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1. Introduction

Suspension bridge refers to a bridge with cables as the main load-bearing component of a super-
structure, which is composed of suspension cable, a cable tower, hanger, bridge deck, etc. Compared
with other types of bridges, suspension bridges have the advantages of saving materials, being light
weight, and having a large span, but they also have poor stiffness and are prone to deflections and
oscillations under vehicle and wind loads. In the past, a number of destructive and unexpected events
occurred, see, e.g., the Tacoma Narrows Bridge [1–3] and the London Millennium Bridge [4, 5]. It
can be said that the development experience of suspension bridges is a history of fighting against
deformations and oscillations. Therefore, it is very necessary to study deformations and oscillations of
suspension bridges.
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In this paper, we study the following coupled beam-string system modeling the small amplitude
oscillations of suspension bridges:

m1utt + Kuxxxx + µ1ut + Φ(u − v) + f1(u, v) = h1(x), x ∈ (0, l), t > 0,

m2vtt −G(0)vxx +

∫ t

−∞

g(t − τ)vxx(τ) dτ + µ2vt − Φ(u − v)

+ f2(u, v) = h2(x), x ∈ (0, l), t > 0,

(1.1)

with mixed boundary conditions consisting of simply supported and Dirichlet boundary conditionsu(0, t) = u(l, t) = uxx(0, t) = uxx(l, t) = 0, t > 0,
v(0, t) = v(l, t) = 0, t ∈ R,

(1.2)

and initial conditions u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),
v(x, t) = v0(x, t), vt(x, 0) = v1(x), x ∈ (0, l), t ≤ 0.

(1.3)

Here, the two unknown functions u and v measure the vertical displacements of the bridge deck and the
suspension cable, respectively. The function v0 : (0, l) × (−∞, 0]→ R is a prescribed past history, and
v1(x) := ∂tv0(x, t)|t=0. The function Φ(s) := λs or λs+ represents the restraining force experienced by
both the bridge deck and the suspension cable as transmitted through the hangers, thereby producing
the coupling between the two, s+ := max{0, s}, and λ > 0 is the stiffness coefficient of the hangers
connecting the bridge deck to the suspension cable. The terms µ1ut and µ2ut denote the weak damping,
and µ1, µ2 > 0 are the damping coefficients. The quantities m1,m2 > 0 are the masses per unit length of
the bridge deck and the suspension cable, respectively. The constant K is the flexural rigidity of the
bridge deck, and G(0) > 0 accounts for the tensile strength of the suspension cable with viscoelasticity,
where G′(t) := −g(t) ≤ 0 and lim

t→∞
G(t) > 0. In addition, h1, h2 ∈ L2(Ω) stand for the external forces

acting on the bridge deck and the suspension cable, respectively. The memory kernel g and the nonlinear
source terms f1, f2 will be specified later. For more details about the physical background of this kind
of model, we refer the reader to [6, 7].

Deformations and oscillations of suspension bridges have enjoyed growing attention. Beams and
rods have been used to simulate deformations and oscillations of suspension bridges. In this respect,
we refer the reader to [6–20] and the references therein. Meanwhile, various plate equations have been
employed to model deformations and oscillations of suspension bridges, see, e.g., [1, 21–29] and the
references therein. These works are very interesting and make us better understand the behavior of
suspension bridges to a certain extent. Next, in order to explain the motivation of this paper, we restrict
our attention to beam and rod models considering the roles of the hangers.

Lazer and McKenna [15] investigated the following beam equation:

utt + Kuxxxx + λu+ = sin
πx
l

(S + εh(t)),

where λu+ denotes the restoring force provided by the hangers, S is a large constant, ε is a small
parameter, and h(t) is a periodic function. They obtained the existence of multiple periodic solutions.
McKenna and Walter [19] considered a beam equation of the form

utt + Kuxxxx + λu+ = 1 + εh, (1.4)
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where h = h(x, t) is a periodic external force. For certain ranges of λ, they also derived the existence
of multiple periodic solutions. In the case where K = 1 and εh = 0 (namely εh is ignored), McKenna
and Walter [20] dealt with travelling wave solutions to Eq. (1.4). McKenna [17] suggested a model that
treats the cross section of the suspension bridge as a rod suspended from springs at both sides, and is free
to move vertically and to rotate about its center of gravity. [17, 18] simulated the sudden transition from
vertical to torsional oscillations, which was the crucial event in the Tacoma Narrows Bridge collapse.
Arioli and Gazzola [9] suggested a multiple rods model for the oscillations of suspension bridges, and
used the stability of a fixed point of a suitable Poincaré map to provide a new explanation for the sudden
appearance of torsional oscillations.

The above works made full use of the bridge deck to study deformations and oscillations of suspension
bridges. Considering the suspension cable into the whole mechanical structure, Lazer and McKenna [7]
proposed the following coupled beam-string model:m1utt + Kuxxxx + µ1ut + λ(u − v)+ = h1(x),

m2vtt −Gvxx + µ2ut − λ(u − v)+ = εh2,

and established the existence and multiplicity of periodic solutions. Ahmed and Harbi [6] investigated
several variations of the model m1utt + Kuxxxx + Φ(u − v) = h1,

m2vtt −Gvxx − Φ(u − v) = h2.

They dealt with the stability and dynamic behavior of the solutions, and provided simulation results and
physical interpretations. Dell’Oro et al. [13] studied the linear systemutt + uxxxx + µ1ut + λ(u − v) + ω(ut − vt) = 0,

εvtt − vxx − λ(u − v) − ω(ut − vt) = 0,

and discussed the decay of the solution semigroup in dependence of the nonnegative parameters λ and ω.
An attractor is an effective way to describe the long-time dynamics of solutions to nonlinear evolution

equations. In autonomous infinite-dimensional dynamical systems, the existence of a global attractor can
be derived by verifying the existence of a bounded absorbing set and the compactness of the semigroup.
The commonly used compactness criterions mainly include: uniform compactness [30], asymptotic
compactness [31, 32], asymptotic smoothness [33], and Condition (C) [34], which could be chosen
according to the characteristics of the problem under consideration. Ma and Zhong [16] studied a
coupled beam-string system:utt + Kuxxxx + µ1ut + λ(u − v)+ + f1(u) = h1(x),

vtt −Gvxx + µ2vt − λ(u − v)+ + f2(v) = h2(x).

They obtained the global existence and uniqueness of solutions, and derived the existence of a global
attractor by verifying the existence of a bounded absorbing set and Condition (C). Taking into account
the midplane stretching of the bridge deck due to its elongation, Bochicchio et al. [12] handled the
following system: utt + uxxxx +

(
p −

∫ l

0
u2

x dx
)

uxx + ut + λ(u − v)+ = h1(x),

vtt −Gvxx + vt − λ(u − v)+ = h2(x).
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They proved the existence of a global attractor with optimal regularity by verifying the existence
of a bounded absorbing set and asymptotic compactness, and gave its characterization in terms of
the corresponding stationary problem. Subsequently, Aouadi [8] studied the following system with
fractional damping:m1utt + Kuxxxx +

(
p − ε

∫ l

0
u2

x dx
)

uxx + (−∂xx)rut + λ(u − v)+ + f1(u, v) = 0,

m2vtt −Gvxx + (−∂xx)rvt − λ(u − v)+ + f2(u, v) = 0,

where 0 < ε ≤ 1 is a perturbed parameter, and 0 < r < 1 is a fractional exponent. They obtained
the global well-posedness and regularity of mild solutions, and derived the existence of a global
attractor with finite fractal dimension by verifying the existence of a bounded absorbing set and
asymptotic smoothness. Moreover, they analyzed the upper-semicontinuity of global attractors in
terms of ε and r, respectively.

The purpose of the present paper is to discuss the long-time dynamics for system (1.1). The main
features are summarized as follows.

First of all, from the perspective of the restraining force Φ, system (1.1) actually includes two models.
The physical meaning of the nonlinear case Φ(s) := λs+ is obvious, while the linear case Φ(s) := λs is
what is desirable for engineering structures (see [6]). We are able to handle the two cases simultaneously.

Second, our model is more realistic. Modern suspension cables are generally made of high-strength
steel wires with multiple strands. As is well known, alloy materials are not absolute elastic solids, and
their internal structure has a certain degree of viscoelasticity. In the vibration process or under high
temperature, the viscoelasticity of alloy materials is dominant compared with the elasticity. Therefore,
for the reality of the model, we consider the viscoelasticity of the suspension cable in the oscillations of
suspension bridges. Regarding the suspension cable as the string, we can understand the appearance of
Eq. (1.1)2, and this type of viscoelastic equation has been widely investigated (see, e.g., [35–43] and the
references therein).

Last but not least, the present paper aims to employ the gradient property and quasi-stability of the
dynamical system discussed by Chueshov and Lasiecka [44] to handle the existence of a global attractor
with finite fractal dimension for system (1.1). In the gradient dynamical systems, the quasi-stability can
conveniently induce the asymptotic smoothness, which further allows us to readily obtain the existence
of the global attractor. In this process, without additional efforts, the topological structure and finite
fractal dimension of the global attractor can be obtained along with the existence. Moreover, it is
unnecessary to verify the existence of a bounded absorbing set.

The rest of this paper is organized as follows. In Section 2, we first transform (1.1)–(1.3) into an
equivalent problem. Moreover, we display some notations and assumptions on the memory kernel g
and the nonlinear source terms f1 and f2. Finally, we state the main results of our paper. In Section 3,
we prove the global well-posedness and regularity of mild solutions, namely, our first main result. In
Section 4, we prove the existence of a global attractor with finite fractal dimension, namely, the other
main result.
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2. Preliminaries and main results

2.1. Reformulation of the problem

Since the results of this paper are independent of the coefficients in system (1.1), we take all the
coefficients as 1 except for G(0) = 1 +

∫ ∞
0

g(t) dt for the sake of convenience.
Regarding the evolution equations with memory like (1.1)2, to obtain a solution semigroup, the

so-called history space framework suggests to introduce an auxiliary variable as an additional component
of the phase space so that the problem under consideration could be turned into an autonomous system.
The pioneering idea goes back to Dafermos [37]. Here, also following [35, 36, 39, 42, 43], we define an
auxiliary variable

w := wt(x, τ) = v(x, t) − v(x, t − τ), x ∈ Ω, τ > 0, t ≥ 0. (2.1)

Then the memory term in (1.1)2 can be written in the form∫ t

−∞

g(t − τ)vxx(τ) dτ =

∫ ∞

0
g(τ)vxx(t − τ) dτ

= (G(0) − 1)vxx −

∫ ∞

0
g(τ)wxx(τ) dτ.

Consequently, (1.1) is transformed into the following equivalent system:
utt + uxxxx + ut + Φ(u − v) + f1(u, v) = h1(x), x ∈ (0, l), t > 0,

vtt − vxx −

∫ ∞

0
g(τ)wxx(τ) dτ + vt − Φ(u − v) + f2(u, v) = h2(x), x ∈ (0, l), t > 0,

wt = vt − wτ, x ∈ (0, l), τ > 0, t > 0,

(2.2)

with boundary conditions
u(0, t) = u(l, t) = uxx(0, t) = uxx(l, t) = 0, t > 0,
v(0, t) = v(l, t) = 0, t > 0,
wt(0, τ) = wt(l, τ) = 0, τ > 0, t > 0,

(2.3)

and initial conditions 
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),
v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, l),
w0(x, τ) = w0(x, τ), x ∈ (0, l), τ > 0,

(2.4)

where

v0(x) := v0(x, 0), x ∈ (0, l),
w0(x, τ) := v0(x, 0) − v0(x,−τ), x ∈ (0, l), τ > 0.

2.2. Notations and assumptions

Throughout the paper, for the sake of simplicity, we denote

‖ · ‖p := ‖ · ‖Lp(0,l), ‖ · ‖ := ‖ · ‖2.
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Moreover, 〈·, ·〉 stands for the L2-inner product, 〈·, ·〉∗ denotes a duality pairing between a space and its
dual space, C represents a generic positive constant that may be different even in the same formula,
C(·, · · · , ·) stands for a positive constant depending on the quantities appearing in the parentheses, and
C1, C2 represent the embedding constants for inequalities

‖u‖ ≤ C1‖ux‖, ‖u‖ ≤ C2‖uxx‖.

Now we give the following assumptions on the memory kernel g.
(A1): g ∈ C1(R+) ∩ L1(R+), g(t) ≥ 0, and g′(t) ≤ 0 for all t ∈ [0,∞), and

k :=
∫ ∞

0
g(t) dt.

Concerning the nonlinear source terms f1 and f2, we adopt the assumptions in [8] with a slight
modification.

(A2): There exist a function F ∈ C2(R2) and two constants a > 0, p > 1 such that ∇F = ( f1, f2) and

|∇ fi(u, v)| ≤ a
(
|u|p−1 + |v|p−1 + 1

)
, u, v ∈ R. (2.5)

Moreover, there exist constants

0 ≤ η < min
{

1
C2

1

,
1
C2

2

}
and b > 0 such that

F(u, v) ≥ −
η

2

(
u2 + v2

)
− b (2.6)

and
∇F(u, v) · (u, v) ≥ −η

(
u2 + v2

)
− b. (2.7)

2.3. Statement of main results

We introduce a weighted L2-space

Lg := L2
g(R+; H1

0(0, l)) =

{
w : R+ → H1

0(0, l)
∣∣∣∣∣∫ ∞

0
g(τ)‖wx(τ)‖2 dτ < ∞

}
,

which is a Hilbert space endowed with the inner product

〈w, ξ〉g :=
∫ ∞

0
g(τ)〈wx(τ), ξx(τ)〉 dτ

and the norm
‖w‖2g :=

∫ ∞

0
g(τ)‖wx(τ)‖2 dτ.

In order to exhibit our main results, we define the phase space

Y :=
(
H2(0, l) ∩ H1

0(0, l)
)
× H1

0(0, l) × L2(0, l) × L2(0, l) × Lg

with the norm
‖(u, v, ϕ, φ,w)‖2Y := ‖uxx‖

2 + ‖vx‖
2 + ‖ϕ‖2 + ‖φ‖2 + ‖w‖2g.

The main results of our paper are stated as follows.
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Theorem 2.1 (Global well-posedness of mild solutions). If (u0, v0, u1, v1,w0) ∈ Y, then problem
(2.2)–(2.4) admits a unique mild solution (u, v, ut, vt,w) ∈ C([0,∞); Y) depending continuously
on the initial data. If (u0, v0, u1, v1,w0) ∈ D(L), then the mild solution has higher regularity
(u, v, ut, vt,w) ∈ C([0,∞); D(L)).

In Theorem 2.1, D(L) will be stated in detail in Section 3.
Define an operator S (t) : Y → Y by

S (t)y0 := (u(t), v(t), ut(t), vt(t),wt), y0 := (u0, v0, u1, v1,w0).

Then it is easy to see from Theorem 2.1 that {S (t)}t≥0 is a C0-semigroup generated by problem
(2.2)–(2.4).

Theorem 2.2 (Existence of global attractors). In addition to the assumptions of Theorem 2.1, suppose
that there exists a constant ρ > 0 such that g′(t) +ρg(t) ≤ 0 for all t ∈ [0,∞). Then the dynamical system
(Y, S (t)) corresponding to problem (2.2)–(2.4) possesses a compact global attractor A =Mz(N) with
finite fractal dimension, where N is the set of stationary points of the dynamical system (Y, S (t)), that is,

N :=

(u, v, 0, 0, 0)

∣∣∣∣∣∣∣
uxxxx + Φ(u − v) + f1(u, v) = h1,

−vxx − Φ(u − v) + f2(u, v) = h2

 ,
andMz(N) is an unstable manifold emanating from the set N as a set of all y0 ∈ Y such that there
exists a full trajectory {z(t)|t ∈ R} with the properties z(0) = y0 and lim

t→−∞
distY(z(t),N) = 0.

Remark 2.3 (Finite Hausdorff dimension). From Theorem 2.2, we readily see that the global attractor
for problem (2.2)–(2.4) has finite Hausdorff dimension. In fact, the Hausdorff dimension does not exceed
the fractal one (see, e.g., [44, Section 7.3]).

Remark 2.4 (Extensions of main results). In order to more realistically show the beam-string model for
the oscillations of suspension bridges, we restrict our attention to the one-dimensional case. Here we
would like to mention that Theorems 2.1 and 2.2 can be extended to the higher-dimensional case by
adjusting the growth exponent p in (A2). In addition, even if the restraining force Φ(u− v) is replaced by
a nonlocal one a(x)Φ(u − v) in system (2.2), Theorems 2.1 and 2.2 remain valid, provided the function
a(x) ≥ 0 is bounded measurable.

3. Proof of Theorem 2.1

As in [36, 39, 40, 42, 43], we consider a linear operator T : D(T ) ⊂ Lg → Lg given by Tw := −wτ,
which is the infinitesimal generator of a C0-semigroup, where domain

D(T ) := {w ∈ Lg|Tw ∈ Lg, w(0) = 0}.

In this section, we denote y(t) := (u(t), v(t), ϕ(t), φ(t),wt) with ϕ(t) := ut(t) and φ(t) := vt(t). Then
problem (2.2)–(2.4) can be rewritten as the following equivalent Cauchy problem:

d
dt

y = Ly + F (y), t > 0, (3.1)
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y(0) = y0, (3.2)

where the linear operator L : D(L) ⊂ Y → Y is defined by

Ly :=



ϕ

φ

−uxxxx − ϕ

vxx +

∫ ∞

0
g(τ)wxx(τ) dτ − φ

Tw + φ


with domain

D(L) :=
{
y ∈ Y

∣∣∣∣∣ϕ ∈ H2(0, l) ∩ H1
0(0, l), φ ∈ H1

0(0, l), uxxxx ∈ L2(0, l),

vxx +

∫ ∞

0
g(τ)wxx(τ) dτ ∈ L2(0, l), w ∈ D(T )

}
,

and F : Y → Y is defined by

F (y) :=


0
0

−Φ(u − v) − f1(u, v) + h1

Φ(u − v) − f2(u, v) + h2

0


. (3.3)

Definition 3.1 (Mild solutions). If L is the infinitesimal generator of a C0-semigroup of contractions
etL on Y, and y0 ∈ Y, then the function y ∈ C([0,T ); Y) given by

y(t) = etLy0 +

∫ t

0
e(t−τ)LF (y(τ)) dτ (3.4)

is called a mild solution to problem (3.1)–(3.2) on [0,T). Here, T is the maximum existence time of the solution.

Remark 3.2 (Relationship between mild and weak solutions). According to [45], any mild solution to
problem (3.1)–(3.2) is also a weak solution, i.e., a solution satisfies (3.1) in the sense of distribution.
The concepts of these two solutions are equivalent when F ≡ 0.

In the sequel we shall apply the abstract results [46, and Theorems 6.1.4 and 6.1.5] to prove local
existence and uniqueness of mild solutions to problem (3.1)–(3.2). To this end, we first verify the
conditions for these two abstract results. Thus we need to demonstrate that L is the infinitesimal
generator of a C0-semigroup of contractions etL on Y , and F is locally Lipschitz.

Lemma 3.3. The operator L is the infinitesimal generator of a C0-semigroup of contractions etL on Y.

Proof. A direct calculation yields

〈Ly, y〉Y = −‖ϕ‖2 − ‖φ‖2 + 〈Tw,w〉g (3.5)
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for all y ∈ D(L). For the third term on the right-hand side of (3.5), we have

〈Tw,w〉g = −
1
2

∫ ∞

0

∂

∂τ

(
g(τ)‖wx(τ)‖2

)
dτ +

1
2

∫ ∞

0
g′(τ)‖wx(τ)‖2 dτ.

In view of (2.1), we have lim
τ→0
‖wx(τ)‖2 = 0. From (A1) we are in a position to get lim

τ→∞
g(τ) = 0. Hence

〈Tw,w〉g =
1
2

∫ ∞

0
g′(τ)‖wx(τ)‖2 dτ.

Again from (A1) we have
〈Tw,w〉g ≤ 0. (3.6)

Thus we infer from (3.5) and (3.6) that 〈Ly, y〉Y ≤ 0, which shows that L is dissipative in Y .
Next we prove that L is maximal. To achieve this, it suffices to show that, for any ŷ = (û, v̂, ϕ̂, φ̂, ŵ) ∈

Y , there exists a solution y ∈ D(L) to (I − L)y = ŷ, i.e.,

u − ϕ = û,

v − φ = v̂,

2ϕ + uxxxx = ϕ̂,

2φ − vxx −

∫ ∞

0
g(τ)wxx(τ) dτ = φ̂,

w − Tw − φ = ŵ.

(3.7)

Multiplying (3.7)5 by eτ and integrating over [0, τ], we deduce from w(0) = 0 that

w(τ) =
(
1 − e−τ

)
φ +

∫ τ

0
es−τŵ(s) ds. (3.8)

Using (3.7)1 in (3.7)3 and substituting (3.8) and (3.7)2 into (3.7)4, we obtain2u + uxxxx = ϑ1,

2v − mvxx = ϑ2,
(3.9)

where
ϑ1 := ϕ̂ + 2û ∈ L2(0, l),

ϑ2 := φ̂ + 2v̂ −
∫ ∞

0
g(τ)

(
1 − e−τ

)
dτv̂xx +

∫ ∞

0

∫ τ

0
g(τ)es−τŵxx(s) dsdτ

and
m := 1 +

∫ ∞

0
g(τ)

(
1 − e−τ

)
dτ.

In order to ensure that the Lax-Milgram theorem can be applied to show the existence of y ∈ D(L), we
now prove ϑ2 ∈ H−1(0, l), where H−1(0, l) is the dual space of H1

0(0, l). Indeed, for any ξ ∈ H1
0(0, l) with

‖ξx‖ ≤ 1, we have∣∣∣∣∣∣
〈∫ ∞

0

∫ τ

0
g(τ)es−τŵxx(s) dsdτ, ξ

〉
∗

∣∣∣∣∣∣ =

∣∣∣∣∣∫ ∞

0

∫ τ

0
g(τ)es−τ〈ŵx(s), ξx〉∗ dsdτ

∣∣∣∣∣
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≤

∫ ∞

0

∫ τ

0
g(τ)es−τ‖ŵx(s)‖ dsdτ

=

∫ ∞

0

∫ ∞

s
g(τ)es−τ‖ŵx(s)‖ dτds.

Due to the fact that ∫ ∞

s
g(τ)es−τ dτ ≤ g(s),

we further deduce from Schwarz’s inequality and (A1) that∣∣∣∣∣∣
〈∫ ∞

0

∫ τ

0
g(τ)es−τŵxx(s) dsdτ, ξ

〉
∗

∣∣∣∣∣∣ ≤
∫ ∞

0
g(s)‖ŵx(s)‖ ds (3.10)

≤ k
1
2 ‖ŵ‖g

<∞.

This implies that ∫ ∞

0

∫ τ

0
g(τ)es−τŵxx(s) dsdτ ∈ H−1(0, l).

Hence ϑ2 ∈ H−1(0, l).
To treat system (3.9), we consider a variational problem:

B((u, v), (ū, v̄)) = G((ū, v̄)),

where the bilinear form B :
((

H2(0, l) ∩ H1
0(0, l)

)
× H1

0(0, l)
)2
→ R is defined by

B((u, v), (ū, v̄)) :=2
∫ l

0
(uū + vv̄) dx +

∫ l

0
uxxūxx dx + m

∫ l

0
vxv̄x dx,

and the linear form G :
(
H2(0, l) ∩ H1

0(0, l)
)
× H1

0(0, l)→ R is defined by

G(ū, v̄) :=
∫ l

0
ϑ1ū dx +

∫ l

0
ϑ2v̄ dx.

It is easy to check that B is continuous and coercive. Moreover, G is continuous. Therefore, ac-
cording to the Lax-Milgram theorem, we infer that system (3.9) admits a unique weak solution
(u, v) ∈

(
H2(0, l) ∩ H1

0(0, l)
)
× H1

0(0, l). From (3.7)1–(3.7)4 we further have ϕ ∈ H2(0, l) ∩ H1
0(0, l),

φ ∈ H1
0(0, l), uxxxx ∈ L2(0, l), and

vxx +

∫ ∞

0
g(τ)wxx(τ) dτ ∈ L2(0, l).

In view of (3.8), it follows that

‖wx(τ)‖2 ≤ 2‖φx‖
2 + 2

∫ τ

0
es−τ‖ŵx(s)‖2 ds.
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Hence, by the arguments similar to the proof of (3.10), we can derive∫ ∞

0
g(τ)‖wx(τ)‖2 dτ ≤ 2k‖φx‖

2 + 2
∫ ∞

0

∫ τ

0
g(τ)es−τ‖ŵx(s)‖2 dsdτ

≤ 2k‖φx‖
2 + 2‖ŵ‖2g

<∞,

which means w ∈ Lg. Thus we infer from (3.7)5 that Tw ∈ Lg, and so w ∈ D(T ). As a result, we have
demonstrated that there exists y ∈ D(L) satisfying (I − L)y = ŷ. Then this lemma immediately follows
from the Lumer-Phillips theorem [46].

Concerning the operator F given by (3.3), we have the following conclusion.

Lemma 3.4. The operator F is locally Lipschitz.

Proof. Let ‖y‖Y , ‖ȳ‖Y ≤ R, where ‖ȳ‖2Y := ‖ūxx‖
2 + ‖v̄x‖

2 + ‖ϕ̄‖2 + ‖φ̄‖2 + ‖w̄‖2g, ȳ := (ū, v̄, ϕ̄, φ̄, w̄), and
R > 0. Then

‖F (ȳ) − F (y)‖2Y =

∫ l

0
|Φ(ū, v̄) − Φ(u, v) + f1(ū, v̄) − f1(u, v)|2 dx

+

∫ l

0
|Φ(ū, v̄) − Φ(u, v) − f2(ū, v̄) + f2(u, v)|2 dx

≤ 2
(
2
∫ l

0
|Φ(ū, v̄) − Φ(u, v)|2 dx +

∫ l

0
| f1(ū, v̄) − f1(u, v)|2 dx

+

∫ l

0
| f2(ū, v̄) − f2(u, v)|2 dx

)
.

(3.11)

We claim that
|Φ(ū − v̄) − Φ(u − v)|2 ≤ |(ū − u) − (v̄ − v)|2. (3.12)

Indeed, in the case where Φ(s) := s+, we have

|Φ(ū − v̄) − Φ(u − v)|2 ≤ |((ū − u) − (v̄ − v))+|2

≤ |(ū − u) − (v̄ − v)|2.

In the case where Φ(s) := s, (3.12) remains valid.
By virtue of (2.5) in (A2), there exist constants 0 < θi < 1 (i = 1, 2) such that

| fi(ū, v̄) − fi(u, v)|2 = |∇ fi(θi(ū, v̄) + (1 − θi)(u, v))|2|(ū, v̄) − (u, v)|2

≤ C
(
|u|2p−2 + |v|2p−2 + |ū|2p−2 + |v̄|2p−2 + 1

) (
|ū − u|2 + |v̄ − v|2

)
. (3.13)

Inserting (3.12) and (3.13) into (3.11), we get

‖F (ȳ) − F (y)‖2Y ≤ C
∫ l

0

(
|u|2p−2 + |v|2p−2 + |ū|2p−2 + |v̄|2p−2 + 1

) (
|ū − u|2 + |v̄ − v|2

)
dx.
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Hence, by applying Hölder’s inequality with (p − 1)/p + 1/p = 1, we have

‖F (ȳ) − F (y)‖2Y ≤ C
(
‖u‖2p−2

2p + ‖v‖2p−2
2p + ‖ū‖2p−2

2p + ‖v̄‖2p−2
2p + 1

) (
‖ū − u‖22p + ‖v̄ − v‖22p

)
.

Using the Sobolev inequalities for the embeddings
(
H2(0, l) ∩ H1

0(0, l)
)
↪→ L2p(0, l) and H1

0(0, l) ↪→
L2p(0, l), we can obtain

‖F (ȳ) − F (y)‖2Y ≤ C
(
‖uxx‖

2p−2 + ‖vx‖
2p−2 + ‖ūxx‖

2p−2 + ‖v̄x‖
2p−2 + 1

)
·
(
‖ūxx − uxx‖

2 + ‖v̄x − vx‖
2
)
.

(3.14)

Therefore,

‖F (ȳ) − F (y)‖2Y ≤ C
(
‖y‖2p−2

Y + ‖ȳ‖2p−2
Y + 1

)
‖ȳ − y‖2Y

≤ C(R)‖ȳ − y‖2Y .

The proof of this lemma is complete.

Now we define the total energy function associated with problem (2.2)–(2.4):

E(t) :=
1
2
‖ut(t)‖2 +

1
2
‖vt(t)‖2 +

1
2
‖uxx(t)‖2 +

1
2
‖vx(t)‖2 +

1
2
‖wt‖2g +

1
2
‖Φ(u(t) − v(t))‖2

+

∫ l

0
F(u(t), v(t)) dx −

∫ l

0
(h1u(t) + h2v(t)) dx, t ∈ [0,T ).

(3.15)

The following lemma provides the properties of E(t).

Lemma 3.5. Let y ∈ C([0,T ); D(L)) be a mild solution to problem (2.2)–(2.4) with y0 ∈ D(L). Then
E(t) is non-increasing for all t ∈ [0,T ), and

E′(t) = −‖ut(t)‖2 − ‖vt(t)‖2 +
1
2

∫ ∞

0
g′(τ)‖wt

x(τ)‖2 dτ. (3.16)

Moreover, there exist constants Mi > 0 (i = 1, 2, 3, 4) such that for all t ∈ [0,T ),

E(t) ≥
1
2
‖ut(t)‖2 +

1
2
‖vt(t)‖2 + M1‖uxx(t)‖2 + M2‖vx(t)‖2 +

1
2
‖wt‖2g

+
1
2
‖Φ(u(t) − v(t))‖2 − M3‖h1‖

2 − M4‖h2‖
2 − bl.

(3.17)

Proof. We multiply (2.2)1 by ut(t) and (2.2)2 by vt(t), respectively. Then, by integrating by parts over
(0, l) and using (2.2)3, it can be seen that (3.16) holds.

For the third term on the right-hand side of (3.16), we see from (A1) that∫ ∞

0
g′(τ)‖wt

x(τ)‖2 dτ ≤ 0.

Hence E′(t) ≤ 0, which means that E(t) is non-increasing for all t ∈ [0,T ).
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Next we prove (3.17). Concerning the seventh term on the right-hand side of (3.15), it follows from
(2.6) in (A2) that ∫ l

0
F(u(t), v(t)) dx ≥ −

η

2

(
‖u(t)‖2 + ‖v(t)‖2

)
− bl

≥ −
ηC2

2

2
‖uxx(t)‖2 −

ηC2
1

2
‖vx(t)‖2 − bl. (3.18)

For the last term on the right-hand side of (3.15), we deduce from Schwarz’s inequality and Cauchy’s
inequalities with ε1, ε2 > 0 that

−

∫ l

0
(h1u(t) + h2v(t)) dx ≥ − ‖h1‖‖u(t)‖ − ‖h2‖‖v(t)‖

≥ − ε1C
2
2‖uxx(t)‖2 −

1
4ε1
‖h1‖

2 − ε2C
2
1‖vx(t)‖2 −

1
4ε2
‖h2‖

2. (3.19)

Consequently, by choosing sufficiently small ε1 and ε2 such that

M1 :=
1
2
−
ηC2

2

2
− ε1C

2
2 > 0,

M2 :=
1
2
−
ηC2

1

2
− ε2C

2
1 > 0,

M3 :=
1

4ε1
, M4 :=

1
4ε2

,

estimate (3.17) follows from (3.15), (3.18), and (3.19).

Proof of Theorem 2.1. According to [46, Theorem 6.1.4], and Lemmas 3.3 and 3.4, problem (3.1)–(3.2)
with y0 ∈ Y admits a unique mild solution y ∈ C([0,T ); Y). In addition, we learn from [46, Theorem
6.1.5] that if y0 ∈ D(L), then the mild solution has higher regularity y ∈ C([0,T ); D(L)).

For the solution with higher regularity, we infer from Lemma 3.5 that E(t) ≤ E(0) for all t ∈ [0,T ).
Hence we conclude from (3.17) in Lemma 3.5 that

‖y(t)‖2Y ≤ C
(
E(0) + M3‖h1‖

2 + M4‖h2‖
2 + bl

)
(3.20)

for all t ∈ [0,T ). Thus, by the continuation principle, we have T = ∞, i.e., the solution is global. By the
density arguments [47–49], estimate (3.20) still holds for the mild solution y ∈ C([0,T ); Y) to problem
(3.1)–(3.2), and so the mild solution is also global.

Next we prove the continuous dependence of solutions on the initial data. Suppose that y and ȳ are
two mild solutions to problem (3.1)–(3.2) with the initial data y0, ȳ0 ∈ Y , respectively. From (3.4) we
have

‖ȳ(t) − y(t)‖Y ≤ ‖etL(ȳ0 − y0)‖Y +

∫ t

0
‖e(t−τ)L(F (ȳ(τ)) − F (y(τ)))‖Y dτ.

By Lemma 3.4 we can get

‖ȳ(t) − y(t)‖Y ≤ ‖ȳ0 − y0‖Y + C
∫ t

0
‖ȳ(τ) − y(τ)‖Y dτ,
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which together with Gronwall’s inequality gives

‖ȳ(t) − y(t)‖Y ≤
(
1 + CteCt

)
‖ȳ0 − y0‖Y (3.21)

for all t ∈ [0,T0] with any T0 > 0. Thus

‖ȳ(t) − y(t)‖Y ≤ C(T0)‖ȳ0 − y0‖Y .

The proof of Theorem 2.1 is finished.

By the density arguments, we have the following corollary, which will be used in the next section.

Corollary 3.6. Lemma 3.5 remains valid for the mild solution y ∈ C([0,∞); Y) to problem (2.2)–(2.4).

4. Proof of Theorem 2.2

4.1. Technical approach

We shall employ the gradient property and quasi-stability of the dynamical system to perform the
proof of Theorem 2.2. For the convenience of the reader, we first introduce several definitions and
properties on the gradient dynamical system and the quasi-stability in [44], which will play a crucial
role in the proof of Theorem 2.2.

Generally, in terms of [44, Definition 7.5.3], a gradient dynamical system is defined as follows.

Definition 4.1. A dynamical system (Y, S (t)) is said to be gradient if there exists a strict Lyapunov
functional L for (Y, S (t)) on the whole phase space Y, that is,

(i) the function t 7→ L(S (t)y0) is non-increasing for any y0 ∈ Y;
(ii) the equation L(S (t)y0) = L(y0) for all t > 0 and some y0 ∈ Y implies that S (t)y0 = y0 for all t > 0.

Under appropriate conditions, the existence and structure of global attractors for a gradient and
asymptotically smooth dynamical system can be provided by [44, Corollary 7.5.7], namely, the
following theorem.

Theorem 4.2. Assume that (Y, S (t)) is a gradient and asymptotically smooth dynamical system, and its
Lyapunov functional L(χ) is bounded from above on any bounded subset of Y. In addition, assume that
the set LR := {χ ∈ Y |L(χ) ≤ R} is bounded for every R. If the set N of stationary points of (Y, S (t)), that
is,

N := {ν ∈ Y |S (t)ν = ν for all t ≥ 0},

is bounded, then (Y, S (t)) possesses a compact global attractor A =Mz(N).

In order to better introduce the quasi-stability of a dynamical system, we display the following assumptions.
(A): Let U, V , and W be three reflexive Banach spaces with U compactly embedded in V . We endow

the space Y := U × V ×W with the norm

‖(u(t), ut(t), v(t))‖2Y := ‖(u(t)‖2U + ‖ut(t)‖2V + ‖v(t)‖2W , (u(t), ut(t), v(t)) ∈ Y.

We assume that (Y, S (t)) is a dynamical system on Y with the evolution operator of the form

S (t)y0 := (u(t), ut(t), v(t)), y0 := (u0, u1, v0) ∈ Y,
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where
u ∈ C(R+; U) ∩C1(R+; V), v ∈ C(R+; W).

The definition of the quasi-stability of a dynamical system is given by [44, Definition 7.9.2], namely,
the following definition.

Definition 4.3. The dynamical system (Y, S (t)) satisfying (A) is said to be quasi-stable on a set B ⊂ Y if
there exist a compact seminorm nU(·) on the space U and non-negative functions ςi(t) (i = 1, 2, 3) such
that

(i) ς1(t) and ς3(t) are locally bounded on [0,∞);
(ii) ς2 ∈ L1(R+) and lim

t→∞
ς2(t) = 0;

(iii) the following relations,
‖S (t)ȳ0 − S (t)y0‖

2
Y ≤ ς1(t)‖ȳ0 − y0‖

2
Y (4.1)

and
‖S (t)ȳ0 − S (t)y0‖

2
Y ≤ ς2(t)‖ȳ0 − y0‖

2
Y + ς3(t) sup

0<s<t
(nU(ū(s) − u(s)))2 , (4.2)

hold for every y0, ȳ0 ∈ B and t > 0, where S (t)ȳ0 := (ū(t), ūt(t), v̄(t)) and ȳ0 := (ū0, ū1, v̄0).

A quasi-stable dynamical system possesses the following properties from [44, Proposition 7.9.4, and
Theorem 7.9.6].

Proposition 4.4. Let (A) be fulfilled. Assume that the dynamical system (Y, S (t)) is quasi-stable on
every bounded positively invariant set B ⊂ Y. Then (Y, S (t)) is asymptotically smooth.

Theorem 4.5. Let (A) be fulfilled. Assume that the dynamical system (Y, S (t)) possesses a compact
global attractor A and is quasi-stable on A. Then A has finite fractal dimension.

4.2. Our proof

In order to verify that the dynamical system (Y, S (t)) corresponding to problem (2.2)–(2.4) is gradient,
we need to seek a strict Lyapunov functional L in terms of Definition 4.1.

Lemma 4.6 (Gradient property). Under the assumptions of Theorem 2.1, the dynamical system (Y, S (t))
corresponding to problem (2.2)–(2.4) is gradient.

Proof. For any y ∈ Y , we take L(S (t)y) as E(t). Then we see from Lemma 3.5 that L(S (t)y) is
non-increasing.

Let L(S (t)y) = L(y) for all t > 0 and some y ∈ Y . Then, by Corollary 3.6, we can integrate (3.16)
with respect to t from 0 to t to reach

E(t) +

∫ t

0

(
‖us(s)‖2 + ‖vs(s)‖2

)
ds −

1
2

∫ t

0

∫ ∞

0
g′(τ)‖ws

x(τ)‖2 dτ ds = E(0).

Consequently, ∫ t

0

(
‖us(s)‖2 + ‖vs(s)‖2

)
ds −

1
2

∫ t

0

∫ ∞

0
g′(τ)‖ws

x(τ)‖2 dτ ds = 0,
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which together with (A1) gives ∫ t

0

(
‖us(s)‖2 + ‖vs(s)‖2

)
ds ≤ 0.

Thus ut(t) = 0 and vt(t) = 0 for all t ≥ 0, which implies that u(t) = u0 and v(t) = v0 for all t ≥ 0. From
(2.1) we further get wt = 0 for all t ≥ 0. Hence (u(t), v(t), ut(t), vt(t),wt) = (u0, v0, 0, 0, 0) for all t ≥ 0,
i.e., S (t)y = y for all t ≥ 0. By Definition 4.1 we easily see that (Y, S (t)) is gradient.

To show that the dynamical system (Y, S (t)) corresponding to problem (2.2)–(2.4) is quasi-stable,
we first use the perturbed energy method employed by [8, 12, 27, 39, 49], with some modifications, to
establish the following stabilizability estimate.

Lemma 4.7 (Stabilizability estimate). Under the assumptions of Theorem 2.2, for a given bounded set
B ⊂ Y, there exist constants α, β > 0 and σ > 0 depending on B such that

‖S (t)ȳ0 − S (t)y0‖
2
Y ≤ αe−βt‖ȳ0 − y0‖

2
Y + σ

∫ t

0
e−β(t−s)

(
‖ū(s) − u(s)‖22p + ‖v̄(s) − v(s)‖22p

)
ds (4.3)

for every y0, ȳ0 ∈ B and t > 0, where S (t)ȳ0 := (ū(t), v̄(t), ūt(t), v̄t(t), w̄t) and ȳ0 := (ū0, v̄0, ū1, v̄1, w̄0).

Proof. Set ũ := ū − u, ṽ := v̄ − v, and w̃ := w̄ − w. Then, by Remark 3.2, we know that for any
ξ1 ∈ H2(0, l) ∩ H1

0(0, l), ξ2 ∈ H1
0(0, l), ξ3 ∈ Lg, and a.e. t > 0, (ũ, ṽ, ũt, ṽt, w̃) satisfies

〈ũtt(t), ξ1〉∗ + 〈ũxx(t), ξ1xx〉 + 〈ũt(t), ξ1〉 + 〈Φ(ū(t) − v̄(t)) − Φ(u(t) − v(t)), ξ1〉

+〈 f1(ū(t), v̄(t)) − f1(u(t), v(t)), ξ1〉 = 0,
〈ṽtt(t), ξ2〉∗ + 〈ṽx(t), ξ2x〉 + 〈w̃t, ξ2〉g + 〈ṽt(t), ξ2〉 − 〈Φ(ū(t) − v̄(t)) − Φ(u(t) − v(t)), ξ2〉

+〈 f2(ū(t), v̄(t)) − f2(u(t), v(t)), ξ2〉 = 0,
〈w̃t

t, ξ3〉g = 〈ṽt(t), ξ3〉g − (w̃t
τ, ξ3〉g,

(4.4)

with
ũ(0) = ū0 − u0, ṽ(0) = v̄0 − v0, w̃0 = w̄0 − w0.

We write a part of the total energy function as

Ẽ(t) := ‖ũxx(t)‖2 + ‖ṽx(t)‖2 + ‖ũt(t)‖2 + ‖ṽt(t)‖2 + ‖w̃t‖2g. (4.5)

Meanwhile, we perform a suitable modification of Ẽ(t) as follows:

Ψ(t) := Ẽ(t) + εψ(t), (4.6)

where
ψ(t) := 〈ũ(t), ũt(t)〉 + 〈ṽ(t), ṽt(t)〉,

and ε > 0 is a constant to be determined later.
We first claim that there exist two constants γ1, γ2 > 0, depending on ε, such that

γ1Ẽ(t) ≤ Ψ(t) ≤ γ2Ẽ(t). (4.7)
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To confirm this, we deduce from Schwarz’s and Cauchy’s inequalities that

|ψ(t)| ≤ ‖ũ(t)‖‖ũt(t)‖ + ‖ṽ(t)‖‖ṽt(t)‖

≤
1
2
‖ũ(t)‖2 +

1
2
‖ṽ(t)‖2 +

1
2
‖ũt(t)‖2 +

1
2
‖ṽt(t)‖2

≤
C2

2

2
‖ũxx(t)‖2 +

C2
1

2
‖ṽx(t)‖2 +

1
2
‖ũt(t)‖2 +

1
2
‖ṽt(t)‖2.

Combining this inequality with (4.5), we infer that there exists a constant Q > 0 such that |ψ(t)| ≤ QẼ(t),
which together with (4.6) gives

(1 − εQ)Ẽ(t) ≤ Ψ(t) ≤ (1 + εQ)Ẽ(t).

Thus assertion (4.7) is demonstrated, and γ1 > 0 will be guaranteed by the selection of ε later.
Next we claim that there exist constants γ3 > 0 and γ4 > 0 depending on B such that

Ψ′(t) ≤ −γ3Ẽ(t) + γ4

(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
. (4.8)

Indeed, by (4.4), the arguments similar to the proof of (3.16), and the density arguments, we have

Ẽ′(t) = − 2‖ũt(t)‖2 − 2‖ṽt(t)‖2 +

4∑
i=1

Ii, (4.9)

where

I1 :=
∫ ∞

0
g′(τ)‖w̃t

x(τ)‖2 dτ,

I2 := −2
∫ l

0
(Φ(ū(t) − v̄(t)) − Φ(u(t) − v(t)))(ũt(t) − ṽt(t)) dx,

I3 := −2
∫ l

0
( f1(ū(t), v̄(t)) − f1(u(t), v(t)))ũt(t) dx,

and

I4 := −2
∫ l

0
( f2(ū(t), v̄(t)) − f2(u(t), v(t)))ṽt(t) dx.

Concerning the term I1, we deduce from the assumption g′(t) + ρg(t) ≤ 0 that

I1 ≤ −ρ‖w̃t‖2g. (4.10)

For the term I2, we deduce from Schwarz’s and Minkowski’s inequalities and (3.12) that there exists a
constant ε1 > 0 to be determined such that

I2 ≤ 2‖ũ(t) − ṽ(t)‖(‖ũt(t)‖ + ‖ṽt(t)‖)

=

(
2

(2ε1)
1
2

‖ũ(t) − ṽ(t)‖
) (

(2ε1)
1
2 (‖ũt(t)‖ + ‖ṽt(t)‖)

)
.
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From Cauchy’s inequality and L2p(0, l) ⊂ L2(0, l) it follows that

I2 ≤
1
ε1

(‖ũ(t) − ṽ(t)‖)2 + ε1(‖ũt(t)‖ + ‖ṽt(t)‖)2

≤ C(ε1)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+ 2ε1

(
‖ũt(t)‖2 + ‖ṽt(t)‖2

)
. (4.11)

Consequently, by taking ε1 = 1/4, we get

I2 ≤ C
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+

1
2

(
‖ũt(t)‖2 + ‖ṽt(t)‖2

)
. (4.12)

For the term I3, it follows from Schwarz’s and Cauchy’s inequalities and the analogous arguments in the
proof of (3.14) that

I3 ≤ 2‖ f1(ū(t), v̄(t)) − f1(u(t), v(t))‖‖ũt(t)‖

≤ 2‖ f1(ū(t), v̄(t)) − f1(u(t), v(t))‖2 +
1
2
‖ũt(t)‖2

≤ C(B)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+

1
2
‖ũt(t)‖2. (4.13)

Likewise,

I4 ≤ C(B)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+

1
2
‖ṽt(t)‖2. (4.14)

As a consequence, inserting (4.10)–(4.14) into (4.9), we arrive at

Ẽ′(t) ≤ C(B)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
− ‖ũt(t)‖2 − ‖ṽt(t)‖2 − ρ‖w̃t‖2g. (4.15)

We now turn to the estimates on ψ′(t). Note that

ψ′(t) = ‖ũt(t)‖2 + ‖ṽt(t)‖2 + 〈ũtt(t), ũ(t)〉∗ + 〈ṽtt(t), ṽ(t)〉∗.

Taking ξ1 = ũ(t) in (4.4)1 and ξ2 = ṽ(t) in (4.4)2, and adding the two results, we further obtain

ψ′(t) = ‖ũt(t)‖2 + ‖ṽt(t)‖2 − ‖ũxx(t)‖2 − ‖ṽx(t)‖2 +

9∑
i=5

Ii,

where
I5 := −〈w̃t, ṽ(t)〉g,

I6 := −〈ũt(t), ũ(t)〉 − 〈ṽt(t), ṽ(t)〉,

I7 := −
∫ l

0
(Φ(ū(t) − v̄(t)) − Φ(u(t) − v(t)))(ũ(t) − ṽ(t)) dx,

I8 := −
∫ l

0
( f1(ū(t), v̄(t)) − f1(u(t), v(t)))ũ(t) dx,

and

I9 := −
∫ l

0
( f2(ū(t), v̄(t)) − f2(u(t), v(t)))ṽ(t) dx.
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Thus there exists a constant 0 < θ < 1 such that

ψ′(t) = − θẼ(t) + (1 + θ)‖ũt(t)‖2 + (1 + θ)‖ṽt(t)‖2 − (1 − θ)‖ũxx(t)‖2

− (1 − θ)‖ṽx(t)‖2 + θ‖w̃t‖2g +

9∑
i=5

Ii.
(4.16)

From Schwarz’s and Cauchy’s inequalities it follows that there exist constants εi (i = 2, 3, 4) to be
determined later such that

I5 ≤

∫ ∞

0
g(τ)‖w̃t

x(τ)‖‖ṽx(t)‖ dτ

=

∫ ∞

0

(
1

(2ε2)
1
2

g
1
2 (τ)‖w̃t

x(τ)‖
) (

(2ε2)
1
2 g

1
2 (τ)‖ṽx(t)‖

)
dτ

≤ ε2k‖ṽx(t)‖2 +
1

4ε2
‖w̃t‖2g (4.17)

and

I6 ≤ ‖ũ(t)‖‖ũt(t)‖ + ‖ṽ(t)‖‖ṽt(t)‖

=
(
(2ε3)

1
2 ‖ũ(t)‖

) ( 1

(2ε3)
1
2

‖ũt(t)‖
)

+
(
(2ε4)

1
2 ‖ṽ(t)‖

) ( 1

(2ε4)
1
2

‖ṽt(t)‖
)

≤ ε3C
2
2‖ũxx(t)‖2 +

1
4ε3
‖ũt(t)‖2 + ε4C

2
1‖ṽx(t)‖2 +

1
4ε4
‖ṽt(t)‖2. (4.18)

By the arguments similar to the proof of (4.11), we infer that there exists a constant ε5 > 0 to be
determined later such that

I7 ≤ C(ε5)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+ 2ε5C

2
2‖ũxx(t)‖2 + 2ε5C

2
1‖ṽx(t)‖2. (4.19)

Moreover, by the arguments similar to the proof of (4.13), we conclude that there exist two constants
ε6, ε7 > 0 to be determined later such that

I8 ≤ C(B, ε6)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+ ε6C

2
2‖ũxx(t)‖2 (4.20)

and

I9 ≤ C(B, ε7)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+ ε7C

2
1‖ṽx(t)‖2. (4.21)

Substituting (4.17)–(4.21) into (4.16), we obtain

ψ′(t) ≤ − θẼ(t) +

(
1 + θ +

1
4ε3

)
‖ũt(t)‖2 +

(
1 + θ +

1
4ε4

)
‖ṽt(t)‖2

−
(
(1 − θ) − ε3C

2
2 − 2ε5C

2
2 − ε6C

2
2

)
‖ũxx(t)‖2

−
(
(1 − θ) − ε2k − ε4C

2
1 − 2ε5C

2
1 − ε7C

2
1

)
‖ṽx(t)‖2

+

(
θ +

1
4ε2

)
‖w̃t‖2g + C(B, ε5, ε6, ε7)

(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
.
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Choosing sufficiently small εi (i = 2, 3, · · · , 7) such that

(1 − θ) − ε3C
2
2 − 2ε5C

2
2 − ε6C

2
2 > 0

and
(1 − θ) − ε2k − ε4C

2
1 − 2ε5C

2
1 − ε7C

2
1 > 0,

we arrive at

ψ′(t) ≤ − θẼ(t) + C(B)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
+

(
1 + θ +

1
4ε3

)
‖ũt(t)‖2

+

(
1 + θ +

1
4ε4

)
‖ṽt(t)‖2 +

(
θ +

1
4ε2

)
‖w̃t‖2g.

(4.22)

Therefore, from (4.6), (4.15), and (4.22), we deduce that

Ψ′(t) ≤ − εθẼ(t) + C(B, ε)
(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
−

(
1 − ε

(
1 + θ +

1
4ε3

))
‖ũt(t)‖2

−

(
1 − ε

(
1 + θ +

1
4ε4

))
‖ṽt(t)‖2 −

(
ρ − ε

(
θ +

1
4ε2

))
‖w̃t‖2g.

(4.23)

For fixed εi (i = 2, 3, 4), we choose

ε < min
{

1
Q
,

4ε3

4(1 + θ)ε3 + 1
,

4ε4

4(1 + θ)ε4 + 1
,

4ρε2

4θε2 + 1

}
such that the last three terms on the right-hand side of (4.23) are non-positive and could be neglected.
Thus assertion (4.8) is proved. Here, ε < 1/Q ensures γ1 > 0 in assertion (4.7).

By assertion (4.8) and the second inequality in assertion (4.7), we get

Ψ′(t) ≤ −
γ3

γ2
Ψ(t) + γ4

(
‖ũ(t)‖22p + ‖ṽ(t)‖22p

)
.

Hence

Ψ(t) ≤ Ψ(0)e−βt + γ4

∫ t

0
e−β(t−s)

(
‖ũ(s)‖22p + ‖ṽ(s)‖22p

)
ds, (4.24)

where β = γ3/γ2. Again by the second inequality in assertion (4.7), we have Ψ(0) ≤ γ2Ẽ(0), which
combined with (4.24) and the first inequality in assertion (4.7) yields

Ẽ(t) ≤ αẼ(0)e−βt + σ

∫ t

0
e−β(t−s)

(
‖ũ(s)‖22p + ‖ṽ(s)‖22p

)
ds,

where α = γ2/γ1 and σ = γ4/γ1. Thus (4.3) follows from (4.5) immediately.

Lemma 4.8 (Quasi-stability). Under the assumptions of Theorem 2.2, the dynamical system (Y, S (t))
corresponding to problem (2.2)–(2.4) is quasi-stable on any bounded positively invariant set B ⊂ Y.
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Proof. Let U =
(
H2(0, l) ∩ H1

0(0, l)
)
× H1

0(0, l), V = L2(0, l) × L2(0, l), and W = Lg. Then Theorem 2.1
implies that the dynamical system (Y, S (t)) satisfies (A). From (3.21) we get (4.1). Moreover, by taking

n2
U(ũ, ṽ) = ‖ũ‖22p + ‖ṽ‖22p, ς2(t) = αe−βt, ς3(t) = σ

∫ t

0
e−β(t−s) ds,

we conclude from Lemma 4.7 that (4.2) holds. Thus, by Definition 4.3, the proof of Lemma 4.8 is finished.

Proof of Theorem 2.2. Since L is defined as E given by (3.15), we easily see that L(y) is bounded from
above on any bounded subset of Y . For the mild solution (u, v, ut, vt,w) to problem (2.2)–(2.4) such that
L(y0) ≤ R, we conclude from Lemma 3.5, Corollary 3.6, and h1, h2 ∈ L2(Ω) that

C‖(u(t), v(t), ut(t), vt(t),wt)‖2Y −C ≤ R,

i.e., ‖(u(t), v(t), ut(t), vt(t),wt)‖2Y ≤ C. Thus LR is bounded.
For the stationary solution (u, v, 0, 0, 0) to problem (2.2)–(2.4), we have

‖uxx‖
2 + ‖vx‖

2 +

∫ l

0
Φ(u − v)(u − v) dx = I1 + I2, (4.25)

where

I1 := −
∫ l

0
( f1(u, v)u + f2(u, v)v) dx

and

I2 :=
∫ l

0
(h1u + h2v) dx.

It follows from (2.7) in (A2) that

I1 ≤ η
(
‖u‖2 + ‖v‖2

)
+ bl

≤ ηC2
2‖uxx‖

2 + ηC2
1‖vx‖

2 + bl. (4.26)

Moreover, from Schwarz’s and Cauchy’s inequalities, we deduce that there exist two constants ε1, ε2 > 0
to be determined such that

I2 ≤ ‖u‖‖h1‖ + ‖v‖‖h2‖

=
(
(2ε1)

1
2 ‖u‖

) ( 1

(2ε1)
1
2

‖h1‖

)
+

(
(2ε2)

1
2 ‖v‖

) ( 1

(2ε2)
1
2

‖h2‖

)
≤ ε1C

2
2‖uxx‖

2 +
1

4ε1
‖h1‖

2 + ε2C
2
1‖vx‖

2 +
1

4ε2
‖h2‖

2. (4.27)

Consequently, by substituting (4.26) and (4.27) into (4.25) and observing∫ l

0
Φ(u − v)(u − v) dx ≥ 0,

we obtain (
1 − ηC2

2 − ε1C
2
2

)
‖uxx‖

2 +
(
1 − ηC2

1 − ε2C
2
1

)
‖vx‖

2 ≤
1

4ε1
‖h1‖

2 +
1

4ε2
‖h2‖

2 + bl.
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Choosing sufficiently small ε1 and ε2 such that

1 − ηC2
2 − ε1C

2
2 > 0

and
1 − ηC2

1 − ε2C
2
1 > 0,

we further derive
‖uxx‖

2 + ‖vx‖
2 ≤ C.

Hence N is bounded. From Lemma 4.8 and Proposition 4.4, it is easy to see that (Y, S (t)) is
asymptotically smooth. By Theorem 4.2 and Lemma 4.6, it is obvious that (Y, S (t)) possesses a
compact global attractor A =Mz(N ). Finally, we conclude from Lemma 4.8 and Theorem 4.5 that A
has finite fractal dimension.

5. Conclusions

In this paper, we considered the initial-boundary value problem for a coupled beam-string system
modeling the small amplitude oscillations of suspension bridges, namely, (1.1)–(1.3). In order to handle
the long-time dynamics for problem (1.1)–(1.3), we transformed problem (1.1)–(1.3) into the equivalent
problem (2.2)–(2.4) in the history space framework. We first used the semigroup theory to obtain the
global well-posedness and regularity of mild solutions to problem (2.2)–(2.4), namely, Theorem 2.1. In
addition, by exploiting the properties of the total energy function, we obtained the gradient property
of the dynamical system (Y, S (t)) corresponding to problem (2.2)–(2.4). By employing the perturbed
energy method, we established a stabilizability estimate, which enabled us to get the quasi-stability of
the dynamical system (Y, S (t)) corresponding to problem (2.2)–(2.4). Based on the gradient property
and quasi-stability of the dynamical system (Y, S (t)), we derived the existence of a global attractor with
finite fractal dimension, namely, Theorem 2.2.

In the future, we will focus on the study on other qualitative properties of problem (1.1)–(1.3).
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