‖∂2
2u2‖L2 ≤ C‖u‖H2‖∂2u2‖

2
H2 .

Thus, we obtain

I13 ≤ C‖u‖H2‖∂2u2‖
2
H2 .

With a nearly same argument with I13, we derive

I14 = −2I13,3 − 2I13,1 + 2I13,4 − 2
∫

∂2u1∂2∂1u2∂
2
2u2 dx ≤ C‖u‖H2‖∂2u2‖

2
H2 .

In summary, we obtain the upper bound for I1

I1 ≤ C‖u‖H2‖∂2u2‖
2
H2 . (3.7)

Next, we turn to deal with I2. It remains to be divided into four parts:

I2 = −

∫
∂2

1u · ∇θ · ∂2
1θ dx − 2

∫
∂1u · ∂1∇θ · ∂

2
1θ dx

−

∫
∂2

2u · ∇θ · ∂2
2θ dx − 2

∫
∂2u · ∂2∇θ · ∂

2
2θ dx

:= I21 + I22 + I23 + I24.

We first split I21 into two terms, then use integration by parts and combine with Hölder’s inequality,
Sobolev’s inequality, and (2.1) to obtain

I21 = −

∫
∂1ũ(2)

2 ∂1∂2θ∂
2
1θ dx −

∫
∂1ũ(2)

2 ∂1θ∂
2
1∂2θ dx

+

∫
∂2

1∂2u2 θ̃
(2)∂2

1θ dx +

∫
∂2

1u2 θ̃
(2)∂2

1∂2θ dx

≤ C‖∂1ũ(2)
2 ‖L4‖∂1∂2θ‖L4‖∂2

1θ‖L2 + C‖∂1ũ2
(2)
‖L4‖∂1θ‖L4‖∂2

1∂2θ‖L2

+C‖∂2
1∂2u2‖L2 ‖̃θ(2)‖L∞‖∂

2
1θ‖L2 + C‖∂2

1u2‖L2 ‖̃θ(2)‖L∞‖∂
2
1∂2θ‖L2

≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2u2‖
2
H2 + ‖∂2θ‖

2
H2).

where we have used ∂1∂2u2 = ∂1∂2ũ2
(2) and ∂2θ = ∂2θ̃

(2) by Lemma 2.1. Similarly, I22 can be estimated
as follows:

I22 = −4
∫

ũ(2)
2 ∂2

1∂2θ∂
2
1θ dx + 2

∫
∂1∂2u2∂1θ̃

(2)∂2
1θ dx + 2

∫
∂1u2∂1θ̃

(2)∂2
1∂2θ dx

≤ C‖̃u(2)
2 ‖L∞‖∂

2
1∂2θ‖L2‖∂2

1θ‖L2 + C‖∂1∂2u2‖L4‖∂1θ̃
(2)‖L4‖∂2

1θ‖L2

+C‖∂1u2‖L4‖∂1θ̃
(2)‖L4‖∂2

1∂2θ‖L2

≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2u2‖
2
H2 + ‖∂2θ‖

2
H2).

To bound I23, we need to resort to the fact that u(1)
1 = 0, i.e., u1 = ũ(1)

1 . Then by (2.3) and (2.1), we find

I23 = −

∫
∂2

2ũ(1)
1 ∂1θ∂

2
2θ dx −

∫
∂2

2u2∂2θ∂
2
2θ dx
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≤ C‖∂3
2θ‖L2‖∂1θ‖

1
2
L2(‖∂1θ‖L2 + ‖∂2

1θ‖L2)
1
2 ‖∂2

2ũ(1)
1 ‖L2

+C‖∂2
2u2‖L2‖∂2θ‖L4‖∂2

2θ‖L4

≤ C‖θ‖H2(‖∂2u2‖
2
H2 + ‖∂2θ‖

2
H2).

For the last term I24, it is clear that

I24 ≤ C‖∂2u‖L4‖∂2∇θ‖L4‖∂2
2θ‖L2 ≤ C‖u‖H2‖∂2θ‖

2
H2 .

As a result of the above estimates, we obtain

I2 ≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2u2‖
2
H2 + ‖∂2θ‖

2
H2). (3.8)

Inserting (3.7), (3.8) into (3.3) and integrating it in time, we conclude
2∑

i=1

(‖∂2
i u‖2L2 + ‖∂2

i θ‖
2
L2) + 2

∫ t

0
(µ‖∂2

i ∂2u2‖
2
L2 + η‖∂2

i ∂2uθ‖2L2) dτ

≤

2∑
i=1

‖(∂2
i u0, ∂

2
i θ0)‖2L2 + C sup

0≤t≤T
‖(u, θ)‖2H2

∫ t

0
(‖∂2

i ∂2u2‖
2
L2 + ‖∂2

i ∂2θ‖
2
L2) dτ.

which together with (3.2) implies the desired estimates (3.1). The proof of Proposition 3.1 is thus completed.
�

We now prove Theorem 1.1.

Proof of Theorem1.1. We now have established a priori estimate on the H2-norm of (u, θ), namely,

E(t) ≤ C0E(0) + C1E
3
2 (t). (3.9)

The bootstrapping argument then allows us to prove the stability of the solution, provided that the initial
data is sufficiently small, i.e.

E(0) = ‖(u0, θ0)‖2H2 ≤ δ
2 ≤

1
16C0C2

1

. (3.10)

To apply the bootstrapping argument, we start with the ansatz that

E(t) ≤
1

4C2
1

.

Then (3.9) together with the small assumption (3.10) implies

E(t) ≤ C0E(0) + C1E
1
2 (t)E(t) ≤ C0E(0) +

1
2

E(t),

or
E(t) ≤ 2C0E(0) ≤

1
8C2

1

.

Thus, the bootstrapping argument asserts for any t ≥ 0,

E(t) ≤ Cδ2.

which means the perturbed solution of (1.2) exists globally for all time. We complete the proof of
Theorem 1.1. �
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4. Proof of Theorem 1.4

This section is committed to proving Theorem 1.4. As aforementioned in the introduction, to obtain
the exponential decay, we will derive the following differential inequality:

d
dt

X(t) + CX(t) ≤ 0. (4.1)

In the proof, we will make extensive use of the anisotropic inequalities and Poincaré inequality presented
in Section 2, which play a crucial role in establishing this type of inequality (4.1).

Proof of Theorem1.4. We first construct the equations of (̃u(2), θ̃(2)). By taking the vertical average of
(1.2), it is easy to verify that (u(2),θ

(2)
) satisfies

∂tu
(2)
1 + ∂1(u2

1

(2)
) + ∂2(u1u2

(2)) + ∂1 p(2)
= 0,

∂tu
(2)
2 + ∂1(u1u2

(2)) + ∂2(u2
2

(2)
) = θ

(2)
,

∂tθ
(2)

+ ∂1(u1θ
(2)

) + u2
(2)

= 0.

(4.2)

Taking the difference between (1.2) and (4.2), we obtain
∂tũ

(2)
1 + ∂1(u2

1 − u2
1

(2)
) + ∂2(u1u2 − u1u2

(2)) + ∂1 p̃(2) = 0,

∂tũ
(2)
2 + ∂1(u1u2 − u1u2

(2)) + ∂2(u2
2 − u2

2

(2)
) + ∂2 p̃(2) = µ∂2

2ũ(2)
2 + θ̃(2),

∂tθ̃
(2) + ∂1(u1θ − u1θ

(2)
) + ∂2 ˜(u2θ)

(2)
+ ũ(2)

2 = η∂2
2θ̃

(2).

(4.3)

Step 1. Decay for ‖(̃u(2), θ̃(2))‖H1

Dotting the system (4.3) by (̃u(2), θ̃(2)) yields, we obtain

1
2

d
dt

(‖̃u(2)‖2L2 + ‖̃θ(2)‖2L2) + µ‖∂2ũ(2)
2 ‖

2
L2 + η‖∂2θ̃

(2)‖2L2

:= J1 + J2 + J3 + J4 + J5 + J6, (4.4)

where

J1 = −

∫
∂1(u2

1 − u2
1

(2)
)̃u(2)

1 dx, J2 = −

∫
∂2(u1u2 − u1u2

(2))̃u(2)
1 dx,

J3 = −

∫
∂1(u1u2 − u1u2

(2))̃u(2)
2 dx, J4 = −

∫
∂2(u2

2 − u2
2

(2)
)̃u(2)

2 dx,

J5 = −

∫
∂1(u1θ − u1θ

(2)
)̃θ(2) dx, J6 = −

∫
∂2 ˜(u2θ)

(2)
θ̃(2) dx.

Before bounding J1 through J6, we first make the following decompositions by u = u(2)
+ ũ(2).

u2
1 − u2

1

(2)
= 2u(2)

1 ũ(2)
1 + (̃̃u(2)

1 )2
(2)
. (4.5)

u2
2 − u2

2

(2)
= 2u(2)

2 ũ(2)
2 + (̃̃u(2)

2 )2
(2)
. (4.6)
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u1u2 − u1u2
(2)

= u(2)
1 ũ(2)

2 + ũ(2)
1 u(2)

2 + ˜̃u(2)
1 ũ(2)

2

(2)
. (4.7)

u1θ − u1θ
(2)

= u(2)
1 θ̃(2) + ũ(2)

1 θ
(2)

+
˜ũ(2)
1 θ̃(2)

(2)
. (4.8)

Subsisting (4.5) in J1 and using (2.2) and ‖ f̃ (2)‖L2 ≤ ‖ f ‖L2 yields

J1 = −2
∫

∂1ũ(2)
1 u(2)

1 ũ(2)
1 dx − 2

∫
∂1 (̃̃u(2)

1 )2
(2)

ũ(2)
1 dx

≤ C‖∂1ũ(2)
1 ‖L2‖u(2)

1 ‖L∞ ‖̃u
(2)
1 ‖L2 + C‖∂1(̃u(2)

1 )2‖L2 ‖̃u(2)
1 ‖L2

≤ C‖∂1ũ(2)
1 ‖L2‖u(2)

1 ‖L∞ ‖̃u
(2)
1 ‖L2 + C‖∂1ũ(2)

1 ‖L2 ‖̃u(2)
1 ‖L∞ ‖̃u

(2)
1 ‖L2

≤ C‖u‖H2‖∂2ũ(2)
2 ‖

2
L2 .

where we have used, due to ∂1u(2)
1 = −∂2u(2)

2 = 0,∫
∂1u(2)

1 ũ(2)
1 ũ(2)

1 dx = 0.

Using a similar argument and replacing to apply the Poincaré inequality (2.2) by (2.1), J4 can be
estimated as

J4 = −2
∫

∂2ũ(2)
2 u(2)

2 ũ(2)
2 dx − 2

∫
∂1 (̃̃u(2)

2 )2
(2)

ũ(2)
2 dx

≤ C‖u‖H2‖∂2ũ(2)
2 ‖

2
L2 .

Invoking ∂2 f̃ (2) = ∂2 f and ∂2 f
(2)

= 0, and noticing the following facts∫
∂2ũ(2)

1 u(2)
2 ũ(2)

1 dx = 0,

we have

J2 = −

∫
∂2ũ(2)

2 u(2)
1 ũ(2)

1 dx −
∫

∂2ũ(2)
1 ũ(2)

2 ũ(2)
1 dx −

∫
∂2ũ(2)

2 ũ(2)
1 ũ(2)

1 dx.

Then Hölder’s inequality, (2.2) and (2.4) lead to

J2 = −

∫
∂2ũ(2)

2 u(2)
1 ũ(2)

1 dx −
∫

∂2ũ(2)
1 ũ(2)

2 ũ(2)
1 dx −

∫
∂2ũ(2)

2 ũ(2)
1 ũ(2)

1 dx

≤ C‖∂2ũ(2)
2 ‖L2‖u(2)

1 ‖L∞ ‖̃u
(2)
1 ‖L2 + C‖∂2ũ(2)

2 ‖L2 ‖̃u(2)
1 ‖L∞ ‖̃u

(2)
1 ‖L2

+C‖̃u(2)
1 ‖

1
2
L2(‖̃u

(2)
1 ‖L2 + ‖∂1ũ(2)

1 ‖L2)
1
2 ‖∂2ũ(2)

2 ‖L2‖∂2ũ(2)
1 ‖L2

≤ C‖u‖H2‖∂2ũ(2)
2 ‖

2
L2 .

Similarly, J3 is first rewritten as three parts and employing ‖̃u(2)
2 ‖ ≤ C‖∂2ũ(2)

2 ‖ and ‖̃u(2)
1 ‖ ≤ C‖∂1ũ(2)

1 ‖

yields

J3 = −

∫
ũ(2)

1 ∂1u(2)
2 ũ(2)

2 dx −
∫

∂1(˜̃u(2)
1 ũ(2)

2

(2)
)̃u(2)

2 dx
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≤ ‖̃u(2)
1 ‖L2‖∂1u(2)

2 ‖L4 ‖̃u(2)
2 ‖L4 + ‖∂1ũ(2)

1 ‖L2 ‖̃u(2)
2 ‖L∞ ‖̃u

(2)
2 ‖L2

+‖∂1ũ(2)
2 ‖L2 ‖̃u(2)

1 ‖L∞ ‖̃u
(2)
2 ‖L2

≤ C‖u‖H2‖∂2ũ(2)
2 ‖

2
H1 .

Next, we estimate J5. By means of Hölder’s inequality, Lemma 2.2, Lemma 2.3, and ‖ f̃ (2)‖L2 ≤ ‖ f ‖L2 ,
J5 is bounded by

J5 = −

∫
∂1θ̃

(2)u(2)
1 θ̃(2) dx −

∫
∂1ũ(2)

1 θ
(2)
θ̃(2) dx

−

∫
∂1θ

(2)
ũ(2)

1 θ̃(2) dx −
∫

∂1
˜(̃u(2)
1 θ̃(2))

(2)
θ̃(2) dx

≤ ‖∂1θ̃
(2)‖L2‖u(2)

1 ‖L∞ ‖̃θ
(2)‖L2 + ‖∂1ũ(2)

1 ‖L2‖θ
(2)
‖L∞ ‖̃θ

(2)‖L2

+C‖̃u(2)
1 ‖

1
2
L2(‖̃u

(2)
1 ‖L2 + ‖∂1ũ(2)

1 ‖L2)
1
2 ‖∂2θ̃

(2)‖L2‖∂1θ
(2)
‖L2

+‖∂1ũ(2)
1 ‖L2 ‖̃θ(2)‖L∞ ‖̃θ

(2)‖L2 + ‖̃u(2)
1 ‖L∞‖∂1θ̃

(2)‖L2 ‖̃θ(2)‖L2

≤ C(‖u‖H2 + ‖θ‖H2)‖∂2ũ(2)
2 ‖L2‖∂2θ̃

(2)‖H1 ,

where we have used ∫
∂1u(2)

1 θ̃(2)̃θ(2) dx = 0.

Now to start estimating the last term J6, we use the above Lemma 2.2 and Hölder’s inequality, we get

J6 = −

∫
∂2ũ(2)

2 θθ̃(2) dx −
∫

∂2θ̃
(2)u2θ̃

(2) dx

≤ ‖∂2ũ(2)
2 ‖L2‖θ‖L∞ ‖̃θ

(2)‖L2 + ‖∂2θ̃
(2)‖L2‖u2‖L∞ ‖̃θ

(2)‖L2

≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2ũ(2)
2 ‖

2
L2 + ‖∂2θ̃

(2)‖2L2).

Collecting all estimates above yields

d
dt

(‖̃u(2)‖2L2 + ‖̃θ(2)‖2L2) + 2µ‖∂2ũ(2)
2 ‖

2
L2 + 2η‖∂2θ̃

(2)‖2L2

≤ C‖(u, θ)‖H2(‖∂2ũ(2)
2 ‖

2
H1 + ‖∂2θ̃

(2)‖2H1). (4.9)

In what follows, we show the differential inequality of ‖(∇ũ(2),∇θ̃(2))‖L2 . Taking the gradient of (4.3)
and multiplying the resulting equations by (∇ũ(2),∇θ̃(2)), we have

1
2

d
dt

(‖∇ũ(2)‖2L2 + ‖∇θ̃(2)‖2L2) + µ‖∂2∇ũ(2)
2 ‖

2
L2 + η‖∂2∇θ̃

(2)‖2L2

= −

∫
∂1∇(u2

1 − u2
1

(2)
) · ∇ũ(2)

1 dx −
∫

∂2∇(u1u2 − u1u2
(2)) · ∇ũ(2)

1 dx

−

∫
∂1∇(u1u2 − u1u2

(2)) · ∇ũ(2)
2 dx −

∫
∂2∇(u2

2 − u2
2

(2)
) · ∇ũ(2)

2 dx

−

∫
∂1∇(u1θ − u1θ

(2)
) · ∇θ̃(2) dx −

∫
∂2∇˜(u2θ)

(2)
· ∇θ̃(2) dx.
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:= K1 + K2 + K3 + K4 + K5 + K6.

By integration by parts and (4.5), K1 is divided into two parts.

K1 = 2
∫
∇(u(2)

1 ũ(2)
1 ) · ∂1∇ũ(2)

1 dx + 2
∫

˜
∇ũ(2)

1 ũ(2)
1

(2)
· ∂1∇ũ(2)

1 dx

:= K11 + K12.

Due to Hölder’s inequality and Lemma 2.2, we obtain

K11 = 2
∫
∇u(2)

1 · ũ
(2)
1 · ∂1∇ũ(2)

1 dx + 2
∫

u(2)
1 · ∇ũ(2)

1 · ∂1∇ũ(2)
1 dx

≤ C‖∇u(2)
1 ‖L4 ‖̃u(2)

1 ‖L4‖∂1∇ũ(2)
1 ‖L2 + C‖∇ũ(2)

1 ‖L2‖u(2)
1 ‖L∞‖∂1∇ũ(2)

1 ‖L2

≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 .

Also,

K12 ≤ C‖∇ũ(2)
1 · ũ

(2)
1 ‖L2‖∂1∇ũ(2)

1 ‖L2

≤ C‖∇ũ(2)
1 ‖L2 ‖̃u(2)

1 ‖L∞‖∂1∇ũ(2)
1 ‖L2

≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 .

which together with the estimates for K11 gives

K1 ≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 . (4.10)

Going through a similar process as in the derivation of (4.10), we have

K4 ≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 (4.11)

The estimates of K2 are similar to those of J2. We divide K2 into three parts.

K2 = −

∫
∂2∇(u(2)

1 ũ(2)
2 ) · ∇ũ(2)

1 −

∫
∂2∇(̃u(2)

1 u2) · ∇ũ(2)
1 −

∫
∂2∇(̃u(2)

1 ũ(2)
2 ) · ∇ũ(2)

1 dx

:= K21 + K22 + K23.

We first bound K21, K22. At first glance, it seems there are eight terms that need to be estimated.
However, due to the fact that ∂2u(2)

= 0, the decomposition for K21 and K22 is reduced to three items.
Then applying Hölder’s inequality, Lemma 2.2, and Lemma 2.3, we obtain

K21 + K22 = −

∫
∂2∇ũ(2)

2 · u
(2)
1 · ∇ũ(2)

1 dx −
∫

∂2ũ(2)
2 · ∇u(2)

1 · ∇ũ(2)
1 dx

−

∫
∂2ũ(2)

1 · ∂1u(2)
2 · ∂1ũ(2)

1 dx

≤ C(‖∂2∇ũ(2)
2 ‖L2‖u(2)

1 ‖L∞ + ‖∂2ũ(2)
2 ‖L4‖∇u(2)

1 ‖L4)‖∇ũ(2)
1 ‖L2

+C‖∂2ũ(2)
1 ‖

1
2
L2(‖∂2ũ(2)

1 ‖L2 + ‖∂1∂2ũ(2)
1 ‖L2)

1
2 ‖∂2∂1ũ(2)

1 ‖L2‖∂1u(2)
2 ‖L2

≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 .
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Here we have used
−

∫
∂2∇ũ(2)

1 · u
(2)
2 · ∇ũ(2)

1 dx = 0,

which can be proved by integration by parts and ∂2u2
(2)

= 0. For K23, invoking Poincaré inequality (2.1),
(2.2), and the anisotropic inequalities (2.3) and (2.4) yields

K23 = −

∫
∂2∇ũ(2)

1 · ũ
(2)
2 · ∇ũ(2)

1 dx −
∫

∂2∇ũ(2)
2 · ũ

(2)
1 · ∇ũ(2)

1 dx

−

∫
∂2ũ(2)

1 · ∇ũ(2)
2 · ∇ũ(2)

1 dx −
∫

∂2ũ(2)
2 · ∇ũ(2)

1 · ∇ũ(2)
1 dx

≤ C(‖∂2∇ũ(2)
1 ‖L2 ‖̃u(2)

2 ‖L∞ + ‖∂2∇ũ(2)
2 ‖L2 ‖̃u(2)

1 ‖L∞)‖∇ũ(2)
1 ‖L2

+C‖∇ũ(2)
1 ‖

1
2
L2(‖∇ũ(2)

1 ‖L2 + ‖∂1∇ũ(2)
1 ‖L2)

1
2 ‖∂2∇ũ(2)

2 ‖L2‖∂2ũ(2)
1 ‖L2

+C‖∂2ũ(2)
2 ‖L4‖∇ũ(2)

1 ‖L4‖∇ũ(2)
1 ‖L2

≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 .

We now deal with K3. By (4.7), it naturally divides K3 into three parts.

K3 = −

∫
∂1∇(u(2)

1 ũ(2)
2 ) · ∇ũ(2)

2 dx −
∫

∂1∇(̃u(2)
1 u(2)

2 ) · ∇ũ(2)
2 dx −

∫
∂1∇

˜(̃u(2)
1 ũ(2)

2 )
(2)
· ∇ũ(2)

2 dx

:= K31 + K32 + K33.

Again by the good property ∂2 f
(2)

= 0, K31 and K32 can be reformulated as

K31 + K32 = −

∫
u(2)

2 ∂1∂2ũ(2)
2 ∂1ũ(2)

2 dx −
∫

∂2u(2)
1 ∂1ũ(2)

2 ∂2ũ(2)
2 dx

−

∫
∂2

1u(2)
2 ũ(2)

1 ∂1ũ(2)
2 dx −

∫
∇ũ(2)

1 ∂1u(2)
2 ∇ũ(2)

2 dx

−

∫
∇u(2)

2 ∂1ũ(2)
1 ∇ũ(2)

2 dx,

where we use ∫
u(2)

1 ∂1∇ũ(2)
2 · ∇ũ(2)

2 dx = 0 and
∫

∂2
1ũ(2)

1 u(2)
1 ∂1ũ(2)

2 dx = 0.

Then making full use of (2.1), (2.2), and (2.3), we infer

K31 + K32 ≤ C‖u(2)
2 ‖L∞‖∂1∂2ũ(2)

2 ‖L2‖∂1ũ(2)
2 ‖L2 + C‖∇u(2)

‖L4‖∂2ũ(2)
2 ‖L4‖∇ũ(2)

2 ‖L2

+C‖∂2
1u(2)

2 ‖L2 ‖̃u(2)
1 ‖

1
2
L2(‖̃u

(2)
1 ‖L2 + ‖∂1ũ(2)

1 ‖L2)
1
2 ‖∂1∂2ũ(2)

2 ‖L2

+C‖∇ũ(2)
1 ‖

1
2
L2(‖∇ũ(2)

1 ‖L2 + ‖∂1∇ũ(2)
1 ‖L2)

1
2 ‖∂2∇ũ(2)

2 ‖L2‖∂1u(2)
2 ‖L2

≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 .

For K33, noticing that by (2.4) and Lemma 2.2

‖̃u(2)
1 ‖L∞ ≤ C‖∂2ũ(2)

1 ‖
1
2
L2(‖̃u

(2)
1 ‖L2 + ‖∂1ũ(2)

1 ‖L2)
1
4
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× (‖∂2ũ(2)
1 ‖L2 + ‖∂1∂2ũ(2)

1 ‖L2)
1
4

≤ C‖∂1∂2ũ(2)
1 ‖L2 . (4.12)

Then it can be estimated as follows:

K33 = −

∫
∂2

1
˜(̃u(2)
1 ũ(2)

2 )
(2)
∂1ũ2 dx +

∫
∂1
˜(̃u(2)
1 ũ(2)

2 )
(2)
∂2

2ũ2 dx

≤ C‖∂2
1(̃u(2)

1 ũ(2)
2 )‖L2‖∂1ũ(2)

2 ‖L2 + C‖∂1(̃u(2)
1 ũ(2)

2 )‖L2‖∂2
2ũ(2)

2 ‖L2

≤ C(‖∂2
1ũ(2)

1 ‖L2 ‖̃u(2)
2 ‖L∞ + ‖∂2

1ũ(2)
2 ‖L2 ‖̃u(2)

1 ‖L∞ + ‖∂1ũ(2)
1 ‖L4‖∂1ũ(2)

2 ‖L4)‖∂1ũ(2)
2 ‖L2

+C(‖∂1ũ(2)
1 ‖L2 ‖̃u(2)

2 ‖L∞ + ‖∂1ũ(2)
2 ‖L2 ‖̃u(2)

1 ‖L∞)‖∂2
2ũ(2)

2 ‖L2

≤ C‖u‖H2‖∂2∇ũ(2)
2 ‖

2
L2 .

Now we focus on estimating the term K5, we are able to establish the upper bound in a similar way as in
J5. Since K5 has more terms, according to (4.8), this can be divided into three terms,

K5 = −

∫
∂1∇(u(2)

1 θ̃(2) + ũ(2)
1 θ

(2)
+
˜(̃u(2)
1 θ̃(2))

(2)
) · ∇θ̃(2) dx

:= K51 + K52 + K53.

We proceed to estimate each of these three items separately, owing to ∇ · u(2)
= 0 and ∂2 f

(2)
= 0, K51

passes through the decomposition with only one term,

K51 = −

∫
∂1θ̃

(2)∇u(2)
1 · ∇θ̃

(2) dx

≤ C‖∇u(2)
1 ‖

1
2
L2(‖∇u(2)

1 ‖L2 + ‖∂1∇u(2)
1 ‖L2)

1
2 ‖∂2∂1θ̃

(2)‖L2‖∇θ̃(2)‖L2

≤ C‖u‖H2‖∂2∇θ̃
(2)‖2L2 .

Applying (2.1) and (2.3) yields

K52 = −

∫
(∂1∇ũ(2)

1 θ
(2)

+ ∂1∇θ
(2)

ũ(2)
1 + ∂1ũ(2)

1 ∇θ
(2)

+ ∂1θ
(2)
∇ũ(2)

1 ) · ∇θ̃(2) dx

≤ ‖∂1∇ũ(2)
1 ‖L2‖θ

(2)
‖L∞‖∇θ̃

(2)‖L2 + ‖∂1ũ(2)
1 ‖L4‖∇θ

(2)
‖L4‖∇θ̃(2)‖L2

+C‖̃u(2)
1 ‖

1
2
L2(‖̃u

(2)
1 ‖L2 + ‖∂1ũ(2)

1 ‖L2)
1
2 ‖∂2∇θ̃

(2)‖L2‖∂1∇θ
(2)
‖L2

+C‖∇ũ(2)
1 ‖

1
2
L2(‖∇ũ(2)

1 ‖L2 + ‖∂1∇ũ(2)
1 ‖L2)

1
2 ‖∂2∇θ̃

(2)‖L2‖∂1θ
(2)
‖L2

≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2∇ũ(2)
2 ‖

2
L2 + ‖∂2∇θ̃

(2)‖2L2).

By Hölder’s inequality and (4.12), we obtain

K53 = −

∫
∂2

1
˜(̃u(2)
1 θ̃(2))

(2)
∂1θ̃

(2) dx +

∫
∂1
˜(̃u(2)
1 θ̃(2))

(2)
∂2

2θ̃
(2) dx.

≤ ‖∂2
1(̃u(2)

1 θ̃(2))‖L2‖∂1θ̃
(2)‖L2 + ‖∂1(̃u(2)

1 θ̃(2))‖L2‖∂2
2θ̃

(2)‖L2

≤ (‖∂2
1ũ(2)

1 ‖L2 ‖̃θ(2)‖L∞ + ‖∂2
1θ̃

(2)‖L2 ‖̃u(2)
1 ‖L∞ + ‖∂1ũ(2)

1 ‖L4‖∂1θ̃
(2)‖L4)‖∂1θ̃

(2)‖L2

+(‖∂1ũ(2)
1 ‖L2 ‖̃θ(2)‖L∞ + ‖∂1θ̃

(2)‖L2 ‖̃u(2)
1 ‖L∞)‖∂2

2θ̃
(2)‖L2
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≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2∇ũ(2)
2 ‖

2
L2 + ‖∂2∇θ̃

(2)‖2L2).

Finally, we estimate the last term, this can be decomposed into four terms by a similar method as in J6

to obtain

K6 ≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2∇ũ(2)
2 ‖

2
L2 + ‖∂2∇θ̃

(2)‖2L2).

Combining the estimates for K1 through K6, we obtain

1
2

d
dt

(‖∇ũ(2)‖2L2 + ‖∇θ̃(2)‖2L2) + µ‖∂2∇ũ(2)
2 ‖

2
L2 + η‖∂2∇θ̃

(2)‖2L2

≤ C(‖u‖H2 + ‖θ‖H2)(‖∂2∇ũ(2)
2 ‖

2
L2 + ‖∂2∇θ̃

(2)‖2L2),

which together with (4.9) derives, for a pure constant C1

d
dt

(‖̃u(2)‖2H1 + ‖̃θ(2)‖2H1) + (2µ −C1(‖u‖H2 + ‖θ‖H2))‖∂2ũ(2)
2 ‖

2
H1

+(2η −C1(‖u‖H2 + ‖θ‖H2))‖∂2θ̃
(2)‖2H1 ≤ 0.

Recalling the stability result in Theorem 1.1, we can select δ > 0 in (1.5) to be sufficiently small
such that

2µ −C1(‖u‖H2 + ‖θ‖H2) > µ, 2η −C1(‖u‖H2 + ‖θ‖H2) > η.

Moreover, using Poincaré-type inequalities in Lemma 2.2 yields

‖̃u(2)‖2H1 = ‖̃u(2)
1 ‖

2
H1 + ‖̃u(2)

2 ‖
2
H1 ≤ C‖∂1ũ(2)

1 ‖
2
H1 + C‖∂2ũ(2)

2 ‖
2
H1 ≤ C‖∂2ũ(2)

2 ‖
2
H1 ,

‖̃θ(2)‖2H1 = ‖̃θ(2)‖2L2 + ‖∇θ̃(2)‖2L2 ≤ C‖∂2θ̃2‖
2
H1 .

Then we have
d
dt

(‖̃u(2)‖2H1 + ‖̃θ(2)‖2H1) + min{µ, η}(‖̃u(2)‖2H1 + ‖̃θ(2)‖2H1) ≤ 0.

which implies the exponential decay (1.16) in Theorem1.4.

Step 2. Decay for ‖(∂2∇ũ(2), ∂2∇θ̃
(2))‖L2

The routine and the procedure of the proof are similar to ‖(̃u(2), θ̃(2))‖2H1 . Applying ∂2∇ operator to
(4.3), multiplying the resulting equations by (∂2∇ũ(2), ∂2∇θ̃

(2)) and then integrating over Ω yields

1
2

d
dt

(‖∂2∇ũ(2)‖2L2 + ‖∂2∇θ̃
(2)‖2L2) + µ‖∂2

2∇ũ(2)
2 ‖

2
L2 + η‖∂2

2∇θ̃
(2)‖2L2

= −

∫
∂1∂2∇(u2

1 − u(2)
1 ) · ∂2∇ũ(2)

1 dx−
∫

∂2
2∇(u1u2 − u1u2

(2)) · ∂2∇ũ(2)
1 dx

−

∫
∂1∂2∇(u1u2 − u1u2

(2)) · ∂2∇ũ(2)
2 dx −

∫
∂2

2∇(u2
2 − u(2)

2 ) · ∂2∇ũ(2)
2 dx

−

∫
∂1∂2∇(u1θ − u1θ

(2)
) · ∂2∇θ̃

(2) dx −
∫

∂2
2∇

˜(u2θ)
(2)
· ∂2∇θ̃

(2) dx

:= L1 + L2 + L3 + L4 + L5 + L6.
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The estimates for L1 and L4 are simple. Invoking (4.5) along with ∂2 f
(2)

= 0, applying integration by
parts, u1 = ũ(2)

1 + u(2)
1 and ∇u1 = ∇ũ(2)

1 + ∇u(2)
1 , we obtain

L1 =

∫
∂2∇(2u(2)

1 ũ(2)
1 + ˜(̃u1)2

(2)
)∂1∂2∇ũ(2)

1 dx

= 2
∫

(∂2∇ũ(2)
1 u1 + ∂2ũ(2)

1 ∇u1)∂1∂2∇ũ(2)
1 dx

≤ C‖∂2∇ũ(2)
1 ‖L2‖u1‖L∞‖∂1∂2∇ũ(2)

1 ‖L2

+C‖∇u1‖
1
2
L2(‖∇u1‖L2 + ‖∂1∇u1‖L2)

1
2 ‖∂2

2ũ(2)
1 ‖L2‖∂1∂2∇ũ(2)

1 ‖L2

≤ C‖u‖H2‖∂2
2∇ũ(2)

2 ‖
2
L2 . (4.13)

Similarly,

L4 =

∫
∂2∇(2u(2)

2 ũ(2)
2 + (̃̃u(2)

2 )2
(2)

)∂2
2∇ũ(2)

2 dx

= 2
∫

(∂2∇ũ(2)
2 u(2)

2 + ∂2ũ(2)
2 ∇u(2)

2 + ∂2∇ũ(2)
2 ũ(2)

2 + ∂2ũ(2)
2 ∇ũ(2)

2 )∂2
2∇ũ(2)

2 dx

≤ C‖∂2∇ũ(2)
2 ‖L2‖u2‖L∞‖∂

2
2∇ũ(2)

2 ‖L2

+C‖∇u2‖
1
2
L2(‖∇u2‖L2 + ‖∂1∇u2‖L2)

1
2 ‖∂2

2ũ(2)
2 ‖L2‖∂2

2∇ũ(2)
2 ‖L2

≤ C‖u‖H2‖∂2
2∇ũ(2)

2 ‖
2
L2 . (4.14)

To estimate L2, we first divide it into two terms according to i = 1 and i = 2.

L2 =

∫
∂1∂2(u1u2 − u1u2

(2)) · ∂1∂
2
2ũ(2)

1 −

∫
∂3

2(u1u2 − u1u2
(2)) · ∂2

2ũ(2)
1 dx

:= L21 + L22.

Again, based on the fact ∂2 f
(2)

= 0, L21 is further decomposed as follows:

L21 =

∫
∂1∂2(u(2)

1 ũ(2)
2 + ũ(2)

1 u(2)
2 + ˜̃u(2)

1 ũ(2)
2

(2)
)∂1∂

2
2ũ(2)

1 dx

=

∫
∂1∂2ũ(2)

2 u(2)
1 ∂1∂

2
2ũ(2)

1 dx +

∫
(∂1∂2ũ(2)

1 u(2)
2 + ∂1u(2)

2 ∂2ũ(2)
1 )∂1∂

2
2ũ(2)

1 dx

+

∫
(∂1∂2ũ(2)

1 ũ(2)
2 + ∂1∂2ũ(2)

2 ũ(2)
1 + ∂1ũ(2)

1 ∂2ũ(2)
2 + ∂1ũ(2)

2 ∂2ũ(2)
1 )∂1∂

2
2ũ(2)

1 dx.

Then Poincaré inequality (2.2), (2.6) along with ‖ f̃ (2)‖L2 , ‖ f
(2)
‖L2 ≤ ‖ f ‖L2 leads to

L21 ≤ C(‖∂1∂2ũ(2)
2 ‖L2‖u1‖L∞ + ‖∂1∂2ũ(2)

1 ‖L2‖u2‖L∞ + ‖∂1ũ(2)
1 ‖L4‖∂2ũ(2)

2 ‖L4)‖∂1∂
2
2ũ(2)

1 ‖L2

+C‖∂1u2‖
1
2
L2(‖∂1u2‖L2 + ‖∂2

1u2‖L2)
1
2 ‖∂2

2ũ(2)
1 ‖L2‖∂1∂

2
2ũ(2)

1 ‖L2

≤ C‖u‖H2‖∂2
2∇ũ(2)

2 ‖
2
L2 .

Similarly, by Lemma 2.2 and Lemma 2.3 we obtain

L22 =

∫
∂3

2(u(2)
1 ũ(2)

2 + ũ(2)
1 u(2)

2 + ˜̃u(2)
1 ũ(2)

2

(2)
)∂2

2ũ(2)
1 dx
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=

∫
(u(2)

1 ∂3
2ũ(2)

2 + ũ(2)
1 ∂3

2ũ(2)
2 + 3∂2ũ(2)

1 ∂2
2ũ(2)

2 +
5
2
∂2

2ũ(2)
1 ∂2ũ(2)

2 )∂2
2ũ(2)

1 dx

≤ C‖u‖L∞‖∂3
2ũ(2)

2 ‖L2‖∂2
2ũ1

(2)
‖L2 + C‖∂2ũ(2)

2 ‖L∞‖∂
2
2ũ(2)

1 ‖
2
L2

+C‖∂2ũ(2)
1 ‖

1
2
L2(‖∂2ũ(2)

1 ‖L2 + ‖∂1∂2ũ(2)
1 ‖L2)

1
2 ‖∂3

2ũ(2)
2 ‖L2‖∂2

2ũ(2)
1 ‖L2

≤ C‖u‖H2‖∂2
2∇ũ(2)

2 ‖
2
L2 ,

where we have used, by integration by parts,∫
∂3

2ũ(2)
1 u(2)

2 ∂2
1ũ(2)

1 = 0,
∫

ũ(2)
2 ∂3

1ũ(2)
1 ∂2

1ũ(2)
1 dx = −

1
2

∫
∂2

2ũ(2)
1 ∂2ũ(2)

2 ∂2
2ũ(2)

1 dx.

Thus,
L2 ≤ C‖u‖H2‖∂2

2∇ũ(2)
2 ‖

2
L2 . (4.15)

The bound for L3 is subtle. We first rewrite it as

L3 =

∫
∂1∇(u(2)

1 ũ(2)
2 + ũ(2)

1 u(2)
2 + ˜̃u(2)

1 ũ(2)
2

(2)
)∂2

2∇ũ(2)
2 dx

:= L31 + L32 + L33.

Observe that ∇u(2)
1 = 0 and ∫

∂2
1ũ(2)

2 u(2)
1 ∂2

2∂1ũ(2)
2 dx = 0,

which can be verified by integration by parts. It is easy to see

L31 =

∫
∂1∂2ũ(2)

2 u(2)
1 ∂3

2ũ(2)
2 dx

≤ C‖∂1∂2ũ(2)
2 ‖L2‖u(2)

1 ‖L∞‖∂
3
2ũ(2)

2 ‖L2

≤ C‖u‖H2‖∂2
2∇ũ(2)

2 ‖
2
L2 .

Also, by Lemma 2.2 and (2.4), we infer

L32 =

∫
(∂1∇ũ(2)

1 u(2)
2 + ∂1∇u(2)

2 ũ(2)
1 + ∂1ũ(2)

1 ∇u(2)
2 + ∂1u(2)

2 ∇ũ(2)
1 ) · ∂2

2∇ũ(2)
2 dx

≤ C‖∂1∇ũ(2)
1 ‖L2‖u(2)

2 ‖L∞‖∂
2
2∇ũ(2)

2 ‖L2 + C‖∂1∇u(2)
2 ‖L2 ‖̃u(2)

1 ‖L∞‖∂
2
2∇ũ(2)

2 ‖L2

+C‖∇u(2)
2 ‖

1
2
L2(‖∇u(2)

2 ‖L2 + ‖∂1∇u(2)
2 ‖L2)

1
2 ‖∂1∂2ũ(2)

1 ‖L2‖∂2
2∇ũ(2)

2 ‖L2

+C‖∂1u(2)
2 ‖

1
2
L2(‖∂1u(2)

2 ‖L2 + ‖∂2
1u(2)

2 ‖L2)
1
2 ‖∂2∇ũ(2)

1 ‖L2‖∂2
2∇ũ(2)

2 ‖L2

≤ C‖u‖H2‖∂2
2∇ũ(2)

2 ‖
2
L2 .

where we have used
‖̃u(2)

1 ‖L∞ ≤ C‖∂2∇ũ(2)
1 ‖L2 ≤ C‖∂2∂1∇ũ(2)

1 ‖L2 .

For L33, according to Lemma 2.1, ∂1∇ f̃ (2) = ∂̃1∇ f
(2)

, and ∂1∇(̃u(2)
1 ũ(2)

2 ) can be decomposed into these
four terms:

∂1∇(̃u(2)
1 ũ(2)

2 ) = ∂1∇ũ(2)
1 ũ(2)

2 + ∂1∇ũ(2)
2 ũ(2)

1 + ∂1ũ(2)
1 ∇ũ(2)

2 + ∂1ũ(2)
2 ∇ũ(2)

1 .
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Then, invoking ‖ f̃ (2)‖L2 ≤ ‖ f ‖L2 , (2.1), (2.5), and (4.12), L33 can be bounded,

L33 ≤ C(‖∂1∇ũ(2)
1 ũ(2)

2 ‖L2 + ‖∂1∇ũ(2)
2 ũ(2)

1 ‖L2)‖∂2
2∇ũ(2)

2 ‖L2

+C(‖∂1ũ(2)
1 ∇ũ(2)

2 ‖L2 + ‖∂1ũ(2)
2 ∇ũ(2)

1 ‖L2)‖∂2
2∇ũ(2)

2 ‖L2

≤ C(‖∂1∇ũ(2)
1 ‖L2 ‖̃u(2)

2 ‖L∞ + ‖∂1∇ũ(2)
2 ‖L2 ‖̃u(2)

1 ‖L∞)‖∂2
2∇ũ(2)

2 ‖L2

+C‖∂1ũ(2)
1 ‖L∞‖∇ũ(2)

2 ‖L2‖∂2
2∇ũ(2)

2 ‖L2

+C‖∇ũ(2)
1 ‖

1
2
L2(‖∇ũ(2)

1 ‖L2 + ‖∂1∇ũ(2)
1 ‖L2)

1
2 ‖∂1∂2ũ(2)

2 ‖L2‖∂2
2∇ũ(2)

2 ‖L2

≤ C‖u‖H2‖∂2
2∇ũ(2)

2 ‖
2
L2 .

Therefore,
L3 ≤ C‖u‖H2‖∂2

2∇ũ(2)
2 ‖

2
L2 . (4.16)

With reference to K5, L5 can be first shown as follows:

L5 =

∫
∂1∇(u(2)

1 θ̃(2) + ũ(2)
1 θ

(2)
+
˜(̃u(2)
1 θ̃(2))

(2)
) · ∂2

2∇θ̃
(2) dx

:= L51 + L52 + L53.

Applying the equality ∂2 f
(2)

= 0 and ∂1u(2)
1 = 0, using integration by parts, we then obtain

L51 = −

∫
u(2)

1 ∂1∂2∇θ̃ · ∂2∇θ̃
(2) dx

=
1
2

∫
∂1u(2)

1 ∂2∇θ̃
(2) · ∂2∇θ̃

(2) dx = 0.

Using (2.3) again together with (2.6) and (2.2), L52 can be bounded as

L52 =

∫
(∂1∇ũ(2)

1 θ
(2)

+ ∂1∇θ
(2)

ũ(2)
1 + ∂1ũ(2)

1 ∇θ
(2)

+ ∂1θ
(2)
∇ũ(2)

1 ) · ∂2
2∇θ̃

(2) dx

≤ (‖∂1∇ũ(2)
1 ‖L2‖θ

(2)
‖L∞ + ‖∂1∇θ

(2)
‖L2 ‖̃u(2)

1 ‖L∞ + ‖∂1ũ(2)
1 ‖L4‖∇θ

(2)
‖L4)‖∂2

2∇θ̃
(2)‖L2

+C‖∇ũ(2)
1 ‖

1
2
L2(‖∇ũ(2)

1 ‖L2 + ‖∇∂1ũ(2)
1 ‖L2)

1
2 ‖∂1∂2θ

(2)
2 ‖L2‖∂2

2∇θ̃
(2)‖L2

≤ C‖θ‖H2‖∂2
2∇ũ(2)

2 ‖L2‖∂2
2∇θ̃

(2)‖L2 .

Similarly to K53, L53 can be obtained as follows:

L53 ≤ C‖(u, θ)‖H2(‖∂2
2∇ũ(2)

2 ‖
2
L2 + ‖∂2

2∇θ̃
(2)‖2L2).

Combining all estimates above for L51, L52, and L53, we obtain

L5 ≤ C‖(u, θ)‖H2(‖∂2
2∇ũ(2)

2 ‖
2
L2 + ‖∂2

2∇θ̃
(2)‖2L2). (4.17)

After integration by parts, L6 is split into four terms

L6 =

∫
(∂2∇ũ(2)

2 θ + ∂2∇θ̃
(2)u2 + ∂2ũ(2)

2 ∇θ + ∂2θ̃
(2)∇u2) · ∂2

2∇θ̃
(2) dx,
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Similarly,
L6 ≤ C‖(u, θ)‖H2(‖∂2

2∇ũ(2)
2 ‖

2
L2 + ‖∂2

2∇θ̃
(2)‖2L2). (4.18)

As a consequence of (4.13), (4.14), (4.15), (4.16), (4.17), and (4.18), we conclude that there exist two
constants C3 and C4 such that

d
dt

(‖∂2∇ũ(2)‖2L2 + ‖∂2∇θ̃
(2)‖2L2) + (2µ −C3(‖u‖H2 + ‖θ‖H2))‖∂2

2∇ũ(2)
2 ‖

2
L2

+(2η −C4(‖u‖H2 + ‖θ‖H2))‖∂2
2∇θ̃

(2)‖2L2 ≤ 0. (4.19)

Then (4.19) along with the stability result of Theorem 1.1 implies

‖∂2∇ũ(2)‖2L2 + ‖∂2∇θ̃
(2)‖2L2 ≤ Ce−c1t,

for some positive constants C3, C4, provided that the initial data is suitable to satisfy

2µ −C3(‖u‖H2 + ‖θ‖H2) > µ,

2η −C4(‖u‖H2 + ‖θ‖H2) > η.

We thus complete the proof of Theorem 1.4.
�
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