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Abstract: We considered a viscous incompressible fluid flow in a varying bounded domain consisting
of branching thin cylindrical tubes whose axes are line segments that form a network of pre-fractal
curves constituting an approximation of the Sierpinski gasket. We supposed that the fluid flow is driven
by volumic forces and governed by Stokes equations with boundary conditions for the velocity and
the pressure on the wall of the tubes and inner continuity conditions for the normal velocity on the
interfaces between the junction zones and the rest of the pipes. We constructed local perturbations,
related to boundary layers in the junction zones, from solutions of Leray problems in semi-infinite
cylinders representing the rescaled junctions. Using I'-convergence methods, we studied the asymptotic
behavior of the fluid as the radius of the tubes tends to zero and the sequence of the pre-fractal curves
converges in the Hausdorft metric to the Sierpinski gasket. Based on the constructed local perturbations,
we derived, according to a critical parameter related to a typical Reynolds number of the flow in the
junction zones, three effective flow models in the Sierpinski gasket, consisting of a singular Brinkman
flow, a singular Darcy flow, and a flow with constant velocity.
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1. Introduction

Fluid flows in branching tubes are common in many biological and industrial applications such
as physiological branching flows and flows through pipe and duct networks (see, for instance, [1-8]).
This subject is extensively studied in both theoretical and practical points of views. A mathematical
model of fluid flows in a network of thin tubes has been derived in [9] from the asymptotic expansion
of Navier—Stokes equations. Consistent asymptotic analysis of Navier—Stokes equations in thin tube
structures, by letting the diameter of the tubes tend to zero, has been recently studied in a series of
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papers, such as [10] and [11]. The Navier—Stokes equations with pressure boundary conditions in the
junctions of thin pipes are considered in [12] and [13], where approximations based on Leray and
Poiseuille problems are constructed therein.

Let i be a positive integer. Let G, be the pre-fractal polygonal curve obtained after A-iterations of
the contractive similarities of the Sierpinski gasket G (see Figure 1). We consider a network of circular
cylindrical pipes whose axes are the sides of the polygon G, . We assume that these pipes are narrow
axisymmetric tubes of radius &;, very small with respect to the length 27" of each side of G,. We consider
an incompressible fluid flow in the bounded domain Q" consisting of these pipes connected, after local
adjustments near the bifurcation points, through smooth thin regions centered at the vertices of G,
(see Figure 4). We suppose that each pipe is split into two principal regions: junction zones of length
&, In(1/&,) < 27" linked to the ends of the pipe and the rest of the pipe. We suppose that the fluid flow in
Q" is driven by some volumic forces and governed by Stokes equations with boundary conditions for the
velocity and the pressure on the external boundary of Q" and inner continuity conditions for the normal
velocity on the interfaces between the junction zones and the rest of the pipes (see Section 2 for more
details). We assume that the flow in the junction zones is controlled by a typical Reynolds number Re; ;.

Figure 1. Representation of the Sierpinski gasket G.

The main focus of this paper is to study the asymptotic behavior of the fluid flowing through the
branching pipes as the radius of the tubes tends to zero and the sequence of pre-fractal curves converges
in the Hausdorff metric to the Sierpinski gasket G. Using I'-convergence methods (see, for instance, [14]
and [15]), we prove that the effective potential energy of the fluid turns out to be of the form

um 2 s . 2pmTm () f
O HIG) va dH + BTy GVv.ZVvdv

ifve Ve, (1.1)
+00 otherwise,

Fo(v) =

where v is the fluid velocity, u is the fluid viscosity, m (®) is the average value (see Eq. (6.10)) of the

solution ® of boundary value problem (6.5), is the permeability of the Sierpinski gasket

1
m(®) H (G)
G, H? being the d-dimensional Hausdorff measure on G where

d=1In3/In2 (1.2)

stands for the fractal dimension of G, Z is a random matrix given in Section 4 (see Eq. (4.15)—(4.18)),
v is a singular measure with respect to the Hausdorff measure ¢ on G called the Kusuoka measure
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(see Eq. (4.11)), which, according to [16], is a Gibbs measure of special kind, V* is the admissible
velocities space (see Definition 23), and

En

— = lim (1.3)

O  h—ooo Rej,h

Depending on the values of o, we obtain different asymptotic problems:

1. If o € (0, +00), then Re;, = O (&). In this case, the effective flow is described (see Theorem 3) by
the following singular Brinkman equation in the Sierpinski gasket G:

2umm (©) H unH¢
“eriG) 0 wew G TP
. (14
= i (G)f.n in G,

where u is the fluid velocity, p is the pressure, As is the Laplace operator on the Sierpinski
gasket (see Lemma 4), f is the effective source term, n = (1,0) on the horizontal part of G,
n= (1 /2, \/§/2) on the part of G which is perpendicular to the unit vector (— V3/2,1 /2), and

n= (1 /2, — V3 / 2) on the part of G which is perpendicular to the unit vector (\@ /2,1/ 2). This

2unm (@) H

equation includes the singular Brinkman viscous resistance term — Ag (1), which is

30HY(G)
due to the viscous behavior of the fluid flow at the junction zones, and the singular Darcy resistance
term M—Wu
m(@) H(G)
2.If ¢ = +oo, then Rej, = O(1) or Rej, — o0 as h —> oo. In this case, the term
C
,umSn (©) Vv.ZVvdy in (1.1) disappears and the flow is governed by singular Darcy’s law in the
g G
Sierpinski gasket G.

3. If o = 0, then Re;;, = O(ag) with @ > 1. In this case, the energy F (v) is finite only if

f Vv.ZVvdy = 0, which implies that the velocity of the fluid flow is asymptotically constant in
G
the Sierpinski gasket G.

The study of asymptotic analysis of boundary value problems in domains with fractal boundaries
or containing thin inclusions developing a fractal geometry has been recently addressed in a series of
papers (see, for instance, [17-29]). The problems obtained at the limit generally consist of singular
forms containing fractal terms. The problem considered in this work is quite different from the previous
ones, as we deal here with the determination of the fluid motion through branching tubes having a
fractal structure. The overall effect of the pre-fractal branching networks on the fluid flow appears in the
singular effective equation (1.4), according to the characteristics of the flow, as the radius of the tubes
tends to zero and the sequence of pre-fractal curves converges in the Hausdorft metric to the Sierpinski
gasket G. The asymptotic representation of the solution of the original singularly perturbed problem
includes local perturbations representing the flow in the boundary layers in the junction zones. These
local perturbations are solutions of Leray problems in semi-infinite cylinders representing the rescaled
junctions. The main novelty of this paper lies in the construction of these local perturbations as well as
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the derivation of the effective flow described above by singular Brinkman and Darcy laws on the fractal
G with divergence-free velocity in a fractal sense specified in Definition 2, in Section 5.

The problem considered in this work has some implications for modeling the behavior of fluid flows
in various complex geometrical configurations of branching tubes. An important field to which this
model is closely related is the behavior of fluid flows in some physiological structures such as lung
airways (see, for instance, [1] and [30]) the cardiovascular system and cerebral arteriovenous (see,
for instance, [30], [31], and [32]). It has been shown that physiological branching networks exhibit
fractal structures for minimal energy dissipation (see, for instance, [33] and [34]). In particular, blood
vessels have self-similar structures with optimal transport property of their fractal networks (see, for
instance, [35]). Blood has been treated in [31] as a homogeneous, incompressible, Newtonian viscous
fluid, making the assumptions that the flow is steady and axisymmetric with sufficiently small Reynolds
number so that the flow is laminar. The authors observed that the overall effect of the non-Newtonian
characteristics would be small.

The present investigation on fractal branching flows provides some motivations in the
haemodynamics. The blood vessels can be illustrated, under some simplifying assumptions, by the
network Q" of narrow branching tubes with laminar flow far ahead of the bifurcations and boundary
layer flow near the bifurcations, where the local Reynolds number is the most effective factor
controlling the flow throughout the whole network.

This paper is organized as follows. The statement of the problem is presented in Section 2, with a
subsection reserved for the nomenclature and another devoted to the position of the problem. In Section
3, we formulate the main results of this work. In Section 4, we introduce the energy forms, the Kusuoka
measures, and gradients on the Sierpinski gasket. Section 5 is devoted to some a priori estimates and
compactness results. Section 6 is consecrated to the proof of the main results. A final conclusion is
made in Section 7.

2. Statement of the problem

2.1. Nomenclature

AA>A, equilateral triangle of vertices A; = (0,0), A, = (1,0), A3 = (1/2, V3/2)
G Sierpinski gasket built in the triangle A;A,A3
Gy prefractal polygonal curve obtained after A-iterations

of contractive similarities of G

VYV, set of vertices of G,
E), set of edges of G,

Ve set of all vertices of G
Ty k™ triangle of G,

E = [a};’k, bzk] i" edge of T\

27h length of E*

y;l’f‘l, y;lkz local variables on T
&y small positive number
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i
BZ (a;;k)

B! (b})

h,i
EkJ
zh,z

g}hd

gzh
I*h
h,+,1
p
h,—,i
Np

I{eih
]{Ch
IEuh

I7rh
5h
3h+l

d

Wd

L3, (G)
Ee

VA

djVZ
)4

:T+ij

i tube of radius &, and of length 27" — 2¢, surrounding E;;k

small smooth branch junction of thickness of order 2¢g,
ik

h

small smooth branch junction of thickness of order 2¢g,

centered at the vertex a

centered at the vertex bzk

interface between B! (a;l’k) and I

interface between By (b;l’k ) and IT"

pipe formed with B} (afz’k), B! (bzk) HZ’i, and the

interfaces ZZ:L; a = 1,2, between them

network of the interconnected pipes QZ’i

external boundary of Q"

small junction zone of length &, In (1/&;,) located in the region yﬁl’f‘l >0

small junction zone of length &, In (1/g;,) located in the region y;;f‘l <27

h,+,i

union of the junction zones

fluid viscosity

typical Reynolds number in J"

characteristic Reynolds number in Q"

characteristic Euler number in Q"

characteristic Froude number in Q"

scaling factor associated to the ramification of the network Q"
the fractal dimension of G

d-dimensional Hausdorff measure on G

space of square integrable L>-functions with respect to the measure H
Dirichlet form in L3 , (G)

random matrix

divergence operator on G

Kusuoka measure

semi infinite cylinders representing the rescaled junctions

2.2. Position of the problem

Let us consider the points of the plane xOy: A; = (0,0), A, = (1,0), and A3 = (1/2, \5/2). Letus
denote {,},_, , ; as the family of contractive similitudes defined on R? by

X +'f1i
2

U (x) = ,Vx = (xy, x0) € R% (2.1)
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Let Vy = {A, Ay, Az} be the set of vertices of the equilateral triangle A;A,A3. We define inductively

Vi = | vV, (2.2)
i=1,2,3
for every h € N, and set
YV, = U(vh. 2.3)
heN

The Sierpinski gasket, which is denoted here by G, is defined as the closure of the set V.,
G=%Y.,. (2.4)

We consider the graph G, = (V,, E;,), where E}, is the set of edges [ay, b,]; an, by, € V), such that
lay — byl = 27"; |a), — by| being the Euclidean distance between a;, and b, (see Figure 2). The graph
G, is then the standard approximation of the Sierpinski gasket, which means that the sequence (G,,),
converges, as h tends to oo, in the Hausdorff metric, to the Sierpinski gasket G.

A3

A1 KO Az ho1 G v T he

Figure 2. The graph G, for h =0, 1,2, 3.

We denote Card (V},) as the number of vertices of V). We can easily check that

3+l 43
2

Card (V)) = ,Vh e N. (2.5)

Letk € {1, 2,y 3h}. We denote T} as the k™ triangle of the graph G, obtained at the step h. Let
n* be the unit normal to 7f. Then, n* = (- V3/2,1/2), i = (V3/2,1/2), or n* = (0, 1). We denote
E}ll’k = [a}l’k, b}ll’k] as the edge of T*, which is normal to n* = (0, 1), Ei’k = [ai’k, bi’k] as the edge of
T, which is normal to n* = (— V3/2,1/ 2), and Ei’k = [ai’k, bZ’k] as the edge of T} which is normal to

n* = (V/3/2,1/2) (see Figure 3).
Let us consider the following rotation matrices:

R] = IdRS,
172 3/2 0

R, = | =v3/2 1/2 0|, (2.6)
0 0 1

Ry = R,
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1k 3.k
bﬁ, = ﬂ.h

2k 3.k
L N 2,k ™ = b
h - n’h bh’ - bh’

Figure 3. Orientation of the segments E’ Lk E2 k. and E3 .

IdRs being the 3 X 3 identity matrix. We also define the change of variables yh 1 yh 5 X331 =1,2,3, for
every h € N, every k € {l, 2, ..., 3h}, and every x = (X, Xp, X3) € [ah N k] x R, by

yhl (x) X1 — alhkl
th ) [=Ri| x2- a;,kz . 2.7

X3 X3

Let S be the unit disk of R? centred at the origin. Let (g;,),c; be a decreasing sequence of positive
numbers, such that
limeg;, = 11m2 e, In(l/gy) = (2.8)

h—o0

We define, for h € N, k € {1,2,...,3"}, and i = 1,2, 3, the tube IT}" by

i = (x1, X2, x3) € R*; &), < y,“ (x) <27 “h g, 2.9
T O ®.x) eas ' ‘
We define the interfaces
shi (xl,xz,x3) eR%; (yhz (x), xs) € &S,
ol AREIEEN ’
i (x1, X2, X3) € RY; (yh2 (x), X3) € ens, (2.10)
“2 Wi =2"-g, ’
hi h,i h,i
L = Zk,l Zk,2'
We then set 1
31
m = U 8
k=
i= 123
2.11)
o= Uz,m,a_l 2,
i= 123
o= 2}1‘ U ZZ.
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We now define thin, smooth regions which ensure the junctions between the tubes HZ’i. Let B! (a;;k)
and BQ (b;k) be bounded open sets of thickness of order 2¢;, and centered at the points (aifl , a;;f‘z, O) and
(b;fl, bk 0), respectively, such that dB] (a;;k) and OB} (b;;k) are C?-surfaces with

h2>
oB!
aB!

af)norm = &,

: 2.12
b‘,;k) N oI (2.12)

ShS,

(see Figure 4).

op R 3.k
Bi(b,") = Bf(ay")

N ' A4
| S S/ |

Bi(ay") = Bl(ay") BR(ZY) = BR(6Y)

Figure 4. Smooth, thin zones BZ (azk) and BZ (b;;k), which ensure the junctions between the

tubes HZ’i.
We set "
B'= | | Bl (a}") v By (b}"). (2.13)
k=1
i=1,23

Let us define the pipe QZ’i; heN, ke {1, 2, ..., 3h}, andi = 1,2,3, by
Q=10 USy U Bl () U B (b)), (2.14)

We consider the network Q" of interconnected pipes and its external boundary I'" defined by

3h

o = 3o o
k=1 (2.15)
i=1,23

o= o,

We consider a viscous incompressible fluid flow in Q. We suppose that this flow is essentially
laminar except in the set J" of the junction zones, where the main characteristics of the flow and their
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influence on the fluid motion will be analyzed. On the basis of works [12] and [13], we define the set

J" as

UJ””’U , (2.16)

i= 123

where, for every k € {1, 2, ..., 3h} andi=1,2,3,

et = = (o xx) € Q50 < () < In(1 /8],
hei x = (x1, %, x3) € Q" (2.17)
ET 2 —aIn(l/s) <y () <27
Taking into account the typical scales in Q"\ J", we suppose that the characteristic Reynolds number
in these regions is of order —. The characteristic Reynolds number in Q" can be then defined as
7
Rej;, inJ",
— —h
Re, =4 27" in Q" (2.18)
J7

where Re;, is assumed to be a typical Reynolds number of the flow in the region J”. According to [36],
the product Euy, Re;, of the characteristic Euler number Eu;, and the characteristic Reynolds number
Re,, is the ratio between the caracteristic pressure and viscosity. Then, assuming that the characteristic
pressure is the ratio between a constant normal force and the surface of the disk &,S, we may write

Reh Euh =

> (2.19)
ume;,
According to the above equality, we suppose that the characteristic Euler number Eu,, in the network
Q" takes the form

Euj = —. (2.20)
ey,

On the other hand, as the diameter of any tube of the network Q" is 2g,, we deduce, according
to [37, page 98], that the ratio of the characteristic Froude number Fr), to the characteristic Reynolds
number Re,, is of order 8}21. Accordingly, we suppose that the characteristic Froude number in " has
the following scaling:

Fr, = 2_h7rgi. (2.21)

Since the characteristic Reynolds number is small in Q"\ 9", we suppose that the inertia effects are
negligible in the whole Q" and the flow is governed by the following Stokes equations:

1 5 S AL E 5" S, - 1 .
" Re, 3! w-+ By 3t VP Fr, 3h+1fh 225 (2.22)
divi" = 0 in Q"
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h

where T is a scaling factor, which is associated to the ramification of the pre-fractal network Q" and

determined by the decimation principle (see [38] for more details on scaling exponents governing some
physical phenomena in fractal media), the source term f;, is the solution of the following problem posed
in each tube Q' k € {1,2,...,3"} and i = 1,2,3,

divfy = g inQ,
. 2.23
{ fum = 0 on 692’", (2.23)
where 7 is the outward unit normal on GQZ’i and g is a L? (Qh) function such that
f grdx = 0,
o
(2.24)

h
sup,, 5—f gdx < +oo,
@] Jor

|A| being the Lebesgue measure of the measurable and bounded subset A of R?. The boundary conditions
(2.25) are given, for every i = 1, 2,3, by

ut = 0 onI”,
Wy Riey = |y Riey on¥, (2.25)
0
9Pn _ 0 onTI™",
on

where, in accordance with the divergence free of the velocity, the condition (2.25), ensures that the

outward normal velocities are the same on the two interfaces ZZ’I and ZZ; e1 =(1,0,0), and % is the
’ ” n

normal derivative of the pressure on I'"; n being the outward unit normal on I'".

Remark 1. The homogeneous Neumann boundary condition (2.25); on T" is justified as follows.
According to [39, Chapter 1], thin boundary layers are concentrated in the immediate neighborhood
of the wall T" due to the homogeneous Dirichlet boundary condition for the velocity on T". The
characteristic Reynolds number in these boundary layers, denoted here by Re,, , is sufficiently large

so that the viscous term Au" is negligible when one gets too close to the wall IT"". We deduce,

Cw.h
according to [40, Remarks page 1119], that the boundary condition
Apn 1 / h
Eu,— = Au". I,
uy, on - Rew, u'.n on

obtained by taking into account equation (2.22), and the fact that f,.n = 0 on I'", can ostensibly be

0 0
approximated by Euh% =0 onT" which implies that % =0onT"
n n

Let us introduce the space vh defined by

1 h 3). — =
vh:{ veH (Q R ),vlz/; Riey = v g Riesi = 1,2,3, } (2.26)

divv=0inQ",v=0o0nTI"

We state here a result of existence and uniqueness of a solution for problem (2.22) with boundary
conditions (2.25).
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Lemma 1. Problem (2.22)—(2.25) has a unique velocity solution u" € V" and pressure solution
pn € H! (Qh), which is unique up to an additive constant.

Proof. Applying the divergence operator to the first equation of problem (2.22), using (2.23)—(2.24),
and the boundary condition (2.25);, we deduce that the pressure verifies the Neumann boundary value
problem

Aph = g in Qh,

3Ph
=0 .
on on

(2.27)

This problem has a solution p, € H' (Qh), which is unique up to an additive constant. On the other
hand, as

5h
Buy 53 f v.Vpi =0, (2.28)
Q

for every v € V", the weak formulation of problem (2.22) can be written as, for every v € V",

m Lh Vu'.Vvdx = F_3h+1 f ﬁl vdx. (229)

Using the Poincaré inequality, we have
1/2
<Gy {f Vv dx} :
oh

where C), is a positive constant. Then, according to the Lax—Milgram theorem, we infer that problem
(2.29) has a unique solution u" € V",

Jn-vdx
Qh

Let us consider the functional F, defined by

2 . h
Fj(v) =1 3i*IRe, fg VvI7dx ifve V2, (2.30)
+00 otherwise.

The velocity u", solution of problem (2.29), is then the solution of the minimization problem

1
{rel%,r}{Fh(v) 2F_3h+1fthdx} (2.31)

One of the main purposes of this paper is to prove the I'-convergence of the sequence of functionals
(F'p),, to the functional F', defined in (1.1).

3. The main results

In this section we state our main results in this work. Let M (R3) be the space of Borel regular
measures on R*. According to Proposition 8 in Section 5, we introduce the following topology 7:
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Definition 1. We say that a sequence (vh)h; Vi e VIt t-converges to (v, v*,v™) if

mlon (%) . e e AH(5)® 60 (x3) |
@Vh 3 |Qh| dx h:\oo (V, V.,V ) 7__{d (G) in M(R3)’

*
where the symbol — stands for the weak*-convergence of measures.

We formulate our result on the I'-convergence of the sequence of functionals (F), in the following

Theorem 2. We suppose that o € (0, +0). Then

1. (lim sup inequality) For every v € V*, there exists a sequence (vh)h, with Vv € V" and (vh)l
T-converges to (v,v*,v**), where v** = 0, v* = 0 on the part of G which is perpendicular to (0, 1),
v* = v V3 on the part of G which is perpendicular to (— V3/2, 1/2), and v* = —v V3 on the part of

G which is perpendicular to (\/§ /2,1/ 2), such that
lim supF, (vh) <FoW),

h— oo

where V= is defined in Definition 25 of Section 5 and F, is the functional energy defined in (1.1),
2. (lim inf inequality) For every sequence (vh)h, such that v € V" and (vh)h T-converges to (v, v*,v*"),

we have v € V=, v* = 0 on G, v* = 0 on the part of G which is perpendicular to (0,1), v = v V3
on the part of G which is perpendicular to (— V3/2, 1/2), v = —v V3 on the part of G which is

perpendicular to ( V3/2,1/ 2), and
. . h >
hhm_)glth (v ) >F.,().

We are now in a position to formulate the asymptotic problem.

Theorem 3. Let (uh, ph) be the solution of problem (2.22) with boundary conditions (2.25). Under the

hypothesis of Theorem 2, we have

1. The sequence (uh)h T-converges to (u,u*,0), with u € V=, u* = 0 on the part of G which is
perpendicular to (0, 1), u* = u 3 on the part of G which is perpendicular to (— V3/2,1/ 2), and
u* = —u VN3 on the part of G which is perpendicular to (\/5/2, 1/2). There exists p € Hz (G);
Hj (G) being the space defined in Definition 2, of Section 5, and f = (fi, f>,0) € L2 (G, R? ), such

that

il (%) .
5 ph—3 |Qh| dx

h * d
@fhﬂ;TQiT)dx X fd?-[ ® dp (x3)

JHd

d?'{d ® 50 ()C3) . 3
h—oo p?{d—(G) mn M (R )’

e in M (R3),

H(G)

fuZVp.ndv =0,
G

Communications in Analysis and Mechanics

.5 A
M fg WVpn =
where n = (1,0) on the horizontal part G, of G, n = (1/2, \/3/2) on the part G, of G which is
perpendicular to (— V3/2, 1/2), andn = (1/2, — \/5/2) on the part Gz of G which is perpendicular

to (V3/2,1/2)
2. The couple (u, p) is the solution of equation (1.4) stated in the Introduction.
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4. Energy forms on the Sierpinski gasket

4.1. Standard Dirichlet forms

In this subsection we introduce the notion of Dirichlet forms on the Sierpinski gasket. For the
definition and properties of Dirichlet forms, we refer to [41] and [42].
For any function w : V., — R, we define

5\
8’2;<W>=(§) DL W@ -wis)’. 4.1)
r,s€Vp,
|r—s=2—"h

We then define the energy &g on G by

Eow) = Tm&L(w), 4.2)

with domain D, = {w : V., — R : E; (W) < 0o}. According to [42, Theorem 2.2.6], every function
w € D, can be uniquely extended to be an element of C (G) still denoted by w. Let us set

D={weC(G):E(w) < oo}, 4.3)

where Eg (W) = Eg (W |y.). Then, D cC (G) C L?L{d (G). We define the space Dg as
Dg = 5”-“95, (4.4)
where ||.||p, is the intrinsic norm
1/2
Wi, = {€6 )+ Wl o)} 4.5)
We denote & (., .) as the bilinear form defined on Dg X Dg by

Egw,z) = % EcWw+2)—-Ecw)—E; (), ¥w,z € Dsg, (4.6)

from which we deduce, according to (4.2), that

Ec w,2) = Im & (w,2), @)
where i
&g w,z) = (g) r;V; w(r)=w(s)(z(r) —z(s)). (4.8)

[r—s|=2="
The form &g (.,.) is a closed Dirichlet form in the Hilbert space L;d (G) and, according to [43,
Theorem 4.1], & (., .) is a local regular Dirichlet form in L(ZH" (G). This means that

1. (local property) w,z € Dg with supp[w] and supp[z] are disjoint compact sets = Eg (w, z) = 0,
2. (regularity) Dg N Cy (G) is dense both in Cy (G) (the space of functions of C (G) with compact
support) with respect to the uniform norm and in Dg with respect to the intrinsic norm (4.5).
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We deduce that Dg is injected in L2, (G) and is a Hilbert space with the scalar product associated
to the norm (4.5). The second property implies that Dg is not trivial (that is, Dg is not made by only
the constant functions). Moreover every function of Dg possesses a continuous representative. Indeed,
according to [44, Theorem 6.3. and example 7, ], the space Dg is continuously embedded in the space
C? (G) of Holder continuous functions with 8 = In 3 /1n4.

Now, applying [45, Chap. 6], we have the following result:

Lemma 4. There exists a unique self-adjoint nonpositive operator Ag on L?Hd (G) with domain
Da, = {w e L. (G); Agw € L}, (G)} € Ds
dense in Lg{d (G), such that, for every w € Dy, and z € Dk,

dH?

Ecw,2) = _L(AGW)Zq{d—(G)'

4.2. Kusuoka measures and gradients

In this subsection we define the Kusuoka measure and the gradient on the Sierpinski gasket G. For
the definitions and properties of Kusuoka measures and gradients on fractals, we refer to [46—49].
Let o : V. — R. Then, according to [42, Proposition 3.2.1], there exists a unique h € D, such
that blq, = 0 and
&g (h) = inf{Eq (v); v € Do, Vv, = 0},

where b is called the harmonic function in G with boundary value b|y, = 0. On each V), h € N*, a
harmonic function §) verifies

(bowi i) lve = iy Ohyy) s s € {1,2,3}, (4.9)
(see [42, Proposition 3.2.1]), where ¢, ; = Yi ooy, and 7y, ; =T;,...T;, with
1 500 1 2 21 1 2 1 2
T1:§ 2 21 ,T2:§ 050,T3:§ 1 2 2.
21 2 1 2 2 05
Let My = {(xl,xz,x3) ER X1+ X+ X3 = O}. Kigami [46] introduced the map ® : G — M,

defined by

o= —|| Bbw [-=| 1],
V2l p ) 31

with b; (A,-) = ¢;; for A; € Vy, where 0;; is, for i, j = 1,2, 3, the Kronecker delta symbol. We have the
following.

Proposition 5. [47, Proposition 4.4] If Gy = ® (G), then ® is a homeomorphism between G and Gy.
Moreover, define H; : My — My, i = 1,2,3, by

H;(x) =T (x = ®(A)) + D (A),

then Gy = | ) H;(Gy) and ® oy, = Hy 0 ® for any i =1,2,3.
i=1,2,3
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Gy 1s called the harmonic Sierpinski gasket, which is the self-similar set associated with the
collection of contractions {H,, H,, H3} on M,. Let P be the projection from R? into M, defined, for
every x = (X1, X2, x3) € R?, by

Y (X1 + x + x3) !
Px=|x |- =222 1| (4.10)
3
X3 1
According to [48], the Kusuoka measure v on G is the unique Borel probability measure defined by
1(5\" .,
v(Gii) = 5\5) r(Ti i PTi)- .11

where G;,_;, = ¢, ; (G). Let us define
I ={w=ib../i, €{1,2,3} forany n € N*}, (4.12)

and 7 : I — G such that Yo m(w) = n(jw), for j =1,2,3. For any w € I, there exists a unique x € G
such that

(x} = [ \Gi.iy and 7 (W) = x. (4.13)

heN*

We now define, by abuse of notation, the Kusuoka measure v on I (see, for instance, [49]) as the
pullback of the Kusuoka measure v on G under the projection map n, that is

v(ﬂ_l (.)) =v(). (4.14)

Let us set

. . Titl...ihPTil"'ih
Z(iy...0p) = t .
tr (T, PTi..i,)

(4.15)
Then, according to [48], for v-almost all w, there exists a limit
Z(w) = %imZ(il...ih). (4.16)

LetZ(x)=Z (n‘l (x)). Then, Z (x) is well defined on V., (see for instance [47]). Indeed, according
to [49, Theorem 3.6], for v—almost all x € G,

z (n—l (x)) = Z(w)

= limZ, (i) @17
where
i.dp) ==z ——. .
P3G
Let U be an open subset of M| containing G. Let us define
C'(G) ={wu=(lg,)o®v eC' (V) }. (4.19)
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According to [47], if we fix an orthonormal basis of M, and regard M|, as R2, then, for any u € C' (G),

ou

Vu=| % | (4.20)
ox,
We have the following.

Theorem 6. [47, Theorem 4.8] C' (G) is a dense subset of Dg under the norm

llull = V&g (u, u) + llulls ,

and, for any u,v € C' (G),
Ec (w,v) = fVu.ZVvdv.
G

5. A priori estimates and compactness results

In this section, we establish some a priori estimates and compactness results which will be useful for
the proof of the main results.

Lemma 7. Let V' € V", such that sup, F), (vh) < oo, If o € (0, +00) then

su S—hf |vh
hp |Qh| Qb

Proof. The proof follows from the Poincaré inequality in a bounded domain with the Dirichlet boundary
condition on a part of the boundary and a scaling argument. Let us define, for every k € {1, 2,.., Sh} and
i=1,2,3,

2
dx < +o00.

i _ [ Oitvz) € R € (enn(1/en) 27 — e In (1 /e)
¢ (y.2) €S '

Let ¢ € C! (U,i"i), such that ¢ = 0 on (9U,i”’~ N dS. Using the Poincaré inequality, we infer that, for
every yi' € (s In(1/£,).27" — &, In(1/2y)),

L 0 (343 2)dydz < C L ‘Vy,zgo (v, z)'z dydz,

where C is a positive constant independent of /# and

o .
) _gyo (y;;ﬁ,y, z)
Vy,z()a (yl;;J »Ys Z) =

0 .
2 0i-2)
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Now, introducing the scaling y;;,kz = &y, X3 = &2, and integrating with respect to y;lkl between
gyIn(1/g,) and 27" — g, In (1/g;,), we get

27" &), In(1/&p)
2 g ik g ik
f f ¥ dy;l,ldy;l,zdx3
epIn(l/gp) ensS

27" g, In(1 /&) . .
2 ik g,
< Csflf f IVol” dy,'\dy;dxs,
ensS

epIn(1/gp)

from which we deduce, using the change of variables (2.7), that, for every V" € V",

2 2
f |vh| dx < Csﬁ f |Vvh| dx. 5.1
h,i h,+,i h,—,i L0 0 h,—,i
QN\THUT] QAT T
We can use the same method in ,ﬁ”” Uy, ,i”_’i to obtain

2 2

f  Mlax<ce f W ax. (5.2)

j]ﬁl,‘#,l Ujlfl,—,t Jlil,tz UJ]I:’_'I

The combination of (5.1) and (5.2) implies that

2
|vh| dx < Ce; |Vvh
Qh,i Qh,i

k k

® dx. (5.3)

Then, summing over i and k in (5.3), we obtain that

5" 2 5" 2
—— | Max<Ccom— | W dx (5.4)
3h+lgl Rey Jor 3+ Rey, Jon

As o € (0, +00), we have that
Re;, < Cg, < C27",

1
from which we deduce that 2" < C gin J". Thus, using (5.4),

j.h
5" nl2 5h a2
3h+1822—h f |V | dx < 3h+l ZR f |V | dx
h Qh Sh Cn Jor (55)

IA
a
<
—
<
~—

[

Observing that 3"&;27" ~ ——, we conclude that
T

h
sgp |£52—h| Lh |vh|2 dx < CSl}:p Fy (vh) < 400, (5.6)

We have the following result:
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Proposition 8. Let 1o be the characteristic function of the set Q". Let v € V", such that sup, F), (vh) <
+00. If o € (0, +00), then there exists a subsequence of (vh)h, still denoted as (vh)h, such that

oo (%) s dH? (5) ® 8o (x3) . 3
V5hy 3|Qh| dxh_mv HG) an(R),

where v = (vi,va,V3) € Lé{d (G, RS) with v3 = 0 on G, v, = 0 on the part of G which is perpendicular to
O, 1), v =v; V3 on the part of G which is perpendicular to (— \/3/2, 1/2), and v, = —v; V3 on the part
of G which is perpendicular to ( V3/2, 1/2).

Proof. Let us consider the sequence of measures (1%;), on R? defined by

g, = P )
3|0
Using an ergodicity argument (see, for instance, [50, Theorem 6.1]), we deduce that, for every
¢ € Cy (R3),
' ' 3h 1 a;';k i b;;k
fim [ e = fim 3% | %0
11':1,2,3
= — L) dH (s),
from which we deduce that "
* dH (5) ® 6o (x3)
I — 9=1 .
b e G (s) HA(G)

LetVv' € L? (Qh, R3), such that sup,, F), (vh) < +00. If o € (0, +00) then, according to Lemma 7,

su S—hf |vh
hp |Qh| Qb

Observing that, for some positive constant C independent of 4,

2
f Vsivtag, < €5 f V[ av,
R3 R3

< |CQ—5:|f |vh|2a’x,
Qh

and, by taking into account (5.7), we deduce that the sequence ( 5”vh19h)h is uniformly bounded in
variation, hence *-weakly relatively compact. Possibly passing to a subsequence, we can suppose that
the sequence (@vhﬁh)h x-weakly converges to some y. Let ¢ € C (RS, R3). By using Fenchel’s

inequality, we have
1
liminf= f
h— o0 2 R3

1
> lim inf( V5l pd®, — = f ol dﬂh)
R3 2 R3

h—o0

% dx < +oo. (5.7)

5%”'2 9,

1
> (x> ) — Ef | d¥.
R3
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As the left-hand side of this inequality is bounded, we deduce that

sup {(X ©); ¢ € Co(RRY), f|go|2 (5,0)dH () < 1} < +00,
G

from which we deduce, according to Riesz’ representation Theorem, that there exists v such that
v(s,0) € L2, (G, R*) and y = v (s, x3) ¥
Let us introduce the function v; i = 1,2, 3, related to v by

ik ik
hi ik ik h yh’kl ahkl
J 1, 1, _ t 1, 1
% (yh’l,yh,z, x3) =RV o R Yia | * R; apy || (5.8)
X3 0

where yh l,yh »» X3 are the variables defined in (2.7). We can easily prove, after some computations that
foreveryi=1,2,3,

ley = div ", 5.9)
where div, is the divergence operator in the variables yh 1,yh 2, X3. On the other hand, as HZ’i is a cylinder

of revolution, we can introduce the cylindrical coordinates yh = yh 1> yh , = rcos0, x3 = rsin6, and the
polar components of v/ defined by

hi _ h,i ik .
4% (yhl,r 9) = (y,’],rcosQ,r51n6’).,
r’(yh a0 (vg’cose + vg’" sin@) (yzkl,rcos H,rsine), (5.10)
hi ( ik i hi ik .
Vo (yh,l, r,0 (—v2 sinf + vy cos 9) (th, rcos @, rsin 9) .

f“'hz

Let V" (vh’ e Vg ) The divergence o in cylindrical coordinates is given by

h,i ; hi
VL A /)

o+ +——
ay;ﬁ r or r 06

div, (") = (5.11)

Since divv" = 0, we deduce from (5.9) and (5.11) that
div, V"' = div, () = 0. (5.12)
Using the boundary condition (2.25),, we have, for every h € N,

Vi (.1, 0) = (27 = &1, 0) = 0, (5.13)
0
from which we deduce, using Green’s formula, that, for ¢ € C?° (0, 27) and ¢ () = f Y () dé with
0

p2m) =0
3t 27" _gp 27r h,i
f f f k ——¢(0) rdy," drdo
k 1 Yén

i=1,2,3

&l Jid 3h
f f2 Z hl(gh’re)_vl ( h_é‘h,r’@))so(e)rdrde
=

i=1,2 3

(5.14)

=0.
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Since div, (7"1') = 0, we deduce from formula (5.11), according to (5.14), that

27" _gp 27 L
h,i i,
0)dy;" drd6
3h+18hk1f€h ffvsDUy r

i= 123
2h 2-"—g, 27 6 h,i
+3h:1/_ f f Jdrd
n k 1 (5.15)
i=1,2,3
2h \/_ 3t 2 h—ah 271' h,i i}
3h+18h f f f —go(@)dy ! drdf
1k1213

Using Green’s formula, we deduce that

2 _g, 27 a h,i
f f f —90(9) rdy, drdf
2, 2,, (5.16)
f f f Vo (0) dy} drdo,

27" _gp 271 i
f f f —90 (6) dy;",drdf
i 2” (5.17)
— f f f vy W (0) dy;\ drd6.
&n 0 0

Combining with (5.15), we deduce that

and

2h 3k “h_g, 27
‘/_ f f f 5w (0) dy,\drdf = 0. (5.18)
3h+18h — .
i=1,2,3
Recalling that vZ’i = —vg’i sin 0 + vg“i cos # and vgl’i = V4, and using the first part of this Lemma, we
obtain that
2]1 3 2~ h—sh 2
lim=—— Vst f f f vy (6) dy, drdd
h—>°03h+18h — e
i=12,3 (5.19)
2
= — in@ + cos 8 0)dsdf =0,
ﬂd(G)fG | (=w(s)sinf + v3 (s) Y (0)ds
where
Vo (8) on Gy,
w(s) ={ —v(s) V3+w(s) onG,, (5.20)

v () V3+w(s) onGs,

where G is the part of G which is perpendicular to (0, 1), G, is the part of G which is perpendicular to
(- V3/2.1/2), and Gs is the part of G which is perpendicular to ( V3/2, 1/2). We deduce from (5.19)
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that —w (s) sin6 + v3 (s) cos 8 = O for every 6 € (0, 2r), thus w = v3 = 0 on G. Therefore, combining
with (520), Vy = O on G], V) =V \/§ on Gz, and V) = —Vq \/§ on G3.

Proposition 9. We suppose that o € (0, +c0). Let V' € Vi n H? (Qh, R3), such that sup,, F), (vh) < +o00,
Then, for every sequence (g,),, such that ¢, € H' (Qh) and

Sh
sup,, m Lh |Vgoh|2 dx < 40,

5 7o (x) e dH (s) ® 6o (x3) | 5
Vs, 3 |Qh| dx et HG) in M(R )

(5.21)

we have

1. ¢(s,0) € Dg and f Vp.ZVepdy < +oo,
G

2. there exists a subsequence of (vh)h, still denoted as (vh)h, andv € Lg{d (G), such that

h

5
lim—f vh.V(phdxzfvn.ZVgodv:O,
h—>oo|Qh| Qh G

where n = (1,0) on the horizontal part of G, n = (1/2, \/§/2) on the part of G which is
perpendicular to (— V3/2, 1/2), andn = (1/2, - \5/2) on the part of G which is perpendicular to
(V3/2.172).

Proof. 1. Let us define, for every k € {1, 2, ..., 3h} andi=1,2,3,

i.k ik
Cl ik ik y i ah’kl
1 I, 1, _ 3 i, i,
#h (yh,l ’ yh,Q’ X3) =@yp0 Ri yh72 + Ri ah,Z s (522)
X3 0

and

B 00) = = [ 0ol diban
ens

&,
ik ik 593
1 yh,kl ah,}(l ” (5.23)
_ t i, i, i,
= _ﬂgZ f Sgah R Yia |+ @, dyh’zdm,
h 2 &h X3 0
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where yh l,yh »» X3 are the change of variables defined in (2.7). Then

f | g0h| dx = | h| Z f |Vg0h| dx
i= 123
2 (ph ik
3h+1 f e L [ ] dy 1Ay ,dx;
3 _ (9 ik
T Z f f i dy dy};zd)@
as \Jo  ady; ’

3
3,1“ Z = [ (A tn) e (0oftn))
3 . ) ) . 2
3h+1 Z (,Tg f @ (275 55) = ¢ (O,y;f‘z,xz))dy;fzdx3)
h

| Qh

(5.24)

k 1
=123
3h
3h+1 Z Nz (O))
i= 123
5n & i~ (kN2
= 3l Z ("Dh (a;; )_ Ch (b;’t ))
123
= &g (Zéh)’

where @, (x1, x2) = ’gZ; (y;lkl) for (x, x,) € [ah , b’ k ] We now introduce the harmonic extension of ¢, |,
obtained by the so-called decimation procedure (see, for instance, [51, Corollaryl]). We define the
function Hy.1¢, : Vi1 — R as the unique minimizer of the problem

min {& W) w: Viy — R, w =g, on V,}. (5.25)
Then EL (Hy19,) = EL (¢,). For m > h, we define the function H,,¢, from V,, into R* by
Hy@y = Hy (Hyoi (.. (His19))) -
We have, for every m > h, H, ¢, lv,= ¢, |v, and
& (Hup)) = ¢ (1) (5.26)

We define now, for fixed & € N, the function Hy, on V., as follows. For a € V,, we choose m > h
such that a € V,, and set

He, (a) = Hypy () . (5.27)

Sh
As sup,, @ Lh |V‘Ph|2 dx < +00, we have, according to (5.24), (5.26), and (5.27),

sup Eg (Hp,) = sup & (@) < +oo, (5.28)
h h

Communications in Analysis and Mechanics Volume 16, Issue 3, 655-699.



677

from which we deduce, using Section 4, that Hyp, has a unique continuous extension on G, still denoted
as Hy,, and that the sequence (Hg,), is bounded in Dg. Therefore, there exists a subsequence, still
denoted as (Hy,),, weakly converging in the Hilbert space Dg to some ¢* € Dg, such that

& (¢") < liminfEg (Hgp,) < lim 1nf8h (@) - (5.29)

On the other hand, using the hypothesis (5.21),, we have that

217 . dH*
@ V5" 3+1(X)dx L0 g (g)) n M(R?), (5.30)

3h
where T" = UT"; T} being the k™ triangle obtained at the step k in the construction of the fractal G.

k=1
We deduce from this that, for every ¢ € Cy (G),

d . —_—
h%%d G f HopdHe (s) lim fR 3 ppduy,

1
= 71,d(G)f@o(s,O)t//dW"(S),
G

(5.31)

where (v;,), is the sequence of measures defined by

Uy = Oas (5.32)

Card (Vy) a;;h

0, being the Dirac measure at the point a. Thus, ¢* (s) = ¢ (s,0), ¢ (s,0) € Dg, and, according to (5.24)
and (5.29),

& (go)<1iminf5—hf |V(p |2dx
= I o] Jo 7

5 (5.33)
< sup, — |V |2dx<+oo
> ph |Qh| o ‘Ph s
from which we deduce, using Theorem 6, that
Ec (@) = fch.ZV<pdv < 400, (5.34)
G
2. As divv" = 0, we can write
5h 5h 5h
—f V. V,dx = —f V. Vp,dx + —f V. V,dx
| h| Qn | h| Bh |Qh| Q"\Bh
V' Vo, dx
Qh| fB h (5.35)
3/1
vlhln |/1t_ |ht):0
|Qh Z j;l Z ()Dh 2 (ph X
i= ]23
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— 0 as h — oo, using the proof of Lemma 7 and the hypothesis (5.21), we

,152,@ J, ved-

Thus, passing to the limit in (5.35), we get

hl_}lgﬁf V.V ,dx

= lim — E f e |h, i(go [oni — |h')
2 n Ixhi ‘70/1 yhi
h—)oo|Qh| = Joys 1 12

where n’ = R;e;. Since |Bh
have that

i=123 (5.36)
3/1
-t 20 J 7 b e )
i= 123
=0.

As ¢(5,0) € Dg, using some density argument, we may suppose that ¢ (s5,0) € C' (G). As V"
€ H? (Qh, R3), we may write

: Sh h
lim V.V, dx
h—c0 |Qh o

: 3§h ki) i : . (5.37)
:%L%ﬂ;“ f V(@ + ) 2" (g () - o (51))
k=1 venS
=123

where € = g,R!e;. On the other hand, there exists a function r;, € C! (Qh) such that v = Vr,,. Indeed,
as divv" = 0, r;, is a solution of the equation Ar, = 0 in Q" with some boundary conditions on 9Q".
Using the smoothness of ¢, we infer that

#(a) - (b”‘)
_lzl:zf 7 = b)) + i) (@ - b)), dt (5.38)
=27V (a}t) ' +0(2—2h).

Then, replacing in (5.37), taking into account the fact that sup, F, (vh) < +o00 and the estimates on V"

given in Lemma 7, we obtain that

h /’l 311
|§52_h|fﬂh ViV, = 5 Z Vry () 0’V (a)) 0 + O (e42"). (5.39)

i= 123

As for the fractal G, we can construct, according to Proposition 5, a graph approximation Gy, of the
harmonic Sierpinski gasket Gy and a sequence (Q}I’J)h of thin branching tubes whose axes are iterated
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curves of the graph Gy,,. As r, € C! (Qh), there exists 1, € C! (Qﬁ,), such that r;, |g,= 1 lg,, o®.

Similarly, there exists ¢ € C! (U), U being an open subset of M, containing Gy, such that ¢ |G= Slg, o ®.
Let us set, for ky, ..., k; € {1,2,3},

Bty (A) = Vi 0@y, (A)) 0T, | PS(A),

. (5.40)
Fody (A) = H(A) PTy, 1, Vs 0 ® (v, 4, (A) 7,

where H(A;) = (bl. (A), D2 (A),b3(A)) = (014,025, 03;). Then, observing that, there exist ki, ..., k; €
{1, 2,3} such that a’/;k = Y, .k, (Ai), using (5.40), the fact that P’ = P, T,i P = T,i #,» and [46, Lemma
3.2], we deduce that

Vry (azk) n'Vo (azk) o
= Bty (A) Fry i, (AD) (5.41)
= Vi, 0 @ (v, 4, (A)) 1'ZVs 0 ® (s, 4, (A)) .1V (Gr.,)

Using Lemma 8, there exists a subsequence of (vh)h, still denoted as (vh)h, andv € Lg{d (G), such that

Tl () dH" (5) ® 6o (x3) .
Vshy Sl dx = (', 0 =

n M(R?),

where v* = 0 on the part of G which is perpendicular to (0, 1), v* = vV3 on the part of G which is
perpendicular to ( V3/2,1/ 2) and v* = —v V3 on the part of G which is perpendicular to ( V3/2,1/ 2).
The corresponding subsequence of gradients (Vry, |g,= V1, |, o®), converges to the same limit. Thus,
using the limits (5.36)—(5.37), the relations (5.38)—(5.41), and the smoothness of ¢ and V", we obtain

that
h_m|Qh| th Vo, dx

/’l 3h
— i ikY i
f}l_{?oﬁ Z Vrh n'Vo (ah )n
i= 123 (5.42)
v, v*) .nZVp.ndv

f vn.ZVdv
G

=0,

where we have used the fact that (v, v*) .n = v.

According to the above proposition, we introduce the following

Definition 2. /. We define the space H; (G) by
H; (G) = {(p € Lﬁﬁ G); f Vp.ZVepdy < +oo}. (5.43)
G
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2. Let n = (1,0) on the horizontal part of G, n = (1 /2, V3/ 2) on the part of G which is perpendicular

to (— V3/2, 1/2), andn = (1/2, - \/5/2) on the part of G which is perpendicular to (\@/2, 1/2).
Let v € Dg. We define the divergence of v on G by the relation

(divz (v), ) = f vn.ZVdy,
G

for every ¢ € H; (G).
3. We define the space V= by

V® ={veDg (divz(v),¢) =0, Vo € H;(G)}. (5.44)

We introduce the following useful result which is due to Bogovskii [52]:

Lemma 10. Let D C R? be a bounded domain with Lipschitz continuous boundary 0D. There exists a
linear operator 8 : L* (D) — H, (D; RS), such that, for every w € L* (D) satisfying fD wdx =0,

{ div(B(w)) = winD,
IVB (@)l 2(pgrsy < C(D)wllrapy.

where C (D) is a constant which only depends on D.
Let us define D = S X (0, 1). As a consequence, we have the following result:

Lemma 11. Let D, = &,S X (0, 2‘h). There exists a linear operator By, : L* (D) — H; (Dh; R3), such
that, for every w € L? (Dy,) with fD, wdx =0,

C (D)

IA

||W||L2(D,,) ,

le(Bh) = wW il’th,
9Bl 29

h
where C (D) is a constant which still only depends on D.
Proof. For every @ € L* (D) satisfying th wdx = 0, we define

@ () = @ (ey1, 82, 27"'y3) . ¥y = (71,32, 33) € D.

Then, since th wdy = 0, we can apply Lemma 10 in D to obtain

div(B(wy)) = @y, inD, (5.45)
IVB (@l 2(prsy < C D) lwillz, - '
Let us define, for every x € Dy,
X| Xp X
By (@) (x) = (8481 (@), 181 (@) , 27" B3 (@) (—‘, =, %h) : (5.46)
En & 2
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Then
divB, (@) (1) = dw(B(m))( oo 3h)
> (xl x xa) (5.47)
B h En & 2 h
= w(x).

On the other hand, observing that

V8B, (@) (x) = M" (B (@) (ﬂ 25 ) ,

En & T Qh
where

08, (@) 08, () &p 08, ()
aB(%(C1 ) azaa)(c ) 2 5598)(6 )

M" _ AN 2 (WO En AN

(B (@) 0x, 0x» 2h 0x;3 ’

2533 (wy) & 533 (wy) 08B; (wh)
20 Ox, 27 Ox, 0x3

we deduce that 5
08, (@)

8Xﬁ
98, ((wh)) ‘2 J

f VB, (@) dx = 27" Z f
Dy ap=12YD
+22h82f

+ Y 2 f 03% (wh) dx (5.48)
a=1,2 D (9)(0[
0B
g [P,
D 0x3
< 270 | VB (w),) dx.
D
Last, according to (5.45), we have
2" f VB (w,)*dx < C(D)2™" |wh|2dx
D
C (D) (5.49)
| I dx.
Sh Dy,
Therefore, combining (5.48) and (5.49), we infer that
C
f VB, (@)|* dx < (D) f |o|* dx. (5.50)
Dy, 8]1 Dy,

Let (uh, ph) be the solution of problem (2.22) with boundary conditions (2.25). Let us define, for
everyhe N,i=1,2,3,and k € {1, 2,.., 3h}, the zero average-value pressure f)\f(”" by

= py - th| f prdx in Q" (5.51)
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and the pressure pj, by
Dn = fil’{”i on each QZ’i.

The following estimates hold true:

Lemma 12. If o € (0, +00) then
1. sup, F, (uh) < +o00, suph f |uh| dx < +00,

2. suph f (Pr)* dx < +00, sup, — |Q | " IVpul* dx < +oo.

(5.52)

Proof. 1. Applying Lemma 11 for the solution f}, of problem (2.23), we deduce that, for every k €

{1,2,...,3h} andi=1,2,3,

f VAP dx< f &l dx. (5.53)
Additionally, using the inequality (5.3), we have
f Iful* dx < Cs; f IV f,l* dx. (5.54)
ol o
We deduce from (5.53) and (5.54), that
|ful"dx < f gl dx, (5.55)
. 092 o
then, using the hypothesis (2.24),, we conclude that
5" )
sup — [fnl” dx < +o0. (5.56)
h |Qh| ol
Multiplying (2.22); by " and integrating by parts, we obtain that
h —

Re, f Vil| dx ﬁ T f fui'd (5.57)
from which we deduce, in virtue of the fact that Ty ~ |Q | , by using inequality (5.6) and estimate
(5.56),

5" 2
sup— [ |Vu'| dx < +o0, (5.58)
n Ren Jo
and, as o € (0, +0), according to Lemma 7,
sup o f || dx < +oo. (5.59)
h
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2. According to Lemma 11, there exists ¢’ € H] (Qh’ R3) such that

—divg hi = ff"i in QM
{ gbZ]’( = Ok on 6?22’2 (5.60)
and c
A ||L2 Qi ps) = g—h||f’7€l||u(ggvi)~ (5.61)

Let us define ¢" on Q" by ¢" = ¢2’” on each QZ’i, for every k € {1, 2. 3h} and i = 1,2,3. Then,
according to inequality (5.61), we have that

C -
||V¢h||L2(Qh,R9) <% ||ph||L2(Qh)' (5.62)

Multiplying (2.22); by ¢" and integrating by parts, we deduce that

5h
V V¢'dx + E d
Re, u.V¢'dx + Euy, 3h+1f (Pn)’ dx (5.63
1 5 ’
Fr 3h+1f Jug"dx.
Using the fact that E ol L lity (5.62), and the unif bounded
sing the fact that By, — = —— = inequali and the uniform boundedness
g h 3h+1 Fry, 3h+1 |Qh| q y
(5.56) and (5.58), we deduce that
1/2
> f (pn)Ydx<C 5 f (pn)d (5.64)
— x<Ci— xe .
] Jos " @] Jou
which implies that
5h
sup 1~ f (Pn)’ dx < +co. (5.65)
| h| Qh

On the other hand, multiplying (2.27); by p;, integrating by parts, and, using the hypothesis (2.24),,

we get
|Qh|f IV pul* dx |Qh| fghghphdx

|Qh| kz; f’”ghphdx
=123 (566)

3h
Qh|kz; f gy dx

i=1,23

= d
Qh| Lh ghph X,

from which we deduce by using (2.24), and the uniform boundedness (5.65):

5" f 5
sup —— Vpul” dx < +o0.
hp |Qh| Q P
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6. Proof of the main result

6.1. Proof of Theorem 2
6.1.1. Local problems

Let us define new orthonormal basis systems (ein) ;1=1,2,3,by

m=1,2,3
el = Rien, (6.1)

where e,, = (81,1, Oam> 03,). We define the rescaled junctions J+ and J, fori = 1,2, 3, by

T = ly=yie + el +ysel; v >0, (2, y3) €54, 6.2)
T = y=yie + e +y3el v <0, (02, y3) €54 .
We consider the following Leray problems:
—pAwH + Vati = 0 in
. divwt = 0 in g,
*7) whi = 0 on 09, 6.3)
lim w'(y) = O(On,y)e) inJ™,
y1—+00
and
—pAw™ + Vai = 0 in ",
i divw> = 0 in g,
) wd =0 ondJ ", 6.4)
Jimw )= @Gnywe ing
where O is the solution of the auxiliary problem
—uA® = 1 inS,
{ ® = 0 onds. (©)
We define, for every k € {1, 2,..., 3h} and i = 1,2, 3, the sequence of functions (wh”—"”)h by
ho+i = Ryt y;.{.kl(x) y;-;,kz(x) x3 f o+,
W) = Rwt I\ T T orxeJ (6.6)

Y@= Y

wh=i(x) = Riw"i( , S—h) for x € j,i”_’i,

&n gy

where the sets . ,f’”

related to the variable x through the relations (2.7). Let us define, for every k € { 1,2,..., 3h} and
i = 1,2, 3, the intermediate tubes

and 7, ,ﬁ“"i are defined in (2.17) and the coordinates y;;ﬁ, yi;i, x3;0i=1,2,3, are

‘*)Z’i _ { x = (x1, X2, x3) € R3; (y;lk2 (x) ,x3) € g8, } ©.7)

enln(1/ey) <y (1) < 27" =&, In (1/8,),
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and their upper and lower bases, respectively,

Yok (Xl, X2, x3) € R%; (y;k2 (%) ,X3) €es,

¢ ik (x) = &, In(1/e) ’
yh,—,i _ (xl, X2, x3) € RY; (y};2 (%), x3) € &S,

. =

yh1 (x) =27"—¢g,In(1/g)

6.1.2. Limit sup inequality

(6.8)

Letv € C'(G). Let x € QZ’i. Then, (x;,x;) € [ah ,b‘k], i =1,2,3, for every h € N and every

ik | ik
. a
ke {1, 2,..., Sh}. Let x;k = % We define the sequence of vector functions (vg ok, ‘)h by

th v(x;lk) yh2() el hii
= ® el
(x) = n(®) \/_h P +yy (x),
where .
m(@):—f@(y)dy
T Js

and .k

i (x) = 1 (v )@[y“(X),ﬁ)ei,

En h

with

i 1 i i
e (v) = Yoo (v(a) = v(2"))-

We introduce the function qﬁzi’k defined by

$ () = M ywit [ln(l/gh) Y2 x5
& 8h
o) = A wi [-m(l/sh) y”;() 2)

and the function /"' defined by

6 @ = (i - (),
67w = g (0@ -y ).

Let nZ’i be the solution of the problem

h,i

div n =0 in W,
nk,z — —29h +,i on yZ:+,i’
ng’ = 8;2Qh’_’l ony; ™,
ne' = 0 on é‘w \yh iy yZ’_’l

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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. i\ . i _ [ hi
We define the sequence of test-functions (vk )h, v = (vk,j)j:],zg’ by

vg’f”" + n’,:’i . in wZ’i,
hi _ rk,l ) W.h’i’l . (6.16)
i v (sz) y;sz () X3 ) ;. i .
+ - ® ,——|€; 11 jk’_’ .
m(®) V5~ En  &n
We then define the test function v* in Q" by
V() = v () forxe @ ke(1,2,...3")  and i = 1,2,3. (6.17)

We have the following results:
Proposition 13. We have
1. V' € V" for &, small enough,
2. (vh)h T-converges to (v,v*,0), where v = 0 on the part of G which is perpendicular to (0, 1),
v* = v V3 on the part of G which is perpendicular to (— V3/2, 1/2), and v = —v V3 on the part of

G which is perpendicular to ( V3/2,1/ 2),
3. if o € (0, ), then

) n um 2 11 1d 2,umn(®)f
;}LTOFh(V)‘m((a)w(G)LVdW YT e

¥ (%)

>

X
and y; = —3, we have, for g, small enough, that
Ep En

o . i(In(1/&n), y2,¥3) ;
gt ol = i () 2 f( W ( . ; .etd
\L‘Zw ! ¢ e s\ O 02, y3) e &

Proof. 1. Introducing the variables y, =

i 6.18
:_r;il’ (V)Eif(®()’2,)’3)—®(y2,y3))dy (6.18)
s
-0,
and '
=i i i - _ln(l/gh)’y27y3) 1

= [ [ |

L’,ﬁ"" e e, N —o0myme e\dy
(6.19)

=008} [ ©0239 =002 ds
=0.

This implies that problem (6.15) is solvable. On the other hand, using [53, Theorem VI.1.2], there
exists 7 > 0 such that, for any i = 1,2,3 and every y € J*,

|Wi’i () =0 (2,y3) eil| + ’VWi’i -V (® (y2,¥3) eil)| < Ce ™ (6.20)
from which we deduce that

Ce, Ven
Vin (/)
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which implies that

I gy = €I g 198 D
o B (6.22)

\/ln(l/sh)’

IA

and, using [54, Lemma 9],

IA

h,i N
||Vnk ||L2(w;:’i) 82\/8_h ||HZ ||Hl/2(72’ivi)
h

CeyVen (6.23)
Vin(T/z;)
Since div nZ’i =0, divy w™' = div,w™' = 0, for every i = 1,2, 3, and @ is independent of y;, we have
div vﬁ’i =0, forevery i =1,2,3.
Therefore, for &, small enough, V" € V",
2. Let ¢ € Cy (R?). We have
. i 1oy ()
lim f o)y (x) V5 =22l gy
fin | oo @ Sy
' ik ik
= lim vs" & [ ) =) (6.24)
w3t \n (/e & | xe(x4,0) f O (v2,y3) dy2dys
i=1,2,3 S
=0,
and
N 3 @ (x) v (x;;k)
lim f | W@ x) o |dx
e 3m (@) || V5r ' Jgii| X0 =€
=123 En  &n
3h (6.25)

m i) 2 ¢ ()2 () € [ @0amdnay

=1li
h—oo 3117111 (®) —
=123

=0.

Then, using the estimate (6.20) for w*' (y), the estimates (6.21)~(6.22) for ¢"*", the estimate (6.23)
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for nZ’i, and the inequality (5.3) applied to nZ’i, we deduce that

lim [ (o Vel ®

== Ja 3l
o (el ()
I3 |Qh| m(0) Jo k=1 XG[ - ’ _3) ei]
=123 En & 6.26)
h i,k ik
— i 1 i ‘p(-xh ’O)V(xh)
im————— '
h—coqrint (@) 3h+1 | x (f O (v2,y3) dyzdys) el
| i=1,2,3 N
= .7_{d (G) L @ (S, O) (V (S) . Vv (S) , O) d?‘{d (S) .

3. Let us suppose that o € (0, ). Then, in virtue of the estimates (6.20)—(6.23), we have that

lim = v ”|2d
hi—o0 3h+1 Reh v .

2
yhz(x) ﬁ)e )
= lim—————— e ) U d
=123
3/1
u
+21_}I£10 3h+1 Z fh.i |V¢/ (X)| dx
k=1 “%
=123
h
SR ARG I (6.27)
gy 2 o (1O 17 ax
i= 123

it 3 [ oo fas

k

i=1,2,3 5
3 Vi) ;
|
+lim ——— Z f o e ) 1) | gy
3 ORe £ Ja | ()
i=1,2,3
where j:’i = ,ﬁ”” U j,i”_’i. Then, as
2
¥y () . 1
V(@( - x3]e’1] = = VO (2. ), (6.28)
En &y 8h

Communications in Analysis and Mechanics Volume 16, Issue 3, 655-699.



689

and f VO (v, y3)|2 dy>dy; = nm (0), we deduce that
s

. 2
ik
(o)

n
limﬂ— Z VR X3 dx
PRI ©) & S| v (o2 2)g
i=1.2.3 En
3h

= lim—H Z v (xi;k) f VO (2, y3)I dydy
s

h_)oomz (@) 3h+1 —
i=1,2,3
3h

. 1 i
= fim mﬂ(Z)) 3 Z v ()

1123

2 d
- m(®) 7{" (€)) f -

After some computations, we infer that

2h h 5
;}1_)12 3+l wa [V (o) dx

o ) )

5h
= lim——t——— " )
o3 In (1) £ | x| VO (2, y3)|” dyrdys

i=1,2,3 S
=0,
and, for the last limit in (6.27),
| ! S () |
T (@) Rey, L fjk xV(@(’%}f”, ;;) 3) a

i=1,2,3

=0.
Using once again the estimate (6.20), we deduce that

3/1

5h
)
h—)003 RCJ h =1 j]/cl&,l
i=1,2,3

3 _ bl k 2
= lim 5 Z (V (ah ) ) (h +, ,)2
iow 3 e In(1g,) & | x | [wwhi]
=123 Tt

(rZ’i (v))2 |th’+”'|2 dx

ik ik\\?
B R,
h—e3Rej; \3 4| x| VO (32, y3) dyrdys
=123 S
®
O (e ).
30 G
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and
lim———— f v W) |th i dx
h_>°°3h+l®ReJhk 1i=1.2.3 (6.33)
_ )deG(v).
30- G

Now, combining (6.27)—(6.33), we get the result.

Proposition 14. [f o € (0, +0), then for every v € V=, there exists a sequence (vh)h,with v e VP and
(vh)h T-converges to (v,v*,v™), where v'* = 0, v* = 0 on the part of G which is perpendicular to (0, 1),
v* = v V3 on the part of G which is perpendicular to (— V3/2, 1/2), and v = —v N3 on the part of G
which is perpendicular to (\/§ /2,1/ 2), such that

lim supF, (vh) <F.,().

h—oo

Proof. Letv € V™. Let (v,)),, € C' (G) such that v,, — v with respect to the norm (4.5). We define the

m—oo

sequence (v’"’h)m i by replacing in (6.9), (6.16), and (6.17) v by v,,. Then, according to Proposition 13,
the sequence (vm’h)m , T-converges to (Vs vi,, 0), where v, = 0 on the part of G which is perpendicular
to (0,1), v, = vy V3 on the part of G which is perpendicular to (— V3/2,1/ 2), Vi = =V V3 on the part
of G which is perpendicular to ( V3/2,1/ 2), and

lim F, (vm’h) <Fo(v,).

h— oo

The continuity of F, implies that lim,, . lim;,_. F}, (v’"’h) = F. (v). The topology 7 being
metrizable, we deduce, using a diagonalization argument (see [14, Corollary 1.18]), that the sequence
(vh)h = (vh’m(h))h; %imm(h) = +oo, T-converges to (v,v*,0), with v* = 0 on the part of G which is
perpendicular to (0, 1), v = v V3 on the part of G which is perpendicular to (— V3/2,1/ 2), v =13
on the part of G which is perpendicular to ( V3/2,1/ 2), and

lim supF), (vh) <F.().

h—o0

6.1.3. Limit inf inequality

Proposition 15. If o € (0, +c0), then for every sequence (vh)h, such that V' € V" and (vh)h T-converges
to v,v,v™), we have v € V=, v** = 0 on G, v* = 0 on the part of G which is perpendicular to (0, 1),
v* = v V3 on the part of G which is perpendicular to (— V3/2, 1/2), v = —v V3 on the part of G which

is perpendicular to (\6 /2,1/ 2), and

liminfF), (vh) >F.o ().

h—o0
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Proof. Observe that if sup, F (vh) = +oo, then the lim inf inequality is trivial. We suppose that
sup, F), (vh) < +o0 and, using some regularity argument, we may suppose that v € V' n H? (Qh, R3).
Then, according to Proposition 8, we have that v € L?Hd (G), v* = 0on G, v = 0 on the part of G
which is perpendicular to (0, 1), v = vV/3 on the part of G which is perpendicular to (— V3/2,1/ 2),
v = —v V3 on the part of G which is perpendicular to ( V3 /2,1/ 2), and, according to Proposition 9,

(divz (v),¢) =0,V € H; (G), (6.34)

where Hy (G) is the space defined in Definition 2;. Let (v,,),, € C' (G) such that v,, — v with respect

to the norm L2 4 (G)-strong. We define the sequence (v’” h)m by replacing v by v,, in test-functions (6.9),
(6.16), and (6.17). We deduce from the definition of the subdifferentiability of convex functionals that

5" 2 5h
V h d > V m,h
31 Re, fgh| Z T = 3T R, fgh| Y

5
+23"TReh Lh \Y% (V’"’h) AY (vh - vm’h) dx.

2d)c

(6.35)

We then compute

5h
}}me f \Y% (Vm’h) .V (Vh - Vm’h) dx

V5Re;! < A© (1 n
T A T
h—eom (O) 3 Sh o Yo'l xv, (x;;k) (vh - v’”’h) €] (6.36)

i=1,2,3
hpa-1 3"
5"Rey,

. > h,i
h—o0 3h+1 Z rk (V)

+lim
h,+,i
=1 I

=123
hpa-1 3"
5 Rejh h,i h,—,i m,h
+lim ] r, ) Vw1V (V! = v dx
h—oo 3 T JA_I
i=1,2,3

V5" Re;! &
+hm—® i Z f
) . YT

i=1,2,3

Vwhti v (vh - v’"’h) dx

(Vvh - va’h)

ik X . d.x
V(o2 2)d) J
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Using the estimate (6.23), we deduce that

5 & ;

=1 k
=123

1/2
. _Cenven 5 (v - vm,h)r . (6.37)
- lln (1 /8h) 3h+1 Reh 3h+l Reh
< Cep+en
~ VIn(1/ey) \3"'Rey’
from which we deduce that
h
. Sh : i m
i}l—{?omz Z fhi VnZ’ v (vh -V ’h) dx = 0. (6.38)
hi=1i=123 Yo
o
On the other hand, using the fact that £;3" Re;, ¥ — in wk " and according to the problem (6.5) of
iy

which O is the solution, we deduce that

\/_hR -1 f A@[yhz( x) X3
1,1

hl " ©®) 3h+18 e & dx
- ik m, i
hzklzla xv,,(xh)(vh—v h) o
(%)
v A® Yo (% X3 (6.39)
= lim Z & & dx
h—>oom(®)3|Qh| e ) i

ik h m,h i
i=12,3 (h)(v -V )'el

__n _ d
_—Wd(G)vam(v Vi) dHE.

Using the limits (6.24) and (6.30), and the fact that
sup Fh( mh) < o0, (6.40)
h
we deduce that
5'Re;! & -
lim =7 ; f,“ Vit (x).V (V' =) dx = 0. (6.41)
=123

Analogously, using the estimate (6.20), the equations (6.5), the expression (6.12) of r,i"i (v), and the
estimate (6.40), we get

ShR -1 3t

e.
J.h h,i i h _ mh
/P—»TOW Z Iy (V)Lh,«f Vw .V(v v )dx
k=1 k
=123
_ y 5 () .
= h h
]1*)00 3h+1 k ]i y (Vh A vm,h) 'eil

=0,
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and, similarly,

i ' (6.43)

2
\Y% (vh - v’”’h)' dx < 400, we have

. \/_hRej‘,ll 3 (Vvh - va’h) .
(@) 30T (@) 3+ Z vl V(@22 xm), .
m gl - 2l (6.44)

k=1 En &n
i=1,2,3

=0.

In addition, owing to Proposition 13, we have

: mh
,}1_,003h+1Rehf |V

Thus, combining (6.35)—(6.45), we deduce that

dx = Fo (V) . (6.45)

lim infF, (V) 2 Feo ()

(Hd G vm v — V) dHC.

Then, letting m tend to oo, we obtain
. . h >
hﬂglth (v ) > Fo(v),

and, as a consequence, &g (v) < +oo. Thus, v € Dg and, taking into account (6.34), we have that
veve

6.2. Proof of Theorem 3

Proof. 1. Let (uh, ph) be a solution of problem (2.22) with boundary conditions (2.25). According to

Lemma 12 and Proposition 8 there exists a subsequence of (uh)h, still denoted as (uh)h, such that

o lon (x) dH? (s) ® 5 (x3) .
V5hy 3 |Qh| dx e (u,u*,0) HIG)

in M(R?), (6.47)

with u* = 0 on the part of G which is perpendicular to (0, 1), u* = u V3 on the part of G which is
perpendicular to (— V3/2,1/ 2), and u* = —u V3 on the part of G which is perpendicular to ( V3/2,1/ 2).
As the boundary 0Q" is C?, the velocity u" is at least in H> (Qh). Thus, according to Proposition 9, we
have that

(divz (u),¢) =0,V € H7 (G). (6.48)
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On the other hand, since u" is the unique velocity solution of problem (2.31), we deduce from
Theorem 2 and [15, Theorem 7.8], that the whole sequence (uh)h verifies the convergence (6.47),

limF, (uh) =F. (), (6.49)

and, taking into account (6.48), we deduce that u € V*. In addition, using Lemma 12 and the proof of
Proposition 8, we have that

mlon (%) s dH(s)® 5 (x3) .

— N 3
@phwdx TP HG) in M (R ), (6.50)
with p € Hz (G), and, using the uniform boundedness (5.56),
ﬂlgh (x) * d?-(d (S) ® 50 (X3) . 3
Vst f, o ax = f=mg, M(RY), (6.51)

with f € LfHd (G, R3). Using Proposition 9 and Lemma 12,, we deduce that, for every v € V=,

f(v,v*).nZVp.ndv = fvn.ZVpdv
G

= vaVp.na’v (6.52)
G

_—

where n = (1, 0) on the horizontal part of G, n = (1 /2, V3/ 2) on the part of G which is perpendicular to

(- v3/2.1/2), and n = (1/2,~ V/3/2) on the part of G which is perpendicular to ( V3/2,1/2).
2. According to Theorem 2 and [15, Theorem 7.8], u is the solution of the problem
U f 5 rsa . 2pmm ()
— | v dH® + ————= | Vv.ZVvdy

yey® _ * d
—Wd(G)fo.(v,v,O)dﬂ

(6.53)

Then, using Lemma 4 and the fact that f vZVp.ndv = 0 and (v,v*) = v.n, for every v € V=, we
G
deduce from (6.53) that, for every v € V=,

B 4urm (O) d
—307{5 G . Ag () vdH (s)
HT d
+m(®)d7’(d G Luvd?—( (s) +2LvZVp.ndv (6.54)
_2H d
= WG Gvf.nd?{ ,

where, by abuse of notation, f.n = (fi, f>) .n. Therefore, (u, p) is the solution (with p up to an additive
constant) of the following problem:

2umm (©) H unH¢
o G Ag (n) + () HA (G): +vZVp.n
= 7 (G)f.n in G,

which completes the proof of Theorem 3.
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7. Conclusion

In this paper, we considered the motion of a viscous incompressible fluid in a varying bounded
domain consisting of branching cylindrical pipes whose axes are line segments that form a network of
pre-fractal polygonal curves G, obtained after h-iterations of the contractive similarities of the standard
Sierpinski gasket. We assumed that these pipes are narrow axisymmetric tubes of radius g, very small
with respect to the length 27" of each side of G,. We supposed that the fluid flow is driven by some
volumic forces and governed by Stokes equations with continuity of the velocity at the interfaces
separating the junction zones from the rest of the pipes, homogeneous Dirichlet boundary condition
for the velocity, and homogeneous Neumann boundary condition for the pressure on the wall of the
tubes. The flow in each pipe is split into two streams: boundary layers flow in junction zones of length
e,In(1/g,) < 27" and laminar flow in the rest of the pipe. We assumed that the flow in the junction
zones is controlled by a typical Reynolds number Re; . Using I'-convergence methods, we studied the
asymptotic behavior of the fluid flowing in the branching tubes as the radius of the tubes tends to zero
and the sequence of the pre-fractal curves converges in the Hausdorff metric to the Sierpinski gasket.
According to critical values taken by Re;,, we derived three uncommon effective models of fluid flows
in the Sierpinski gasket:

1. a singular Brinkman equation if Re;;, = O (&),

2. asingular Darcy flow if Re;j;, = O (1) or Rej, — o0 as h — oo,

3. aflow with constant velocity if Re;, = O (sg ) with @ > 1.

As far as the modeling is concerned, fractal branching pipe networks have to be considered to
describe fluid flows in various complex geometrical configurations. An important field to which this
model is closely related is the behavior of fluid flows in some physiological structures such as the blood

circulation through arterial networks. Our model may serve as a starting point for further investigations
in this area.

Author contributions

Haifa El Jarroudi: Writing-original draft, Writing-review and editing, Methodology, Formal Analysis;
Mustapha El Jarroudi: Writing-original draft, Writing-review and editing, Methodology, Supervision.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.

Acknowledgments
The authors wish to express their gratitude to the anonymous referee for giving a number of valuable
comments and helpful suggestions, which improve the presentation of sentation of the manuscript

significantly.

Communications in Analysis and Mechanics Volume 16, Issue 3, 655-699.



696

Contflict of interest

The authors declare there is no conflict of interest.

References

1.

10.

11.

12.

13.

14.

T. J. Pedley, R. C. Schroter, M. F. Sudlow, Flow and pressure drop in systems of repeatedly
branching tubes, J. Fluid Mech., 46 (1971), 365-383. https://doi.org/10.1017/S0022112071000594

. E. Durst, T. Loy, Investigations of laminar flow in a pipe with sudden contraction of cross sectional

area, Comp. Fluids, 13 (1985), 15-36. https://doi.org/10.1016/0045-7930(85)90030-1

S. Mayer, On the pressure and flow-rate distributions in tree-like and arterial-venous networks, Bltn.
Mathcal. Biology, 58 (1996), 753-785. https://doi.org/10.1007/BF02459481

M. Blyth, A. Mestel, Steady flow in a dividing pipe, J. Fluid Mech., 401 (1999), 339-364.
https://doi.org/10.1017/S0022112099006904

. T. J. Pedley, Arterial and venous fluid dynamics, In: G. Pedrizzetti, K. Perktold (eds),

Cardiovascular Fluid Mechanics. International Centre for Mechanical Sciences. Springer, Vienna,
446 (2003), 1-72. https://doi.org/10.1007/978-3-7091-2542-7 _1

F. T. Smith, R. Purvis, S. C. R. Dennis, M. A. Jones, N. C. Ovenden, M. Tadjfar,
Fluid flow through various branching tubes, J. Eng. Math., 47 (2003), 277-298.
https://doi.org/10.1023/B:ENGI.0000007981.46608.73

. M. Tadjfar, F. Smith, Direct simulations and modelling of basic three-dimensional bifurcating tube

flows, J. Fluid Mech., 519 (2004), 1-32. https://doi.org/10.1017/S0022112004000606

. R. I. Bowles, S. C. R. Dennis, R. Purvis, F. T. Smith, Multi-branching flows from one mother

tube to many daughters or to a network, Phil. Trans. R. Soc. A., 363 (2005), 1045-1055.
https://doi.org/10.1098/rsta.2005.1548

. G. Panasenko, Partial asymptotic decomposition of domain: Navier-Stokes equation in

tube structure, C. R. Acad. Sci., Ser. IIB, Mech. Phys. Astron., 326 (1998), 893-898.
https://doi.org/10.1016/S1251-8069(99)80045-3

G. Panasenko, K. Pileckas, Asymptotic analysis of the non-steady Navier-Stokes equations in a
tube structure. 1. The case without boundary-layer-in-time, Nonlinear Anal., 122 (2015), 125-168.
https://doi.org/10.1016/j.na.2015.03.008

G. Panasenko, K. Pileckas, Asymptotic analysis of the non-steady Navier-Stokes
equations in a tube structure. II. General case, Nonlinear Anal., 125 (2015), 582-607.
https://doi.org/10.1016/j.na.2015.05.018

E. Marusic-Paloka, Rigorous justification of the Kirchhoft law for junction of thin pipes filled with
viscous fluid, Asymptot. Anal., 33 (2003), 51-66.

M. Lenzinger, Corrections to Kirchhoff’s law for the flow of viscous fluid in thin bifurcating
channels and pipes, Asymp. Anal., 75 (2011), 1-23. https://doi.org/10.3233/ASY-2011-1048

H. Attouch, Variational convergence for functions and operators, Appl. Math. Series, London,
Pitman, 1984.

Communications in Analysis and Mechanics Volume 16, Issue 3, 655-699.


http://dx.doi.org/https://doi.org/10.1017/S0022112071000594
http://dx.doi.org/https://doi.org/10.1016/0045-7930(85)90030-1
http://dx.doi.org/https://doi.org/10.1007/BF02459481
http://dx.doi.org/https://doi.org/10.1017/S0022112099006904
http://dx.doi.org/https://doi.org/10.1007/978-3-7091-2542-7_1
http://dx.doi.org/https://doi.org/10.1023/B:ENGI.0000007981.46608.73
http://dx.doi.org/https://doi.org/10.1017/S0022112004000606
http://dx.doi.org/https://doi.org/10.1098/rsta.2005.1548
http://dx.doi.org/https://doi.org/10.1016/S1251-8069(99)80045-3
http://dx.doi.org/https://doi.org/10.1016/j.na.2015.03.008
http://dx.doi.org/https://doi.org/10.1016/j.na.2015.05.018
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.3233/ASY-2011-1048

697

15. G. Dal Maso, An introduction to I'-convergence, PNLDEA 8, Birkhduser, Basel, 1993.
https://doi.org/10.1007/978-1-4612-0327-8

16. U. Bessi, Another point of view on Kusuoka’s measure, Discrete Contin. Dyn. Syst., 41 (2021),
3241-3271. https://doi.org/10.3934/dcds.2020404

17. M. R. Lancia, M. A. Vivaldi, Asymptotic convergence of transmission energy forms, Adv. Math. Sc.
Appl., 13 (2003), 315-341.

18. U. Mosco, M. A. Vivaldi, An example of fractal singular homogenization, Georgian Math. J., 14
(2007), 169—194. https://doi.org/10.1515/GMJ.2007.169

19. U. Mosco, M. A. Vivaldi, Fractal reinforcement of elastic membranes, Arch. Rational Mech. Anal.,
194 (2009), 49-74. https://doi.org/10.1007/s00205-008-0145-1

20. R. Capitanelli, M. A. Vivaldi, Insulating layers and Robin problems on Koch mixtures, J. Differential
Equations, 251 (2011), 1332-1353 .

21. U. Mosco, M. A. Vivaldi, Thin fractal fibers, Math. Meth. Appl. Sci., 36 (2013), 2048-2068.
https://doi.org/10.1002/mma.1621

22. R. Capitanelli, M. R. Lancia, M. A. Vivaldi, Insulating layers of fractal type, Differ. Integ. Equs., 26
(2013), 1055-1076. https://doi.org/10.57262/die/1372858561

23. U. Mosco, M. A. Vivaldi, Layered fractal fibers and potentials, J. Math. Pures Appl., 103 (2015),
1198-1227. https://doi.org/10.1016/j.matpur.2014.10.010

24. R. Capitanelli, M. A. Vivaldi, Reinforcement problems for variational inequalities on fractal sets,
Calc. Var., 54 (2015), 2751-2783. https://doi.org/10.1007/s00526-015-0882-6

25. R. Capitanelli, M. A. Vivaldi, Dynamical quasi-filling fractal layers, Siam J. Math. Anal., 48 (2016),
3931-3961. https://doi.org/10.1137/15M 1043893

26. S. Creo, Singular p-homogenization for highly conductive fractal layers, Z. Anal. Anwend., 40
(2021), 401-424. https://doi.org/10.4171/ZAA/1690

27. M. El Jarroudi, Homogenization of a quasilinear elliptic problem in a fractal-reinforced structure,
SeMA, 79 (2022), 571-592. https://doi.org/10.1007/s40324-021-00250-5

28. M. El Jarroudi, Y. Filali, A. Lahrouz, M. Er-Riani, A. Settati, Asymptotic analysis of an
elastic material reinforced with thin fractal strips, Netw. Heterog. Media, 17 (2022), 47-72.
https://doi.org/10.3934/nhm.2021023

29. M. El Jarroudi, M. El Merzguioui, M. Er-Riani, A. Lahrouz, J. El Amrani, Dimension reduction
analysis of a three-dimensional thin elastic plate reinforced with fractal ribbons, Eur. J. Appl. Math.,
34 (2023), 838—-869. https://doi.org/10.1017/s0956792523000025

30. M. J. Lighthill, Physiological fluid dynamics: a survey, J. Fluid Mech. 52 (1972), 475-497.
https://doi.org/10.1017/s0022112072001557

31. J. S. Lee, Y. C. Fung, Flow in nonuniform small blood vessels, Microvascular Res., 3 (1971),
272-287. https://doi.org/10.1016/0026-2862(71)90053-7

32. M. R. Roach, S. Scott, G. G. Ferguson, The hemodynamic importance of the geometry
of birfurcations in the circle of Willis (glass model studies), Stroke, 3 (1972), 255-267.
https://doi.org/10.1161/01.STR.3.3.255

Communications in Analysis and Mechanics Volume 16, Issue 3, 655-699.


http://dx.doi.org/https://doi.org/10.1007/978-1-4612-0327-8
http://dx.doi.org/https://doi.org/10.3934/dcds.2020404
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1515/GMJ.2007.169
http://dx.doi.org/https://doi.org/10.1007/s00205-008-0145-1
http://dx.doi.org/https://doi.org/10.1002/mma.1621
http://dx.doi.org/https://doi.org/10.57262/die/1372858561
http://dx.doi.org/https://doi.org/10.1016/j.matpur.2014.10.010
http://dx.doi.org/https://doi.org/10.1007/s00526-015-0882-6
http://dx.doi.org/https://doi.org/10.1137/15M1043893
http://dx.doi.org/https://doi.org/10.4171/ZAA/1690
http://dx.doi.org/https://doi.org/10.1007/s40324-021-00250-5
http://dx.doi.org/https://doi.org/10.3934/nhm.2021023
http://dx.doi.org/https://doi.org/10.1017/s0956792523000025
http://dx.doi.org/https://doi.org/10.1017/s0022112072001557
http://dx.doi.org/https://doi.org/10.1016/0026-2862(71)90053-7
http://dx.doi.org/https://doi.org/10.1161/01.STR.3.3.255

698

33. B. B. Mandelbrot, The Fractal Geometry of Nature, Macmillan, New York, 1983.

34. G. B. West, J. H. Brown, B. J. Enquist, A general model for the origin of allometric scaling laws in
biology, Science, 276 (1997), 122—126. https://doi.org/10.1126/science.276.5309.122

35. Y. Chen, X. Zhang, L. Ren, Y. Geng, G. Bai, Analysis of blood flow characteristics in
fractal vascular network based on the time fractional order, Phys. Fluids, 33 (2021), 041902.
https://doi.org/10.1063/5.0046622

36. M. C. Ruzicka, On dimensionless numbers, Chem. Eng. Res. Desi., 86 (2008), 835-868.
https://doi.org/10.1016/j.cherd.2008.03.007

37. E. Marusic-Paloka, A. Mikelic, The derivation of a nonlinear filtration law including the inertia
effects via homogenization, Nonl. Anal., 42 (2000), 97-137. https://doi.org/10.1016/S0362-
546X(98)00346-0

38. U. Mosco, Energy functionals on certain fractal structures, J. Conv. Anal., 9 (2000), 581-600.
39. H. Schlichting, Boundary Layer Theory, 7th edition, McGraw—Hill, New York, 1979.

40. P. M. Gresho, R. L. Sani, On pressure boundary conditions for the incompressible Naviers-Stokes
equations, Int. J. Num. Meth. Fluids, 7 (1987), 1111-1145. https://doi.org/10.1002/f1d.1650071008

41. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes,
de Gruyter Studies in Mathematics: Vol. 19, Berlin: Eds. Bauer Kazdan, Zehnder, 1994.
https://doi.org/10.1515/9783110889741

42. J. Kigami, Analysis on Fractals, volume 143 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge, 2001.

43. M. Fukushima, T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Anal., 1 (1992),
1-35. https://doi.org/10.1007/BF00249784

44. U. Mosco, Variational fractals, Ann. Scuola Norm. Sup. Pisa, 25 (1997), 683-712.

45. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
https://doi.org/10.1007/978-3-642-53393-8

46. J. Kigami, Harmonic metric and Dirichlet form on the Sierpinski gasket, In: K. D. Elworthy, N.
Ikeda (eds.), Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on
Fractals, Pitman Research Notes in Math., Longman, London, 283 (1993), 201-218.

47. J. Kigami, Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the
Gaussian heat kernel estimate, Math. Ann., 340 (2008), 781-804 . https://doi.org/10.1007/s00208-
007-0169-0

48. S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math.
Sci., 25 (1989), 659—-680. https://doi.org/10.2977/prims/1195173187

49. A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math.,
60 (2008), 457-480. https://doi.org/10.4153/CIM-2008-022-3

50. K. Falconer, Techniques in fractal geometry, J. Wiley and sons, Chichester, 1997.
https://doi.org/10.2307/2533585

Communications in Analysis and Mechanics Volume 16, Issue 3, 655-699.


http://dx.doi.org/https://doi.org/10.1126/science.276.5309.122
http://dx.doi.org/https://doi.org/10.1063/5.0046622
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2008.03.007
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(98)00346-0
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(98)00346-0
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1002/fld.1650071008
http://dx.doi.org/https://doi.org/10.1515/9783110889741
http://dx.doi.org/https://doi.org/10.1007/BF00249784
http://dx.doi.org/https://doi.org/10.1007/978-3-642-53393-8
http://dx.doi.org/https://doi.org/10.1007/s00208-007-0169-0
http://dx.doi.org/https://doi.org/10.1007/s00208-007-0169-0
http://dx.doi.org/https://doi.org/10.2977/prims/1195173187
http://dx.doi.org/https://doi.org/10.4153/CJM-2008-022-3
http://dx.doi.org/https://doi.org/10.2307/2533585

699

51. B. E. Breckner, C. Varga, Elliptic problems on the Sierpinski gasket, In: T. Rassias, L. T6th (eds),
Topics in mathematical analysis and applications, Springer Optimization and Its Applications, 94
(2014), 119-173. https://doi.org/10.1007/978-3-319-06554-0_6

52. M. E. Bogovskii, Solutions of some problems of vector analysis associated with the operators div
and grad, Trudy Sem. S. L. Sobolev, 80 (1980), 5-40.

53. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier—Stokes Equations, I, II,
Springer—Verlag, Berlin, 1994.

54. E. Marusic-Paloka, The effects of flexion and torsion for the fluid flow through a curved pipe, Appl.
Math. Optim., 44 (2001), 245-272. https://doi.org/10.1007/s00245-001-0021-y

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

Communications in Analysis and Mechanics Volume 16, Issue 3, 655-699.


http://dx.doi.org/https://doi.org/10.1007/978-3-319-06554-0_6
http://dx.doi.org/https://doi.org/10.1007/s00245-001-0021-y
http://creativecommons.org/licenses/by/4.0

	 Introduction
	Statement of the problem
	Nomenclature
	Position of the problem

	The main results
	Energy forms on the Sierpinski gasket
	Standard Dirichlet forms
	Kusuoka measures and gradients

	A priori estimates and compactness results
	Proof of the main result
	Proof of Theorem 2
	Local problems
	Limit sup inequality
	Limit inf inequality

	Proof of Theorem 3

	Conclusion

