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Abstract: In this study, the initial-boundary value problem for cylindrically symmetric Navier-Stokes
equations was considered with temperature-dependent viscosity and heat conductivity. Firstly, we
established the existence and uniqueness of a strong solution when the viscosity and heat conductivity
were both power functions of temperature. Moreover, the large-time behavior of the strong solution was
obtained with large initial data, since all of the estimates in this paper were independent of time. It is
worth noting that we identified the relationship between the initial data and the power of the temperature
in the viscosity for the first time.
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1. Introduction

As it is well-known that the cylindrically symmetric Navier-Stokes equations take the form

(rou),
pit = =0, (1.1)
2 Aru),\  2up,
oGy + )~ 2 4 P, :( (ru) ) _ 2w (12)
r r - r
uy 2uv, V), uv
p(v; +uv,) + PT = (uv,), + F; - (,uT R (1.3)

oW, + uw,) = (uw,), + ,uw,’ (1.4)
r
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p(e + ue,) +

0, (1.5)

where p(r, 1) is the density, u(r, t), v(r, t), and w(r, t) are velocities in different directions, 6(r, t) is the
temperature, the pressure P and the internal energy e are related with the density and temperature

P(rru)r _ ),

P =P(,0) =Rpf and e =e(p,0) =c0, (1.6)

the specific gas constant R and the specific heat at constant volume c, are positive constants, respectively;
the symbol Q denotes

Q

w and A are viscosity coeflicients, and « is the heat conductivity coefficient.
Without loss of generality, we shall consider the system (1.1) with the following initial-boundary
data:

/l(ru)f 4uuu, 1
=—a"- +ﬂw3+u(v,—;)2, (1.7)

{(p7 u,v,w, 9)|t:0 = (p()’ Up, Vo, Wo, 00)(1”), 0 <asr< b < 09, (1 8)

(M’ v, W, are)lrza = (Lt, Vv, W, arg)lr:h =0, t>0.
Our main goal is to show the large-time behavior of global solutions to the initial-boundary value
problem (1.1)—(1.8) with large initial data. For this purpose, it is convenient to transform the

initial-boundary value problem (1.1)—(1.8) into Lagrangian coordinates. We introduce the Lagrangian
coordinates (z, x) and denote (p, it, ¥, W, 0)(t, x) = (o, u,v,w, 0)(t,r), where

r=r(tx) =ro(x)+ f u(s, r(s, x))ds, (1.9)
0
and

) = . f0) = f Yooz,

Note that the function f is invertible on [a, b] provided that py(y) > O for each y € [a, b] (which will be
assumed in Theorem 1.1). Due to (1.1); and (1.8), we see

r(t,x)

— t,y)dy = 0.
), yp(t, y)dy

Then it is easy to check

r(1,x) r(t,1)
f yot,y)dy = f(ro(x)) = x and f yp(t,y)dy = 0, (1.10)
a b

which translates the domain [0, 7] X [a, b] into [0, T'] x [0, 1]. Hereafter, we denote (o, it, v, W, 6) by
(o, u, v, w, 0) for simplicity. The identities (1.9) and (1.10) imply

r(t, x) = u(t, x), r(t, x) = r_lT(t, x), (1.11)
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where 7 := p~! is the specific volume. By means of identities (1.11), system (1.1)—(1.8) is changed to

7, = (ru),, (1.12)
v Alru),
u——+rP.=r - 2uuy, (1.13)
r T ),
p = r(“m)  2vy — (), - (1.14)
r T Jx r
W, = r(“er) +w,, (1.15)
T /x
29x
e, + P(ru), = (Kr ) + 0, (1.16)
T X

_ _ RO, _ RO _ A uriw? v 2
where 1> 0, x € Q= (0,1), P = %, e = 24, and Q = =% — 4y, + +m(%—¥).

Throughout this paper, we assume that u, A, and « are power functions of absolute temperature as
follows:

= 6", A= 26" K = k6P, (1.17)

where constants [, A&, a, and [ are positive constants.
The objective of this paper is to study the global existence and stability of the solutions to an
initial-boundary value problem of (1.12)—(1.16) with the initial data:

(r,u,v,w,0) (x,0) = (19, ugy, vo, wo, 8y) , x € (0, 1), (1.18)

and the boundary conditions:

(u,v,w,6,)(0,0) = (u,v,w,6,)(1,1) = 0, t>0. (1.19)

Using Navier-Stokes equations as a model for describing fluid motion has been widely accepted
by the physics community. In recent years, some significant progress has been made in the study of
Navier-Stokes equations with constant viscosity coefficients. When the initial value has a certain small
property and vacuum state does not exist, the global existence, uniqueness, and large-time behavior of
the solutions can be easily calculated [1-8]. However, solving the problem of large initial values is very
challenging, and the first significant breakthrough was achieved by Lions [9]. Besides, by assuming
that the initial value is only sufficiently small in the energy space, Hoff [10, 11] confirmed the existence
of global weak solutions. In the process of studying fluid motion, a vacuum state is often involved,
which makes calculations far more complex. The results in [12, 13] indicate the Cauchy problem of
Navier-Stokes equations with constant coefficients containing vacuum state is not appropriate. This
uncertainty is reflected by the fact that the solutions of the system have no continuous dependence on
the initial values. Based on physical considerations, Liu-Xin-Yang [12] studied the Cauchy problem of
the Navier-Stokes equations with density dependent viscosity, and proved its local suitability. However,
only when the temperature and density change within a suitable range, real fluids can be considered as
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ideal fluids (viscosity coefficients are constants). In the case of large changes in temperature or density,
the viscosity of the real fluid will vary greatly [14].

On the other hand, Navier-Stokes equations can be developed using the Chapman-Enskog expansion
of the microscopic particle collision model Boltzman equation. Consequently, it can be determined that
the viscosity depends on the temperature. However, compared to the abundant research using classical
models, the studies on the physical case using the temperature-dependent viscosity model are lacking.
Because the viscosity and heat conductivity are both temperature-dependent, degeneracy and strong
non-linearity may appear. Pan-Zhang [15] and Huang-Shi [16] obtained global strong solutions and
large-time behavior in bounded domains for one-dimensional Navier-Stokes equations, when @ = 0 and
0 < B < 1. The studies of Liu-Yang-Zhao-Zhou [17] and Wan-Wang [18] also acquired global solutions
of Navier-Stokes equations in one dimensional and cylindrically symmetrical cases, respectively, with
the requirement that |y — 1| was small enough. Wang-Zhao [19] removed the smallness condition of
|y — 1| , and established global classical solutions to Navier-Stokes equations in the one-dimensional
whole space when u and « satisfy:

K= fth()6", K = Kh(T)¢",

where « is small enough. In their calculations, the viscosity and heat-conductivity were dependent on
temperature and density, and to overcome the difficulties caused by density, the following conditions
could not be removed:

1A 77 @) + () Tl < C.

This means that estimate of [|7,/|;2q) can be directly obtained without the upper and lower bounds of
density, as long as the coefficient u~! or ™! appears. However, if i(7) is constant, then the constants
[} = I, = 0 and the result of this case cannot be established using the model in [19]. Recently, Sun-Zhang-
Zhao [20] considered an initial-boundary value problem of the compressible Navier-Stokes equations
for one-dimensional viscous and heat-conducting ideal polytropic fluids with temperature-dependent
transport coefficients, and discovered the global-in-time existence of strong solutions. In that paper, the
initial data could be large if @ > 0 is small and the growth exponent 5 > 0 is arbitrarily large. It is worth
mentioning that the smallness of @ > 0 depends on the size of the initial data. However, unfortunately
the study did not provide a specific relationship between @ and the initial data in [20]. Our main results
are concluded as follows.

Theorem 1.1. For given positive constants My, Vy > 0, assume that

l(7o, 1o, vo, Wo, Ol 2 < Mo, xg(l)fl){To, 6o} > Vo. (1.20)

Then there exist €y > 0 and Cy which depend only on 8, My, and V,, such that the initial-boundary value
problem (1.12)—(1.19) with 0 < a < € := min{|a,|, |a,|} and B > 0 admit a unique global-in-time strong
solution (t,u,v,w,0) on [0, 1] X [0, +00) satisfying

G <txn<Co  C' <D <C,

and
(t = 7,u,v,w,0 — Ep) € C([0, +00); H*(Q)),
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where a1, a, defined in what follows are dependent only on 3, My, and V (see details in (3.2),(3.5), and
(3.6)). Moreover, for any t > 0, the exponential decay rate is

(T =%, u,v,w,0 = Eo)llg + llr = 7 < Ce™, (1.21)

! ! Ut + vy + wi 5 |
T= Tdx, Ej= Op + ——— |dx, ¥ =|[a" +27x]2.
0 0

where

2c,

A few remarks are in order.
Remark 1. For k = 1,2 and 1 < p < oo, we adopt the simplified nations for the standard Sobolev
space as follows:

-AF= 10 ez 1 Hle = 1 oy flle = max [ £QOL -l = 11 ).
X

Remark 2. We remark here that the growth exponent 5 € (0, +c0) can be arbitrarily large, and the
choice of & > 0 depends only on 3, V;, and the H>—norm of the initial data. An outline of this paper is
as follows. We devote Section 2 to a discussion of a number of a priori estimates independent of time,
which are needed to extend the local solution to all time. Based on the previous estimates, the main
results, Theorem 1.1 are proved in Section 3.

Remark 3. In this paper, the positive ¢, C, and C;(i = 0, 1,--- , 16) are some positive constants
which depend only on 8, My, and Vj,, but not on the time ¢. Furthermore, ¢ and C are different from line
to line.

2. A priori estimates

First of all, define

X(ty, tr;my,my; N)
= {(r,u, v, w,0) € C([t1, b]; H(Q)), T, € L*(t1, 12, H'(Q))
(thy, Vi, Wy, 0x) € L2(t1, 1 HA(Q)),
7, € C([t, to]; H'(Q)) N L2(t1, 1, H'(Q)),
(ttr, vis Wi, 0)) € C([11, 12]; LA(Q)) N LA(ty, 123 H'(Q),
T>my,0>m,E(t, 1) < N> V(x,1) € [0,1] X [t;, ]},

where N, m;, m,, and t1, t,(t, > t;) are constants and

5]
&(t1, 1) 1= sup II(Tx,ux,Hx)llf+ll9t||2+f 16,111
n

H<t<t

with

91|t:t1 = l [_P(ru)x + (

1 Kr
Ostli=, == — [_P(ru)x + (
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The main purpose of this section is to derive the global 7-independent estimates of the solutions
(r,u,v,w,0) € X(0,T;my,my, N).
We start with the following basic energy estimate.

Lemma 2.1. Assume that the conditions listed in Theorem 1.1 hold. Then there exists a constant
0 < € < 1 depending only on My and V,, such that if

my* <2, NY <2, aH(m,,my,N) < €, 2.1)

where
H(my,my, N) := (my + my + N + 1)°,

then forT >0,

1
f ny(T, u, v, w, 0)(x, )dx
0

2.2

T rtr? 2 +w? P 1 (v, w2 2.2

+ — + + +—(———) dxds < C,
o Jo | @ 70 2 o0\t r

where

. 2402 4442 {0
ny(t,u,v,w,0) := 6¢ (z) + wrvTw + ¢,00 (7) ,
T 2 0

#(z) :=z—-logz—1.

Proof. Multiplying (1.12)—(1.16) by RA(T™" = 71), u, v, w, and (1 — 67"), respectively, integrating
over [0, 1], and adding them together, one obtains

d 1

~ 2 2
d koo, O
dr Jo

- 2.
— Q]dx 0, (2.3)

1
ny(T, u, v, w, 0)dx + f [
0

2,2
priwy

— duuu, + — +uT(% - f)z

2
where Q = @

Apparently, by means of 4 = 2u + A’, one has

2.2
A(ru)® — drpuu, = Qu+ V)r*u + Qu + /l’)% + 2 Tuu,
r

ut 2u+ 34 22 2
2 9 U 4 u [mx Tl/t] ,u[ Tl/l]

=2 +2 —| - = |ru, + —
HE e T 20 3 r 3 [ r
2 ?u?\  2u+ 34 Twl® 2u Tul?
:glu(}"zl/ti-l- 2 )+ 3 [rux+_] +?[rux—7]
2 (,, T
> gﬂ(l’ I/tx+7
Thus, one has
2 2 2
QZCE+CTM2+C&+CT(&—X) ,
T T T r
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which combined with (2.1) and (2.3) yields

TM2

1
779(7' u, v, w,0)(t, X)dX+cf (— +
0 6

d !
dr

66>

762

2 2
u, +wy
70

0

Integrating (2.4) over (0, T'), we can obtain (2.2) by the initial conditions (7, 1o, Vo, 6p).

+I(&__))dx<o.
T

2.4)
r

Next, by means of Lemma 2.1, we derive the upper and lower bounds of .

Lemma 2.2. Assume that the conditions of Lemma 2.1 hold. Then for (x,t) € Q X [0, 00),

C,' < t(x,1) < Cy.

Proof. The proof is divided into three steps.
Step 1 (Representation of the formula for 7).
It follows from (1.13) that

(7

I/t2 —V2

2upt,
W+P

. = (/1(1n T),) = A(0n1), + A,

72
that is

where

(55) +g+(4'P) = (n),,
u> —v* 2uu,

Ar’t
12 r (/rl)x P -

[x1(2), x], we have

A (ru),
At

8=
Integrating (2.5) over [0, 7] X

fx
x1(2)

= In7(x, ) - In7(x, (1), 1) = [ In7(x) = In 7(x,(1), 0)],

(———)d§+ff gd§ds+f A7'P(x) — A7 P(x,)ds
Ar /107'0 x1()

(ru);

(2.5)

- )z-

(2.6)

where x;(¢) € [0, 1] is determined by the following progresses. Next, for convenience, we define

T

t
= f F(x, s)ds +
0

F:= —IT—Lg@%,

X uo

o Aoro

It follows from the definitions above that

By the definition of F and (1.12), one has

! x1 (1)
f[ﬂ_lp(xl(l),8)+f g(f,S)df]dS
0 0
_ f l((”‘)" - F) (x,(£), s)ds
0

=Int(x1(¢), 1) — In7(x:(2),0) — f F(x(1), s)ds.
0
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Due to (1.12) and (2.7), we have

(te); — (rug),

u2

=T —ruUY, = TF — 7 (2.9)

P * 2
= (m)x—% —Tfo g(f)df—%-

Integrating (2.9) over [0, t] X €, one has

[oon= o ] (i eoseoe- [

Hence, by virtue of the mean value theorem, there exits x;(¢) € [0, 1] such that ¢(x(¢), ) = fol ¢tdx. By
the definition of ¢, (2.8), and (2.10), one obtains

dxds. (2.10)

P+Tf gd<f+—

t x1 (1)
fF(xlm $)ds = g (D), 1) — f T (o

frof —(§)d§dx ff( P+Tf gd§+—)dxds (2.11)

x1 (1) Uo
- j; m(f)dff-

Putting (2.11) into (2.8), it follows that

f P x1 (1)
f ( (0. 5) + f o(&. S)df)

=Int(x(®), 1) — In7(x;(2),0) — frof —(f)dfdx (2.12)

+f0w)—(§)d§+ff( P+Tf gd§+—)dxds

Inserting (2.12) into (2.6), we derive

f ds+ff dfds—ff( P+Tf d§+u72)dxds
e o R A o

=In7t-1InT.
Let
u- —v
Ar?

8= + 81,

where

Zulux _ (/l_l)x P x;ru)x

Ar _(/1 )t .

81 =
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It follows from (2.13) that
= B'AD,

where

weon{ [ o ) [« (s

ol [ [[ oo oo 2 [ Zl).

1 x1 (1) uo X u
-Toexp{f TOf TG fo P xl(,)(ﬂ‘m)@df}-

By (2.14), one has
TD'B = A.

J:=§(x,S)+f(g1(§ S)+ )d§+f f( gl)dédx

Then, multiplying (2.15) by J gives

Define that

d
tD'BJ = —A.
dr

Since A(0) = 1, integrating the above equality over (0, ) about time, one has

_ B(s) D(t) [P u?
7 =DB! fB(t)D(S) [ (x, )+f (gl(f s)+—)d§

+L1TL (ﬁ—gl)dfdx]ds.

Step 2 (Lower bound for 7). First of all, by means of (2.1) and (2.2), one has

cl'<b<cC

Next, we estimate B. Employing Jensen’s inequality to the convex function ¢, we have

1 1 1
f zdx — logf zdx—-1< d(z)dx.
0 0 0

By (2.18) and Lemma 2.1, one obtains

which means that
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Hence, by means of the definition of B and (2.20), choosing &, suitably small, there exist two constants
C, and C,, such that

e’ < B(t) < e™. 2.21)
That is,
o B(s) (i
ct=s) « 207 o qmealt=s) 2.22
© ~ B() © ( )

Apparently, by means of (2.1) and (2.19), we deduce

1 X
Tf Tf g1dédx
0 0

< ClalliTlZ (16 Nl Izl + 1677 luol16,] (2.23)
+ 167 7 Bl + ||9_1T_1||oo||91||||u||)

< C81.

Similarly, one also has

< Cs. (2.24)

[ e

!
7> DB - Cg f e 2=9dg
0

(o8]

Thus, for ¢t < 1y < oo,

=DB' - —(1-e)
> Ce ™ — gy(1 — e ),
For a enough large ¢, we have

: ' B(S) —Cot
}ngg‘r(x, 1> C[) %Gds —&(1 —e ™). (2.25)

Bls)

So, we need the estimates of 8 and Ok

such that

By the mean value theorem and (2.19), there exits x,(¢) € [0, 1],

C™' < O(xx(1),1) < C. (2.26)
By Cauchy-Schwarz’s inequality and (2.19), one has

[lIn0 + DI**! = [n@Cea(e), 0 + 115!

* (In(6 + 1)) 6,
ST

Lan@+ P N\ [\
S(fo WC“) (fo TdX)
Lo\
SC(](; e dx) ,
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which means that

L gpe
6>C-C dx.
0

76>
By (2.16)—(2.17), (2.23)—(2.24), (2.21), Lemma 2.1, and (2.19), one has

1
f Tdx < Ce™ + Cf (S)d
0 B(1)

B(s) et
f mds > C-Ce

Putting (2.27) into (2.25), by (2.22), (2.28), and Lemma 2.1, for a enough large ¢, one has
B
f LIOPY
B(1)
el
>C f B _ f *dx|ds
B(f) 0 T92
/2 B L g2
ZC—Ce‘”—C(f +I)Ls) zxdds
0 i2) B() 76
/2 1 b2 I g2
>C-Ce“"-C f g™t f —dxds - f f ~dxds
t/2
>C-Ce™“ —Ce ™~ f f deds > C.
t/2

Inserting (2.29) into (2.25), for a large enough time Ty, when ¢ > T, it follows that

that is

i >
}Crel(fz 7(x,1) > C.

Step 3 (Upper bound for 7). By (2.17), (2.22)—(2.24), and Lemma 2.1, one obtains

t 1 0892
ITlle < C + Cf e 2|70 f Xdx + 1|ds,
0 0 T6’2

where we have used the results

Iwusc+qmuﬁ gm when 0<p<1,
ol < C+C f 22

—d when 1< < co.

In fact, by Holder’s inequality, for O < g < 1,

‘Ql/z(x, 1) — 0" (xy(1), f)‘

1
< f 0720,dx
0
19892 1/2 1 1/2
S||T||}x{2(f de) (f Ql‘ﬁdx)
92
0 0
o \'"?
S||T||;/2(f de) )
92
0
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For 1 < 8 < o0,
1/2

1 /2 1 ) 1/2 1
98/2(x,t)—98/2(x2(t),t)‘§ f i ngdxs( f T;de) ( f de) . (2.33)
0 0 0

By means of (2.26) and (2.32)—(2.33), we can obtain (2.31).
Thus, the inequality (2.30) combined with Gronwall’s inequality and Lemma 2.1 yields that for any
t>0,

sup [|IT(x, Dl < C.

>0
O

However, we cannot get the time-space estimate of v, in Lemma 2.1. To obtain this estimate, we
need the following result.

Lemma 2.3. Assume that the conditions listed in Lemma 2.1 hold. Then for any p > 0and T > 0,

98&2 9(1 2 2 2
f 6! pdx+f f ( (u +ux+w) WT(%__))dde<c (2.34)
9p+l 917 9{, r

Proof. By Lemma 2.1, the result of (2.34) has been established for p = 1. In the following steps,
we do the estimate for p > 0 and p # 1. Multiplying (1.16) by 677, integrating over [0, 1], and using

integration by parts gives
o d (" f‘ krr6P6> f
0 "Pdx + dx + —d
p—1dt Py e *

1 Hl—p
:Rf —(ru),dx (2.35)
0 T

1 pgl- 1
9" — E .
- R f 29wy dx + RE, f W g
0 T 0 T

Apparently, there exists constant C(p) depending on p such that

6 - Eo| < cp|o” - EP|(Ey? + 657), (2.30)
By means of (2.35), (2.36), Lemma 2.2, (1.13), and (1.12), we deduce

c, d (! k0P 6>
— | 6'"Pdx+ fdx+ | =d
p—1dt \[0 x pﬁ TOP+1 f o

1 1
d
< C(PO'? - E) e fo (EN? + 6277)(u| + uyl)dx + RE— fo Intdx

1 1
+ 2 1 2
< CPIO"* - E} |l ( f i )( f de)
0 0 0
1 3 2+ 3
+(f Hl_pdx) (f xdx)
0 0 T@

< C(IE"* - EYIZ + C(p) f

(2.37)

+ REO— f Inrdx

u? + u?
dx 6f dx
0 TOP

d 1
+C6, p)6"* - E)PIA f 0'Pdx + REy In7dx.
0 0

Communications in Analysis and Mechanics Volume 16, Issue 3, 599-632.
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Thus, employing the truth of
Tt
f 162 - EM?|2.ds < C, (2.38)
0

we can conclude from (2.37), Gronwall’s inequality, and Lemma 2.2 that (2.34) is correct. In fact,
1672 = Eyll < 116" = 8"l + 118" = Eg°ll. (2.39)

By virtue of Lemmas 2.1-2.2 and (2.19), one has
1 1 2, .2 2 ¢
— d + v+
- | = f d U (9+nu)dx] an
o dn {[Jo 2¢,
={fl[fl(0+nu +1? +w) ] f(uvw)2
0 0 2¢,

< Cll(u, v, Wl v, Wl < C fo 1 (u(g)w) dx (2.40)

T2 1 2 2 1/2 1
sc(f [ﬂ+—(ﬂ—3) +&dx]) (f de)
0 0 0 T r 0 0

1/2

where we have used the fact that

(v) T(I’Vx v)
rlx. P\t r)

For g < 1, it follows from Lemma 2.1 and (2.19) that

162 - 8

1
<C f 07210, |dx
0
1 1

P \'( ! 1 2.41

C(f xdx) (f Ql_ﬁdx) ( )
0 0
9892 %
< C(f xdx) .
02
0

IA

For 1 <8 < o0,

ﬁ . 6> 1
16} — 84l < Cll6t — 8 < C f 64 119,Jdx < c( f de) | (2.42)
0 0
Hence, by (2.39)—(2.42) and Lemmas 2.1-2.2, we can derive (2.38). The proof of Lemma 2.3 is thus
complete. O

According to Lemmas 2.1-2.3, we can conclude that the following results have been established.
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Corollary 2.1. Assume that the conditions listed in Lemma 2.1 hold. Then for —co < g < 1,0 < p < oo,
and T > 0,

1 1
C,<7t<C, c—‘sfrdxsc, c“sfedxsc,
0 0

1
f (In7] +|In @] + 67 + > +v* + wHdx < C,

[f

Here, we have taken p = @ in (2.34) to obtain the time-space estimates of v and v,.

(el
(u? +u +2 +v +w +T)(1+0p)+ ]dxds<C (2.43)

Using the result above, we establish the following estimate about 7.

Lemma 2.4. Assume that the conditions listed in Lemma 2.1 hold. Then for T > 0,

1 Tl
f 72dx + f f 72(1 + f)dxds < C,.
0 o Jo

Proof. According to the chain rule, one has

2 2 A
( Tx) - (i) + 21,6, - 1,0,). (2.44)
T /¢ T /x T

By means of (1.12), (1.13), and (2.44), we have

(/lTx v 2uu,

Uy
=—+P -+
T /t r r

Multiplying (2.45) by = L integrating over [0, 1] about x, and using (1.12) and (2.44), we obtain

A
+ _O(Txgt - T,«@x). (2'45)
T

d ('[1 /At Aur, ' RAOT?
< —( ) SELLLES P dx
dr 2\ 71 rT 0o T

A RAT.0, YAz (u? =2
\f()ﬂm f T M+f_ﬁL;Lh
0 72 0 T

2.46)
2 xa e [ (
+ f il f —g(/lTx — r 'ut) (1,6, — 1,6, )dx
0 o T
5
=k
i=1
By Holder’s inequality, (2.1), (1.12), and Corollary 2.1, one has
x A
h:ff1—¥}EM<memm<ame (2.47)
0 r r

Using Corollary 2.1 and taking p = 3, one has

T 1 92
f f gxdxds <C. (2.48)
0 0
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Hence, we argue the term /, as the following

1 T20 1 92
I, < 5f %dx + C(6)f —2dx. (2.49)
o T o 0

By means of integration by parts, Corollary 2.1, and (2.1), one can derive

! 1
I = —f logr(—z(u2 - vz)) dx
0 r x

1
< Clln1le f '(lawxuz,|a|9xv2,eauz,e)“vz,eaui,eavi) dx (2.50)
0

1
<C f UV, il v3)dx.
0

By virtue of (2.1), we derive

R 1 120 0129 (12 1 22p 1
Iy < C|a|m;2N( f uzdx) ( f S dx) <6 f —=dx + C(6) f w’dx. (2.51)
0 o T o T 0

By means of (2.1), Corollary 2.1, and (1.16), one can deduce

1
15 < C f |a'||9_1| (T)zcet’ uTxeh Txuexa Mzex, Txuxem uuxex)

1 1/2 ) 1/2
2 ’ 70
< Clalm;"N —dx+C|a|m22N(f W+ u dx) (f _2dx)
’ o (2.52)
+C|01|m2‘Nf u* + uldx
<8f —dx+C(8)f u +u2dx
Inserting (2.47) and (2.49)—(2.52) into (2.46), and choosing ¢ suitable small, we obtain
d (1A Aur, 1
= —( T) - dx + e f or2dx < Cll(u, uy, 0/ V8, v, v (2.53)
dr 2\ 71 rT 0

Integrating (2.53) over [0, ¢], using Cauchy-Schwarz’s inequality, (2.48), and Corollary 2.1, for any

t > 0, one has
1 N
f 2dx + f f 720dxds < C. (2.54)
0 0 Jo
By virtue of (2.54), we have

1 1 1
6 f 2dx = f 726 — 6)dx + f 726dx
0 0 0
1 1 ~ 1 1
f 2dx + —|0 - 614 f 2dx + f 720dx (2.55)
0 26 0 0
1 _ 1
f 2dx + Cl16 - 6|2, + f 726dx.
0 0
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It follows from (2.19) and (2.48) that

T _ T 1 02 1
f 16 —6|Ads < C f f —dx f 6dxdr < C. (2.56)
0 0 0 0 0

Thus, it follows from (2.55)—(2.56) that

T 1
f f 72dxdr < C. (2.57)
0 0

The proof of Lemma 2.4 has been completed by (2.54) and (2.57). O

Next, based on the estimate of 7,, we are devoted to derive the estimates on the first-order derivatives
of w,.

Lemma 2.5. Assume that the conditions listed in Lemma 2.1 hold. Then for T > 0,

1 T 1
f widx + f f w2 dxdt < Cs.
0 0 0

Proof. Multiplying (1.15) by w,, and integrating over [0, 1] about x, we find from (2.1) and Lemma
2.4 that

1d 5 U ur’w?
_ . + —xxd
2al fo T

1 1
=- f W Wy (ﬂ) dx — f LW W dx
0 T /x 0

1
<C f wawl(lalm; 10, + 1 + |7 )dx
0

2 2 2 2
< ellwxdl” + C@)lwkll” + C@llTalFlwills

2 2
< gllwill” + C@)llwill.

(2.58)

Taking & suitably small in (2.58) finds

1d !
Ea||wx||2 +c f w2 dx < Cllw, . (2.59)
0

The proof of Lemma 2.5 is complete by integrating (2.59) over (0, ¢) about time and choosing & suitably
small. O

Based on the above result, we have the following uniform first-order derivatives estimates on the
velocity (u,v).

Lemma 2.6. Assume that the conditions listed in Lemma 2.1 hold. Then for T > 0,

1 Tl
f (ur +v2 +17)dx + f f (uix +VL O U VW thx) dxdr < Cy.
0 0o Jo
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Proof. Multiplying (1.13) and (1.14) by u,, and v,,, respectively, and integrating over Q about x, by

integration by parts, one has
1 d 1 1.2
—— f (u? +vHdx + f r—(/luix +uv? )dx
2dt 0 o T
1 1 2
= f U rPodx + f (vxxﬂ - uxxv—) dx
0 0 r r
1 1
A(ru), A
_ f U T [( (ru) ) M+ 2f UL U d X
0 T )y T 0
1
- f Viex [rv)c (lﬂ) + 2uv, — (uv), — /izv] dx
0 T /x r
5
= Z 1
=1

1

I;.

By Cauchy-Schwarz’s inequality, one has

]Il < Slluxx”z + C(S)”(Qx, Tx)||2-

(2.60)

2.61)

It follows from Sobolev’s inequality, the boundary condition of v, and Corollary 2.1, that we have

11 < &ll(ttr, vill* + C@IVIZIU MIP < ellther, vl + C@)lval .

Direct computation from (2.1) yields

1
I < e+ Cle) f |20 + (1 + ledm; @)\, ut . ) dx
0
< el + C@)ue WP + C@TPll, wllZ,
< 2ellugdl® + C@)ll(uy, wP,
I < sl + C@IN*m||ull® < ellull® + Ce)llull?,

and
1
115 < &yl + Ce) f V21 + lalm3?6? + 72) + 17 |dx
0
< 2elvill’ + C@ENe I
Putting (2.61)—(2.65) into (2.60) and taking & suitably small gives

1d 1 1
—— f (U +v3)dx + cf (U2, + V2 )dx < Cll(B, Toy Vi thy, t, V)|
2dr J, 0

Integrating (2.66) over (0, T') about time, and using Lemma 2.4 and Corollary 2.1, we find

| 7oAl T Al
f (2 +v2)dx + f f 2, +v2)dxdr < C +C f f 0rdxdr.
0 0 0 0 0

(2.62)

(2.63)
(2.64)

(2.65)

(2.66)

(2.67)
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For g > 1, we take p = 8 — 1 in (2.43), and then

T 1
f f 62dxdt < C.
0 0

Substituting (2.68) into (2.67), it follows for g > 1 that

1 T 1
f (u? +vH)dx + f f (2 + v +60H)dxdr < C.
0 0 0

(2.68)

(2.69)

Next, we need to estimate the L*(Q x (0, #))-norm of 6, for 0 < 8 < 1. We deduce from multiplying

(1.16) by 0'-% and integration by parts that

2¢, d fl P +2—,6’f1 k;ﬂe’%aid
4-pgdr ), T ), T

1 GZ—E 1
:—Rf Tz(ru)xdx+f Ql_dex
0

B B

1 ;-5 _ p-5
R f u(m)xdx RG> f () )" f 6'~% Odx

0 T
! B B
<C '92—2 _ s
0

Notice that

1

INGaEE
0
1 1/2 1 1/2

scné‘—f—el—ﬁ’nm(f (1+92-’§)dx) (f (u2+u§)dx)

<C(f |9|dx)+Cf(1+92 z)dxf(u +u?)dx

<cf o'~ 2dxf —xdx+Cf(1+92 Z)dxf(u + u?)dx

scf —de+cf(1+92-z)dxf(u2+u§)dx,

0 H 0 0

1
i f Indx + f 0'~% Odx.
dr Jo 0

(2.70)

2.71)
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and

1
f Ql_g QOdx
0

1
< C(Ilél_g — 02| + l)f (U + 12 + v+ v+ whdx
0

1 1 1
< Cf 9_§|6x|dxf (U + v+ whdx + Cf (U2 + v+ whdx
0 0 0
L, 1 1
< Cf @2+ 04)|9x|dxf (U + v+ whdx + Cf (U2 + v+ whdx
0 0 0
L, 1 2
<e f 6262dx + C(e) ( f (U2 +v: + wﬁ)dx)
0 0
1 92
+Cf (—x+u§+vi+wi)dx.
o \ 0

We can conclude from (2.70)—(2.72) that

1 Tl T 1 2
f P2 dx + f f 6P1?6°dxdt < C + Cf (f (2 +v:+ wi)dx) ds,
0 o Jo o \Jo

which combined with Young’s inequality and Corollary 2.1 yields

T 1

f f 6%dxdt
<C f f —dxds+C f f 6126 dxds (2.73)
SC+Cf (f(u + v +w)dx)

By means of Lemma 2.5, (2.67), and (2.73), we find for 0 < 8 < 1,

(2.72)

1 Tl
f (u? +v2)dx + f f (ur, +v: +6%)dxdr < C. (2.74)
0 0o Jo
By virtue of (1.12)—(1.16), (2.1), Corollary 2.1, Lemma 2.4, (2.69), and (2.74), it follows that
1 T Al
f T2dx + f f (U2 + v} +w? + 72)dxds < C. (2.75)
0 o Jo
O

To obtain the first-order derivative estimate of the temperature, we need to first establish the uniform
upper and lower bounds of 6.

Lemma 2.7. Assume that the conditions listed in Lemma 2.1 hold. Then for T > 0,

Ci'<6<C.
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Proof. First of all, multiplying (1.16) by 6, and integrating over [0, 1] about x, yields

2 29602
6°d *d
2dtf f x
2
—f 60dx — Rf de
0 0 T

1 1
2 2 2
< Cll(uy sty v, v WP f Odx + [l f 6Pdx.
0 0

Applying Gronwall’s inequality to (2.76), we can obtain

1 Tl
f 6*dx + f f 6°0>dxdt < C.
0 0o Jo

(2.76)

2.77)

Based on the estimate above, we can get the bound of fol #°6>dx which will be used to obtain the upper

bound of §. Multiplying (1.16) by #°6, and integrating over (0, 1) about x, it follows that

! L 68+10,(ru), : ' (kr26°0,
cvf 939,2dx+Rf ﬂdx—f QBHthx:f (Kr ) 6°6,dx.
0 0 T 0 0 T X

By integration by parts, one has

1/~ 2
f (Kr GHGX) 66,dx
0 T x
1~ 2
- _f kr 60 (HBQX) dx
0 T !

kd (2 & ("(2ru ru rFu
- K4 gy -f Zu T g0
a4 ), 70y ) (676, dx.

Inserting (2.79) into (2.78), we can deduce that

% d 1.2 1
2 Ltoyrdr+e, f 6°62dx
2dt o T 0

1 98+19 1 ~ 1 3
:—Rf ﬂdﬁf eﬂe,de+ff (ﬂ— r”x)(egex) dx
0 T 0 2o \ 7
1 1
< %f eﬁefdx+cf 2 (u? + u)dx
0 0

1 1
+C f O (u* + ut + v + v+ whdx + Cll(, 1) f (66,)2dx
0 0

1 2
<—f P67 dx + C||(u?, u?, u®, u?, 4,vi,wi)||w+c(f GBOfdx).
0

By Sobolev’s inequality, Corollary 2.1, and Lemmas 2.5-2.6, one can find that

4 4
f @, s, u® iy, v v, willedss < C.
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By virtue of (2.80), Gronwall’s inequality, and (2.81), we can obtain

1 T 1
f (6°0,)*dx + f f 6’6’dxds < C. (2.82)
0 0 0

Thanks to (2.82), it follows that

1

1 2
1P — 6P| < C( f (089x)2dx) <C. (2.83)
0

That is, for ¢ > 0,
10]lo < C. (2.84)

Thanks to (2.77) and (2.84), one has

T 1
f f (@° — P2 dxdr
0 0
T 1
< f f 6*262dxdt
0o Jo (2.85)

T 1
< C sup |15, f f 66> dxdt
0<t<T 0 0
<C.

Combining (2.83) and (2.84), one has
T
J
N APPRE ! 2
scfo fo(eﬁ - ¢ )dxdz+cf0 16°6,|>dz (2.86)

T 1
< C sup |91, f f 6°6>dxdt
0<t<T 0 0
<C.

d 1
3 f @ — P12 dx|dr
0

So, from (2.83), (2.85), and (2.86), one has

1
lim [ (¥ =6 )2dx = 0.
0

t—+00

From (2.83), when t — +o00,
1(@°" = P DIZ, < CllE - & HllIePe.l — 0,
and we can obtain that there exists some time 7 > 1 such that when ¢ > T,

0(x, 1) > % (2.87)
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Fixing Ty in (2.87), multiplying (1.16) by 677, p > 2, and integrating over [0, 1] about x yield
6 d | kP2
Py 1&”9 I, +pf gy dx + —dx
1
0
=R f —(ru),dx
0 TOP

1 (M +d?
SE N dx + Cl|l6~ ||Lpl

] LP I = 9

where C is a generic positive constant independent of p. Thus, integrating the above inequality over
(0, 1) and letting p — co, we arrive that

07! (x,1) < C(To + 1) & 6(x, 1) = [C(To + DI, ¥(x, 1) € [0, 1] X [To, +0).

The proof of Lemma 2.7 is complete. O

Lemma 2.8. Assume that the conditions listed in Lemma 2.1 hold. Then for T > 0,

f 6dx + f f (6%, + 61)dxds < Cs.

Proof. Multiplying (1.16) by 6,,, integrating over [0, 1] on x, and by Holder’s, Poincaré’s, and
Cauchy-Schwarz’s inequalities, Corollary 2.1, Lemma 2.4, and Lemma 2.7, we have

f P + f K0 g
2
() e
1 1 ' Kr? 2
<e fo 6> dx + C(e) fo [ez(m)i—ei(T) —QQ} dx

1
<e f 62 dx + CE) PO + CENGP + CENO I (2.88)
0
1
+ C(s)f u* +v* + ui + vi + wi)dx
0

< &ll0.l* + CE([luall® + 1617 + 1010l + HalPllaal® + VI [IvIFP)

+ CE)( Il + vl Z VAP + il )
< ll0ll* + C@N(thas Vi Wi s Vi WeIF + C ()10

Choosing & suitably small in (2.88) gives
) d 1 1
02 5 eidx +c f 6% dx < Cll(tty, v, wOIIF + ClI6:|I. (2.89)
0
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Integrating (2.89) and using Lemmas 2.5-2.6, one has

T
1601 + f 16l7ds < C. (2.90)
0

Hence, similar to (2.75), by means of (1.16), Corollary 2.1, Lemmas 2.4-2.7, and (2.90), one can

deduce that
Tl
f f 67dxdt < C.
o Jo

Next, we derive the second-order derivatives estimates of (7, u, v, w, ).

Lemma 2.9. Assume that the conditions listed in Lemma 2.1 hold. Then for T > 0,
f W+ VvV +w + 0 +ud +v A wt + 02+ 1)dx
0
T Al
+f f(uxt+7' +v2 +w? + 6%)dxds < Cg.
0o Jo

Proof. Applying 9, to (1.13) and multiplying by u, in L?, one has

1d (! P Arr 67 u?
——f u,zdx+f 7 Py
2dt 0 0 T

! Pl

1 2 2.91)
+ f U, [(V—) —rP.+rP+r (/l(ru)x) — 2(u,ux),] dx
0 rj T x

Applying 8, to (1.14) and multiplying by v, in L?, one has

f 2dx+f1 0 g
- [ o2~ - 2]
< Jy o), () - ()

5

(2.92)

11,
i=4
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Applying 8, to (1.15) and multiplying by w;, in L?, one has

2dt 0 ! 0 T
1

1
:f Wiy (,urwx) dx—f {rwxwx, (y_r) + w, [rx (,urwx) —(,uwx)]}dx
0 T /x 0 T/t T Jt t

7

= Z 111,
i=6

Adding (2.91)—(2.93) together, we get

2dr T

Before the computations of 111, to 111;, we need to keep in mind the following facts:

(e, v, W)lleo < C,

a<r<hb, rxzr_lT, e = U, T = Uy,

Cl'<r<cC, C'<o<c,
I(ru),| < Clu,u)l,  |(ru)y — ruyl < Cl(u?, uy, uny)),

2
|(ru)xt| S Cl(l/l s U, Uy, uxt)l-

Then, by Holder’s, Sobolev’s, and Cauchy-Schwarz’s inequalities, one has

1
IIIl S Cf |uxt||(0t5 TZ" Htum Tluxa u, Uz, Mx)ldx
0

< ellugll® + CENG,, 71, u, u)I* + C@NG:, TN ot
< &llull* + 0ll0ull* + C(e, OB, 71 e, s, T

and
1
2 2
IIIZ S C f |ut||(9t’ Htux’ u, ut’ I/tx, uxt’ Tta Tt )|d~x
0

2 2 2 2 2 2
< elluyll” + C@N(ur, O, u, wr, TN + EllB/l[G ™ + C@)TIG T
2 2 2
< elluyll” + 6l6ull” + Cle, O)I(ur, Or, u, e, T, T I

By virtue of (1.13), one has

(/l(ru))C

T

) ‘ < C‘(u,,vz,ex, Tx)

Thus, it follows from Holder’s, Sobolev’s, and Cauchy-Schwarz’s inequalities that

1
1113 S Cf |ut||(vt’ vza 0)(3 Txa Tt’ 91‘9 uh ute)ﬁ ngty gxt)ldx
0

< &ll0ull® + C@Nr, sy v, 0xy 01, 01, Ty TP + €l O N0
< &ll(u, th)”z + CE)N(vy, us, 61,74, v, 0, Tx)||2,

1d 1 U 3R20U2 + 0r20v? . + irteew? 7
f (] +v; +w))dx + f v F x T H Xdx = Z 111,
0 0 i=1

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)
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and

1 1
11, <C f VAll(B:v, Ve, Vg VaTyr, 040, Oy, Ov,)|dx + C f ViVl (67, v, T,)ldx
0 0

;”(th’ 0N + C@NWi, vOIP + C@NE;, 70, VIV, 0P

< &l (Vs OI* + CEN V1 Vs O T TP

‘(,urvx)
T /x

1
IIIS S Cf |vl||(vl" v, exa Vs Uz 9[7 Tl)ldx S C”(VI, v, 9)(7 Vx, Uz 61" Tt)llz'
0

It follows from (1.14) that

S CKVI’ v9 an Qx)l-

Then

By virtue of (1.15), we can obtain

1
Il < C f il (222
0 T X

1
11I; < Cf Wl
0

< gllwyll* + CENWe, wIP + C@NIE TSI
< &ll(wy, sz)”z + Ce)ll(wy, wy, 0;, 71, Txt)||2'

and

(Wi, WiTi, W) + Wl|(Gwy, TWy, Wy, wyp)|dx

Putting (2.95)—(2.101) into (2.94) gives

2 2
=—|Gr, v, WOII” + cll(ttzs Vit Wil
2 dt

2 2 2
< &ll(tat, Virs War, O™ + C@N(urs Vi, Wr, O Wi, T, O™ + C (@71, 1, I

Applying 8, to (1.16) and multiplying by 6, in L?, it follows that

f 62dx f Qgrzgi’d
Kl"2
= fo 0, [Qt—(P(ru)x)t]—HXHX,(T)[dx.

First of all, by means of the definition of Q, one has

16,0 <CIONU, Tr, e, Uy U, UTy, lhy, Uy Ul
+ CIHIII(Q,,Htu Ttu Gtw w2 T,wi,wxwx,, Q,Vfc,r,vi)l
+ ClON(V, Vits TtV Vis V, Vi ViV, ViV
SCENOs, uy Ty Uy Uy, Wy, Vi, Vi, V, Vx)|2 + &l(tys, Wyt th)|2

+ C(EN(T1, gy )Pt W, VI + C@IO 11ty i wo) .

1
dx < Cf wil [, wo)l dx < Cliws, wolP,
0

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)
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Using (2.104) and Sobolev’s inequality, we can derive from (2.103) that

f fdx f Ggrzeitd

<C f (16:1CQy, 61, T1, Ot Tyh, U, Uy, U, Uy)| + 10:]|(O6r, O, 0T)]) dx
0

< COMrs T st By W Vs v ¥, VI + Ell s W Vs O (2-105)
+ C@(Tr, Ops ttys N, Wi, Vi, ODIF + C@NITAIZ NI
S C(S)”(gta I/l, Tta I/l[, ux’ W)C’ Vx, V[, V, Ttxa uxx)Hz + 8||(uxt’ W)Ct’ vxta th)”z
+ C@(ux, v, wOlE NG + C@IIT A6
Adding (2.102) to (2.105) and choosing € > 0 suitably small, it follows that
1d
55”( \/C_vet, U, Vs Wz)” + cll(tss Vi Wi xt)”
< Cll(ts, Vs Wes O W T O + Cll Gt 7, IR (2.106)
+ Cll @tz vis wIR NP + Clim 116,11
By means of (2.106) and Gronwall’s inequality, we deduce
T
|(etr, vi, W, gt)”z + f 1(@xts Ve, Wit gxt)”zds <C. (2.107)
0
According to (1.13), one has
Aru,, 2 Alru) ) Arug,
i :ut—v—+rPx+2u,ux—r[( (ru) ) - ],
T r T ), T
which means that
lttox] < Cl(us, v, Oy Ty O, Tilh, 1, 1)
Hence, by means of (2.107), we obtain
llul® < C.
Similarly, use the equations (1.12)—(1.16), we also can derive
T
”(Vxxa Wixs exx» Ttx)||2 + f ”Ttt”zds S C7- (2108)
0
Here, we omit the details of (2.108). The proof of Lemma 2.9 is complete. O

Lemma 2.10. Assume that the conditions listed in Lemma 2.1 hold. Then for T > 0,

1
2 2 2
j(; T dx + f f (Txx + Txx, + uxxx + Ve T Wepe T 05)dxds < Cr.
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Proof. Apply 8, to (2.45) and multiply by (A7,/7), in L? to get
1d 1 1 2 1 2
1d ( T") dx+f R_‘)(m) dx
2dl 0 T /x 0 /lT T /x
1 1 2
AT\ [A4 Aty 2upt,
:f ( T) [_H(Txe,—nex)] dx+f ( T ) (&_V_ﬁ i ) dx
o \ T LxlT x o VT i\r r ro.
_Rf(ﬂfx) Zeﬂx_@_ze_fi_@(&) i
o \ T /x| T2 T 73 At \1/,

1
= C(S) f [|(Tx7 ex)lzl(Txet’ Ttex)|2 + |(Txx9t’ Txexta Ttxex’ Ttexx)lz]dx (2 109)
0

1
+ C(g)f [l(ux17 U, Vi, Vs uxgxa 9)6)67 Q)ZC’ 0)()'2 + |(9xxa T/%’ HXTX)|2:|dx
0
1 2
ATy
+8f ( il ) dx
0 T /x
9 1 2
AT,
::leli+8f ( il ) dx,
=3 0N T Jx

where the following fact has been used:

:ﬂ_z 4+ X _

(9) 2] 6,7, 01> 07,

T T 2 3 2

O 0T 012 0 [(AT,\ AT, AT

=it () -2 ),

T 72 ooar|\v /) 7 72

By Sobolev’s inequality and Lemmas 2.6-2.9, we have
111y SC(S)(II(TX,f);c)lli,ll(ﬂ,@z)ll2 + 16,1 7P
+ T2 N6l + 1l 16l + ||9x||§o||sz||2)
SC(S)(II(TX, O + 1172, O IPI(T s Ol (2.110)

2 2 2 2 2 2
F NG NTll™ + 165l Tl + Iy +||9x”1)

<CE)(I(Ts, 0 THIP + 16PlITl),
and
115 < C@)l| ity s Vir Vs O O + C@(1ty, Oy TN O 7)1

2 2
< elltdl” + C@EM s, s, Vi, ¥, O, O, T

ar
hmsCKT)
T /x

we can derive from Sobolev’s inequality and Lemma 2.4 that

@2.111)

Noting that

+ C‘(G’xrx, Ti) ,

2 AT\ P 2 2 4
WMIsC(T) + CIOR P + Clieallt
ANk 2 4 3
SC(T) £ Cl6E + Clleall* + CliealPliT el
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So, it follows from Cauchy-Schwarz’s inequality and Lemma 2.4 that
AT, )
T /x

Taking ¢ suitably small, putting (2.110)—(2.111) into (2.109), and using Lemmas 2.4, 2.8, and 2.9, we
find

1 1 2 1 2

—g (/hx) dx+cf (/ITX) dx

2 dt 0 T /x 0 T /x

< Cll(x1, 6;, 0, ur, VT + CliTl> + ClIBIT

2

el < ClBME + ClirdP + € H( 2.112)

) (2.113)

=),

By (2.113), Gronwall’s inequality, Corollary 2.1, and Lemmas 2.6 and 2.8-2.9, one obtains

1 ﬂxz T 1 /lxz
f( T ) dx+f f( T ) dxds < C. (2.114)
0 T /x 0 Jo T /x

It follows from (2.112) and (2.114) that

T
7l + f 7. llPds < C. (2.115)
0

Letting d, act on (1.13) gives

A0%r%u AT
L (—t) +r
T x

CRIRUOKCE

2 o (2.116)
= Uy — (_) + (rPy), + 2(ulux) - _[(ru)xxx — Fliyyy].
rl. T

It follows from (2.115) and (2.116) that

T
2
f it el Pl
0

T T
< Cf 2% 9 o Tth)”zdS + Cf ||(9)25Tt’ OuxTr, 0T, QthTx)”zdS
‘ T ‘ T
+C f |(TaxTr, TaTrw TeT)lPds + C f 1(Bx, 0T, Oxtt, Ott)|Pds
OT ° T
+ Cf 1(ts Vs Vs Oy Ty Orrs OuT o, TP s + Cf (1,0, 67, 6.0 ds
OT 0
+C j; 110, Ty T Uiy Tlhy U dls

T
2
S C f ”(Tt’ Txxa T[x’ Hx’ I/lx, uxl’ Vx, v, Hxx’ u, Tx’ uxx)” dS
0

<C,
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where the following fact has been used:
”(exa Txs gi’ Tt Htha T)ZC)HOO < C + C”(exa Tty Tx)”% S C
Similarly, using (1.14)—(1.15), we also have
T
f Vs W) s < C.
0

Letting 0, act on (1.16) gives

P10, 2 2
L = Cvgxt + (PTt)x - (i) ex - Z(ﬂ) gxx - Qx-

T XX T X

It follows from (2.114) and (2.117) that

T
f 6.xxlPds
0

T
<C f (Oxss 071, TxT1s Ton)l[Fds
0

xsYxs Yy

T
+C f 163, 0,,0, 62, 6%, 0,7, 0,72, 0,7, )|*ds
0

T
+Cf 1 2B + 11047 ds.
0

By the definition of Q, one has

T
f 1Q:I7ds
0

T
2 2
<C f (6., Oty Uy Ty Uiy Uiy UnT oy, U3, Unlhyy)|[7ds
0
T
2 2 2 2
+C f 1@.W2 W2 wow e, wlt)|Pds
0

T
+C f [0V TxVi Vi ViVias ViTis Vi Vs Vi T VI dis.
0
Since the following estimates have been obtained:
”(Hxa Ty Uy, Wy, vx)”oo < C”(gx’ Txo Uy, Wy, Vx)”l < Ca

putting (2.119) into (2.118) yields

T
f 16,1 ds
0

T
2
S C f ”(gxta Tta Txta Qxa Hxxa Txa Txx» MX9 u, uxxa WX9 WXX9 Vx, Vxxa V)” ds
0

<C.

The proof of Lemma 2.10 is complete.
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3. The proof of Theorem 1.1

With all a priori estimates from Section 2 at hand, we can complete the proof of Theorem 1.1. For
this purpose, it will be shown that the existence and uniqueness of local solutions to the initial-boundary
value problem (1.12)—(1.19) can be obtained by using the Banach theorem and the contractivity of the
operator defined by the linearization of the problem on a small time interval.

Lemma 3.1. Letting (1.20) hold, then there exists To = To(Vy, Vo, My) > 0, depending only on
B, Vo, and My, such that the initial boundary value problem (1.12)—(1.19) has a unique solution
(t,u,v,w,0) € X(0, To; %VO’ %Vo, 2Mp).

Proof of Theorem 1.1: First, to prove Theorem 1.1, according to (1.20), one has

T0 = Vo, 600 = Vo, VxeQ,

||(T0’ Up, Vo, Wo, QO)HHZ < MO'

Combined with Lemma 3.1, there exists £ = To(Vo, Vo, My) such  that
(r,u,v, w,6) € X0, 113 1V, 1o, 2M0).
We find the positive constant || < a;, where a; satisfies

—lai]
1 1 1
(EVO) <2, (M) < 2, |011|H(§V0, EVOa 2My) < €, (3.1)

where € is chosen in Lemma 2.1. That means that one can choose

In2 In2
[In2 —InVy|’ |In2 + In M|’

lay| := mm{ 7 Vo5

1.1
eH™! (—VO, Vo, 2M0)} ) (3.2)

One deduces from Lemmas 2.1-2.10 with 7 = ¢, that for each ¢t € [0, ], the local solution
(T, u, v, w, 0) satisfies

Cy' svx,n<Cp  Ci'<b(x,n<C,  xe(0D), (3.3)
and )
1
sup [I(t, u, v, w, 0)I13 +f 16,*dr < C3, (3.4)
0<t<ty 0
where C;(i = 2,---,7) is chosen in Section 2 and Cé = 21.722 C;. It follows from Lemma 2.9 and

Lemma 2.10 that (t,u,v,w,8) € C([0,T); H*). If one takes (t,u,v,w,0)(-,#;) as the initial data and
applies Lemma 3.1 again, the local solution (7, &, v, w, 8) can be extended to the time interval [z, #; + ;]
with 1,(Cy, C,Cs) such that (r,u,v,w,0) € X(t1,1; + 1r; 3Co, 3Cy, 1Cs). Moreover, for all (x,7) €
[0,1] x [0, # + £,], one gets

1 1
ECO S V(-xa t)’ ECI S Q(X, l),

and
11+
sup II(T,u,v,w,9)||§+f 16,11t < 4Cg,

H<t<t1+1 f
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which combined with (3.3) and (3.4) implies that for all 7 € [0, #; + £,],

1 1
ECO <v(x,1), ECI < 0(x,1),

1 +1)
sup ||z, u, v, w, O)5 + f 16,11t < 5C3.
0

0<t<t)+1p

Take @ < min{ay, @}, where a;(i = 1, 2) are positive constants satisfying (3.1) and

1 s 1 1
(ECO) <2, (V53Ce)™ < 2, a/zH(ECo, Ecl, V5Cs) < e,

where the value of €] is chosen in Lemma 2.1. That means that we can choose

In2 In2 11
laa| = min{ ; e H™! (—C ,=C,, V5C )} (3.5)
’ [n2-InCol’ |In V5 +Incy 2 027 7

Then one can employ Lemmas 2.1-2.10 with T = ¢, +1, to infer the local solution (7, u, v, w, 0) satisfying
(3.3) and (3.4).
Choosing
€ = min{al,a/z}, (36)

and repeating the above procedure, one can extend the solution (7, u, v, w, 6) step-by-step to a global one
provided that |a| < g. Furthermore,

+00

2 2 2 2

Iz, 0, v, w, )2 + f (11t v Wi BN + 12l | dt < €3,
0

from which we derive that the solution (7, u, v, w, 8) € X(0, +00; Cy, C;, C). O

The large-time behavior (1.21) follows from Lemmas 2.4-2.10 by using a standard argument [21].
First, thanks to (1.15), (2.1), (2.43), (2.55), (2.62), (2.73), Corollary 2.1, and Lemmas 2.4-2.10,
taking 0 = Ey, one has

d 1

T e, (T, u, v, w, 0)dx + ¢1ll(u, VIIT + c1ll(ws, I < 0, (3.7)
0
d ('[1 a2 Aur,
¥ [5 (T) = 25 |+ il < Cuolln e, B0, v, (3.8)
0
d
&”(”m Vs Wx)||2 + C3”(uxx’ Vixs Wxx)”2 < Cll ”(Gx’ Tys Vs Uy, U, V, Wx)”z’ (39)
d
d—tnexu2 + callOull < Crall(uay, vis wIIF + Crallésll. (3.10)
By Cauchy-Schwarz’s inequality, one has
Aut, 1 (A1,\?
el <2 () G.11)
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Hence, by means of (3.11), Poincaré’s inequalities, Corollary 2.1, and Lemma 2.7, one can deduce

1 2
1 /A7, Aut,
el = Cslull < f [5( e ]dx£C||(Tx,Mx)||2-
0

Multiplying (3.7)—(3.10) by Cy4, Ci5, and Cy¢, respectively, and adding them together with (3.10), one
has

d
At el v w, )l + clindl* <0, (3.12)

where we have defined

1 (At \>  Aut,
-( ) - dx + Crgll(ites vis woIP + 1621

1
A = f Cl4nEo(Ta u,v,w, 0) + ClS 2
0

and chosen constants Cy4 > Cy5 > Cy > 0 suitably large such that
c1Ci14 = C1oC15 — C11C16 = C12 > 0,

,C15—C11Ci6—Ci2 > 0,
C3C16 - C12 > 0.

Taking % > Cy3 and using Poincaré’s inequality gives
C”(T - 7_-’ u,v,w, 0 - EJO)”2 < ﬂ < C”(l/lx, Vi, Wy, Hx)”% + C”Txllz’ (313)

where we have used the facts
1
16 — EolI* < Cf 160 — 617 dx + Cli(u, v, W)II* < ClI(Brs th, Vi, I
0

By means of (3.12) and (3.13), we can derive that
(T =%, 1, v, w, 6 = E))Dll31 0 < Ce ™. (3.14)

By means of 7, one has
r2—?2:2f0x7—%d§. (3.15)
By means of (3.14) and (3.15), we have
lr — 73 < Ce™.
The proof is thus complete. O
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