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Abstract: We considered a viscous incompressible fluid flow in a varying bounded domain consisting
of branching thin cylindrical tubes whose axes are line segments that form a network of pre-fractal
curves constituting an approximation of the Sierpinski gasket. We supposed that the fluid flow is driven
by volumic forces and governed by Stokes equations with boundary conditions for the velocity and
the pressure on the wall of the tubes and inner continuity conditions for the normal velocity on the
interfaces between the junction zones and the rest of the pipes. We constructed local perturbations,
related to boundary layers in the junction zones, from solutions of Leray problems in semi-infinite
cylinders representing the rescaled junctions. Using Γ-convergence methods, we studied the asymptotic
behavior of the fluid as the radius of the tubes tends to zero and the sequence of the pre-fractal curves
converges in the Hausdorff metric to the Sierpinski gasket. Based on the constructed local perturbations,
we derived, according to a critical parameter related to a typical Reynolds number of the flow in the
junction zones, three effective flow models in the Sierpinski gasket, consisting of a singular Brinkman
flow, a singular Darcy flow, and a flow with constant velocity.
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1. Introduction

Fluid flows in branching tubes are common in many biological and industrial applications such
as physiological branching flows and flows through pipe and duct networks (see, for instance, [1–8]).
This subject is extensively studied in both theoretical and practical points of views. A mathematical
model of fluid flows in a network of thin tubes has been derived in [9] from the asymptotic expansion
of Navier–Stokes equations. Consistent asymptotic analysis of Navier–Stokes equations in thin tube
structures, by letting the diameter of the tubes tend to zero, has been recently studied in a series of
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papers, such as [10] and [11]. The Navier–Stokes equations with pressure boundary conditions in the
junctions of thin pipes are considered in [12] and [13], where approximations based on Leray and
Poiseuille problems are constructed therein.

Let h be a positive integer. Let Gh be the pre-fractal polygonal curve obtained after h-iterations of
the contractive similarities of the Sierpinski gasket G (see Figure 1). We consider a network of circular
cylindrical pipes whose axes are the sides of the polygon Gh . We assume that these pipes are narrow
axisymmetric tubes of radius εh very small with respect to the length 2−h of each side of Gh. We consider
an incompressible fluid flow in the bounded domain Ωh consisting of these pipes connected, after local
adjustments near the bifurcation points, through smooth thin regions centered at the vertices of Gh

(see Figure 4). We suppose that each pipe is split into two principal regions: junction zones of length
εh ln (1/εh)≪ 2−h linked to the ends of the pipe and the rest of the pipe. We suppose that the fluid flow in
Ωh is driven by some volumic forces and governed by Stokes equations with boundary conditions for the
velocity and the pressure on the external boundary of Ωh and inner continuity conditions for the normal
velocity on the interfaces between the junction zones and the rest of the pipes (see Section 2 for more
details). We assume that the flow in the junction zones is controlled by a typical Reynolds number Rej,h.

Figure 1. Representation of the Sierpinski gasket G.

The main focus of this paper is to study the asymptotic behavior of the fluid flowing through the
branching pipes as the radius of the tubes tends to zero and the sequence of pre-fractal curves converges
in the Hausdorff metric to the Sierpinski gasket G. Using Γ-convergence methods (see, for instance, [14]
and [15]), we prove that the effective potential energy of the fluid turns out to be of the form

F∞ (v) =


µπ

m (Θ)Hd (G)

∫
G

v2dHd +
2µπm (Θ)

3σ

∫
G
∇v.Z∇vdν

if v ∈ V∞,
+∞ otherwise,

(1.1)

where v is the fluid velocity, µ is the fluid viscosity, m (Θ) is the average value (see Eq. (6.10)) of the

solution Θ of boundary value problem (6.5),
1

m (Θ)Hd (G)
is the permeability of the Sierpinski gasket

G,Hd being the d-dimensional Hausdorff measure on G where

d = ln 3/ ln 2 (1.2)

stands for the fractal dimension of G, Z is a random matrix given in Section 4 (see Eq. (4.15)–(4.18)),
ν is a singular measure with respect to the Hausdorff measure Hd on G called the Kusuoka measure
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(see Eq. (4.11)), which, according to [16], is a Gibbs measure of special kind, V∞ is the admissible
velocities space (see Definition 23), and

1
σ
= lim

h→∞

εh

Rej,h
. (1.3)

Depending on the values of σ, we obtain different asymptotic problems:

1. If σ ∈ (0,+∞), then Rej,h = O (εh). In this case, the effective flow is described (see Theorem 3) by
the following singular Brinkman equation in the Sierpinski gasket G:

−
2µπm (Θ)Hd

3σHd (G)
∆G (u) +

µπHd

m (Θ)Hd (G)
u + νZ∇p.n

=
Hd

Hd (G)
f .n in G,

(1.4)

where u is the fluid velocity, p is the pressure, ∆G is the Laplace operator on the Sierpinski
gasket (see Lemma 4), f is the effective source term, n = (1, 0) on the horizontal part of G,
n =

(
1/2,

√
3/2

)
on the part of G which is perpendicular to the unit vector

(
−
√

3/2, 1/2
)
, and

n =
(
1/2,−

√
3/2

)
on the part of G which is perpendicular to the unit vector

(√
3/2, 1/2

)
. This

equation includes the singular Brinkman viscous resistance term −
2µπm (Θ)Hd

3σHd (G)
∆G (u), which is

due to the viscous behavior of the fluid flow at the junction zones, and the singular Darcy resistance

term
µπHd

m (Θ)Hd (G)
u.

2. If σ = +∞, then Rej,h = O (1) or Rej,h −→ ∞ as h −→ ∞. In this case, the term
µπm (Θ)

3σ

∫
G
∇v.Z∇vdν in (1.1) disappears and the flow is governed by singular Darcy’s law in the

Sierpinski gasket G.
3. If σ = 0, then Rej,h = O

(
εαh

)
with α > 1. In this case, the energy F∞ (v) is finite only if∫

G
∇v.Z∇vdν = 0, which implies that the velocity of the fluid flow is asymptotically constant in

the Sierpinski gasket G.

The study of asymptotic analysis of boundary value problems in domains with fractal boundaries
or containing thin inclusions developing a fractal geometry has been recently addressed in a series of
papers (see, for instance, [17–29]). The problems obtained at the limit generally consist of singular
forms containing fractal terms. The problem considered in this work is quite different from the previous
ones, as we deal here with the determination of the fluid motion through branching tubes having a
fractal structure. The overall effect of the pre-fractal branching networks on the fluid flow appears in the
singular effective equation (1.4), according to the characteristics of the flow, as the radius of the tubes
tends to zero and the sequence of pre-fractal curves converges in the Hausdorff metric to the Sierpinski
gasket G. The asymptotic representation of the solution of the original singularly perturbed problem
includes local perturbations representing the flow in the boundary layers in the junction zones. These
local perturbations are solutions of Leray problems in semi-infinite cylinders representing the rescaled
junctions. The main novelty of this paper lies in the construction of these local perturbations as well as
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the derivation of the effective flow described above by singular Brinkman and Darcy laws on the fractal
G with divergence-free velocity in a fractal sense specified in Definition 22 in Section 5.

The problem considered in this work has some implications for modeling the behavior of fluid flows
in various complex geometrical configurations of branching tubes. An important field to which this
model is closely related is the behavior of fluid flows in some physiological structures such as lung
airways (see, for instance, [1] and [30]) the cardiovascular system and cerebral arteriovenous (see,
for instance, [30], [31], and [32]). It has been shown that physiological branching networks exhibit
fractal structures for minimal energy dissipation (see, for instance, [33] and [34]). In particular, blood
vessels have self-similar structures with optimal transport property of their fractal networks (see, for
instance, [35]). Blood has been treated in [31] as a homogeneous, incompressible, Newtonian viscous
fluid, making the assumptions that the flow is steady and axisymmetric with sufficiently small Reynolds
number so that the flow is laminar. The authors observed that the overall effect of the non-Newtonian
characteristics would be small.

The present investigation on fractal branching flows provides some motivations in the
haemodynamics. The blood vessels can be illustrated, under some simplifying assumptions, by the
network Ωh of narrow branching tubes with laminar flow far ahead of the bifurcations and boundary
layer flow near the bifurcations, where the local Reynolds number is the most effective factor
controlling the flow throughout the whole network.

This paper is organized as follows. The statement of the problem is presented in Section 2, with a
subsection reserved for the nomenclature and another devoted to the position of the problem. In Section
3, we formulate the main results of this work. In Section 4, we introduce the energy forms, the Kusuoka
measures, and gradients on the Sierpinski gasket. Section 5 is devoted to some a priori estimates and
compactness results. Section 6 is consecrated to the proof of the main results. A final conclusion is
made in Section 7.

2. Statement of the problem

2.1. Nomenclature

A1A2A3 equilateral triangle of vertices A1 = (0, 0), A2 = (1, 0), A3 =
(
1/2,

√
3/2

)
G Sierpinski gasket built in the triangle A1A2A3

Gh prefractal polygonal curve obtained after h-iterations

of contractive similarities of G

Vh set of vertices of Gh

Eh set of edges of Gh

V∞ set of all vertices of G

T k
h kth triangle of Gh

Ei,k
h =

[
ai,k

h , b
i,k
h

]
ith edge of T k

h

2−h length of Ei,k
h

yi,k
h,1, yi,k

h,2 local variables on T k
h

εh small positive number
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Πh,i
k ith tube of radius εh and of length 2−h − 2εh surrounding Ei,k

h

Bh
k

(
ai,k

h

)
small smooth branch junction of thickness of order 2εh

centered at the vertex ai,k
h

Bh
k

(
bi,k

h

)
small smooth branch junction of thickness of order 2εh

centered at the vertex bi,k
h

Σh,i
k,1 interface between Bh

k

(
ai,k

h

)
and Πh,i

k

Σh,i
k,2 interface between Bh

k

(
bi,k

h

)
and Πh,i

k

Ωh,i
k pipe formed with Bh

k

(
ai,k

h

)
, Bh

k

(
bi,k

h

)
, Πh,i

k , and the

interfaces Σh,i
k,α; α = 1, 2, between them

Ωh network of the interconnected pipes Ωh,i
k

Γh external boundary of Ωh

J
h,+,i
k small junction zone of length εh ln (1/εh) located in the region yi,k

h,1 > 0

J
h,−,i
k small junction zone of length εh ln (1/εh) located in the region yi,k

h,1 < 2−h

Jh union of the junction zones Jh,±,i
k

µ fluid viscosity

Rej,h typical Reynolds number in Jh

Reh characteristic Reynolds number in Ωh

Euh characteristic Euler number in Ωh

Frh characteristic Froude number in Ωh

5h

3h+1 scaling factor associated to the ramification of the network Ωh

d the fractal dimension of G

Hd d-dimensional Hausdorff measure on G

L2
Hd (G) space of square integrable L2-functions with respect to the measureHd

EG Dirichlet form in L2
Hd (G)

Z random matrix

divZ divergence operator on G

ν Kusuoka measure

J+±,i semi infinite cylinders representing the rescaled junctions

2.2. Position of the problem

Let us consider the points of the plane xOy: A1 = (0, 0), A2 = (1, 0), and A3 =
(
1/2,

√
3/2

)
. Let us

denote
{
ψi

}
i=1,2,3 as the family of contractive similitudes defined on R2 by

ψi (x) =
x + Ai

2
, ∀x = (x1, x2) ∈ R2. (2.1)
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LetV0 = {A1, A2, A3} be the set of vertices of the equilateral triangle A1A2A3. We define inductively

Vh+1 =
⋃

i=1,2,3

ψi (Vh) , (2.2)

for every h ∈ N, and set
V∞ =

⋃
h∈N

Vh. (2.3)

The Sierpinski gasket, which is denoted here by G, is defined as the closure of the setV∞

G = V∞. (2.4)

We consider the graph Gh = (Vh, Eh), where Eh is the set of edges [ah, bh]; ah, bh ∈ Vh, such that
|ah − bh| = 2−h; |ah − bh| being the Euclidean distance between ah and bh (see Figure 2). The graph
Gh is then the standard approximation of the Sierpinski gasket, which means that the sequence (Gh)h

converges, as h tends to∞, in the Hausdorff metric, to the Sierpinski gasket G.

Figure 2. The graph Gh for h = 0, 1, 2, 3.

We denote Card (Vh) as the number of vertices ofVh. We can easily check that

Card (Vh) =
3h+1 + 3

2
, ∀h ∈ N. (2.5)

Let k ∈
{
1, 2, ..., 3h

}
. We denote T k

h as the kth triangle of the graph Gh obtained at the step h. Let

nk be the unit normal to T k
h . Then, nk =

(
−
√

3/2, 1/2
)
, nk =

(√
3/2, 1/2

)
, or nk = (0, 1). We denote

E1,k
h =

[
a1,k

h , b1,k
h

]
as the edge of T k

h , which is normal to nk = (0, 1), E2,k
h =

[
a2,k

h , b2,k
h

]
as the edge of

T k
h , which is normal to nk =

(
−
√

3/2, 1/2
)
, and E3,k

h =
[
a3,k

h , b3,k
h

]
as the edge of T k

h which is normal to

nk =
(√

3/2, 1/2
)

(see Figure 3).
Let us consider the following rotation matrices:

R1 = IdR3 ,

R2 =


1/2

√
3/2 0

−
√

3/2 1/2 0
0 0 1

 ,

R3 = R
t
2,

(2.6)
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Figure 3. Orientation of the segments E1,k
h , E2,k

h , and E3,k
h .

IdR3 being the 3 × 3 identity matrix. We also define the change of variables yi,k
h,1, yi,k

h,2, x3; i = 1, 2, 3, for
every h ∈ N, every k ∈

{
1, 2, ..., 3h

}
, and every x = (x1, x2, x3) ∈

[
ai,k

h , b
i,k
h

]
× R, by

yi,k
h,1 (x)

yi,k
h,2 (x)
x3

 = Ri


x1 − ai,k

h,1
x2 − ai,k

h,2
x3

 . (2.7)

Let S be the unit disk of R2 centred at the origin. Let (εh)h∈N be a decreasing sequence of positive
numbers, such that

lim
h→∞

εh = lim
h→∞

2hεh ln (1/εh) = 0. (2.8)

We define, for h ∈ N, k ∈
{
1, 2, ..., 3h

}
, and i = 1, 2, 3, the tube Πh,i

k by

Πh,i
k =

 (x1, x2, x3) ∈ R3; εh < yi,k
h,1 (x) < 2−h − εh,(

yi,k
h,2 (x) , x3

)
∈ εhS

 . (2.9)

We define the interfaces

Σh,i
k,1 =

 (x1, x2, x3) ∈ R3;
(
yi,k

h,2 (x) , x3

)
∈ εhS ,

yi,k
h,1 (x) = εh

 ,

Σh,i
k,2 =

 (x1, x2, x3) ∈ R3;
(
yi,k

h,2 (x) , x3

)
∈ εhS ,

yi,k
h,1 (x) = 2−h − εh

 ,

Σh,i
k = Σh,i

k,1 ∪ Σ
h,i
k,2.

(2.10)

We then set 

Πh =

3h⋃
k=1

i=1,2,3

Πh,i
k ,

Σh
α =

3h⋃
k=1

i=1,2,3

Σh,i
k,α; α = 1, 2,

Σh = Σh
1 ∪ Σ

h
2.

(2.11)
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We now define thin, smooth regions which ensure the junctions between the tubes Πh,i
k . Let Bh

k

(
ai,k

h

)
and Bh

k

(
bi,k

h

)
be bounded open sets of thickness of order 2εh and centered at the points

(
ai,k

h,1, a
i,k
h,2, 0

)
and(

bi,k
h,1, b

i,k
h,2, 0

)
, respectively, such that ∂Bh

k

(
ai,k

h

)
and ∂Bh

k

(
bi,k

h

)
are C2-surfaces with ∂Bh

k

(
ai,k

h

)
∩ ∂Πh = εhS ,

∂Bh
k

(
bi,k

h

)
∩ ∂Πh = εhS ,

(2.12)

(see Figure 4).

Figure 4. Smooth, thin zones Bh
k

(
ai,k

h

)
and Bh

k

(
bi,k

h

)
, which ensure the junctions between the

tubes Πh,i
k .

We set

Bh =

3h⋃
k=1

i=1,2,3

Bh
k

(
ai,k

h

)
∪ Bh

k

(
bi,k

h

)
. (2.13)

Let us define the pipe Ωh,i
k ; h ∈ N, k ∈

{
1, 2, ..., 3h

}
, and i = 1, 2, 3, by

Ωh,i
k = Π

h,i
k ∪ Σ

h,i
k ∪ Bh

k

(
ai,k

h

)
∪ Bh

k

(
bi,k

h

)
. (2.14)

We consider the network Ωh of interconnected pipes and its external boundary Γh defined by

Ωh = Σh ∪

3h⋃
k=1

i=1,2,3

Ωh,i
k ,

Γh = ∂Ωh.

(2.15)

We consider a viscous incompressible fluid flow in Ωh. We suppose that this flow is essentially
laminar except in the set Jh of the junction zones, where the main characteristics of the flow and their
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influence on the fluid motion will be analyzed. On the basis of works [12] and [13], we define the set
Jh as

Jh =

3h⋃
k=1

i=1,2,3

J
h,+,i
k ∪ J

h,−,i
k , (2.16)

where, for every k ∈
{
1, 2, ..., 3h

}
and i = 1, 2, 3,

J
h,+,i
k =

{
x = (x1, x2, x3) ∈ Ωh; 0 < yi,k

h,1 (x) < εh ln (1/εh)
}

,

J
h,−,i
k =

{
x = (x1, x2, x3) ∈ Ωh;
2−h − εh ln (1/εh) < yi,k

h,1 (x) < 2−h

}
.

(2.17)

Taking into account the typical scales in Ωh\Jh, we suppose that the characteristic Reynolds number

in these regions is of order
2−h

µ
. The characteristic Reynolds number in Ωh can be then defined as

Reh =


Rej,h in Jh,
2−h

µ
in Ωh\Jh,

(2.18)

where Rej,h is assumed to be a typical Reynolds number of the flow in the region Jh. According to [36],
the product Euh Reh of the characteristic Euler number Euh and the characteristic Reynolds number
Reh is the ratio between the caracteristic pressure and viscosity. Then, assuming that the characteristic
pressure is the ratio between a constant normal force and the surface of the disk εhS , we may write

Reh Euh =
1

µπε2
h

. (2.19)

According to the above equality, we suppose that the characteristic Euler number Euh in the network
Ωh takes the form

Euh =
2h

πε2
h

. (2.20)

On the other hand, as the diameter of any tube of the network Ωh is 2εh, we deduce, according
to [37, page 98], that the ratio of the characteristic Froude number Frh to the characteristic Reynolds
number Reh is of order ε2

h. Accordingly, we suppose that the characteristic Froude number in Ωh has
the following scaling:

Frh = 2−hπε2
h. (2.21)

Since the characteristic Reynolds number is small in Ωh\Jh, we suppose that the inertia effects are
negligible in the whole Ωh and the flow is governed by the following Stokes equations: −

1
Reh

5h

3h+1∆uh + Euh
5h

3h+1∇ph =
1

Frh

5h

3h+1 fh in Ωh,

div uh = 0 in Ωh,
(2.22)
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where
5h

3h+1 is a scaling factor, which is associated to the ramification of the pre-fractal network Ωh and
determined by the decimation principle (see [38] for more details on scaling exponents governing some
physical phenomena in fractal media), the source term fh is the solution of the following problem posed
in each tube Ωh,i

k ; k ∈
{
1, 2, ..., 3h

}
and i = 1, 2, 3,{

div fh = gh in Ωh,i
k ,

fh.n = 0 on ∂Ωh,i
k ,

(2.23)

where n is the outward unit normal on ∂Ωh,i
k and gh is a L2

(
Ωh

)
function such that

∫
Ω

h,i
k

ghdx = 0,

suph
5h∣∣∣Ωh

∣∣∣
∫
Ωh

g2
hdx < +∞,

(2.24)

|A| being the Lebesgue measure of the measurable and bounded subset A of R3. The boundary conditions
(2.25) are given, for every i = 1, 2, 3, by

uh = 0 on Γh,
uh |Σh

1
.Rie1 = uh |Σh

2
.Rie1 on Σh,

∂ph

∂n
= 0 on Γh,

(2.25)

where, in accordance with the divergence free of the velocity, the condition (2.25)2 ensures that the

outward normal velocities are the same on the two interfaces Σh,i
k,1 and Σh,i

k,2, e1 = (1, 0, 0), and
∂ph

∂n
is the

normal derivative of the pressure on Γh; n being the outward unit normal on Γh.

Remark 1. The homogeneous Neumann boundary condition (2.25)3 on Γh is justified as follows.
According to [39, Chapter II], thin boundary layers are concentrated in the immediate neighborhood
of the wall Γh due to the homogeneous Dirichlet boundary condition for the velocity on Γh. The
characteristic Reynolds number in these boundary layers, denoted here by Rew,h, is sufficiently large

so that the viscous term
1

Rew,h
∆uh is negligible when one gets too close to the wall Γh. We deduce,

according to [40, Remarks page 1119], that the boundary condition

Euh
∂ph

∂n
=

1
Rew,h

∆uh.n on Γh,

obtained by taking into account equation (2.22)1 and the fact that fh.n = 0 on Γh, can ostensibly be

approximated by Euh
∂ph

∂n
= 0 on Γh, which implies that

∂ph

∂n
= 0 on Γh.

Let us introduce the space Vh defined by

Vh =

 v ∈ H1
(
Ωh,R3

)
; v |Σh

1
.Rie1 = v |Σh

2
.Rie1; i = 1, 2, 3,

div v = 0 in Ωh, v = 0 on Γh

 . (2.26)

We state here a result of existence and uniqueness of a solution for problem (2.22) with boundary
conditions (2.25).
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Lemma 1. Problem (2.22)–(2.25) has a unique velocity solution uh ∈ Vh and pressure solution
ph ∈ H1

(
Ωh

)
, which is unique up to an additive constant.

Proof. Applying the divergence operator to the first equation of problem (2.22), using (2.23)–(2.24)1

and the boundary condition (2.25)3, we deduce that the pressure verifies the Neumann boundary value
problem  ∆ph = gh in Ωh,

∂ph

∂n
= 0 on Γh.

(2.27)

This problem has a solution ph ∈ H1
(
Ωh

)
, which is unique up to an additive constant. On the other

hand, as

Euh
5h

3h+1

∫
Ωh

v.∇ph = 0, (2.28)

for every v ∈ Vh, the weak formulation of problem (2.22) can be written as, for every v ∈ Vh,

5h

3h+1 Reh

∫
Ωh
∇uh.∇vdx =

1
Frh

5h

3h+1

∫
Ωh

fh.vdx. (2.29)

Using the Poincaré inequality, we have∣∣∣∣∣∫
Ωh

fh.vdx
∣∣∣∣∣ ≤ Ch

{∫
Ωh
|∇v|2 dx

}1/2

,

where Ch is a positive constant. Then, according to the Lax–Milgram theorem, we infer that problem
(2.29) has a unique solution uh ∈ Vh.

Let us consider the functional Fh defined by

Fh (v) =


5h

3h+1 Reh

∫
Ωh
|∇v|2 dx if v ∈ Vh,

+∞ otherwise.
(2.30)

The velocity uh, solution of problem (2.29), is then the solution of the minimization problem

min
v∈Vh

{
Fh (v) − 2

1
Frh

5h

3h+1

∫
Ωh

fh.vdx
}

. (2.31)

One of the main purposes of this paper is to prove the Γ-convergence of the sequence of functionals
(Fh)h to the functional F∞ defined in (1.1).

3. The main results

In this section we state our main results in this work. LetM
(
R3

)
be the space of Borel regular

measures on R3. According to Proposition 8 in Section 5, we introduce the following topology τ:
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Definition 1. We say that a sequence
(
vh

)
h
; vh ∈ Vh, τ-converges to (v, v∗, v∗∗) if

√
5hvhπ1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
(v, v∗, v∗∗)

dHd (s) ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
,

where the symbol
∗
⇀ stands for the weak*-convergence of measures.

We formulate our result on the Γ-convergence of the sequence of functionals (Fh)h in the following

Theorem 2. We suppose that σ ∈ (0,+∞). Then

1. (lim sup inequality) For every v ∈ V∞, there exists a sequence
(
vh

)
h
, with vh ∈ Vh and

(
vh

)
h

τ-converges to (v, v∗, v∗∗), where v∗∗ = 0, v∗ = 0 on the part of G which is perpendicular to (0, 1),
v∗ = v

√
3 on the part of G which is perpendicular to

(
−
√

3/2, 1/2
)
, and v∗ = −v

√
3 on the part of

G which is perpendicular to
(√

3/2, 1/2
)
, such that

lim sup
h→∞

Fh

(
vh

)
≤ F∞ (v) ,

where V∞ is defined in Definition 23 of Section 5 and F∞ is the functional energy defined in (1.1),
2. (lim inf inequality) For every sequence

(
vh

)
h
, such that vh ∈ Vh and

(
vh

)
h
τ-converges to (v, v∗, v∗∗),

we have v ∈ V∞, v∗∗ = 0 on G, v∗ = 0 on the part of G which is perpendicular to (0, 1), v∗ = v
√

3
on the part of G which is perpendicular to

(
−
√

3/2, 1/2
)
, v∗ = −v

√
3 on the part of G which is

perpendicular to
(√

3/2, 1/2
)
, and

lim inf
h→∞

Fh

(
vh

)
≥ F∞ (v) .

We are now in a position to formulate the asymptotic problem.

Theorem 3. Let
(
uh, ph

)
be the solution of problem (2.22) with boundary conditions (2.25). Under the

hypothesis of Theorem 2, we have

1. The sequence
(
uh

)
h
τ-converges to (u, u∗, 0), with u ∈ V∞, u∗ = 0 on the part of G which is

perpendicular to (0, 1), u∗ = u
√

3 on the part of G which is perpendicular to
(
−
√

3/2, 1/2
)
, and

u∗ = −u
√

3 on the part of G which is perpendicular to
(√

3/2, 1/2
)
. There exists p ∈ HZ (G);

HZ (G) being the space defined in Definition 21 of Section 5, and f = ( f1, f2, 0) ∈ L2
Hd

(
G,R3

)
, such

that 

√
5h p̂h

π1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
p

dHd ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
,

√
5h fh

π1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
f

dHd ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
,

lim
h→∞

5h∣∣∣Ωh
∣∣∣
∫
Ωh

uh.∇ph =

∫
G

uZ∇p.ndν = 0,

where n = (1, 0) on the horizontal part G1 of G, n =
(
1/2,

√
3/2

)
on the part G2 of G which is

perpendicular to
(
−
√

3/2, 1/2
)
, and n =

(
1/2,−

√
3/2

)
on the part G3 of G which is perpendicular

to
(√

3/2, 1/2
)
,

2. The couple (u, p) is the solution of equation (1.4) stated in the Introduction.
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4. Energy forms on the Sierpinski gasket

4.1. Standard Dirichlet forms

In this subsection we introduce the notion of Dirichlet forms on the Sierpinski gasket. For the
definition and properties of Dirichlet forms, we refer to [41] and [42].

For any function w : V∞ −→ R, we define

Eh
G (w) =

(
5
3

)h ∑
r,s∈Vh
|r−s|=2−h

(w (r) − w (s))2 . (4.1)

We then define the energy EG on G by

EG (w) = lim
h→∞
Eh

G (w) , (4.2)

with domain D∞ = {w : V∞ −→ R : EG (w) < ∞}. According to [42, Theorem 2.2.6], every function
w ∈ D∞ can be uniquely extended to be an element of C (G) still denoted by w. Let us set

D = {w ∈ C (G) : EG (w) < ∞} , (4.3)

where EG (w) = EG
(
w |V∞

)
. Then,D ⊂C (G) ⊂ L2

Hd (G). We define the spaceDE as

DE = D
∥.∥DE , (4.4)

where ∥.∥DE is the intrinsic norm

∥w∥DE =
{
EG (w) + ∥w∥2L2

Hd (G)

}1/2
. (4.5)

We denote EG (., .) as the bilinear form defined onDE ×DE by

EG (w, z) =
1
2

(EG (w + z) − EG (w) − EG (z)) , ∀w, z ∈ DE, (4.6)

from which we deduce, according to (4.2), that

EG (w, z) = lim
h→∞
Eh

G (w, z) , (4.7)

where

Eh
G (w, z) =

(
5
3

)h ∑
r,s∈Vh
|r−s|=2−h

(w (r) − w (s)) (z (r) − z (s)) . (4.8)

The form EG (., .) is a closed Dirichlet form in the Hilbert space L2
Hd (G) and, according to [43,

Theorem 4.1], EG (., .) is a local regular Dirichlet form in L2
Hd (G). This means that

1. (local property) w, z ∈ DE with supp[w] and supp[z] are disjoint compact sets =⇒ EG (w, z) = 0,
2. (regularity) DE ∩ C0 (G) is dense both in C0 (G) (the space of functions of C (G) with compact

support) with respect to the uniform norm and inDE with respect to the intrinsic norm (4.5).
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We deduce thatDE is injected in L2
Hd (G) and is a Hilbert space with the scalar product associated

to the norm (4.5). The second property implies thatDE is not trivial (that is,DE is not made by only
the constant functions). Moreover every function ofDE possesses a continuous representative. Indeed,
according to [44, Theorem 6.3. and example 71], the spaceDE is continuously embedded in the space

Cβ (G) of Hölder continuous functions with β = ln
5
3
/ ln 4.

Now, applying [45, Chap. 6], we have the following result:

Lemma 4. There exists a unique self-adjoint nonpositive operator ∆G on L2
Hd (G) with domain

D∆G =
{
w ∈ L2

Hd (G) ; ∆Gw ∈ L2
Hd (G)

}
⊂ DE

dense in L2
Hd (G), such that, for every w ∈ D∆G and z ∈ DE,

EG (w, z) = −
∫

G
(∆Gw) z

dHd

Hd (G)
.

4.2. Kusuoka measures and gradients

In this subsection we define the Kusuoka measure and the gradient on the Sierpinski gasket G. For
the definitions and properties of Kusuoka measures and gradients on fractals, we refer to [46–49].

Let ϱ : V∞ −→ R. Then, according to [42, Proposition 3.2.1], there exists a unique h ∈ D∞ such
that h|V0 = ϱ and

EG (h) = inf
{
EG (v) ; v ∈ D∞, v|V0 = ϱ

}
,

where h is called the harmonic function in G with boundary value h|V0 = ϱ. On each Vh, h ∈ N∗, a
harmonic function h verifies(

h ◦ ψi1...ih

)
|V0 = Ti1...ih

(
h|V0

)
; i1, ..., ih ∈ {1, 2, 3} , (4.9)

(see [42, Proposition 3.2.1]), where ψi1...ih = ψi1
◦ · · · ◦ ψih and Ti1...ih = Ti1 ...Tih with

T1 =
1
5


5 0 0
2 2 1
2 1 2

 , T2 =
1
5


2 2 1
0 5 0
1 2 2

 , T3 =
1
5


2 1 2
1 2 2
0 0 5

 .

Let M0 =
{
(x1, x2, x3) ∈ R3; x1 + x2 + x3 = 0

}
. Kigami [46] introduced the map Φ : G −→ M0

defined by

Φ (x) =
1
√

2



h1 (x)
h2 (x)
h3 (x)

 − 1
3


1
1
1


 ,

with hi
(
A j

)
= δi j for A j ∈ V0, where δi j is, for i, j = 1, 2, 3, the Kronecker delta symbol. We have the

following.

Proposition 5. [47, Proposition 4.4] If GH = Φ (G), then Φ is a homeomorphism between G and GH.
Moreover, define Hi : M0 −→ M0; i = 1, 2, 3, by

Hi (x) = T t
i (x − Φ (Ai)) + Φ (Ai) ,

then GH =
⋃

i=1,2,3

Hi (GH) and Φ ◦ ψi = Hi ◦ Φ for any i = 1, 2, 3.
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GH is called the harmonic Sierpinski gasket, which is the self-similar set associated with the
collection of contractions {H1,H2,H3} on M0. Let P be the projection from R3 into M0 defined, for
every x = (x1, x2, x3) ∈ R3, by

Px =


x1

x2

x3

 − (x1 + x2 + x3)
3


1
1
1

 . (4.10)

According to [48], the Kusuoka measure ν on G is the unique Borel probability measure defined by

ν
(
Gi1...ih

)
=

1
2

(
5
3

)h

tr
(
T t

i1...ih PTi1...ih

)
, (4.11)

where Gi1...ih = ψi1...ih (G). Let us define

I =
{
ω = i1i2.../ in ∈ {1, 2, 3} for any n ∈ N∗

}
, (4.12)

and π : I −→ G such that ψ j ◦ π (ω) = π ( jω), for j = 1, 2, 3. For any ω ∈ I, there exists a unique x ∈ G
such that

{x} =
⋂
h∈N∗

Gi1...ih and π (ω) = x. (4.13)

We now define, by abuse of notation, the Kusuoka measure ν on I (see, for instance, [49]) as the
pullback of the Kusuoka measure ν on G under the projection map π, that is

ν
(
π−1 (.)

)
= ν (.) . (4.14)

Let us set

Z (i1...ih) =
T t

i1...ih
PTi1...ih

tr
(
T t

i1...ih
PTi1...ih

) . (4.15)

Then, according to [48], for ν-almost all ω, there exists a limit

Z (ω) = lim
h→∞

Z (i1...ih) . (4.16)

Let Z (x) ≡ Z
(
π−1 (x)

)
. Then, Z (x) is well defined onV∞ (see for instance [47]). Indeed, according

to [49, Theorem 3.6], for ν−almost all x ∈ G,

Z
(
π−1 (x)

)
= Z (ω)
= lim

h→∞
Zh (i1...ih) , (4.17)

where

Zh (i1...ih) =
1
2

(
5
3

)h T t
i1...ih

PTi1...ih

ν
(
Gi1...ih

) . (4.18)

Let U be an open subset of M0 containing GH. Let us define

C1 (G) =
{
u; u =

(
v |GH

)
◦ Φ, v ∈ C1 (U)

}
. (4.19)
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According to [47], if we fix an orthonormal basis of M0 and regard M0 as R2, then, for any u ∈ C1 (G),

∇u =


∂u
∂x1
∂u
∂x2

 . (4.20)

We have the following.

Theorem 6. [47, Theorem 4.8] C1 (G) is a dense subset ofDE under the norm

∥u∥ =
√
EG (u, u) + ∥u∥∞ ,

and, for any u, v ∈ C1 (G),

EG (u, v) =
∫

G
∇u.Z∇vdν.

5. A priori estimates and compactness results

In this section, we establish some a priori estimates and compactness results which will be useful for
the proof of the main results.

Lemma 7. Let vh ∈ Vh, such that suph Fh

(
vh

)
< ∞. If σ ∈ (0,+∞) then

sup
h

5h∣∣∣Ωh
∣∣∣
∫
Ωh

∣∣∣vh
∣∣∣2 dx < +∞.

Proof. The proof follows from the Poincaré inequality in a bounded domain with the Dirichlet boundary
condition on a part of the boundary and a scaling argument. Let us define, for every k ∈

{
1, 2, ..., 3h

}
and

i = 1, 2, 3,

Uh,i
k =


(
yi,k

h,1, y, z
)
∈ R3; yi,k

h,1 ∈
(
εh ln (1/εh) , 2−h − εh ln (1/εh)

)
(y, z) ∈ S

 .

Let φ ∈ C1
(
Uh,i

k

)
, such that φ = 0 on ∂Uh,i

k ∩ ∂S . Using the Poincaré inequality, we infer that, for

every yi,k
h,1 ∈

(
εh ln (1/εh) , 2−h − εh ln (1/εh)

)
,∫

S
φ2

(
yi,k

h,1, y, z
)

dydz ≤ C
∫

S

∣∣∣∣∇y,zφ
(
yi,k

h,1, y, z
)∣∣∣∣2 dydz,

where C is a positive constant independent of h and

∇y,zφ
(
yi,k

h,1, y, z
)
=


∂φ

∂y

(
yi,k

h,1, y, z
)

∂φ

∂z

(
yi,k

h,1, y, z
)

 .
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Now, introducing the scaling yi,k
h,2 = εhy, x3 = εhz, and integrating with respect to yi,k

h,1 between
εh ln (1/εh) and 2−h − εh ln (1/εh), we get∫ 2−h−εh ln(1/εh)

εh ln(1/εh)

∫
εhS

φ2dyi,k
h,1dyi,k

h,2dx3

≤ Cε2
h

∫ 2−h−εh ln(1/εh)

εh ln(1/εh)

∫
εhS
|∇φ|2 dyi,k

h,1dyi,k
h,2dx3,

from which we deduce, using the change of variables (2.7), that, for every vh ∈ Vh,∫
Ω

h,i
k \J

h,+,i
k ∪J

h,−,i
k

∣∣∣vh
∣∣∣2 dx ≤ Cε2

h

∫
Ω

h,i
k \J

h,+,i
k ∪J

h,−,i
k

∣∣∣∇vh
∣∣∣2 dx. (5.1)

We can use the same method in Jh,+,i
k ∪ J

h,−,i
k to obtain∫

J
h,+,i
k ∪J

h,−,i
k

∣∣∣vh
∣∣∣2 dx ≤ Cε2

h

∫
J

h,+,i
k ∪J

h,−,i
k

∣∣∣∇vh
∣∣∣2 dx. (5.2)

The combination of (5.1) and (5.2) implies that∫
Ω

h,i
k

∣∣∣vh
∣∣∣2 dx ≤ Cε2

h

∫
Ω

h,i
k

∣∣∣∇vh
∣∣∣2 dx. (5.3)

Then, summing over i and k in (5.3), we obtain that

5h

3h+1ε2
h Reh

∫
Ωh

∣∣∣vh
∣∣∣2 dx ≤ C

5h

3h+1 Reh

∫
Ωh

∣∣∣∇vh
∣∣∣2 dx. (5.4)

As σ ∈ (0,+∞), we have that
Rej,h ≤ Cεh ≤ C2−h,

from which we deduce that 2h ≤ C
1

Rej,h
in Jh. Thus, using (5.4),

5h

3h+1ε2
h2−h

∫
Ωh

∣∣∣vh
∣∣∣2 dx ≤

5h

3h+1ε2
h Reh

∫
Ωh

∣∣∣vh
∣∣∣2 dx

≤ CFh

(
vh

)
.

(5.5)

Observing that 3hε2
h2−h ≈

∣∣∣Ωh
∣∣∣

π
, we conclude that

sup
h

5h∣∣∣Ωh
∣∣∣
∫
Ωh

∣∣∣vh
∣∣∣2 dx ≤ C sup

h
Fh

(
vh

)
< +∞. (5.6)

We have the following result:
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Proposition 8. Let 1Ωh be the characteristic function of the set Ωh. Let vh ∈ Vh, such that suph Fh

(
vh

)
<

+∞. If σ ∈ (0,+∞), then there exists a subsequence of
(
vh

)
h
, still denoted as

(
vh

)
h
, such that

√
5hvhπ1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
v

dHd (s) ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
,

where v = (v1, v2, v3) ∈ L2
Hd

(
G,R3

)
with v3 = 0 on G, v2 = 0 on the part of G which is perpendicular to

(0, 1), v2 = v1
√

3 on the part of G which is perpendicular to
(
−
√

3/2, 1/2
)
, and v2 = −v1

√
3 on the part

of G which is perpendicular to
(√

3/2, 1/2
)
.

Proof. Let us consider the sequence of measures (ϑh)h on R3 defined by

ϑh =
π1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx.

Using an ergodicity argument (see, for instance, [50, Theorem 6.1]), we deduce that, for every
φ ∈ C0

(
R3

)
,

lim
h→∞

∫
R3
φ (x) dϑh = lim

h→∞

3h∑
k=1

i=1,2,3

1
3h+1φ

ai,k
h + bi,k

h

2
, 0


=

1
Hd (G)

∫
G
φ (s, 0) dHd (s) ,

from which we deduce that

ϑh
∗
⇀

h→∞
ϑ = 1G (s)

dHd (s) ⊗ δ0 (x3)
Hd (G)

.

Let vh ∈ L2
(
Ωh,R3

)
, such that suph Fh

(
vh

)
< +∞. If σ ∈ (0,+∞) then, according to Lemma 7,

sup
h

5h∣∣∣Ωh
∣∣∣
∫
Ωh

∣∣∣vh
∣∣∣2 dx < +∞. (5.7)

Observing that, for some positive constant C independent of h,∣∣∣∣∣∫
R3

√
5hvhdϑh

∣∣∣∣∣2 ≤ C5h

∫
R3

∣∣∣vh
∣∣∣2 dϑh

≤
C5h∣∣∣Ωh

∣∣∣
∫
Ωh

∣∣∣vh
∣∣∣2 dx,

and, by taking into account (5.7), we deduce that the sequence
(√

5hvhϑh

)
h

is uniformly bounded in
variation, hence ∗-weakly relatively compact. Possibly passing to a subsequence, we can suppose that
the sequence

(√
5hvhϑh

)
h
∗-weakly converges to some χ. Let φ ∈ C0

(
R3,R3

)
. By using Fenchel’s

inequality, we have

lim inf
h→∞

1
2

∫
R3

∣∣∣∣√5hvh
∣∣∣∣2 dϑh

≥ lim inf
h→∞

(∫
R3

√
5hvh.φdϑh −

1
2

∫
R3
|φ|2 dϑh

)
≥ ⟨χ, φ⟩ −

1
2

∫
R3
|φ|2 dϑ.
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As the left-hand side of this inequality is bounded, we deduce that

sup
{
⟨χ, φ⟩ ; φ ∈ C0

(
R3,R3

)
,
∫

G
|φ|2 (s, 0) dHd (s) ≤ 1

}
< +∞,

from which we deduce, according to Riesz’ representation Theorem, that there exists v such that
v (s, 0) ∈ L2

Hd

(
G,R3

)
and χ = v (s, x3)ϑ.

Let us introduce the function vh,i; i = 1, 2, 3, related to vh by

vh,i
(
yi,k

h,1, y
i,k
h,2, x3

)
= Rivh ◦ Rt

i




yi,k
h,1

yi,k
h,2
x3

 + Ri


ai,k

h,1
ai,k

h,2
0


 , (5.8)

where yi,k
h,1, y

i,k
h,2, x3 are the variables defined in (2.7). We can easily prove, after some computations that

for every i = 1, 2, 3,
divy vh,i = div vh, (5.9)

where divy is the divergence operator in the variables yi,k
h,1, y

i,k
h,2, x3. On the other hand, as Πh,i

k is a cylinder
of revolution, we can introduce the cylindrical coordinates yi,k

h,1 ≡ yi,k
h,1, yi,k

h,2 = r cos θ, x3 = r sin θ, and the
polar components of vh,i defined by

vh,i
1

(
yi,k

h,1, r, θ
)
= vh,i

1

(
yi,k

h,1, r cos θ, r sin θ
)

,
vh,i

r

(
yi,k

h,1, r, θ
)
=

(
vh,i

2 cos θ + vh,i
3 sin θ

) (
yi,k

h,1, r cos θ, r sin θ
)

,
vh,i
θ

(
yi,k

h,1, r, θ
)
=

(
−vh,i

2 sin θ + vh,i
3 cos θ

) (
yi,k

h,1, r cos θ, r sin θ
)

.
(5.10)

Let ṽh,i =
(
vh,i

1 , v
h,i
r , v

h,i
θ

)
. The divergence of ṽh,i in cylindrical coordinates is given by

divr

(̃
vh,i

)
=
∂vh,i

1

∂yi,k
h,1

+
vh,i

r

r
+
∂vh,i

r

∂r
+

1
r
∂vh,i

θ

∂θ
. (5.11)

Since div vh = 0, we deduce from (5.9) and (5.11) that

divy vh,i = divr

(̃
vh,i

)
= 0. (5.12)

Using the boundary condition (2.25)2, we have, for every h ∈ N,

vh,i
1 (εh, r, θ) − vh,i

1

(
2−h − εh, r, θ

)
= 0, (5.13)

from which we deduce, using Green’s formula, that, for ψ ∈ C∞c (0, 2π) and φ (θ) =
∫ θ

0
ψ (ξ) dξ with

φ (2π) = 0,
3h∑

k=1
i=1,2,3

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0

∂vh,i
1

∂yi,k
h,1

φ (θ) rdyi,k
h,1drdθ

= −

∫ εh

0

∫ 2π

0

3h∑
k=1

i=1,2,3

(
vh,i

1 (εh, r, θ) − vh,i
1

(
2−h − εh, r, θ

))
φ (θ) rdrdθ

= 0.

(5.14)
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Since divr

(̃
vh,i

)
= 0, we deduce from formula (5.11), according to (5.14), that

2h
√

5h

3h+1εh

3h∑
k=1

i=1,2,3

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0
vh,i

r φ (θ) dyi,k
h,1drdθ

+
2h
√

5h

3h+1εh

3h∑
k=1

i=1,2,3

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0

∂vh,i
r

∂r
φ (θ) rdyi,k

h,1drdθ

+
2h
√

5h

3h+1εh

3h∑
k=1

i=1,2,3

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0

∂vh,i
θ

∂θ
φ (θ) dyi,k

h,1drdθ

= 0.

(5.15)

Using Green’s formula, we deduce that∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0

∂vh,i
r

∂r
φ (θ) rdyi,k

h,1drdθ

= −

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0
vh,i

r φ (θ) dyi,k
h,1drdθ,

(5.16)

and ∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0

∂vh,i
θ

∂θ
φ (θ) dyi,k

h,1drdθ

= −

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0
vh,i
θ ψ (θ) dyi,k

h,1drdθ.
(5.17)

Combining with (5.15), we deduce that

2h
√

5h

3h+1εh

3h∑
k=1

i=1,2,3

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0
vh,i
θ ψ (θ) dyi,k

h,1drdθ = 0. (5.18)

Recalling that vh,i
θ = −vh,i

2 sin θ + vh,i
3 cos θ and vh,i

3 = vh
3, and using the first part of this Lemma, we

obtain that

lim
h→∞

2h
√

5h

3h+1εh

3h∑
k=1

i=1,2,3

∫ 2−h−εh

εh

∫ εh

0

∫ 2π

0
vh,i
θ ψ (θ) dyi,k

h,1drdθ

=
1

Hd (G)

∫
G

∫ 2π

0
(−w (s) sin θ + v3 (s) cos θ)ψ (θ) dsdθ = 0,

(5.19)

where

w (s) =


v2 (s) on G1,
−v1 (s)

√
3 + v2 (s) on G2,

v1 (s)
√

3 + v2 (s) on G3,
(5.20)

where G1 is the part of G which is perpendicular to (0, 1), G2 is the part of G which is perpendicular to(
−
√

3/2, 1/2
)
, and G3 is the part of G which is perpendicular to

(√
3/2, 1/2

)
. We deduce from (5.19)
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that −w (s) sin θ + v3 (s) cos θ = 0 for every θ ∈ (0, 2π), thus w = v3 = 0 on G. Therefore, combining
with (5.20), v2 = 0 on G1, v2 = v1

√
3 on G2, and v2 = −v1

√
3 on G3.

Proposition 9. We suppose that σ ∈ (0,+∞). Let vh ∈ Vh ∩ H2
(
Ωh,R3

)
, such that suph Fh

(
vh

)
< +∞.

Then, for every sequence
(
φh

)
h, such that φh ∈ H1

(
Ωh

)
and

suph
5h∣∣∣Ωh

∣∣∣
∫
Ωh

∣∣∣∇φh

∣∣∣2 dx < +∞ ,

√
5hφh

π1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
φ

dHd (s) ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
,

(5.21)

we have

1. φ (s, 0) ∈ DE and
∫

G
∇φ.Z∇φdν < +∞,

2. there exists a subsequence of
(
vh

)
h
, still denoted as

(
vh

)
h
, and v ∈ L2

Hd (G), such that

lim
h→∞

5h∣∣∣Ωh
∣∣∣
∫
Ωh

vh.∇φhdx =
∫

G
vn.Z∇φdν = 0,

where n = (1, 0) on the horizontal part of G, n =
(
1/2,

√
3/2

)
on the part of G which is

perpendicular to
(
−
√

3/2, 1/2
)
, and n =

(
1/2,−

√
3/2

)
on the part of G which is perpendicular to(√

3/2, 1/2
)
.

Proof. 1. Let us define, for every k ∈
{
1, 2, ..., 3h

}
and i = 1, 2, 3,

φi
h

(
yi,k

h,1, y
i,k
h,2, x3

)
= φh ◦ R

t
i




yi,k
h,1

yi,k
h,2
x3

 + Ri


ai,k

h,1
ai,k

h,2
0


 , (5.22)

and

φ̃i
h

(
yi,k

h,1

)
=

1
πε2

h

∫
εhS

φi
h

(
yi,k

h,1, y
i,k
h,2, x3

)
dyi,k

h,2dx3

=
1
πε2

h

∫
εhS

φh

Rt
i


yi,k

h,1
yi,k

h,2
x3

 +


ai,k
h,1

ai,k
h,2
0


 dyi,k

h,2dx3,
(5.23)
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where yi,k
h,1, y

i,k
h,2, x3 are the change of variables defined in (2.7). Then

5h∣∣∣Ωh
∣∣∣
∫
Ωh

∣∣∣∇φh

∣∣∣2 dx =
5h∣∣∣Ωh

∣∣∣
3h∑

k=1
i=1,2,3

∫
Ω

h,i
k

∣∣∣∇φh

∣∣∣2 dx

≥
5h

3h+1

3h∑
k=1

i=1,2,3

∫ 2−h

0

2h

πε2
h

∫
εhS

 ∂φi
h

∂yi,k
h,1

2

dyi,k
h,1dyi,k

h,2dx3

≥
5h

3h+1

3h∑
k=1

i=1,2,3

1
πε2

h

∫
εhS

∫ 2−h

0

∂φi
h

∂yi,k
h,1

dyi,k
h,1

2

dyi,k
h,2dx3

=
5h

3h+1

3h∑
k=1

i=1,2,3

1
πε2

h

∫
εhS

(
φi

h

(
2−h, yi,k

h,2, x3

)
− φi

h

(
0, yi,k

h,2, x3

))2
dyi,k

h,2dx3

≥
5h

3h+1

3h∑
k=1

i=1,2,3

(
1
πε2

h

∫
εhS

(
φi

h

(
2−h, yi,k

h,2, x3

)
− φi

h

(
0, yi,k

h,2, x3

))
dyi,k

h,2dx3

)2

=
5h

3h+1

3h∑
k=1

i=1,2,3

(
φ̃i

h

(
2−h

)
− φ̃i

h (0)
)2

=
5h

3h+1

3h∑
k=1

i=1,2,3

(
φ̃h

(
ai,k

h

)
− φ̃h

(
bi,k

h

))2

= EG
(
φ̃h

)
,

(5.24)

where φ̃h (x1, x2) = φ̃i
h

(
yi,k

h,1

)
for (x1, x2) ∈

[
ai,k

h , b
i,k
h

]
. We now introduce the harmonic extension of φ̃h |Vh

obtained by the so-called decimation procedure (see, for instance, [51, Corollary1]). We define the
function Hh+1φ̃h : Vh+1 −→ R as the unique minimizer of the problem

min
{
Eh+1

G (w) ; w : Vh+1 −→ R, w = φ̃h onVh

}
. (5.25)

Then Eh+1
G

(
Hh+1φ̃h

)
= Eh

G
(
φ̃h

)
. For m > h, we define the function Hmφ̃h fromVm into R2 by

Hmφ̃h = Hm
(
Hm−1

(
...

(
Hh+1φ̃h

)))
.

We have, for every m > h, Hmφ̃h |Vh= φ̃h |Vh and

Em
G
(
Hmφ̃h

)
= Eh

G
(
φ̃h

)
. (5.26)

We define now, for fixed h ∈ N, the function Hφ̃h onV∞ as follows. For a ∈ V∞, we choose m ≥ h
such that a ∈ Vm and set

Hφ̃h (a) = Hmφ̃h (a) . (5.27)

As suph
5h∣∣∣Ωh

∣∣∣
∫
Ωh

∣∣∣∇φh

∣∣∣2 dx < +∞, we have, according to (5.24), (5.26), and (5.27),

sup
h
EG

(
Hφ̃h

)
= sup

h
Eh

G
(
φ̃h

)
< +∞, (5.28)
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from which we deduce, using Section 4, that Hφ̃h has a unique continuous extension on G, still denoted
as Hφ̃h, and that the sequence

(
Hφ̃h

)
h is bounded in DE. Therefore, there exists a subsequence, still

denoted as
(
Hφ̃h

)
h, weakly converging in the Hilbert spaceDE to some φ∗ ∈ DE, such that

EG (φ∗) ≤ lim inf
h→∞

EG
(
Hφ̃h

)
≤ lim inf

h→∞
Eh

G
(
φ̃h

)
. (5.29)

On the other hand, using the hypothesis (5.21)2, we have that

φ̃h

√
5h 2h1T h (x)

3h+1 dx
∗
⇀

h→∞
φ (s, 0)

dHd (s)
Hd (G)

inM
(
R2

)
, (5.30)

where T h =

3h⋃
k=1

T k
h ; T k

h being the kth triangle obtained at the step k in the construction of the fractal G.

We deduce from this that, for every ψ ∈ C0 (G),

lim
h→∞

1
Hd (G)

∫
G

Hφ̃hψdHd (s) = lim
h→∞

∫
R3
φ̃hψdυh

=
1

Hd (G)

∫
G
φ (s, 0)ψdHd (s) ,

(5.31)

where (υh)h is the sequence of measures defined by

υh =
1

Card (Vh)

∑
a∈Vh

δa, (5.32)

δa being the Dirac measure at the point a. Thus, φ∗ (s) = φ (s, 0), φ (s, 0) ∈ DE, and, according to (5.24)
and (5.29),

EG (φ) ≤ lim inf
h→∞

5h∣∣∣Ωh
∣∣∣
∫
Ωh

∣∣∣∇φh

∣∣∣2 dx

≤ suph
5h∣∣∣Ωh

∣∣∣
∫
Ωh

∣∣∣∇φh

∣∣∣2 dx < +∞,
(5.33)

from which we deduce, using Theorem 6, that

EG (φ) =
∫

G
∇φ.Z∇φdν < +∞. (5.34)

2. As div vh = 0, we can write

5h∣∣∣Ωh
∣∣∣
∫
Ωh

vh.∇φhdx =
5h∣∣∣Ωh

∣∣∣
∫

Bh
vh.∇φhdx +

5h∣∣∣Ωh
∣∣∣
∫
Ωh\Bh

vh.∇φhdx

=
5h∣∣∣Ωh

∣∣∣
∫

Bh
vh.∇φhdx

+
5h∣∣∣Ωh

∣∣∣
3h∑

k=1
i=1,2,3

∫
εhS

vh |Σh,i
k,1
.ni

(
φh |Σh,i

k,1
−φh |Σh,i

k,2

)
= 0,

(5.35)
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where ni = Rie1. Since
∣∣∣Bh

∣∣∣ −→ 0 as h→ ∞, using the proof of Lemma 7 and the hypothesis (5.21), we
have that

lim
h→∞

5h∣∣∣Ωh
∣∣∣
∫

Bh
vh.∇φhdx = 0.

Thus, passing to the limit in (5.35), we get

lim
h→∞

5h∣∣∣Ωh
∣∣∣
∫
Ωh

vh.∇φhdx

= lim
h→∞

5h∣∣∣Ωh
∣∣∣

3h∑
k=1

i=1,2,3

∫
εhS

vh |Σh,i
k,1
.ni

(
φh |Σh,i

k,1
−φh |Σh,i

k,2

)

= lim
h→∞

5h∣∣∣Ωh
∣∣∣

3h∑
k=1

i=1,2,3

∫
εhS

vh |Σh,i
k,1
.ni

(
φ |Σh,i

k,1
−φ |Σh,i

k,2

)
= 0.

(5.36)

As φ (s, 0) ∈ DE, using some density argument, we may suppose that φ (s, 0) ∈ C1 (G). As vh

∈ H2
(
Ωh,R3

)
, we may write

lim
h→∞

5h∣∣∣Ωh
∣∣∣
∫
Ωh

vh.∇φhdx

= lim
h→∞

5h

π3h+1

3h∑
k=1

i=1,2,3

∫
εhS

vh
(
ai,k

h + ϵ
i
h

)
.ni2h

(
φ
(
ai,k

h

)
− φ

(
bi,k

h

))
,

(5.37)

where ϵ i
h = εhR

t
ie1. On the other hand, there exists a function rh ∈ C1

(
Ωh

)
such that vh = ∇rh. Indeed,

as div vh = 0, rh is a solution of the equation ∆rh = 0 in Ωh with some boundary conditions on ∂Ωh.
Using the smoothness of φ, we infer that

φ
(
ai,k

h

)
− φ

(
bi,k

h

)
=

∑
l=1,2

∫ 1

0

∂φ

∂xl

(
t
(
ai,k

h − bi,k
h

)
+ bi,k

h

) (
ai,k

h − bi,k
h

)
l
dt

= 2−h∇φ
(
ai,k

h

)
.ni + O

(
2−2h

)
.

(5.38)

Then, replacing in (5.37), taking into account the fact that suph Fh

(
vh

)
< +∞ and the estimates on vh

given in Lemma 7, we obtain that

5h∣∣∣Ωh
∣∣∣
∫
Ωh

vh.∇φh =
5h

3h

3h∑
k=1

i=1,2,3

∇rh

(
ai,k

h

)
.ni∇φ

(
ai,k

h

)
.ni + O

(
εh2h

)
. (5.39)

As for the fractal G, we can construct, according to Proposition 5, a graph approximation GH,h of the
harmonic Sierpinski gasket GH and a sequence

(
Ωh

H

)
h

of thin branching tubes whose axes are iterated
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curves of the graph GH,h. As rh ∈ C1
(
Ωh

)
, there exists rh ∈ C1

(
Ωh

H

)
, such that rh |Gh= rh |GH,h ◦Φ.

Similarly, there exists ς ∈ C1 (U), U being an open subset of M0 containing GH, such that φ |G= ς|GH ◦Φ.
Let us set, for k1, ..., kh ∈ {1, 2, 3},

Ξk1...kh (Ai) = ∇rh ◦ Φ
(
ψk1...kh

(Ai)
)
.niT t

k1...kh
PH (Ai) ,

𭟋k1...kh (Ai) = H (Ai) PTk1...kh∇ς ◦ Φ
(
ψk1...kh

(Ai)
)
.ni,

(5.40)

where H (Ai) = (h1 (Ai) , h2 (Ai) , h3 (Ai)) = (δ1i, δ2i, δ3i). Then, observing that, there exist k1, ..., kh ∈

{1, 2, 3} such that ai,k
h = ψk1...kh

(Ai), using (5.40), the fact that Pt = P, T t
k1...kh

P = T t
k1...kh

, and [46, Lemma
3.2], we deduce that

∇rh

(
ai,k

h

)
.ni∇φ

(
ai,k

h

)
.ni

= Ξk1...kh (Ai) .𭟋k1...kh (Ai)
= ∇rh ◦ Φ

(
ψk1...kh

(Ai)
)
.niZh∇ς ◦ Φ

(
ψk1...kh

(Ai)
)
.niν

(
Gk1...kh

)
.

(5.41)

Using Lemma 8, there exists a subsequence of
(
vh

)
h
, still denoted as

(
vh

)
h
, and v ∈ L2

Hd (G), such that

√
5hvhπ1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
(v, v∗, 0)

dHd (s) ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
,

where v∗ = 0 on the part of G which is perpendicular to (0, 1), v∗ = v
√

3 on the part of G which is
perpendicular to

(
−
√

3/2, 1/2
)
, and v∗ = −v

√
3 on the part of G which is perpendicular to

(√
3/2, 1/2

)
.

The corresponding subsequence of gradients
(
∇rh |Gh= ∇rh |GH ◦Φ

)
h converges to the same limit. Thus,

using the limits (5.36)–(5.37), the relations (5.38)–(5.41), and the smoothness of φ and vh, we obtain
that

lim
h→∞

5h∣∣∣Ωh
∣∣∣
∫
Ωh

vh.∇φhdx

= lim
h→∞

5h

3h

3h∑
k=1

i=1,2,3

∇rh

(
ai,k

h

)
.ni∇φ

(
ai,k

h

)
.ni

=

∫
G

(v, v∗) .nZ∇φ.ndν

=

∫
G

vn.Z∇φdν

= 0,

(5.42)

where we have used the fact that (v, v∗) .n = v.

According to the above proposition, we introduce the following

Definition 2. 1. We define the space HZ (G) by

HZ (G) =
{
φ ∈ L2

Hd (G) ;
∫

G
∇φ.Z∇φdν < +∞

}
. (5.43)
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2. Let n = (1, 0) on the horizontal part of G, n =
(
1/2,

√
3/2

)
on the part of G which is perpendicular

to
(
−
√

3/2, 1/2
)
, and n =

(
1/2,−

√
3/2

)
on the part of G which is perpendicular to

(√
3/2, 1/2

)
.

Let v ∈ DE. We define the divergence of v on G by the relation

⟨divZ (v) , φ⟩ =
∫

G
vn.Z∇φdν,

for every φ ∈ HZ (G).
3. We define the space V∞ by

V∞ = {v ∈ DE; ⟨divZ (v) , φ⟩ = 0, ∀φ ∈ HZ (G)} . (5.44)

We introduce the following useful result which is due to Bogovskiı̆ [52]:

Lemma 10. Let D ⊂ R3 be a bounded domain with Lipschitz continuous boundary ∂D. There exists a
linear operator B : L2 (D)→ H1

0

(
D;R3

)
, such that, for every ϖ ∈ L2 (D) satisfying

∫
D
ϖdx = 0,{

div (B (ϖ)) = ϖ in D,
∥∇B (ϖ)∥L2(D;R9) ≤ C (D) ∥ϖ∥L2(D) ,

where C (D) is a constant which only depends on D.

Let us define D = S × (0, 1). As a consequence, we have the following result:

Lemma 11. Let Dh = εhS ×
(
0, 2−h

)
. There exists a linear operator Bh : L2 (Dh)→ H1

0

(
Dh;R3

)
, such

that, for every ϖ ∈ L2 (Dh) with
∫

Dh
ϖdx = 0,

div (Bh) = ϖ in Dh,

∥∇Bh∥L2(Dh;R9) ≤
C (D)
εh
∥ϖ∥L2(Dh) ,

where C (D) is a constant which still only depends on D.

Proof. For every ϖ ∈ L2 (Dh) satisfying
∫

Dh
ϖdx = 0, we define

ϖh (y) = ϖ
(
εhy1, εhy2, 2−hy3

)
, ∀y = (y1, y2, y3) ∈ D.

Then, since
∫

Dh
ϖdy = 0, we can apply Lemma 10 in D to obtain{

div (B (ϖh)) = ϖh in D,
∥∇B (ϖh)∥L2(D;R9) ≤ C (D) ∥ϖh∥L2(D) . (5.45)

Let us define, for every x ∈ Dh,

Bh (ϖ) (x) =
(
εhB1 (ϖh) , εhB2 (ϖh) , 2−hB3 (ϖh)

) ( x1

εh
,

x2

εh
,

x3

2−h

)
. (5.46)
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Then

divBh (ϖ) (x) = div (B (ϖh))
(

x1

εh
,

x2

εh
,

x3

2−h

)
= ϖh

(
x1

εh
,

x2

εh
,

x3

2−h

)
= ϖ (x) .

(5.47)

On the other hand, observing that

∇Bh (ϖ) (x) = Mh (B (ϖh))
(

x1

εh
,

x2

εh
,

x3

2−h

)
,

where

Mh (B (ϖh)) =



∂B1 (ϖh)
∂x1

∂B1 (ϖh)
∂x2

εh

2−h

∂B1 (ϖh)
∂x3

∂B2 (ϖh)
∂x1

∂B2 (ϖh)
∂x2

εh

2−h

∂B2 (ϖh)
∂x3

εh

2−h

∂B3 (ϖh)
∂x1

εh

2−h

∂B3 (ϖh)
∂x2

∂B3 (ϖh)
∂x3


,

we deduce that ∫
Dh

|∇Bh (ϖ)|2 dx = 2−h
∑

α,β=1,2

∫
D

∣∣∣∣∣∣∂Bα ((ϖh))
∂xβ

∣∣∣∣∣∣2 dx

+
∑
α=1,2

2hε4
h

∫
D

∣∣∣∣∣∂Bα ((ϖh))
∂x3

∣∣∣∣∣2 dx

+
∑
α=1,2

2hε2
h

∫
D

∣∣∣∣∣∂B3 (ϖh)
∂xα

∣∣∣∣∣2 dx

+2−hε2
h

∫
D

∣∣∣∣∣∂B3 (ϖh)
∂x3

∣∣∣∣∣2 dx

≤ 2−h

∫
D
|∇B (ϖh)|2 dx.

(5.48)

Last, according to (5.45), we have

2−h

∫
D
|∇B (ϖh)|2 dx ≤ C (D) 2−h

∫
D
|ϖh|

2 dx

≤
C (D)
ε2

h

∫
Dh

|ϖ|2 dx.
(5.49)

Therefore, combining (5.48) and (5.49), we infer that∫
Dh

|∇Bh (ϖ)|2 dx ≤
C (D)
ε2

h

∫
Dh

|ϖ|2 dx. (5.50)

Let
(
uh, ph

)
be the solution of problem (2.22) with boundary conditions (2.25). Let us define, for

every h ∈ N, i = 1, 2, 3, and k ∈
{
1, 2, ..., 3h

}
, the zero average-value pressure p̂h,i

k by

p̂h,i
k = ph −

1∣∣∣Ωh,i
k

∣∣∣
∫
Ω

h,i
k

phdx in Ωh,i
k , (5.51)
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and the pressure p̂h by
p̂h ≡ p̂h,i

k on each Ωh,i
k . (5.52)

The following estimates hold true:

Lemma 12. If σ ∈ (0,+∞) then

1. suph Fh

(
uh

)
< +∞, suph

5h∣∣∣Ωh
∣∣∣
∫
Ωh

∣∣∣uh
∣∣∣2 dx < +∞,

2. suph
5h∣∣∣Ωh

∣∣∣
∫
Ωh

(
p̂h

)2 dx < +∞, suph
5h∣∣∣Ωh

∣∣∣
∫
Ωh
|∇ph|

2 dx < +∞.

Proof. 1. Applying Lemma 11 for the solution fh of problem (2.23), we deduce that, for every k ∈{
1, 2, ..., 3h

}
and i = 1, 2, 3, ∫

Ω
h,i
k

|∇ fh|
2 dx ≤

C
ε2

h

∫
Ω

h,i
k

|gh|
2 dx. (5.53)

Additionally, using the inequality (5.3), we have∫
Ω

h,i
k

| fh|
2 dx ≤ Cε2

h

∫
Ω

h,i
k

|∇ fh|
2 dx. (5.54)

We deduce from (5.53) and (5.54), that

5h∣∣∣Ωh
∣∣∣
∫
Ω

h,i
k

| fh|
2 dx ≤ C

5h∣∣∣Ωh
∣∣∣
∫
Ω

h,i
k

|gh|
2 dx, (5.55)

then, using the hypothesis (2.24)2, we conclude that

sup
h

5h∣∣∣Ωh
∣∣∣
∫
Ωh
| fh|

2 dx < +∞. (5.56)

Multiplying (2.22)1 by uh and integrating by parts, we obtain that

5h

Reh

∫
Ωh

∣∣∣∇uh
∣∣∣2 dx =

1
Frh

5h

3h+1

∫
Ωh

fh.uhdx, (5.57)

from which we deduce, in virtue of the fact that
1

Frh

5h

3h+1 ≈
5h∣∣∣Ωh

∣∣∣ , by using inequality (5.6) and estimate

(5.56),

sup
h

5h

Reh

∫
Ωh

∣∣∣∇uh
∣∣∣2 dx < +∞ , (5.58)

and, as σ ∈ (0,+∞), according to Lemma 7,

sup
h

5h∣∣∣Ωh
∣∣∣
∫
Ωh

∣∣∣uh
∣∣∣2 dx < +∞. (5.59)
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2. According to Lemma 11, there exists ϕh,i
k ∈ H1

0

(
Ωh,i

k ,R
3
)

such that{
− div ϕh,i

k = p̂h,i
k in Ωh,i

k ,
ϕh,i

k = 0 on ∂Ωh,i
k ,

(5.60)

and ∥∥∥∇ϕh,i
k

∥∥∥
L2

(
Ω

h,i
k ,R9

) ≤ C
εh

∥∥∥p̂h,i
k

∥∥∥
L2

(
Ω

h,i
k

) . (5.61)

Let us define ϕh on Ωh by ϕh = ϕh,i
k on each Ωh,i

k , for every k ∈
{
1, 2, ..., 3h

}
and i = 1, 2, 3. Then,

according to inequality (5.61), we have that∥∥∥∇ϕh
∥∥∥

L2(Ωh,R9) ≤
C
εh

∥∥∥p̂h

∥∥∥
L2(Ωh) . (5.62)

Multiplying (2.22)1 by ϕh and integrating by parts, we deduce that

5h

Reh

∫
Ωh
∇uh.∇ϕhdx + Euh

5h

3h+1

∫
Ωh

(
p̂h

)2 dx

=
1

Frh

5h

3h+1

∫
Ωh

fh.ϕ
hdx.

(5.63)

Using the fact that Euh
5h

3h+1 =
1

Frh

5h

3h+1 ≈
5h∣∣∣Ωh

∣∣∣ , inequality (5.62), and the uniform boundedness

(5.56) and (5.58), we deduce that

5h∣∣∣Ωh
∣∣∣
∫
Ωh

(
p̂h

)2 dx ≤ C

 5h∣∣∣Ωh
∣∣∣
∫
Ωh

(
p̂h

)2 dx


1/2

, (5.64)

which implies that

sup
h

5h∣∣∣Ωh
∣∣∣
∫
Ωh

(
p̂h

)2 dx < +∞. (5.65)

On the other hand, multiplying (2.27)1 by ph, integrating by parts, and, using the hypothesis (2.24)1,
we get

5h∣∣∣Ωh
∣∣∣
∫
Ωh
|∇ph|

2 dx = −
5h∣∣∣Ωh

∣∣∣
∫
Ωh

gh phdx

= −
5h∣∣∣Ωh

∣∣∣
3h∑

k=1
i=1,2,3

∫
Ω

h,i
k

gh phdx

= −
5h∣∣∣Ωh

∣∣∣
3h∑

k=1
i=1,2,3

∫
Ω

h,i
k

gh p̂h,i
k dx

= −
5h∣∣∣Ωh

∣∣∣
∫
Ωh

gh p̂hdx,

(5.66)

from which we deduce by using (2.24)2 and the uniform boundedness (5.65):

sup
h

5h∣∣∣Ωh
∣∣∣
∫
Ωh
|∇ph|

2 dx < +∞.
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6. Proof of the main result

6.1. Proof of Theorem 2

6.1.1. Local problems

Let us define new orthonormal basis systems
(
ei

m

)
m=1,2,3

; i = 1, 2, 3, by

ei
m = Riem, (6.1)

where em = (δ1m, δ2m, δ3m). We define the rescaled junctions J+,i and J−,i, for i = 1, 2, 3, by

J+,i =
{
y = y1ei

1 + y2ei
2 + y3ei

3; y1 > 0, (y2, y3) ∈ S
}

,
J−,i =

{
y = y1ei

1 + y2ei
2 + y3ei

3; y1 < 0, (y2, y3) ∈ S
}

.
(6.2)

We consider the following Leray problems:

(
P+i

)

−µ∆w+,i + ∇π+,i = 0 in J+,i,

div w+,i = 0 in J+,i,
w+,i = 0 on ∂J+,i,

lim
y1→+∞

w+,i (y) = Θ (y2, y3) ei
1 in J+,i,

(6.3)

and

(
P−i

)

−µ∆w−,i + ∇π−,i = 0 in J−,i,

div w−,i = 0 in J−,i,
w−,i = 0 on ∂J−,i,

lim
y1→−∞

w−,i (y) = Θ (y2, y3) ei
1 in J−,i,

(6.4)

where Θ is the solution of the auxiliary problem{
−µ∆Θ = 1 in S ,
Θ = 0 on ∂S .

(6.5)

We define, for every k ∈
{
1, 2, ..., 3h

}
and i = 1, 2, 3, the sequence of functions

(
wh,±,i

)
h

by
wh,+,i (x) = Riw+,i

(
yi,k

h,1(x)

εh
,

yi,k
h,2(x)

εh
, x3
εh

)
for x ∈ Jh,+,i

k ,

wh,−,i (x) = Riw−,i
(

yi,k
h,1(x)−2−h

εh
,

yi,k
h,2(x)

εh
, x3
εh

)
for x ∈ Jh,−,i

k ,
(6.6)

where the sets Jh,+,i
k and Jh,−,i

k are defined in (2.17) and the coordinates yi,k
h,1, yi,k

h,2, x3; i = 1, 2, 3, are
related to the variable x through the relations (2.7). Let us define, for every k ∈

{
1, 2, ..., 3h

}
and

i = 1, 2, 3, the intermediate tubes

ωh,i
k =

 x = (x1, x2, x3) ∈ R3;
(
yi,k

h,2 (x) , x3

)
∈ εhS ,

εh ln (1/εh) < yi,k
h,1 (x) < 2−h − εh ln (1/εh) ,

 (6.7)
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and their upper and lower bases, respectively,

γh,+,i
k =

 (x1, x2, x3) ∈ R3;
(
yi,k

h,2 (x) , x3

)
∈ εS ,

yi,k
h,1 (x) = εh ln (1/εh)

 ,

γh,−,i
k =

 (x1, x2, x3) ∈ R3;
(
yi,k

h,2 (x) , x3

)
∈ εS ,

yi,k
h,1 (x) = 2−h − εh ln

(
1/εh,

)  .
(6.8)

6.1.2. Limit sup inequality

Let v ∈ C1 (G). Let x ∈ Ωh,i
k . Then, (x1, x2) ∈

[
ai,k

h , b
i,k
h

]
; i = 1, 2, 3, for every h ∈ N and every

k ∈
{
1, 2, ..., 3h

}
. Let xi,k

h =
ai,k

h + bi,k
h

2
. We define the sequence of vector functions

(
v0,h,i

k

)
h

by

v0,h,i
k (x) =

v
(
xi,k

h

)
m (Θ)

√
5h
Θ

yi,k
h,2 (x)

εh
,

x3

εh

 ei
1 + ψ

h,i
k (x) , (6.9)

where

m (Θ) =
1
π

∫
S
Θ (y) dy (6.10)

and

ψh,i
k (x) = rh,i

k (v)Θ

yi,k
h,2 (x)

εh
,

x3

εh

 ei
1, (6.11)

with
rh,i

k (v) =
1

√
ln (1/εh)

(
v
(
ai,k

h

)
− v

(
bi,k

h

))
. (6.12)

We introduce the function ϕi,±,k
h defined by

ϕi,+,k
h (x) = rh,i

k (v) wi,+

ln (1/εh) ,
yi,k

h,2 (x)

εh
,

x3

εh

 ,

ϕi,−,k
h (x) = rh,i

k (v) wi,−

− ln (1/εh) ,
yi,k

h,2 (x)

εh
,

x3

εh

 ,

(6.13)

and the function θh,±,1
k defined by θh,+,1

k (x) = ε2
h

(
ϕi,+,k

h (x) − ψh,i
k (x)

)
,

θh,−,i
k (x) = ε2

h

(
ϕi,−,k

h (x) − ψh,i
k (x)

)
.

(6.14)

Let ηh,i
k be the solution of the problem

div ηh,i
k = 0 in ωh,i

k ,
ηh,i

k = ε−2
h θ

h,+,i on γh,+,i
k, ,

ηh,i
k = ε−2

h θ
h,−,i on γh,−,i

k, ,
ηh,i

k = 0 on ∂ωh,i
k \γ

h,+,i
k ∪ γh,−,i

k .

(6.15)
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We define the sequence of test-functions
(
vh,i

k

)
h
; vh,i

k =
(
vh,i

k, j

)
j=1,2,3

, by

vh,i
k =


v0,h,i

k + ηh,i
k in ωh,i

k ,
rh,i

k (v) wh,±,i

+
v
(
xi,k

h

)
m (Θ)

√
5h
Θ

yi,k
h,2 (x)

εh
,

x3

εh

 ei
1 in Jh,±,i

k .
(6.16)

We then define the test function vh in Ωh by

vh (x) = vh,i
k (x) for x ∈ Ωh,i

k , k ∈
{
1, 2, ..., 3h

}
, and i = 1, 2, 3. (6.17)

We have the following results:

Proposition 13. We have

1. vh ∈ Vh for εh small enough,
2.

(
vh

)
h
τ-converges to (v, v∗, 0), where v∗ = 0 on the part of G which is perpendicular to (0, 1),

v∗ = v
√

3 on the part of G which is perpendicular to
(
−
√

3/2, 1/2
)
, and v∗ = −v

√
3 on the part of

G which is perpendicular to
(√

3/2, 1/2
)
,

3. if σ ∈ (0,∞), then

lim
h→∞

Fh

(
vh

)
=

µπ

m (Θ)Hd (G)

∫
G

v2dHd +
2µπm (Θ)

3σ

∫
G

dLG (v) .

Proof. 1. Introducing the variables y2 =
yi,k

h,2 (x)

εh
and y3 =

x3

εh
, we have, for εh small enough, that∫

γh,+,i
k

θh,+,i.ei
1 = −rh,i

k (v) ε2
h

∫
S

(
w+,i (ln (1/εh) , y2, y3)
−Θ (y2, y3) ei

1

)
.ei

1dy

= −rh,i
k (v) ε2

h

∫
S

(Θ (y2, y3) − Θ (y2, y3)) dy

= 0,

(6.18)

and ∫
γh,−,i

k

θh,−,i.ei
1 = −rh,i

k (v) ε2
h

∫
S

(
w−,i (− ln (1/εh) , y2, y3)
−Θ (y2, y3) ei

1

)
.ei

1dy

= −rh,i
k (v) ε2

h

∫
S

(Θ (y2, y3) − Θ (y2, y3)) dy

= 0.

(6.19)

This implies that problem (6.15) is solvable. On the other hand, using [53, Theorem VI.1.2], there
exists τ > 0 such that, for any i = 1, 2, 3 and every y ∈ J±,i,∣∣∣w±,i (y) − Θ (y2, y3) ei

1

∣∣∣ + ∣∣∣∣∇w±,i (y) − ∇
(
Θ (y2, y3) ei

1

)∣∣∣∣ ≤ Ce−τ|y|, (6.20)

from which we deduce that∣∣∣θh,±,i
k (x)

∣∣∣ ≤ Cε3
h
√
εh

√
ln (1/εh)

,
∣∣∣∇θh,±,i

k (x)
∣∣∣ ≤ Cε2

h
√
εh

√
ln (1/εh)

, (6.21)
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which implies that ∥∥∥θh,±,i
k

∥∥∥
H1/2

(
γh,±,i

k

) ≤ C
√∥∥∥θh,±,i

k

∥∥∥
L2

(
γh,i

k

) ∥∥∥∇θh,±,i
k

∥∥∥
L2

(
γh,±,i

k

)
≤

Cε7/2
h
√
εh

√
ln (1/εh)

,
(6.22)

and, using [54, Lemma 9],

∥∥∥∇ηh,i
k

∥∥∥
L2

(
ωh,i

k

) ≤ C
ε2

h
√
εh

∥∥∥θh,±,i
k

∥∥∥
H1/2

(
γh,±,i

k

)
≤

Cεh
√
εh

√
ln (1/εh)

.
(6.23)

Since div ηh,i
k = 0, divy w+,i = divy w−,i = 0, for every i = 1, 2, 3, and Θ is independent of y1, we have

div vh,i
k = 0, for every i = 1, 2, 3.

Therefore, for εh small enough, vh ∈ Vh.

2. Let φ ∈ C0

(
R3

)
. We have

lim
h→∞

∫
R3
φ (x)ψh,i

k (x)
√

5h 1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx

= lim
h→∞

√
5h

3h+1π
√

ln (1/εh)

3h∑
k=1

i=1,2,3


(
v
(
ai,k

h

)
− v

(
bi,k

h

))
×φ

(
xi,k

h , 0
) ∫

S
Θ (y2, y3) dy2dy3


= 0,

(6.24)

and

lim
h→∞

√
5h

3m (Θ)
∣∣∣Ωh

∣∣∣ √5h

3h∑
k=1

i=1,2,3

∫
J

h,±,i
k


φ (x) v

(
xi,k

h

)
×Θ

yi,k
h,2 (x)

εh
,

x3

εh

 .ei
1

 dx

= lim
h→∞

εh ln (1/εh)
3h+1πm (Θ)

3h∑
k=1

i=1,2,3

φ
(
xi,k

h

)
v
(
xi,k

h

)
.ei

1

∫
S
Θ (y2, y3) dy2dy3

= 0.

(6.25)

Then, using the estimate (6.20) for w±,i (y), the estimates (6.21)–(6.22) for θh,±,i
k , the estimate (6.23)
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for ηh,i
k , and the inequality (5.3) applied to ηh,i

k , we deduce that

lim
h→∞

∫
R3
φ (x)

√
5hvh 1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx

= lim
h→∞

1
3
∣∣∣Ωh

∣∣∣m (Θ)

∫
Ωh

3h∑
k=1

i=1,2,3


φ
(
xi,k

h , 0
)

v
(
xi,k

h

)
×Θ

yi,k
h,2 (x)

εh
,

x3

εh

 ei
1

 dx

= lim
h→∞

1
πm (Θ) 3h+1

3h∑
k=1

i=1,2,3


φ
(
xi,k

h , 0
)

v
(
xi,k

h

)
×

(∫
S
Θ (y2, y3) dy2dy3

)
ei

1


=

1
Hd (G)

∫
G
φ (s, 0) (v (s) , v∗ (s) , 0) dHd (s) .

(6.26)

3. Let us suppose that σ ∈ (0,∞). Then, in virtue of the estimates (6.20)–(6.23), we have that

lim
h→∞

5h

3h+1 Reh

∫
Ωh

∣∣∣∇vh
∣∣∣2 dx

= lim
h→∞

µ2h

m2 (Θ) 3h+1

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∣∣∣∣∣∣∣∣ ∇
(
Θ

(
yi,k

h,2(x)

εh
, x3
εh

)
ei

1

)
×v

(
xi,k

h

)
∣∣∣∣∣∣∣∣
2

dx

+ lim
h→∞

µ2h5h

3h+1

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∣∣∣∇ψh,i
k (x)

∣∣∣2 dx

+ lim
h→∞

5h

3h+1 Rej,h

3h∑
k=1

i=1,2,3

∫
J

h,+,i
k

(
rh,i

k (v)
)2 ∣∣∣∇wh,+,i

∣∣∣2 dx

+ lim
h→∞

5h

3h+1 Rej,h

3h∑
k=1

i=1,2,3

∫
J

h,−,i
k

(
rh,i

k (v)
)2 ∣∣∣∇wh,−,i

∣∣∣2 dx

+ lim
h→∞

1
3h+1m2 (Θ) Rej,h

3h∑
k=1

i=1,2,3

∫
J

h,i
k

∣∣∣∣∣∣∣∣ ∇
(
Θ

(
yi,k

h,2(x)

εh
, x3
εh

)
ei

1

)
×v

(
xi,k

h

)
∣∣∣∣∣∣∣∣
2

dx.

(6.27)

where Jh,i
k = J

h,+,i
k ∪ J

h,−,i
k . Then, as

∣∣∣∣∣∣∣∇
Θ yi,k

h,2 (x)

εh
,

x3

εh

 ei
1


∣∣∣∣∣∣∣
2

=
1
ε2

h

|∇Θ (y2, y3)|2 , (6.28)
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and
∫

S
|∇Θ (y2, y3)|2 dy2dy3 = πm (Θ), we deduce that

lim
h→∞

µ2h

3h+1m2 (Θ)

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∣∣∣∣∣∣∣∣∣
v
(
xi,k

h

)
×∇

(
Θ

(
yi,k

h,2(x)

εh
,

x3

εh

)
ei

1

) ∣∣∣∣∣∣∣∣∣
2

dx

= lim
h→∞

µ

m2 (Θ) 3h+1

3h∑
k=1

i=1,2,3

v2
(
xi,k

h

) ∫
S
|∇Θ (y2, y3)|2 dy2dy3

= lim
h→∞

µπ

m (Θ)
1

3h+1

3h∑
k=1

i=1,2,3

v2
(
xi,k

h

)
=

µπ

m (Θ)Hd (G)

∫
G

v2dHd.

(6.29)

After some computations, we infer that

lim
h→∞

µ2h5h

3h+1

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∣∣∣∇ψh,i
k (x)

∣∣∣2 dx

= lim
h→∞

µ5h

3h+1 ln (1/εh)

3h∑
k=1

i=1,2,3


(
v
(
ai,k

h

)
− v

(
bi,k

h

))2

×

∫
S

|∇Θ (y2, y3)|2 dy2dy3


= 0,

(6.30)

and, for the last limit in (6.27),

lim
h→∞

1
3h+1m2 (Θ) Rej,h

3h∑
k=1

i=1,2,3

∫
J

h,i
k

∣∣∣∣∣∣∣∣
v
(
xi,k

h

)
×∇

(
Θ

(
yi,k

h,2(x)

εh
, x3
εh

)
ei

1

) ∣∣∣∣∣∣∣∣
2

dx

= 0.

(6.31)

Using once again the estimate (6.20), we deduce that

lim
h→∞

5h

3h+1 Rej,h

3h∑
k=1

i=1,2,3

∫
J

h,+,i
k

(
rh,i

k (v)
)2 ∣∣∣∇wh,+,i

∣∣∣2 dx

= lim
h→∞

5h

3h+1 Rej,h ln (1/εh)

3h∑
k=1

i=1,2,3


(
v
(
ai,k

h

)
− v

(
bi,k

h

))2

×

∫
J

h,+,i
k

∣∣∣∇wh,+,i
∣∣∣2

 dx

= lim
h→∞

εh

3 Rej,h

(
5
3

)h 3h∑
k=1

i=1,2,3


(
v
(
ai,k

h

)
− v

(
bi,k

h

))2

×

∫
S

|∇Θ (y2, y3)|2 dy2dy3


=
πm (Θ)

3σ

∫
G

dLG (v) ,

(6.32)
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and

lim
h→∞

5h

3h+1 Rej,h

3h∑
k=1

∑
i=1,2,3

∫
J

h,−,i
k

(
rh,i

k (v)
)2 ∣∣∣∇wh,−,i

∣∣∣2 dx

=
πm (Θ)

3σ

∫
G

dLG (v) .

(6.33)

Now, combining (6.27)–(6.33), we get the result.

Proposition 14. If σ ∈ (0,+∞), then for every v ∈ V∞, there exists a sequence
(
vh

)
h
,with vh ∈ Vh and(

vh
)

h
τ-converges to (v, v∗, v∗∗), where v∗∗ = 0, v∗ = 0 on the part of G which is perpendicular to (0, 1),

v∗ = v
√

3 on the part of G which is perpendicular to
(
−
√

3/2, 1/2
)
, and v∗ = −v

√
3 on the part of G

which is perpendicular to
(√

3/2, 1/2
)
, such that

lim sup
h→∞

Fh

(
vh

)
≤ F∞ (v) .

Proof. Let v ∈ V∞. Let (vm)m ⊂ C1 (G) such that vm −→
m→∞

v with respect to the norm (4.5). We define the

sequence
(
vm,h

)
m,h

by replacing in (6.9), (6.16), and (6.17) v by vm. Then, according to Proposition 13,

the sequence
(
vm,h

)
m,h

τ-converges to
(
vm, v∗m, 0

)
, where v∗m = 0 on the part of G which is perpendicular

to (0, 1), v∗m = vm
√

3 on the part of G which is perpendicular to
(
−
√

3/2, 1/2
)
, v∗m = −vm

√
3 on the part

of G which is perpendicular to
(√

3/2, 1/2
)
, and

lim
h→∞

Fh

(
vm,h

)
≤ F∞ (vm) .

The continuity of F∞ implies that limm→∞ limh→∞ Fh

(
vm,h

)
= F∞ (v). The topology τ being

metrizable, we deduce, using a diagonalization argument (see [14, Corollary 1.18]), that the sequence(
vh

)
h
=

(
vh,m(h)

)
h
; lim

h→∞
m (h) = +∞, τ-converges to (v, v∗, 0), with v∗ = 0 on the part of G which is

perpendicular to (0, 1), v∗ = v
√

3 on the part of G which is perpendicular to
(
−
√

3/2, 1/2
)
, v∗ = −v

√
3

on the part of G which is perpendicular to
(√

3/2, 1/2
)
, and

lim sup
h→∞

Fh

(
vh

)
≤ F∞ (v) .

6.1.3. Limit inf inequality

Proposition 15. If σ ∈ (0,+∞), then for every sequence
(
vh

)
h
, such that vh ∈ Vh and

(
vh

)
h
τ-converges

to (v, v∗, v∗∗), we have v ∈ V∞, v∗∗ = 0 on G, v∗ = 0 on the part of G which is perpendicular to (0, 1),
v∗ = v

√
3 on the part of G which is perpendicular to

(
−
√

3/2, 1/2
)
, v∗ = −v

√
3 on the part of G which

is perpendicular to
(√

3/2, 1/2
)
, and

lim inf
h→∞

Fh

(
vh

)
≥ F∞ (v) .
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Proof. Observe that if suph Fh

(
vh

)
= +∞, then the lim inf inequality is trivial. We suppose that

suph Fh

(
vh

)
< +∞ and, using some regularity argument, we may suppose that vh ∈ Vh ∩ H2

(
Ωh,R3

)
.

Then, according to Proposition 8, we have that v ∈ L2
Hd (G), v∗∗ = 0 on G, v∗ = 0 on the part of G

which is perpendicular to (0, 1), v∗ = v
√

3 on the part of G which is perpendicular to
(
−
√

3/2, 1/2
)
,

v∗ = −v
√

3 on the part of G which is perpendicular to
(√

3/2, 1/2
)
, and, according to Proposition 9,

⟨divZ (v) , φ⟩ = 0,∀φ ∈ HZ (G) , (6.34)

where HZ (G) is the space defined in Definition 21. Let (vm)m ⊂ C1 (G) such that vm −→
m→∞

v with respect

to the norm L2
Hd (G)-strong. We define the sequence

(
vm,h

)
m,h

by replacing v by vm in test-functions (6.9),
(6.16), and (6.17). We deduce from the definition of the subdifferentiability of convex functionals that

5h

3h+1 Reh

∫
Ωh

∣∣∣∇vh
∣∣∣2 dx ≥

5h

3h+1 Reh

∫
Ωh

∣∣∣∇vm,h
∣∣∣2 dx

+2
5h

3h+1 Reh

∫
Ωh
∇

(
vm,h

)
.∇

(
vh − vm,h

)
dx.

(6.35)

We then compute

lim
h→∞

5h

3h+1 Reh

∫
Ωh
∇

(
vm,h

)
.∇

(
vh − vm,h

)
dx

= lim
h→∞

5h Re−1
h

3h+1

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∇ηh,i
k .∇

(
vh − vm,h

)
dx

+ lim
h→∞

5h Re−1
h

3h+1

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∇ψh,i
k (x) .∇

(
vh − vm,h

)
dx

− lim
h→∞

√
5h Re−1

h

m (Θ) 3h+1ε2
h

3h∑
k=1

i=1,2,3

∫
ωh,i

k

 ∆Θ

(
yi,k

h,2(x)

εh
, x3
εh

)
×vm

(
xi,k

h

) (
vh − vm,h

)
.ei

1

 dx

+ lim
h→∞

5h Re−1
j,h

3h+1

3h∑
k=1

i=1,2,3

rh,i
k (v)

∫
J

h,+,i
k

∇wh,+,i.∇
(
vh − vm,h

)
dx

+ lim
h→∞

5h Re−1
j,h

3h+1

3h∑
k=1

i=1,2,3

rh,i
k (v)

∫
J

h,−,i
k

∇wh,−,i.∇
(
vh − vm,h

)
dx

+ lim
h→∞

√
5h Re−1

j,h

m (Θ) 3h+1

3h∑
k=1

i=1,2,3

∫
J

h,i
k


(
∇vh − ∇vm,h

)
.∇

(
Θ

(
yi,k

h,2(x)

εh
, x3
εh

)
ei

1

)  dx.

(6.36)
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Using the estimate (6.23), we deduce that

5h

3h+1 Reh

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∇ηh,i
k .∇

(
vh − vm,h

)
dx

≤
Cεh
√
εh

√
ln (1/εh)

√
5h

3h+1 Reh

{
5h

3h+1 Reh

∫
Ωh

∣∣∣∣∇ (
vh − vm,h

)∣∣∣∣2 dx
}1/2

≤
Cεh
√
εh

√
ln (1/εh)

√
5h

3h+1 Reh
,

(6.37)

from which we deduce that

lim
h→∞

5h

3h+1 Reh

3h∑
k=1

∑
i=1,2,3

∫
ωh,i

k

∇ηh,i
k .∇

(
vh − vm,h

)
dx = 0. (6.38)

On the other hand, using the fact that ε2
h3h Reh ≈

∣∣∣Ωh
∣∣∣

πµ
in ωh,i

k and according to the problem (6.5) of

which Θ is the solution, we deduce that

lim
h→∞

√
5h Re−1

h

m (Θ) 3h+1ε2
h

3h∑
k=1

i=1,2,3

∫
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k

 ∆Θ

yi,k
h,2 (x)

εh
,

x3

εh


×vn

(
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h

) (
vh − vm,h

)
.ei

1

 dx

= lim
h→∞

µπ
√

5h

m (Θ) 3
∣∣∣Ωh

∣∣∣
3h∑

k=1
i=1,2,3

∫
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k

 ∆Θ
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h,2 (x)

εh
,

x3

εh


×vn

(
xi,k

h

) (
vh − vm,h

)
.ei

1

 dx

=
−π

Hd (G)

∫
G

vm (v − vm) dHd.

(6.39)

Using the limits (6.24) and (6.30), and the fact that

sup
h

Fh

(
vh − vm,h

)
< +∞, (6.40)

we deduce that

lim
h→∞

5h Re−1
h

3h+1

3h∑
k=1

i=1,2,3

∫
ωh,i

k

∇ψh,i
k (x) .∇

(
vh − vm,h

)
dx = 0. (6.41)

Analogously, using the estimate (6.20), the equations (6.5), the expression (6.12) of rh,i
k (v), and the

estimate (6.40), we get

lim
h→∞

5h Re−1
j,h

3h+1

3h∑
k=1

i=1,2,3

rh,i
k (v)

∫
J
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k
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(
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k
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εh
,

x3
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
×

(
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)
.ei

1

 dx

= 0,

(6.42)
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and, similarly,

lim
h→∞

5h Re−1
j,h

3h+1

3h∑
k=1

i=1,2,3

rh,i
k (v)

∫
J

h,−,i
k

∇wh,−,i.∇
(
vh − vm,h

)
dx

= 0.

(6.43)

As suph
5h

3h+1 Reh

∫
Ωh

∣∣∣∣∇ (
vh − vm,h

)∣∣∣∣2 dx < +∞, we have

lim
h→∞

√
5h Re−1

j,h

m (Θ) 3h+1

3h∑
k=1

i=1,2,3

∫
J

h,i
k


(
∇vh − ∇vm,h

)
.∇

(
Θ

(
yi,k

h,2(x)

εh
, x3
εh
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ei

1

)  dx

= 0.

(6.44)

In addition, owing to Proposition 13, we have

lim
h→∞

5h

3h+1 Reh

∫
Ωh

∣∣∣∇vm,h
∣∣∣2 dx = F∞ (vm) . (6.45)

Thus, combining (6.35)–(6.45), we deduce that

lim inf
h→∞

Fh

(
vh

)
≥ F∞ (vm)

+
2µπ
Hd (G)

∫
G

vm (v − vm) dHd.
(6.46)

Then, letting m tend to∞, we obtain

lim inf
h→∞

Fh

(
vh

)
≥ F∞ (v) ,

and, as a consequence, EG (v) < +∞. Thus, v ∈ DE and, taking into account (6.34), we have that
v ∈ V∞.

6.2. Proof of Theorem 3

Proof. 1. Let
(
uh, ph

)
be a solution of problem (2.22) with boundary conditions (2.25). According to

Lemma 12 and Proposition 8 there exists a subsequence of
(
uh

)
h
, still denoted as

(
uh

)
h
, such that

√
5huhπ1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
(u, u∗, 0)

dHd (s) ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
, (6.47)

with u∗ = 0 on the part of G which is perpendicular to (0, 1), u∗ = u
√

3 on the part of G which is
perpendicular to

(
−
√

3/2, 1/2
)
, and u∗ = −u

√
3 on the part of G which is perpendicular to

(√
3/2, 1/2

)
.

As the boundary ∂Ωh is C2, the velocity uh is at least in H2
(
Ωh

)
. Thus, according to Proposition 9, we

have that
⟨divZ (u) , φ⟩ = 0, ∀φ ∈ HZ (G) . (6.48)
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On the other hand, since uh is the unique velocity solution of problem (2.31), we deduce from
Theorem 2 and [15, Theorem 7.8], that the whole sequence

(
uh

)
h

verifies the convergence (6.47),

lim
h→∞

Fh

(
uh

)
= F∞ (u) , (6.49)

and, taking into account (6.48), we deduce that u ∈ V∞. In addition, using Lemma 12 and the proof of
Proposition 8, we have that

√
5h p̂h

π1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
p

dHd (s) ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
, (6.50)

with p ∈ HZ (G), and, using the uniform boundedness (5.56),
√

5h fh
π1Ωh (x)

3
∣∣∣Ωh

∣∣∣ dx
∗
⇀

h→∞
f

dHd (s) ⊗ δ0 (x3)
Hd (G)

inM
(
R3

)
, (6.51)

with f ∈ L2
Hd

(
G,R3

)
. Using Proposition 9 and Lemma 122, we deduce that, for every v ∈ V∞,∫

G
(v, v∗) .nZ∇p.ndν =

∫
G

vn.Z∇pdν

=

∫
G

vZ∇p.ndν

= 0,

(6.52)

where n = (1, 0) on the horizontal part of G, n =
(
1/2,

√
3/2

)
on the part of G which is perpendicular to(

−
√

3/2, 1/2
)
, and n =

(
1/2,−

√
3/2

)
on the part of G which is perpendicular to

(√
3/2, 1/2

)
.

2. According to Theorem 2 and [15, Theorem 7.8], u is the solution of the problem

min
v∈V∞


µπ

m (Θ)Hd (G)

∫
G

v2dHd +
2µπm (Θ)

3σ

∫
G
∇v.Z∇vdν

−
2

Hd (G)

∫
G

f . (v, v∗, 0) dHd

 . (6.53)

Then, using Lemma 4 and the fact that
∫

G
vZ∇p.ndν = 0 and (v, v∗) = v.n, for every v ∈ V∞, we

deduce from (6.53) that, for every v ∈ V∞,

−
4µπm (Θ)
3σHd (G)

∫
G
∆G (u) vdHd (s)

+
2µπ

m (Θ)Hd (G)

∫
G

uvdHd (s) + 2
∫

G
vZ∇p.ndν

=
2Hd

Hd (G)

∫
G

v f .ndHd,

(6.54)

where, by abuse of notation, f .n = ( f1, f2) .n. Therefore, (u, p) is the solution (with p up to an additive
constant) of the following problem:

−
2µπm (Θ)Hd

3σHd (G)
∆G (u) +

µπHd

m (Θ)Hd (G)
u + νZ∇p.n

=
Hd

Hd (G)
f .n in G,

which completes the proof of Theorem 3.
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7. Conclusion

In this paper, we considered the motion of a viscous incompressible fluid in a varying bounded
domain consisting of branching cylindrical pipes whose axes are line segments that form a network of
pre-fractal polygonal curves Gh obtained after h-iterations of the contractive similarities of the standard
Sierpinski gasket. We assumed that these pipes are narrow axisymmetric tubes of radius εh very small
with respect to the length 2−h of each side of Gh. We supposed that the fluid flow is driven by some
volumic forces and governed by Stokes equations with continuity of the velocity at the interfaces
separating the junction zones from the rest of the pipes, homogeneous Dirichlet boundary condition
for the velocity, and homogeneous Neumann boundary condition for the pressure on the wall of the
tubes. The flow in each pipe is split into two streams: boundary layers flow in junction zones of length
εh ln (1/εh) ≪ 2−h and laminar flow in the rest of the pipe. We assumed that the flow in the junction
zones is controlled by a typical Reynolds number Rej,h. Using Γ-convergence methods, we studied the
asymptotic behavior of the fluid flowing in the branching tubes as the radius of the tubes tends to zero
and the sequence of the pre-fractal curves converges in the Hausdorff metric to the Sierpinski gasket.
According to critical values taken by Rej,h, we derived three uncommon effective models of fluid flows
in the Sierpinski gasket:

1. a singular Brinkman equation if Rej,h = O (εh),
2. a singular Darcy flow if Rej,h = O (1) or Rej,h −→ ∞ as h −→ ∞,
3. a flow with constant velocity if Rej,h = O

(
εαh

)
with α > 1.

As far as the modeling is concerned, fractal branching pipe networks have to be considered to
describe fluid flows in various complex geometrical configurations. An important field to which this
model is closely related is the behavior of fluid flows in some physiological structures such as the blood
circulation through arterial networks. Our model may serve as a starting point for further investigations
in this area.
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