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Abstract: In this paper, we studied the existence of multiple normalized solutions to the following
Kirchhoff type equation:−

(
aε2 + bε

∫
R3 |∇u|2dx

)
∆u + V(x)u = µu + f (u) in R3,∫

R3 |u|2dx = mε3, u ∈ H1(R3),

where a, b, m > 0, ε is a small positive parameter, V is a nonnegative continuous function, f is a
continuous function with L2-subcritical growth and µ ∈ R will arise as a Lagrange multiplier. Under the
suitable assumptions on V and f , the existence of multiple normalized solutions was obtained by using
minimization techniques and the Lusternik-Schnirelmann theory. We pointed out that the number of
normalized solutions was related to the topological richness of the set where the potential V attained its
minimum value.
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1. Introduction

In 1883, Kirchhoff [1] first proposed the following time-dependent wave equation:

ρ
∂2u
∂2t
−

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2 dx
)
∂2u
∂2x

= 0 (1.1)

as an extension of the classical D’Alembert’s wave equations for the free vibration of elastic strings,
where u is the transverse displacement, ρ is the mass density, h is the cross-sectional area, L is the length,
E is Young’s modulus, and P0 is the initial axial tension. The Kirchhoff equation (1.1) has attracted the
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attention of many researchers since Lions proposed an abstract functional analysis framework. Some
interesting results can be referenced, for example, in [2–4].

In the past several years, there have been a lot of interesting results for the following Kirchhoff type
problem: −

(
aε2 + bε

∫
R3 |∇u|2dx

)
∆u + V(x)u = f (u), x ∈ R3,

u ∈ H1(R3).
(1.2)

Li and Ye [5] studied (1.2) with f (u) = |u|p−1u, 2 < p < 5 under some suitable assumptions on V .
By employing a monotonicity trick and a new version of the global compactness lemma, they proved
a positive ground state solution. In [6], combining the nondegeneracy result and Lyapunov-Schmidt
reduction method, for ε > 0 sufficiently small, Li et al. [6] obtained the existence of solutions to problem
(1.2) with f (u) = |u|p−1u, p ∈ (1, 5). If V(x) and λ f (u)+ |u|4u are replaced by M(x) and f (u), respectively,
where λ > 0 is a parameter, f is a continuous superlinear and subcritical nonlinearity. Using minimax
theorems and the Ljusternik-Schnirelmann theory, Wang et al. [7] proved that for λ > 0 enough large
and ε > 0 enough small, there exists a positive ground state solution, and they also verified the number
of positive solutions in connection with the topology of the set of the global minima of the potentials.

He and Zou considered the Kirchhoff equation (1.2) in [8] with f (u) satisfying the Ambrosetti-
Rabinowitz condition and V(x) satisfying

(V1) infx∈R3 V(x) < lim inf |x|→∞ V(x).

Through Ljusternik-Schnirelmann theory and minimax methods, He and Zou [8] first obtained the
abstract framework and some compactness properties of the functional associated to (1.2), then proved
the number of solutions with the topology of the set where V attains its minimum. Under general
conditions of f , the potential function V(x) is nonnegative and has k sets of local minima in R3. By
variational methods, Hu and Shuai [9] bear out the existence of multi-peak solutions to singularly
prturbed Kirchhoff problems (1.2). Besides, readers can find some interesting results about (1.2)
in [10–14] and the references therein.

In the past decade, normalized solutions, that is, solutions with the prescribed L2 norm, to several
problems have been received plenty of attention. From the point of view of physics, this approach seems
to be more meaningful since it offers a better insight into the dynamical properties of the stationary
solutions, for example, stability or instability. Recently, the study on the normalized solutions to the
following Kirchhoff type equation involving an L2 constraint:−

(
a + b

∫
R3 |∇v|2dx

)
∆v + λv = |u|p−2u, x ∈ R3,∫

R3 |v|2dx = m, v ∈ H1(R3),
(1.3)

has also been the purpose of very active research, where a, b,m > 0 are the given constants, λ ∈ R
appears as a Lagrange multiplier, and p ∈ (2, 6). It is clear that solutions to (1.3) correspond to critical
points of the functional Φ : H1(R3)→ R defined by

Φ(u) =
a
2

∫
R3
|∇u|2dx +

b
4

(∫
R3
|∇u|2dx

)2

−
1
p

∫
R3
|u|pdx

constrained to the sphere
S m :=

{
u ∈ H1(R3) : ‖u‖22 = m

}
.
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Moreover, it is well-known that the study of (1.3) and the type of results one can expect depend on
p. In particular, the range of p determines whether the functional I is bounded from below on S m and
impacts on the choice of the approaches to search for constrained critical points. Roughly speaking, in the
L2-subcritical case, i.e., p ∈

(
2, 14

3

)
, one may use a minimization on S m in order to obtain the existence of

a global minimizer; in the L2-supercritical case, i.e., p ∈
(

14
3 , 6

)
, I is unbounded from below on S m for

any m > 0 and more efforts are always needed. We refer the reader to [15–26] and references therein.
A strong motivation to study multiplicity and concentration of normalized solutions to some Kirchhoff

type equations mainly comes from the concentration phenomena for the following constrained singularly
perturbed nonlinear Schrödinger equation:−ε2∆v + V(x)v = λv + f (v) in RN ,∫

RN |v|2dx = a2εN .
(1.4)

Setting u(x) = v(εx), equation (1.4) will become the following equivalent equation:−∆u + V(εx)u = λu + f (u) in RN ,∫
RN |u|2dx = a2.

(1.5)

In [27], Alves and Thin supposed V satisfies the following conditions:

(V) V ∈ C(RN ,R) ∩ L∞(RN), V(0) = 0, and

0 = inf
x∈RN

V(x) < lim inf
|x|→+∞

V(x) = V∞,

and f ∈ C1(R,R) satisfying the following assumptions:

( f̃1) f is odd and there are q ∈
(
2, 2 + 4

N

)
and α ∈ (0,+∞) such that lim

s→0

| f (s)|
|s|q−1 = α > 0.

( f̃2) There exist constants c1, c2, c3, c4 > 0, and p ∈
(
2, 2 + 4

N

)
such that

| f (s)| ≤ c1 + c2|s|p−1 ∀s ∈ R and | f ′(s)| ≤ c3 + c4|s|p−2 ∀s ∈ R.

( f̃3) There is q1 ∈
(
2, 2 + 4

N

)
such that f (s)

sq1−1 is an increasing function of s on (0,+∞).

Alves and Thin [27] demonstrated the existence of multiple normalized solutions to the class of elliptic
problems (1.5) and the relation between the numbers of normalized solutions and the topology of the
set where the potential V attains its minimum value by minimization techniques and the Lusternik-
Schnirelmann category.

After that, Alves and Thin [28] studied the class of elliptic problems (1.4) by assuming the conditions
that V ∈ C(R3,R) ∩ L∞(R3) satisfies

(AT ) V(x) ≥ 0 for all x ∈ R3 and there exists a bounded set Λ ⊂ R3 such that

min
x∈Λ̄

V(x) < min
x∈∂Λ

V(x),

and the nonlinearity f is a continuous function with an L2-subcritical growth and satisfies the following
assumptions:
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( f ′1) f is odd and limt→0
| f (s)|
|s|q0−1 = α > 0 for some q0 ∈ (2, 2 + 4

N );

( f ′2) there are constants c1, c2 > 0, and p ∈
(
2, 2 + 4

N

)
such that

| f (s)| ≤ c1 + c2|s|p−1 ∀s ∈ R;

( f ′3) there is q ∈ [q0, 2 + 4
N ) such that f (s)

sq−1 is an increasing function of s on (0,+∞).

Through minimization techniques, the Lusternik-Schnirelmann category, and the penalization method,
Alves and Thin [28] showed the existence of multiple normalized solutions to problem (1.4). Besides,
they also proved the concentration of solutions. We mention that the geometry (AT ) considered in [27]
does imply that potential V has a global minimum. For other research results on (1.4), we refer readers
to [29–35] and the references therein.

To the best of our knowledge, so far few results on the existence and multiplicity of normalized
solutions are known to the singularly perturbed Kirchhoff problems involving an L2 constraint. Inspired
by Alves and Thin [27], we are interested in investigating the multiplicity and concentration of solutions
to the following Kirchhoff type equation with L2-constraint:−

(
aε2 + bε

∫
R3 |∇w|2dx

)
∆w + V(x)w = µw + f (w) in R3,∫

R3 |w|2dx = mε3,w ∈ H1(R3),
(1.6)

where a, b,m, ε > 0, µ is an unknown parameter that appears as a Lagrange multiplier, and
V ∈ C(R3,R) ∩ L∞(R3) satisfies (V) and V(x) = V(|x|). In the following, we will suppose that
the nonlinearity f satisfies the L2-subcritical growth assumptions. More precisely, we introduce the
following assumptions:

( f1) f ∈ C(R,R), lims→0
f (s)

s = 0;
( f2) lim sup|s|→∞

| f (s)|
|s|11/3 = 0;

( f3) there exists ζ , 0 such that F(ζ) > 0;
( f4) lim inf s→0

F(s)
|s|10/3 = +∞;

( f ′4) lim sups→0
F(s)
|s|10/3 < +∞.

We would like to point out that in [36], under the so-called Berestycki-Lions type mass subcritical
growth conditions assumptions: ( f3) and

(HS 1) f ∈ C(R,R), lims→0
f (s)

s = 0, and lim sup|t|→∞
| f (t)|
|t|5 < ∞;

(HS 2) lim supt→∞
F(t)
|t|14/3 ≤ 0,

which are weaker than ( f1) and ( f2), if f satisfies ( f4) or ( f ′4), for given mass m > 0, Hu and Sun studied
the existence and nonexistence of constrained minimizers of the energy functional

I(u) :=
a
2

∫
R3
|∇u|2 dx +

b
4

(∫
R3
|∇u|2 dx

)2

−

∫
R3

F(u)dx

on S m =
{
u ∈ H1(R3) : ‖u‖22 = m

}
, where a, b > 0. They also established the relationship between the

normalized ground state solutions and the ground state to the action functional I(u) − λ
2‖u‖

2
2.
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To illustrate our results, we provide some notations. Define

M = {x ∈ R3 : V(x) = 0}

and
Mδ = {x ∈ R3 : dist(x,M) ≤ δ},

where δ > 0 and dist(x,M) denotes the usual distance in R3 between x and M.
Now we state our main result.

Theorem 1.1. Suppose that f is odd and satisfies the conditions ( f1) − ( f3) and V ∈ C(R3,R) ∩ L∞(R3)
satisfies (V) and V(x) = V(|x|). If ( f4) holds, we set m > 0. If ( f ′4) holds, we assume m > m∗ for some
m∗ > 0. Then, for each δ > 0 small enough, the following properties holds:

(1) There exist ε0 > 0 and Θm > 0 such that for 0 < ε < ε0 and ‖V‖∞ ≤ Θm, (1.6) admits at least
catMδ

(M) couples (u j, µ j) ∈ H1
r (R3) × R of weak solutions with

∫
R3 |u j|

2dx = mε3 and µ j < 0.
(2) Let uε denote one of these solutions and ξε is the global maximum of |uε|, then

lim
ε→0

V(ξε) = 0.

Remark 1.1. (i) As in [37], if Y is a closed subset of a topological space X, the Lusternik-Schnirelmann
category catX(Y) is the least number of closed and contractible sets in X which cover Y. If X = Y, we
use the notation cat(X).

(ii) It is worth mentioning that our assumptions are much weaker than [27] and we do not need the
monotonicity condition ( f̃3), which plays a crucial role in verifying the compactness of the Palais-Smale
sequences. However, due to the existence of nonlocal term, the arguments to prove the compactness
of certain bounded Palais-Smale sequences in [27] cannot be used directly even if the monotonicity
condition holds. To overcome this difficulty, in the present paper, we work in the radial subspace of
H1(R3) and more subtle analyses are required. It is an open question whether problem (1.6) admits
a solution without the radially symmetric assumption on V. Moreover, it is interesting to study the
existence and concentration phenomena of solutions under the local assumption (AT ).

(iii) Due to the existence of the nonlocal term, in contrast to the mass constrained nonlinear
Schrödinger equations in [27], the behavior of f near 0 for the Kirchhoff type equation depends heavily
on the growth rate 10

3 and not the mass critical exponent 14
3 . Thus, in the present paper, we discuss the

two different cases ( f4) and ( f ′4) separately.

To begin with, in order to prove our Theorem 1.1, we set u(x) = w(εx), and equation (1.6) is
equivalent to the following equation:−

(
a + b

∫
R3 |∇u|2dx

)
∆u + V(εx)u = µu + f (u) in R3,∫

R3 |u|2dx = m.
(1.7)

We also show the energy functional:

Iε(u) =
a
2

∫
R3
|∇u|2dx +

b
4

(∫
R3
|∇u|2dx

)2

+
1
2

∫
R3

V(εx)|u|2dx −
∫
R3

F(x)dx,
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where F(t) =
∫ t

0
f (s)ds. In addition, we denote by I0, I∞ : H1

r (R3)→ R the following functionals

I0(u) =
a
2

∫
R3
|∇u|2dx +

b
4

(∫
R3
|∇u|2dx

)2

−

∫
R3

F(u)dx,

and

I∞(u) =
a
2

∫
R3
|∇u|2dx +

b
4

(∫
R3
|∇u|2dx

)2

+
1
2

∫
R3

V∞|u|2dx −
∫
R3

F(u)dx.

It is clear that we need to prove at least that catMδ
(M) couples (ui, µi) ∈ H1

r (R3) × R solutions to (1.7)
correspond to critical points of the energy functional I constrained to the sphere

S m =
{
u ∈ H1

r (R3) : ‖u‖22 = m
}
. (1.8)

The paper is organized as follows. In Section 2, we study some technique results. In Section 3, we
prove the energy functional Iε on the sphere S m satisfies the Palais-Smale condition at some negative
level, and then prove Theorem 1.1 via the Lusternik-Schnirelmann category theory.

Notation. Throughout this paper, we denote by c, ci,C,Ci,C′i ,C
′, i = 1, 2, · · · for various positive

constants whose exact value may change from lines to lines but are not essential to the analysis

of the problem. ‖u‖q =
(∫
R3 |u|qdx

) 1
q denotes the usual norm of Lq(R3) for q ∈ [2,∞), and ‖u‖ =(∫

R3(|∇u|2 + |u|2)dx
) 1

2 denotes the usual norm in the Sobolev space H1(R3). H1
r (R3) denotes the radial

subspace of H1(R3). We use ”→” and ”⇀” to denote the strong and weak convergence in the related
function space, respectively. We will write o(1) to denote quantity that tends to 0 as n→ ∞.

2. Some technical results

In this section, inspired by [27, 30], we will give some technical results which are useful to study our
problem. First of all, we consider the existence of the normalized solution for the autonomous problem:−

(
a + b

∫
R3 |∇u|2dx

)
∆u +Vu = µu + f (u), in R3,∫

R3 |u|2dx = m,
(2.1)

where a, b,m > 0,V ≥ 0, and µ ∈ R is represented as a Lagrange multiplier, f is a continuous function
satisfying ( f1) − ( f3), and either ( f4) or ( f ′4) holds. As is known to all, solutions to (2.1) correspond to
critical points of the functional IV : H1

r (R3)→ R defined by

IV(u) =
a
2

∫
R3
|∇u|2dx +

b
4

(∫
R3
|∇u|2dx

)2

+
V

2

∫
R3
|u|2dx −

∫
R3

F(u)dx

=: I(u) +
V

2

∫
R3
|u|2dx

restricted to the sphere S m which is defined in (1.8). Set

EV,m := inf
u∈S m

IV(u), Em := inf
u∈S m

I(u). (2.2)
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We will summarize some properties of Em under our assumptions. Before the proof, we introduce the
well-known Gagliardo-Nirenberg inequality [38], which is very useful in the subsequent proof, for some
positive constant C(l),

‖u‖ll ≤ C(l)‖u‖(1−βl)l
2 ‖∇u‖βll

2 , (2.3)

where βl = 3
2 −

3
l and l ∈ [2, 6].

As in [36, Lemma 2.2], we have the following result.

Lemma 2.1. Assume that ( f1) − ( f3) are satisfied. Then, the following conclusions hold.

(i) For any m > 0, I is coercive and bounded from below on S m, and, thus, Em is well-defined.
Moreover, Em ≤ 0.

(ii) There exists m0 > 0 such that Em < 0 for any m > m0.
(iii) If ( f4) holds, then one has Em < 0 for any m > 0.
(iv) If ( f ′4) holds, then one has Em = 0 for m > 0 small enough.
(v) The function m→ Em is continuous and nonincreasing.

Proof. The proof can be found in [36, Lemma 2.2]. For the reader’s convenience, we state their proofs.
(i) Note that ( f1) and ( f2) imply that for any ε > 0, there exists Cε > 0 such that

| f (t)| ≤ ε|t| + Cε|t|
11
3 and |F(t)| ≤ ε|t|2 + Cε|t|

14
3 , for all t ∈ R. (2.4)

Then, for any u ∈ H1
r (R3), from (2.4) and (2.3), we deduce that∫

R3
F(u)dx ≤ Cε

∫
R3
|u|2 dx + ε

∫
R3
|u|

14
3 dx ≤ Cε ‖u‖22 + εC 14

3
‖∇u‖42 ‖u‖

2
3
2 .

Then, choosing ε = b

8C 14
3

m
1
3
, for u ∈ S m, we have

IV(u) ≥
a
2
‖∇u‖22 +

b
8
‖∇u‖42 −Cεm, (2.5)

which implies IV is coercive and bounded from below on S m, and, thus, Em is well-defined.
For any u ∈ H1

r (R3) and s ∈ R, we define (s ∗ u)(x) := e3s/2u(esx) for a.e. x ∈ R3. Fixing
u ∈ S m ∩ L∞(R3), it is clear that s ∗ u ∈ S m and

‖∇(s ∗ u)‖2 → 0 and ‖s ∗ u‖∞ → 0, as s→ −∞.

Then, by ( f1), we derive that

lim
s→−∞

I(s ∗ u) = lim
s→−∞

(
a
2
‖∇(s ∗ u)‖22 +

b
4
‖∇(s ∗ u)‖42 −

∫
R3

F(s ∗ u)dx
)

= 0.

Thus, Em ≤ 0 for any m > 0.
(ii) In view of ( f3) and arguing as in [39, Theorem 2], we can find a function u ∈ H1

r (R3) such that∫
R3 F(u)dx > 0. For any m > 0, we set um(x) := u

((
‖u‖22

m

) 1
3

x
)
. Clearly, um ∈ S m. Then, it follows that

I(um) =
am

1
3

2‖u‖
2
3
2

‖∇u‖22 +
bm

2
3

4‖u‖
4
3
2

‖∇u‖42 −
m
‖u‖22

∫
R3

F(u)dx,
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which implies that Em ≤ I(um) < 0 for m > 0 large enough.
(iii) For any m > 0, we choose u ∈ S m ∩ L∞(R3). By ( f3), for M := a‖∇u‖22

‖u‖
10
3
10
3

> 0, there exists δ > 0

such that F(t) ≥ M|t|
10
3 for any |t| ≤ δ. Then, for any s < 0 small enough such that ‖s ∗ u‖∞ ≤ δ and

e2s‖∇u‖22 <
2a
b , we have

Em ≤ I(s ∗ u) ≤
ae2s

2
‖∇u‖22 +

be4s

4
‖∇u‖42 − Me2s

∫
R3
|u|

10
3 dx

=
be4s

4
‖∇u‖42 −

ae2s

2
‖∇u‖22 < 0,

as required.
(iv) Fix p ∈ ( 10

3 ,
14
3 ). By ( f2) and ( f ′4), there exists C > 0 such that

F(t) ≤ C
(
|t|

10
3 + |t|

14
3 + |t|p

)
, for all t ∈ R.

For any u ∈ H1
r (R3), from (2.3), we have∫
R3

F(u)dx ≤ C
∫
R3

(
|u|

10
3 + |u|

14
3 + |u|p

)
dx

≤ C
(
C 10

3
‖∇u‖22 ‖u‖

4
3
2 + C 14

3
‖∇u‖42 ‖u‖

2
3
2 + Cp ‖∇u‖

3(p−2)
2

2 ‖u‖
6−p

2
2

)
.

(2.6)

Taking m small enough such that

CC 10
3

m
2
3 ≤

a
4

and CC 14
3

m
1
3 ≤

b
8
, (2.7)

for any u ∈ S m, by (2.6), we conclude that

I(u) =
a
2
‖∇u‖22 +

b
4
‖∇u‖42 −

∫
R3

F(u)dx

≥ ‖∇u‖22

(
a
2

+
b
4
‖∇u‖22

)
−C ‖∇u‖22

(
C 10

3
m

2
3 + C 14

3
m

1
3 ‖∇u‖22 + Cpm

6−p
4 ‖∇u‖

3p−10
2

2

)
≥ ‖∇u‖22

(
a
4

+
b
8
‖∇u‖22 −CCpm

6−p
4 ‖∇u‖

3p−10
2

2

)
.

(2.8)

By Young’s inequality and (2.8), one has

CCpm
6−p

4 ‖∇u‖
3p−10

2
2

=

[ b
2(3p − 10)

] 3p−10
4

‖∇u‖
3p−10

2
2

[2(3p − 10)
b

] 3p−10
4

CCpm
6−p

4

≤
b
8
‖∇u‖22 +

14 − 3p
4

(CCp)
4

14−3p

[2(3p − 10)
b

] 3p−10
14−3p

m
6−p

14−3p

≤
b
8
‖∇u‖22 +

a
4
,

(2.9)
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and if we choose m > 0, it satisfies

m
6−p

14−3p ≤ (CCp)
4

3p−14
a

14 − 3p

[ b
2(3p − 10)

] 3p−10
14−3p

. (2.10)

Therefore, from (2.8) and (2.9), we deduce I(u) ≥ 0 for any u ∈ S m if we choose m > 0 small enough
such that (2.7) and (2.10) hold. Therefore, from (i), we infer that Em = 0 for m > 0 small enough.

(v) To show the continuity, it is equivalent to prove that for a given m > 0, and any positive sequence
mk such that mk → m as k → ∞, one has

lim
k→∞

Emk = Em. (2.11)

In view of the definition of Emk , for every k ∈ N, let uk ∈ S mk such that

I(uk) ≤ Emk +
1
k
≤

1
k
. (2.12)

From (2.5), it follows that {uk} is bounded in H1
r (R3). Noting that

√
m
mk

uk ∈ S m, from mk → m as k → ∞,
(2.4), and (2.12), similar to the proof of [40, Lemma 2.4], we obtain that

Em ≤ I
(√ m

mk
uk

)
= I(uk) + o(1) ≤ Emk + o(1). (2.13)

On the other hand, choosing a minimization sequence {vn} ∈ S m for I, we can follow the same line as in
(2.13) to obtain that Emk ≤ Em + o(1). Therefore, we obtain (2.11).

To show that Em is nonincreasing in m > 0, we first claim that for any m > 0,

Etm ≤ tEm, for any t > 1. (2.14)

Indeed, for any u ∈ S m and t > 1, set v(x) := u(t−
1
3 x). Then, v ∈ S tm and we deduce that

Etm ≤ I(v) =
at

1
3

2
‖∇u‖22 +

bt
2
3

4
‖∇u‖42 − t

∫
R3

F(u)dx

= tI(u) +
at

1
3 (1 − t

2
3 )

2
‖∇u‖22 +

bt
2
3 (1 − t

1
3 )

4
‖∇u‖42

< tI(u).

(2.15)

Since u ∈ S m is arbitrary, we obtain the inequality (2.14). As a consequence, from (i) and (2.14), it
follows that Em is nonincreasing.

In view of Lemma 2.1,
m∗ := inf{m ∈ (0,+∞) : Em < 0} (2.16)

is well-defined and it is easy to obtain the following property of m∗.

Lemma 2.2. Assume that ( f1) − ( f3). Then, the following statements are true.

(i) If ( f4) holds, then m∗ = 0.
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(ii) If ( f ′4) holds, then m∗ > 0; in addition, Em = 0 for m ∈ (0,m∗] and Em < 0 for m ∈ (m∗,+∞).

Noting that Em < 0 for any m > m∗ and EV,m = Em + Vm
2 , an immediate consequence of Lemma 2.2

is the following corollary.

Corollary 2.3. Assume that f satisfies the conditions ( f1) − ( f3). Then, the following conclusions hold.

(i) For any m > 0, IV is coercive and bounded from below on S m, and, thus, EV,m is well-defined.
(ii) If ( f4) or ( f ′4) holds, then, for any m > m∗, there exists Θm > 0 such that EV,m < 0 for any

0 ≤ V ≤ Θm.

Lemma 2.4. Assume that f satisfies the conditions ( f1) − ( f3), and either ( f4) or ( f ′4) holds. Then, for
any m > m∗, fix V ∈ [0,Θm], where Θm is defined in Corollary 2.3, we have k

m EV,m < EV,k for all
k ∈ (0,m).

Proof. If ( f ′4) holds, from Lemma 2.2 (ii), we conclude that EV,k = Vk
2 > 0 for all k ∈ (0,m∗], which

implies k
m EV,m < 0 < EV,k for all k ∈ (0,m∗]. Therefore, either ( f4) or ( f ′4) holds, and we assume

k ∈ (m∗,m).
Let t = m

k and {un} ⊂ S k such that IV(un)→ EV,k. We claim that there exists C > 0 such that

lim inf
n→∞

‖∇un‖
2
2 ≥ C. (2.17)

Indeed, if (2.17) is not true, then passing to a subsequence, ‖∇un‖
2
2 → 0. Then, by (2.4) and (2.3), we

obtain
lim
n→∞

∫
R3

F(un)dx = 0.

Then, recalling k > m∗, by Corollary 2.3, we deduce that forV ∈ [0,Θm],

0 > EV,k = lim
n→∞

IV(un) = lim
n→∞

(
a
2
‖∇un‖

2
2 +

b
4
‖∇un‖

4
2 +
Vk
2
−

∫
R3

F(un)dx
)

=
Vk
2
≥ 0,

a contradiction.
Since t > 1, noting that vn(x) =: un(t−

1
3 x) ∈ S m, from (2.17), we deduce that

EV,m ≤ IV(vn) =
at

1
3

2
‖∇un‖

2
2 +

bt
2
3

4
‖∇un‖

4
2 +

tVk
2
− t

∫
R3

F(un)dx

= tIV(un) +
at

1
3 (1 − t

2
3 )

2
‖∇un‖

2
2 +

bt
2
3 (1 − t

1
3 )

4
‖∇un‖

4
2

≤ tEV,k +
at

1
3 (1 − t

2
3 )C

2
+

bt
2
3 (1 − t

1
3 )C2

4
+ o(1),

which implies
EV,m <

m
k

EV,k. (2.18)

The proof is complete.
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In the following, we always assume that f satisfies the conditions ( f1) − ( f3) and either ( f4) or ( f ′4)
holds. Now, we give the following compactness result for IV on S m, which will play a crucial role in
our proof.

Lemma 2.5. Fix m > m∗. LetV ∈ [0,Θm], and {un} ⊂ S m be a minimizing sequence with respect to IV.
Then, {un} has a strongly convergent subsequence.

Proof. Since EV is coercive on S m, the sequence {un} is bounded. Then, up to a subsequence, there
exists u ∈ H1

r (R3) such that un ⇀ u. Moreover, since H1
r (R3) ↪→ Lq(R3) (2 < q < 6) is compact, one has

un → u in Lq(R3) (2 < q < 6).
To begin, we suppose u , 0 and ‖u‖22 = m̄ < m. Set

vn = un − u and ‖vn‖
2
2 = dn → d.

By the Brezis-Lieb Lemma (see [37]),

‖un‖
2
2 = ‖vn‖

2
2 + ‖u‖22 + on(1),

we infer that m = m̄ + d and m̄, dn ∈ (0,m) for n large enough. Furthermore, it follows from (2.4) and
un → u in Lq(R3) (2 < q < 6) that∫

R3
F(vn)dx =

∫
R3

F(un)dx −
∫
R3

F(u)dx = on(1). (2.19)

Hence, from Lemma 2.4, we deduce that

EV,m + on(1) = IV(un) ≥ IV(vn) + IV(u) + on(1)
≥ EV,dn + EV,m̄ + on(1)

≥
dn

m
EV,m + EV,m̄ + on(1).

Letting n→ +∞ and using Lemma 2.4 again, we derive that

EV,m ≥
d
m

EV,m + EV,m̄ >
d
m

EV,m +
m̄
m

EV,m =

(
d
m

+
m̄
m

)
EV,m = EV,m,

a contradiction. Thus, we get ‖u‖22 = m. Consequently,

un → u in L2(R3). (2.20)

Noticing EV,m = lim
n→+∞

IV(un), ‖u‖22 = m and (2.19), we conclude that

EV,m ≤ IV(u)

=
a
2

∫
R3
|∇u|2dx +

b
4

(∫
R3
|∇u|2dx

)2

+
Vm

2
−

∫
R3

F(u)dx

≤ lim
n→∞

a
2

∫
R3
|∇un|

2dx +
b
4

(∫
R3
|∇un|

2dx
)2

+
Vm

2
−

∫
R3

F(un)dx


= lim

n→∞
IV(un) = EV,m.
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As a consequence,
lim inf

n→+∞
IV(un) = IV(u).

Therefore, from (2.20) and (2.19), we deduce that

‖un‖
2 → ‖u‖2,

which ensures un → u in H1
r (R3).

Now, we assume u = 0. Clearly, by (2.4) and un → 0 in Lq(R3) (2 < q < 6), we get

lim
n→∞

∫
R3

F(un)dx = 0,

which implies

0 > EV,m = lim
n→∞

IV(un) ≥ − lim
n→∞

∫
R3

F(un)dx = 0,

a contradiction. This proves the lemma.

Theorem 2.6. Fix m > m∗. Then, for any V ∈ [0,Θm], problem (2.1) has a couple (u, µ) solutions,
where u is positive, radial, and µ < 0.

Proof. We divide our proof into two steps.
S tep 1. By Lemma 2.3 and Lemma 2.5, there exists a bounded minimizing sequence {un} ⊂ S m

with respect to EV,m and u ∈ S m such that un → u in H1
r (R3) and IV(un) → EV,m = IV(u). We define

ψ : H1
r (R3)→ R by

ψ(u) =
1
2

∫
R3
|u|2dx.

From the Lagrange multiplier, there exists µ ∈ R such that

I′V(u) = µψ′(u) in (H1
r (R3))∗, (2.21)

where (H1
r (R3))∗ denotes the dual space of H1

r (R3). Hence,

−

(
a + b

∫
R3
|∇u|2dx

)
∆u +Vu = µu + f (u) in R3.

Therefore,

µ

2

∫
R3
|u|2dx =

a
2

∫
R3
|∇u|2dx +

b
4

(∫
R3
|∇u|2dx

)2

+
V

2

∫
R3
|u|2dx −

∫
R3

F(u)dx

= IV(u) = EV,m < 0,

that is, µ < 0.
S tep 2. By the fact IV(u) = EV,m and the definition of the functional IV and S m, clearly, IV(|u|) =

IV(u) = EV,m and |u| ∈ S m. So, we can replace u by |u|.
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Now we prove u is positive. Arguing indirectly, we assume that there exists x0 ∈ R
3 such that

u(x0) = 0. Since u , 0, there exists x1 ∈ R
3 such that u(x1) > 0. Fix R1 > 0 large enough such that

x0, x1 ∈ BR1(0). By the Harnack inequality [41, Theorem 8.20], there exists C5 > 0 such that

sup
y∈BR1 (0)

u(y) ≤ C5 inf
y∈BR1 (0)

u(y).

Combining this, u(x1) > 0, and u(x0) = 0, we get the contradiction from

0 < u(x1) ≤ sup
y∈BR1 (0)

u(y) ≤ C5 inf
y∈BR1 (0)

u(y) ≤ C5u(x0) = 0.

The proof is complete.

From the result of Theorem 2.6, we can get the following corollary:

Corollary 2.7. Fix m > m∗ and let 0 ≤ V1 < V2 ≤ Θm. Then, EV1,m < EV2,m < 0.

Proof. Let u ∈ S m satisfy IV2(u) = EV2,m. Then, EV1,m ≤ IV1(u) < IV2(u) = EV2,m < 0.

Remark 2.1. We denote E0,m and E∞,m by the following real numbers:

E0,m = inf
u∈S m

I0(u) and E∞,m = inf
u∈S m

I∞(u).

An immediate result of Corollary 2.7 and condition (V) is

E0,m < E∞,m < 0.

3. Proof of Theorem 1.1

In this section, we will prove our main result. From now on, we always assume that f is odd and
satisfies the conditions ( f1) − ( f3). Moreover, we assume that either ( f4) or ( f ′4) holds, m > m∗, and
‖V‖∞ ≤ Θm, where m∗ and Θm are given in (2.16) and Corollary 2.3, respectively.

To start, we manage to study the convergence of the Palais-Smale sequence for Iε at some negative
level. Denote

Eε,m = inf
u∈S m

Iε(u).

From Remark 2.1, we fix 0 < ρ = 1
2

(
E∞,m − E0,m

)
. We need following result which describes the

relation between the levels Eε,m and E∞,m playing an important role in our proof.

Lemma 3.1. There is ε0 > 0 such that Eε,m < E∞,m for all ε ∈ (0, ε0).

Proof. Let u0 ∈ S m with I0(u0) = E0,m. Then, by the definition of Eε,m,

Eε,m ≤ Iε(u0)

=
a
2

∫
R3
|∇u0|

2dx +
b
4

(∫
R3
|∇u0|

2dx
)2

+
1
2

∫
R3

V(εx)|u0|
2dx −

∫
R3

F(u0)dx.

Therefore,
lim sup
ε→0+

Eε,m ≤ lim
ε→0+

Iε(u0) = I0(u0) = E0,m.

From this and Remark 2.1, the estimate Eε,m < E∞,m is established for ε small enough.
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From now on, fix ε ∈ (0, ε0), where ε0 is given in Lemma 3.1.

Lemma 3.2. If {un} ⊂ S m satisfies Iε(un)→ c with c < E0,m + ρ < 0 and un ⇀ u in H1
r (R3), then, u , 0.

Proof. Assume by contradiction that u = 0. By (V), for any given α > 0, there is R > 0 such that for
any |x| ≥ R,

V(x) ≥ V∞ − α.

Based on assumptions and the boundedness of {un} in H1
r (R3) and un → 0 in L2

loc

(
R3

)
, we deduce that

for some C > 0,

E0,m + ρ + on(1) > Iε(un)

= I∞(un) +
1
2

∫
R3

(V(εx) − V∞)|un|
2dx

≥ I∞(un) +
1
2

∫
B R
ε

(0)
(V(εx) − V∞)|un|

2dx −
α

2

∫
Bc

R
ε

(0)
|un|

2dx

≥ I∞(un) − αC

≥ E∞,m − αC.

Due to the arbitrariness of α, we have E0,m + ρ ≥ E∞,m, which is absurd. The proof is complete.

Lemma 3.3. For each ε ∈ (0, ε0), the functional Iε satisfies the (PS )c condition restricted to S m for
c < E0,m + ρ, namely, if any sequence {un} ⊂ S m such that

Iε(un)→ c as n→ +∞ and
∥∥∥Iε|′S m

(un)
∥∥∥→ 0 as n→ +∞,

then {un} has a convergent subsequence.

Proof. Similar to Corollary 2.3 (i), we can verify that Iε is coercive on S m. Thus, {un} is bounded in
H1

r (R3). Up to a subsequence, we assume that un ⇀ uε in H1(R3) and un → uε in Lq(R3) (2 < q < 6).
From Lemma 3.2, uε , 0.

We define ψ : H1
r (R3)→ R by

ψ(u) =
1
2

∫
R3
|u|2dx.

Then, by Willem [37, Prosition 5.12], there exists {µn} ⊂ R such that∥∥∥I′ε(un) − µnψ
′(un)

∥∥∥
(H1

r (R3))∗
→ 0 as n→ +∞.

From ψ′(un)un = m, the boundedness of {un} in H1
r (R3), ( f1), ( f2), and (2.3), it follows that

|µn| =
1
m
|µnψ

′(un)un| =
1
m

∣∣∣I′ε(un)un

∣∣∣ + on(1)

≤
1
m

∣∣∣∣∣a ∫
R3
|∇un|

2dx
∣∣∣∣∣ +

∣∣∣∣∣∣∣b
(∫
R3
|∇un|

2dx
)2
∣∣∣∣∣∣∣ +

∣∣∣∣∣∫
R3

V(εx)u2
ndx

∣∣∣∣∣


+
1
m

∣∣∣∣∣∫
R3

f (un)undx
∣∣∣∣∣ + on(1)

≤ C1

(
‖un‖

2 + ‖un‖
4 + ‖un‖

14
3 + 1

)
≤ C2,

(3.1)
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where C1,C2 are positive constants independent of ε and n. This implies that {µn} is a bounded sequence.
As a consequence, we assume, up to a subsequence, µn → µε as n→ +∞, and, thereby,∥∥∥I′ε(un) − µεψ′(un)

∥∥∥
(H1

r (R3))∗
→ 0 as n→ +∞. (3.2)

Meanwhile,
− (a + bAε) ∆uε + V(εx)uε = µεuε + f (uε), (3.3)

where Aε = limn→∞

∫
R3 |∇un|

2dx ≥ 0.
Now, we verify that there exists µ∗ < 0 independent of ε such that

µε ≤ µ∗ < 0, ∀ ε ∈ (0, ε0). (3.4)

Noting that un ⇀ uε in H1
r (R3), one has un → uε in Lq(R3) (2 < q < 6). Then, by (2.4), we conclude that

lim
n→∞

∫
R3

F(un)dx =

∫
R3

F(uε)dx.

Therefore, from (3.3), we deduce that

µε
2

∫
R3
|uε|2dx =

a + bAε

2

∫
R3
|∇uε|2dx +

1
2

∫
R3

V(εx)u2
εdx −

∫
R3

F(uε)dx

≤ lim
n→∞

Iε(un) < E0,m + ρ + on(1) < 0,

which implies µε < 0. In addition, we also have

0 > E0,m + ρ ≥
µε
2

∫
R3
|uε|2dx ≥

µε
2

lim
n→∞

∫
R3
|un|

2dx =
µε
2

m.

Therefore,

lim sup
ε→0

µε ≤
2
(
E0,m + ρ

)
m

< 0. (3.5)

Hence, (3.4) holds.
Now we prove that un → uε in H1

r (R3). Set vn := un − uε. From (3.2) and (3.3), we infer that

(a + bAε)
∫
R3
|∇vn|

2dx +

∫
R3

V(εx)|vn|
2dx − µε

∫
R3
|vn|

2dx

=

∫
R3

f (vn)vndx + on(1).

Then, using (3.4), (2.4), and the fact that vn → 0 in Lq(R3) (2 < q < 6), we conclude that

C
(∫
R3
|∇vn|

2dx +

∫
R3
|vn|

2dx
)
≤ on(1), (3.6)

where positive constant C does not rely on ε. Thus, vn → 0 in H1
r (R3), i.e., un → uε in H1

r (R3).
Therefore, ‖uε‖22 = m and

−

(
a + b

∫
R3
|∇uε|2dx

)
∆uε + V(εx)uε = µεuε + f (uε), in R3.

The proof is finished.
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Fix δ > 0 and define η as a smooth nonincreasing cutoff function in [0,+∞) by

η(s) =


1, 0 ≤ s ≤ δ

2 ,

[0, 1], δ
2 < s < δ,

0, s ≥ δ.

Recall that M = {x ∈ R3 : V(x) = 0}. For any y ∈ M, let us define

φε,y(x) = η (|εx − y|) w0

(
εx − y
ε

)
,

where w0 is a positive radial solution of the problem−
(
a + b

∫
R3 |∇u|2dx

)
∆u = µu + f (u), in R3,∫

R3 |u|2dx = m,

with I0(w0) = E0,m. Then, let

φ̃ε,y(x) =

√
mφε,y(x)
‖φε,y‖2

,

and denote Φε : M → S m by Φε(y) = φ̃ε,y. Obviously, it has compact support for any y ∈ M. In addition,
let R = R(δ) > 0 be such that Mδ ⊂ BR(0). Define χ : R3 → R3 as

χ(x) =

x, |x| ≤ R,
Rx
|x| , |x| ≥ R.

Finally, let us consider ωε : S m → R
3 given by

ωε(u) =

∫
R3 χ(εx)|u|2dx

m
.

Lemma 3.4. The function Φε has the following two limits:

(1) lim
ε→0

Iε (Φε(y)) = E0,m, uniformly in y ∈ M,
(2) lim

ε→0
ωε (Φε(y)) = y, uniformly in y ∈ M.

Proof. (1) Assume that {yn} ⊂ M. From Lebesgue’s dominated convergence theorem, it follows that

lim
n→+∞

∫
R3
|Φεn(yn)|2dx = lim

n→+∞

∫
R3
|η(|εnx|)w0(x)|2dx

= lim
n→+∞

∫B δ
2εn

(0)
|w0(x)|2dx +

∫
B δ
εn

(0)\B δ
2εn

(0)
|η(|εnx|)w0(x)|2dx


=

∫
R3
|w0(x)|2dx.
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Likewise, we also have

lim
n→+∞

∫
R3

F
(
Φεn(yn)

)
dx = lim

n→+∞

∫
R3

F
( √

mη(|εnx|)w0(x)
‖φεn,yn‖2

)
dx

=

∫
R3

F(w0)dx,

lim
n→+∞

∫
R3
|∇Φεn(yn)|2dx = lim

n→+∞

∫
R3

m
‖φεn,yn‖

2
2

|∇ (η(|εnx|)w0(x)) |2dx

=

∫
R3
|∇w0|

2dx,

and
lim

n→+∞

∫
R3

V(εnx)|Φεn(yn)|2dx = 0.

Consequently,
lim

n→+∞
Iεn(Φεn(yn)) = I0(w0) = E0,m,

and this proves the first limit.
(2) Suppose by contradiction that there is δ0 > 0, {yn} ⊂ M with yn → y ∈ M and ε→ 0 such that∣∣∣ωεn

(
Φεn(yn)

)
− yn

∣∣∣ ≥ δ0, ∀n ∈ N. (3.7)

Using the definitions of Φεn(yn) and ωεn , combined with {yn} ⊂ M ⊂ BR(0) and Lebesgue’s dominated
convergence theorem, we deduce that

∣∣∣ωεn

(
Φεn(yn)

)
− yn

∣∣∣ =

∣∣∣∣∣∣∣
∫
R3 (χ(εnx + yn) − yn) |η(|εnx|)w0(x)|2 dx

m

∣∣∣∣∣∣∣→ 0,

which contradicts (3.7), and this proves the desired result.

Let γ : [0,+∞)→ [0,+∞) be a positive function such that γ(ε)→ 0 as ε→ 0, then define S̃ m as

S̃ m = {u ∈ S m : Iε(u) ≤ E0,m + γ(ε)}. (3.8)

Thanks to (1) of Lemma 3.4, the function

γ(ε) = sup
y∈M

∣∣∣Iε(Φε(y)) − E0,m

∣∣∣
satisfies γ(ε)→ 0 as ε→ 0. Hence, Φε(y) ∈ S̃ m for all y ∈ M.

Proposition 3.5. Let εn → 0 and {un} ⊂ S m with Iεn(un) → E0,m. Then, {un} has a convergent
subsequence in H1

r (R3).

Proof. Since {un} ⊂ S m, from (V), we deduce that

Iεn(un) ≥ I0(un) ≥ E0,m,

which implies I0(un) → E0,m as n → +∞. From Lemma 2.5, {un} has a convergent subsequence in
H1

r (R3).
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Lemma 3.6.
lim
ε→0

sup
u∈S̃ m

inf
z∈M
|ωε(u) − z| = 0.

Proof. Let εn → 0 and un ∈ S̃ m such that

inf
z∈Mδ

∣∣∣ωεn(un) − z
∣∣∣ = sup

u∈S̃ m

inf
z∈Mδ

∣∣∣ωεn(un) − z
∣∣∣ + on(1).

Since un ∈ S̃ m, by the definition of S̃ m, we deduce that un ∈ S m, and as εn → 0,

E0,m ≤ I0(un) ≤ Iεn(un) ≤ E0,m + γ(εn), ∀n ∈ N,

from which it follows that Iεn(un) → E0,m. From Proposition 3.5, {un} is strongly convergent to some
u ∈ H1

r (R3). Then, due to the definition ofωεn and un ∈ S m, using the Lebesgue’s dominated convergence
theorem, we obtain that

ωεn (un) =

∫
R3 χ(εnx) |un|

2 dx

m
→ 0 as n→ +∞,

that is, ωεn(un) = on(1). Noting that 0 ∈ M, we conclude that

lim
n→+∞

inf
z∈M

∣∣∣ωεn(un) − z
∣∣∣ = 0.

The proof is complete.

Proof of Theorem 1.1. We will divide the proof into two parts:
S tep 1: Multiplicity of solutions.

Set ε ∈ (0, ε0) and fix δ > 0. By Lemmas 3.4 and 3.6, we can obtain that the diagram M
Φε
→

S m
ωε
→ Mδ is well-defined. For ε small enough, we denote ωε(Φε(y)) := y + ς(y) for y ∈ M and

Q(t, y) := y + (1 − t)ς(y). By Lemma 3.7, ‖ς(y)‖ ≤ δ
2 uniformly for y ∈ M. Obviously, the continuous

function Q : [0, 1] × M → Mδ satisfies Q(0, y) = ωε(Φε(y)) and Q(1, y) = y for any y ∈ M. Therefore,
ωε ◦ Φε is homotopic to the inclusion map id : M → Mδ. In view of [42], we arrive at

cat(S̃ m) ≥ catMδ
(M).

Recall that Iε is bounded from below on S m. Moreover, from Lemma 3.3, Iε satisfies the (PS )c

condition for c ∈
(
E0,m, E0,m + γ(ε)

)
. Then, due to the Lusternik-Schnirelmann category of critical

points (see [37, 43]), we infer that Iε admits at least catMδ
(M) critical points on S m.

S tep 2: Concentration phenomena of the solutions.
Let uε be a solution of (1.7) with Iε(uε) ≤ E0,m + γ(ε), where γ was given in (3.8). From Proposition

3.5, for any εn → 0, there exists u ∈ H1
r (R3) \ {0} such that uεn → u in H1

r (R3). Clearly, as in (3.5),
un := uεn satisfies

−

(
a + b

∫
R3
|∇un|

2dx
)
∆un + V(εnx)un = µnun + f (un), in R3,

with
lim sup
ε→0

µn ≤
2(ρ + E0,m)

m
< 0.
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Since un → u in H1
r (R3), similar to [8, Lemma 4.5], we obtain

lim
|x|→+∞

un(x) = 0, uniformly in n ∈ N.

As a consequence, given θ > 0, there exist R > 0 and n0 ∈ N such that

|un(x)| ≤ θ,

for |x| ≥ R and n ≥ n0. We claim that ‖un‖∞ 9 0; otherwise we will have un → 0 in H1
r (R3), contrary to

u , 0. Now, we fix θ > 0 small such that ‖un‖∞ ≥ 2θ and choose ξn ∈ R
3 such that |un(ξn)| = ‖un‖∞ for

all n ∈ N. It follows that |ξn| ≤ R for all n ∈ N. Therefore,

lim
n→+∞

V(εnξn) = V(0) = 0,

as required.
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