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Abstract: In this paper, the following critical Kirchhoff-type elliptic equation involving a logarithmic-
type perturbation

−
(
a + b

∫
Ω

|∇u|2dx
)
∆u = λ|u|q−2u ln |u|2 + µ|u|2u

is considered in a bounded domain in R4. One of the main obstructions one encounters when looking for
weak solutions to Kirchhoff problems in high dimensions is that the boundedness of the (PS ) sequence is
hard to obtain. By combining a result by Jeanjean [27] with the mountain pass lemma and Brézis–Lieb’s
lemma, it is proved that either the norm of the sequence of approximation solutions goes to infinity or
the problem admits a nontrivial weak solution, under some appropriate assumptions on a, b, λ, and µ.
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1. Introduction

In this paper, we consider the following Kirchhoff-type elliptic problem:−(a + b
∫

Ω
|∇u|2dx)∆u = λ|u|q−2u ln |u|2 + µ|u|2u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ R4 is a bounded domain with smooth boundary ∂Ω, 2 < q < 4, a, b, λ, and µ are positive
parameters.

As a natural generalization of (1.1), we obtain the following Kirchhoff-type elliptic problem:−(a + b
∫

Ω
|∇u|2dx)∆u = f (x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.2)
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When the space dimension N = 1, the equation in (1.2) is closely related to the stationary version of the
following wave equation:

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2 dx
)
∂2u
∂x2 = f (x, u), (1.3)

which was proposed by Kirchhoff [1] to describe the transversal oscillations of a stretched string. Here
ρ > 0 is the mass per unit length, P0 is the base tension, E is the Young modulus, h is the area of the
cross section, and L is the initial length of the string. Such problems are widely applied in engineering,
physics, and other applied sciences (see [2–4]). A remarkable feature of problem (1.2) is the presence
of the nonlocal term, which brings essential difficulties when looking for weak solutions to it in the
framework of variational methods since, in general, one cannot deduce from un ⇀ u weakly in H1

0(Ω)
the convergence

∫
Ω
|∇un|

2dx→
∫

Ω
|∇u|2dx.

In recent years, various techniques, such as the mountain pass lemma, the Nehari manifold approach,
genus theory, Morse theory, etc., have been used to study the existence and multiplicity of weak solutions
to Kirchhoff problems with different kinds of nonlinearities in the general dimension. We refer the
interested reader to [5–10] and the references therein. In particular, when dealing with (1.2) by using
variational methods, f is usually required to satisfy the following Aimbrosetti–Rabinowitz condition:
i.e., for some ν > 4 and R > 0, there holds

0 < νF(x, t) ≤ t f (x, t), ∀ |t| > R, x ∈ Ω,

which implies that f is 4-superlinear about t at infinity, that is,

lim
t→+∞

F(x, t)
t4 = +∞, (1.4)

where F(x, t) =
∫ t

0
f (x, τ)dτ. This guarantees the boundedness of any (PS ) sequence of the correspond-

ing energy functional in H1
0(Ω). In addition, assume that f satisfies the subcritical growth condition

| f (x, t)| ≤ C(|t|q−1 + 1), t ∈ R, x ∈ Ω, (1.5)

where C > 0, 2 < q < 2∗ := 2N
N−2 . Then it follows from [11, Lemma 1] that the functional satisfies

the compactness condition. Combining (1.4) with (1.5), one has q > 4, which, together with q < 2∗,
implies N < 4. Hence, problem (1.2) is usually studied in dimension three or less. For example, Chen
et al. [12] studied problem (1.2) with N ≤ 3 and f (x, u) = λh(x)|u|q−2u + g(x)|u|p−2u, where a, b, λ > 0,
1 < q < 2 < p < 2∗, and h, g ∈ C(Ω) are sign-changing functions. They obtained the existence of
multiple positive solutions with the help of Nehari manifolds and fibering maps. Silva [13] considered
the existence and multiplicity of weak solutions to problem (1.2) in a bounded smooth domain Ω ⊂ R3

with f (x, u) = |u|γ−2u and γ ∈ (2.4) by using fibering maps and the mountain pass lemma. Later, the
main results in [13] were extended to the parallel p-Kirchhoff problem in a previous work of ours [14].

For the critical problem (1.2) with N ≥ 4, it was shown in [15] that when a and b satisfy appropriate
constraints, the interaction between the Kirchhoff operator and the critical term makes some useful
variational properties of the energy functional valid, such as the weak lower semi-continuity and the
Palais–Smale properties. Naimen [16] considered problem (1.2) with f (x, u) = λuq + µu2∗−1(1 ≤ q <
2∗−1) when N = 4. By applying the variational method and the concentration compactness argument, he
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proved the existence of solutions to problem (1.2). Later, Naimen and Shibata [17] considered the same
problem with N = 5, and the existence of two solutions was obtained by using the variational method.
Faraci and Silva [18] considered problem (1.2) with f (x, u) = λg(x, u) + |u|2

∗−2u in Ω ⊂ RN(N > 4). By
using variational properties and the fiber maps of the energy functional associated with the problem, the
existence, nonexistence, and multiplicity of weak solutions were obtained under some assumptions on
a, b, λ, and g(x, u). Li et al. [19] considered a Kirchhoff-type problem without a compactness condition
in the whole space RN(N ≥ 3). By introducing an appropriate truncation on the nonlocal coefficient,
they showed that the problem admits at least one positive solution.

On the other hand, equations with logarithmic nonlinearity have also been receiving increasing
attention recently, due to their wide application in describing many phenomena in physics and other
applied sciences such as viscoelastic mechanics and quantum mechanics theory ( [20–23]). The
logarithmic nonlinearity is sign-changing and satisfies neither the monotonicity condition nor the
Ambrosetti–Rabinowitz condition, which makes the study of problems with logarithmic nonlinearity
more interesting and challenging. Therefore, much effort has also been made in this direction during
the past few years. For example, Shuai [24] considered problem (1.2) with a > 0, b = 0, and
f (x, u) = a(x)u ln |u|, where a(x) ∈ C(Ω) can be positive, negative, or sign-changing in Ω. Among many
interesting results, he proved, by the use of the Nehari manifold, the symmetric mountain pass lemma
and Clark’s Theorem, that the problem possesses two sequences of solutions when a(x) is sign-changing.
Later, the first two authors of this paper and their co-author [25] investigated the following critical
biharmonic elliptic problem:∆2u = λu + µu ln u2 + |u|2

∗∗−2u, x ∈ Ω,

u =
∂u
∂ν

= 0, x ∈ ∂Ω,
(1.6)

where 2∗∗ := 2N
N−4 is the critical Sobolev exponent for the embedding H2

0(Ω) ↪→ L2∗∗(Ω). Both the cases
µ > 0 and µ < 0 are considered in [25], and the existence of nontrivial solutions was derived by combing
the variational methods with careful estimates on the logarithmic term. It is worth mentioning that
the result with µ > 0 implies that the logarithmic term plays a positive role in problem (1.6) to admit
a nontrivial solution. Later, Zhang et al. [26] not only weakened the existence condition in [25], but
also specified the types and the energy levels of solutions by using Brézis–Lieb’s lemma and Ekeland’s
variational principle.

Inspired mainly by the above-mentioned literature, we consider a critical Kirchhoff problem with
a logarithmic perturbation and investigate the combined effect of the nonlocal term, the critical term,
and the logarithmic term on the existence of weak solutions to problem (1.1). We think that at least
the following three essential difficulties make the study of such a problem far from trivial. The first
one is that since the power corresponding to the critical term is equal to that corresponding to the
nonlocal term in the energy functional I(u) (see (2.2)), it is very difficult to obtain the boundedness
of the (PS ) sequences for I(u). The second one is the lack of compactness of the Sobolev embedding
H1

0(Ω) ↪→ L4(Ω), which prevents us from directly establishing the (PS ) condition for I(u). The third
one is caused by the logarithmic nonlinearity, which we have mentioned above.

To overcome these difficulties and to investigate the existence of weak solutions to problem (1.1),
we first consider a sequence of approximation problems (see problem (2.7) in Section 2) and obtain a
bounded (PS ) sequence for each approximation problem based on a result by Jeanjean [27]. Then, with

Communications in Analysis and Mechanics Volume 16, Issue 3, 578–598.



581

the help of some delicate estimates on the truncated Talenti functions and Brézis–Lieb’s lemma, we
prove that the (PS ) sequence has a strongly convergent subsequence. Then we obtain a solution un to problem
(2.7) for almost every νn ∈ (σ,1]. Finally, we show that the original problem admits a mountain pass type
solution if the sequence of the approximation solution {un} is bounded by the mountain pass lemma.

The organization of this paper is as follows: In Section 2, some notations, definitions, and necessary
lemmas are introduced. The main results of this paper are also stated in this section. In Section 3, we
give detailed proof of the main results.

2. Preliminaries and main results

We start by introducing some notations and definitions that will be used throughout the paper. In
what follows, we denote by ‖ · ‖p the Lp(Ω) norm for 1 ≤ p ≤ ∞. The Sobolev space H1

0(Ω) will be
equipped with the norm ‖u‖ := ‖u‖H1

0 (Ω) = ‖∇u‖2, which is equivalent to the full one due to Poincaré’s
inequality. The dual space of H1

0(Ω) is denoted by H−1(Ω). We use→ and ⇀ to denote the strong and
weak convergence in each Banach space, respectively, and use C, C1, C2,... to denote (possibly different)
positive constants. BR(x0) is a ball of radius R centered at x0. We use ω4 to denote the area of the unit
sphere in R4. For all t > 0, O(t) denotes the quantity satisfying |O(t)

t | ≤ C, O1(t) means there exist two
positive constants C1 and C2 such that C1t ≤ O1(t) ≤ C2t, o(t) means | o(t)

t | → 0 as t → 0, and on(1) is an
infinitesimal as n→ ∞. We use S > 0 to denote the best embedding constant from H1

0(Ω) to L4(Ω), i.e.,

‖u‖4 ≤ S −
1
2 ‖u‖, ∀ u ∈ H1

0(Ω). (2.1)

In this paper, we consider weak solutions to problem (1.1) in the following sense:

Definition 2.1. (weak solution) A function u ∈ H1
0(Ω) is called a weak solution to problem (1.1) if

for every ϕ ∈ H1
0(Ω), there holds

a
∫

Ω

∇u∇ϕdx + b‖u‖2
∫

Ω

∇u∇ϕdx − λ
∫

Ω

|u|q−2uϕ ln u2dx − µ
∫

Ω

|u|2uϕdx = 0.

Define the energy functional associated with problem (1.1) by

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 +

2λ
q2 ‖u‖

q
q −

λ

q

∫
Ω

|u|q ln u2dx −
µ

4
‖u‖44, ∀ u ∈ H1

0(Ω). (2.2)

From 2 < q < 4, one can see that I(u) is well defined and is a C1 functional in H1
0(Ω) (see [18]).

Moreover, each critical point of I is also a weak solution to problem (1.1).
We introduce a definition of a local compactness condition, usually called the (PS )c condition.

Definition 2.2. ((PS )c condition [28]) Assume that X is a real Banach space, I : X → R is a C1

functional, and c ∈ R. Let {un} ⊂ X be a (PS )c sequence of I(u), i.e.,

I(un)→ c and I′(un)→ 0 in X−1(Ω) as n→ ∞,

where X−1 is the dual space of X. We say that I satisfies the (PS )c condition if any (PS )c sequence has
a strongly convergent subsequence.
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The following three lemmas will play crucial roles in proving our main results. The first one is the
mountain pass lemma, the second one is Brézis–Lieb’s lemma, and the third one will be used to deal
with the logarithmic term.

Lemma 2.1. (mountain pass lemma [28]) Assume that (X, ‖ · ‖X) is a real Banach space, I : X → R
is a C1 functional, and there exist β > 0 and r > 0 such that I satisfies the following mountain pass
geometry:

(i) I(u) ≥ β > 0 if ‖u‖X = r;
(ii) There exists a u ∈ X such that ‖u‖X > r and I(u) < 0.
Then there exists a (PS )c∗ sequence such that

c∗ := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ β,

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u} .

c∗ is called the mountain level. Furthermore, c∗ is a critical value of I if I satisfies the (PS )c∗ condition.

Lemma 2.2. (Brézis–Lieb’s lemma [29]) Let p ∈ (0,∞). Suppose that {un} is a bounded sequence in
Lp(Ω) and un → u a.e. on Ω. Then

lim
n→∞

(‖un‖
p
p − ‖un − u‖p

p) = ‖u‖p
p.

Lemma 2.3. (1) For all t ∈ (0, 1], there holds

|t ln t| ≤
1
e
. (2.3)

(2) For any α, δ > 0, there exists a positive constant Cα,δ such that

| ln t| ≤ Cα,δ(tα + t−δ), ∀ t > 0. (2.4)

(3) For any δ > 0, there holds
ln t
tδ
≤

1
δe
, ∀ t > 0. (2.5)

(4) For any q ∈ R\{0}, there holds

2tq − qtq ln t2 ≤ 2, ∀ t > 0. (2.6)

Proof. (1) Let k1(t) := t ln t, t ∈ (0, 1]. Then simple analysis shows that k1(t) is decreasing in (0, 1
e ),

increasing in (1
e , 1), and attaining its minimum at tk1 = 1

e with k1(tk1) = −1
e . Moreover, k1(t) ≤ 0 for all

t ∈ (0, 1]. Consequently, |k1(t)| ≤
1
e

, t ∈ (0, 1].
(2) For any α, δ > 0, from

lim
t→0+

ln t
t−δ

= 0 and lim
t→+∞

ln t
tα

= 0,
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one sees that there exist constants Cδ,Cα > 0 and 0 < M1 < M2 < +∞ such that | ln t| ≤ Cδt−δ when
t ∈ (0,M1) and | ln t| ≤ Cαtα when t ∈ (M2,∞). Moreover, it is obvious that there exists C′α > 0 such
that | ln t| ≤ C′αtα when t ∈ [M1,M2]. Therefore,

| ln t| ≤ (C′α + Cα)tα + Cδt−δ ≤ Cα,δ(tα + t−δ), ∀ t > 0,

where Cα,δ = max{Cδ,C′α + Cα}.

(3) For any δ > 0, set k2(t) :=
ln t
tδ

, t > 0. Then direct computation shows that k′2(t) > 0 in (0, e
1
δ ),

k′2(t) < 0 in (e
1
δ ,+∞), and k2(t) attain their maximum at tk2 = e

1
δ . Therefore, k2(t) ≤ k2(e

1
δ ) = 1

δe , t > 0.
(4) Let k3(t) := 2tq − qtq ln t2, t > 0, where q ∈ R\{0}. From

k′3(t) = −q2tq−1 ln t2, t > 0,

we know that k3(t) has a unique critical point, tk3 = 1 in (0,+∞). Moreover, k′3(t) > 0 in (0, 1), k′3(t) < 0
in (1,+∞), and k3(t) attain their maximum at tk3 . Consequently, k3(t) ≤ k3(1) = 2. The proof is
complete.

Following the ideas of [16], we consider the following approximation problem:−(a + b
∫

Ω
|∇u|2dx)∆u = λ|u|q−2u ln |u|2 + νµ|u|2u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(2.7)

where ν ∈ (σ, 1] for some σ ∈ (1
2 , 1). Associated functionals are defined by

Iν(u) =
a
2
‖u‖2 +

b
4
‖u‖4 +

2λ
q2 ‖u‖

q
q −

λ

q

∫
Ω

|u|q ln u2dx −
1
4
νµ‖u‖44, ∀ u ∈ H1

0(Ω).

Noticing that Iν(u) = Iν(|u|) and I(u) = I(|u|), we may assume that u ≥ 0 in the sequel.
To obtain the boundedness of the (PS ) sequences for Iν, we need the following result by Jeanjean: [27].

Lemma 2.4. Assume that (X, ‖ · ‖X) is a real Banach space, and let J ⊂ R+ be an interval. We
consider a family (Iν)ν∈J of C1-functionals on X of the form

Iν(u) = A(u) − νB(u), ν ∈ J,

where B(u) ≥ 0 for all u ∈ X and either A(u)→ +∞ or B(u)→ +∞ as ‖u‖X → ∞. Assume, in addition,
that there are two points e1, e2 in X such that for all ν ∈ J, there holds

cν := inf
γ∈Γ

max
t∈[0,1]

Iν(γ(t)) ≥ max{Iν(e1), Iν(e2)},

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = e1, γ(1) = e2} .

Then, for almost every ν ∈ J, there is a sequence {un} ⊂ X such that

(i) {un} is bounded, (ii) Iν(un)→ cv, as n→ ∞, (iii) I′ν(un)→ 0 in X−1(Ω) as n→ ∞,

where X−1 is the dual space of X.
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At the end of this section, we state the main results of this paper, which can be summarized into the
following theorem:

Theorem 2.1. Let b, µ > 0 satisfy bS 2 < µ < 2bS 2, and take 1
2 < σ < 1 such that bS 2

σ
< µ. Assume

one of the following (C1), (C2), or (C3) holds.
(C1) a > 0, and λ > 0 is small enough.
(C2) λ > 0, and a > 0 is large enough.
(C3) a > 0, λ > 0, and b < µ

S 2 is sufficiently close to µ

S 2 .
Then problem (2.7) has a solution for almost every ν ∈ (σ, 1]. In addition, we can find an increasing

sequence νn ∈ (σ, 1] such that νn → 1 as n→ ∞ and denote by un the corresponding solution to problem
(2.7). Then either (i) or (ii) below holds.

(i) lim
n→∞
‖un‖H1

0 (Ω) = ∞;

(ii) {un} is bounded in H1
0(Ω) and consequently, problem (1.1) has a nontrivial weak solution.

In particular, if Ω ⊂ R4 is strictly star-shaped, then problem (1.1) has a nontrivial weak solution.

3. Proofs of the main results

We are going to show that there exists a bounded (PS ) sequence of the energy functional Iν for
almost every ν ∈ (σ, 1]. For this, let us introduce the Talenti functions (see [16]). For any ε > 0, define

Uε(x) =
8

1
2ε

ε2 + |x|2
, x ∈ R4.

Then Uε(x) is a solution to the critical problem

−∆u = u3, x ∈ R4, (3.1)

and it satisfies ‖Uε‖
2 = ‖Uε‖

4
4 = S 2, where S = inf

u∈H1
0 (Ω)\{0}

‖u‖2

‖u‖24
=
‖Uε‖

2

‖Uε‖
2
4

(an equivalent characterization

of S defined in (2.1)).

Lemma 3.1. Let τ ∈ C∞0 (Ω) be a cut-off function such that 0 ≤ τ(x) ≤ 1 in Ω with τ(x) = 1 if |x| < R
and τ(x) = 0 if |x| > 2R, where R > 0 is a constant such that B2R(0) ⊂ Ω (Here we assume, without loss
of generality, that 0 ∈ Ω). Set uε(x) = τ(x)Uε(x). Then we have

‖uε‖2 = S 2 + O(ε2),
‖uε‖44 = S 2 + O(ε4),
‖uε‖qq = O1(ε4−q) + O(εq), (3.2)

and ∫
Ω

uq
ε ln u2

εdx = O1

(
ε4−q ln

(1
ε

))
+ O(εq ln ε) + O(ε4−q), (3.3)

where q ∈ (2, 4).
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Set vε(x) =
uε(x)
‖uε‖4

. Then, as ε→ 0,

‖vε‖2 = S + O(ε2),
‖vε‖44 = 1,
‖vε‖qq = O1(ε4−q) + O(εq),

and ∫
Ω

vq
ε ln v2

εdx = O1

(
ε4−q ln

(1
ε

))
+ O(εq ln ε) + O(ε4−q).

Proof. We only prove (3.2) and (3.3). The proof of other results is similar and can be referred to [30].
Using the properties of the cut-off function τ, one has∫

Ω

uq
εdx = C

∫
B2R(0)

τq εq

(ε2 + |x|2)q dx

= C
∫

BR(0)

εq

(ε2 + |x|2)q dx + C
∫

B2R(0)\BR(0)

τqεq

(ε2 + |x|2)q dx

:= J1 + J2.

By changing the variable and applying the polar coordinate transformation, we can estimate J1 as
follows:

J1 = C
∫

B R
ε

(0)

εqε4

(1 + |y|2)qε2q dy = Cε4−q
∫

B R
ε

(0)

1
(1 + |y|2)q dy

= Cω4ε
4−q

∫ R
ε

0

r3

(1 + r2)q dr

= C1ε
4−q

( ∫ +∞

0

r3

(1 + r2)q dr −
∫ +∞

R
ε

r3

(1 + r2)q dr
)

= C2ε
4−q + O(εq), (3.4)

where we have used the fact that∣∣∣∣ ∫ +∞

R
ε

r3

(1 + r2)q dr
∣∣∣∣ ≤ ∫ +∞

R
ε

r3−2qdr = O(ε2q−4),

and ∫ +∞

0

r3

(1 + r2)q dr ≤ C.

On the other hand,

|J2| ≤ Cεq
∫

B2R(0)\BR(0)

1
|x|2q dx = O(εq). (3.5)
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Hence, (3.2) follows from (3.4) and (3.5).
Next, we shall prove (3.3). According to the definition of uε, we obtain∫

Ω

uq
ε ln u2

εdx =

∫
Ω

τqUq
ε ln(U2

ετ
2)dx

=

∫
Ω

τqUq
ε ln τ2dx +

∫
Ω

τqUq
ε ln U2

εdx

:=J3 + J4.

By direct computation, we have

|J3| =
∣∣∣∣ ∫

B2R(0)\BR(0)
τqUq

ε ln τ2dx
∣∣∣∣ ≤ C

∫
B2R(0)\BR(0)

Uq
εdx = O(εq).

Rewrite J4 as follows:

J4 =

∫
BR(0)

Uq
ε ln U2

εdx +

∫
B2R(0)\BR(0)

τqUq
ε ln U2

εdx := J41 + J42.

By using inequality (2.4) with α1 = δ1 < 4 − q, one has

|J42| ≤ C
∫

B2R(0)\BR(0)
(Uq−δ1

ε + Uq+δ1
ε )dx = O(εq−δ1) + O(εq+δ1) = O(εq−δ1),

where ∫
B2R(0)\BR(0)

Uq−δ1
ε dx = C

∫
B2R(0)\BR(0)

εq−δ1

(ε2 + |x|2)q−δ1
dx

≤ C
∫

B2R(0)\BR(0)

εq−δ1

|x|2q−2δ1
dx

= O(εq−δ1),

and ∫
B2R(0)\BR(0)

Uq+δ1
ε dx = C

∫
B2R(0)\BR(0)

εq+δ1

(ε2 + |x|2)q+δ1
dx

≤ C
∫

B2R(0)\BR(0)

εq+δ1

|x|2q−2δ1
dx

= O(εq+δ1).

In addition,

J41 = C
∫

BR(0)

εq

(ε2 + |x|2)q ln
(
C

ε

ε2 + |x|2
)
dx

= Cε4
∫

B R
ε

(0)

εq

ε2q(1 + |y|2)q ln
(
C

ε

ε2(1 + |y|2)

)
dy
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= Cε4−q
∫

B R
ε

(0)

1
(1 + |y|2)q ln

(
C

1
ε(1 + |y|2)

)
dy

= Cε4−q ln
(1
ε

) ∫
B R
ε

(0)

1
(1 + |y|2)q dy + Cε4−q

∫
B R
ε

(0)

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy

= Cε4−q ln
(1
ε

)( ∫
R4

1
(1 + |y|2)q dy −

∫
Bc

R
ε

(0)

1
(1 + |y|2)q dy

)
+ Cε4−q

∫
B R
ε

(0)

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy

= C1ε
4−q ln

(1
ε

)
−Cε4−q ln

(1
ε

) ∫
Bc

R
ε

(0)

1
(1 + |y|2)q dy

+ Cε4−q
∫

B R
ε

(0)

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy. (3.6)

By direct computation, one obtains∣∣∣∣ ∫
Bc

R
ε

(0)

1
(1 + |y|2)q dy

∣∣∣∣ =
∣∣∣∣ω4

∫ +∞

R
ε

r3

(1 + r2)q dr
∣∣∣∣ ≤ C

∫ +∞

R
ε

r3−2qdr = O(ε2q−4), (3.7)

and ∫
B R
ε

(0)

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy

=

∫
R4

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy −

∫
Bc

R
ε

(0)

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy

≤C +
∣∣∣∣ ∫

Bc
R
ε

(0)

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy

∣∣∣∣
≤C + O(ε2q−4−2δ2), (3.8)

where we have used the fact that∣∣∣∣ ∫
Bc

R
ε

(0)

1
(1 + |y|2)q ln

( C
1 + |y|2

)
dy

∣∣∣∣
≤C

∫
Bc

R
ε

(0)

(
1

(1 + |y|2)q−δ2
+

1
(1 + |y|2)q+δ2

)
dy

=Cω4

∫ +∞

R
ε

r3
(

1
(1 + r2)q−δ2

+
1

(1 + r2)q+δ2

)
dr

≤C1

∫ +∞

R
ε

(
r3−2q+2δ2 + r3−2q−2δ2

)
dr

=O(ε2q−4−2δ2),
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by recalling (2.4) with α2 = δ2 < q − 2. Substituting (3.7) and (3.8) into (3.6), one arrives at

J41 = C1ε
4−q ln

(1
ε

)
−Cε4−q ln

(1
ε

)
O(ε2q−4) + Cε4−q(C + O(ε2q−4−2δ2))

= C1ε
4−q ln

(1
ε

)
+ O(εq ln ε) + O(ε4−q) + O(εq−2δ2).

Putting the estimates on J3, J41, and J42 together, one obtains∫
Ω

uq
ε ln u2

εdx

=O(εq) + O(εq−δ1) + C1ε
4−q ln

(1
ε

)
+ O(εq ln ε) + O(ε4−q) + O(εq−2δ2).

Therefore, (3.3) follows by taking δ1 and δ2 suitably small. The proof is complete.

With the help of Lemma 3.1, the existence of bounded (PS ) sequences of Iν can be derived.

Lemma 3.2. Let b > 0, µ > 0 satisfy bS 2 < µ and take σ < 1 such that
bS 2

σ
< µ. Then there exists a

bounded (PS) sequence of the energy functional Iν for almost every ν ∈ (σ, 1].

Proof. Applying (2.5) with δ < 4 − q, using the Sobolev embedding inequality, and noticing that ν ≤ 1,
one has

Iν(u) =
a
2
‖u‖2 +

b
4
‖u‖4 +

2
q2λ‖u‖

q
q −

λ

q

∫
Ω

uq ln u2dx −
1
4
νµ‖u‖44

≥
a
2
‖u‖2 −

λ

q

∫
Ω

uq ln u2dx −
1
4
µ‖u‖44

≥
a
2
‖u‖2 −C‖u‖q+δ −

1
4
µS −2‖u‖4

= ‖u‖2
(
a
2
−C‖u‖q+δ−2 −

1
4
µS −2‖u‖4

)
.

Hence, there exist positive constants β and ρ such that

Iν(u) ≥ β f or all ‖u‖ = ρ.

On the other hand, from (2.6), one has tq ln t2 ≥
2
q

(tq − 1) for t > 0. Let vε be given in Lemma 3.1.

Then, as ε→ 0, we have, for all t > 0,

Iν(tvε) =
a
2

t2‖vε‖2 +
b
4

t4‖vε‖4 +
2
q2λtq‖vε‖qq −

λ

q
tq

∫
Ω

vq
ε ln(tvε)2dx −

1
4
νµt4‖vε‖44

≤
a
2

t2‖vε‖2 +
b
4

t4‖vε‖4 +
2
q2λtq‖vε‖qq −

2
q2λ

∫
Ω

((tvε)q − 1)dx −
1
4
νµt4‖vε‖44

=
a
2

t2‖vε‖2 +
b
4

t4‖vε‖4 +
2
q2λ|Ω| −

1
4
νµt4‖vε‖44

=
a
2

t2(S + O(ε2)) +
b
4

t4(S + O(ε2))2 +
2
q2λ|Ω| −

1
4
νµt4
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=
a
2

S t2 −
1
4

(νµ − bS 2)t4 +
2
q2λ|Ω| + O(ε2),

which ensures that
Iν(tvε) ≤

a
2

S t2 −
1
4

(σµ − bS 2)t4 +
2
q2λ|Ω| + 1,

for all sufficiently small ε > 0. Fix such an ε and denote it by ε0. Then it follows from
bS 2

σ
< µ and the

above inequality that

lim
t→∞

Iν(tvε0) = −∞ (3.9)

uniformly for ν ∈ (σ, 1], which implies that there exists a t∗ > 0 such that ‖t∗vε0‖ > ρ and Iν(t∗vε0) < 0 for
all ν ∈ (σ, 1]. Thus, Iν satisfies the mountain pass geometry around 0, which is determined independently
of ν ∈ (σ, 1]. Now define

cν := inf
γ∈Γ

max
t∈[0,1]

Iν(γ(t)) and Γ = {γ ∈ C([0, 1],H1
0(Ω)) : γ(0) = 0, γ(1) = t∗vε0}.

Then, following the mountain pass lemma, we have

cν ≥ β > max{Iν(γ(0)), Iν(γ(1))}, (3.10)

for all ν ∈ (σ, 1]. Set

Iν(u) = A(u) − νB(u), ∀ u ∈ H1
0(Ω),

where B(u) :=
1
4
µ‖u‖44 and A(u) :=

a
2
‖u‖2 +

b
4
‖u‖4 +

2
q2λ‖u‖

q
q −

λ

q

∫
Ω

uq ln u2dx. By a simple analysis,

one has

B(u) ≥ 0 for all u ∈ H1
0(Ω), and A(u)→ +∞, as ‖u‖ → ∞. (3.11)

In view of (3.10), (3.11), and according to Lemma 2.4, there exists a bounded (PS )cν sequence of Iν for
almost every ν ∈ (σ, 1]. The proof is complete.

Next, we prove the local compactness for Iν(u), which will play a fundamental role in proving the
main results.

Lemma 3.3. Let b > 0, µ > 0 satisfy bS 2 < µ < 2bS 2 and take
1
2
< σ < 1 such that

bS 2

σ
< µ.

Suppose that one of the following (C1), (C2), or (C3) holds.
(C1) a > 0, and λ > 0 is small enough.
(C2) λ > 0, and a > 0 is large enough.
(C3) a > 0, λ > 0, and b <

µ

S 2 is close enough to
µ

S 2
.

Let {un} ⊂ H1
0(Ω) be a bounded (PS ) sequence for Iν(u) with ν ∈ (σ, 1] at the level c with c < c(K),

where c(K) :=
a2S 2

4(νµ − bS 2)
=

1
2

aK +
1
4

bK2 − νµ
K2

4S 2 > 0 and K :=
aS 2

µν − bS 2 , that is, Iν(un)→ c and

I′ν(un) → 0 in H−1(Ω) as n → ∞. Then there exists a subsequence of {un} (still denoted by {un} itself)
and a u ∈ H1

0(Ω) such that un → u in H1
0(Ω) as n→ ∞.
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Proof. By the boundedness of {un} in H1
0(Ω) and the Sobolev embedding, one sees that there is a

subsequence of {un} (which we still denote by {un}) such that, as n→ ∞,

un ⇀ u in H1
0(Ω),

un → u in Ls(Ω), 1 ≤ s < 4, (3.12)
un → u a.e. in Ω.

It follows from un → u a.e. in Ω as n→ ∞ that

uq
n ln u2

n → uq ln u2 a.e. in Ω as n→ ∞. (3.13)

Moreover, by virtue of (2.4) with α = δ < 4 − q, we get∣∣∣uq
n ln u2

n

∣∣∣ ≤ Cδ,δ(uq−δ
n + uq+δ

n )→ Cδ,δ(uq−δ + uq+δ) in L1(Ω) as n→ ∞. (3.14)

With the help of (3.13), (3.14), and Lebesgue’s dominating convergence theorem, we obtain

lim
n→∞

∫
Ω

uq
n ln u2

ndx =

∫
Ω

uq ln u2dx. (3.15)

Similarly, we have

lim
n→∞

∫
Ω

uq−1
n u ln u2

ndx =

∫
Ω

uq ln u2dx. (3.16)

To prove un → u in H1
0(Ω) as n → ∞, set wn = un − u. Then {wn} is also a bounded sequence in

H1
0(Ω). So there exists a subsequence of {wn} (which we still denote by {wn}) such that lim

n→∞
‖wn‖

2 = l ≥ 0.
We claim that l = 0. Otherwise, according to (3.12) and Brézis–Lieb’s lemma, we see that, as n→ ∞,

‖un‖
2 = ‖wn‖

2 + ‖u‖2 + on(1), (3.17)
‖un‖

4
4 = ‖wn‖

4
4 + ‖u‖44 + on(1).

It follows from (3.12), (3.16), and (3.17) that

on(1) =〈I′ν(un), u〉

=a‖u‖2 + b‖un‖
2‖u‖2 − λ

∫
Ω

uq ln u2dx − νµ‖u‖44 + on(1) (3.18)

=a‖u‖2 + b‖wn‖
2‖u‖2 + b‖u‖4 − λ

∫
Ω

uq ln u2dx − νµ‖u‖44 + on(1), as n→ ∞.

By (3.12), (3.15), (3.17), and (3.18), the boundedness of {un} in H1
0(Ω) and the Sobolev embedding, we

obtain

on(1) =〈I′ν(un), un〉

=a‖u‖2 + a‖wn‖
2 + 2b‖wn‖

2‖u‖2 + b‖wn‖
4 + b‖u‖4

− λ

∫
Ω

uq ln u2dx − νµ‖u‖44 − νµ‖wn‖
4
4 + on(1) (3.19)
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=〈I′ν(un), u〉 + a‖wn‖
2 + b‖wn‖

4 + b‖wn‖
2‖u‖2 − νµ‖wn‖

4
4 + on(1)

=a‖wn‖
2 + b‖wn‖

4 + b‖wn‖
2‖u‖2 − νµ‖wn‖

4
4 + on(1)

≥a‖wn‖
2 + b‖wn‖

4 + b‖wn‖
2‖u‖2 − νµS −2‖wn‖

4 + on(1)
=[(a + b‖u‖2) − (νµ − bS 2)S −2‖wn‖

2]‖wn‖
2 + on(1), as n→ ∞.

Then, we have

lim
n→∞
‖wn‖

2 = l ≥
(a + b‖u‖2)S 2

νµ − bS 2 . (3.20)

It follows from Iν(un)→ c, (3.12), (3.15), and (3.17) that, as n→ ∞,

c + on(1) = Iν(un)

=
a
2
‖un‖

2 +
b
4
‖un‖

4 +
2
q2λ‖un‖

q
q −

λ

q

∫
Ω

uq
n ln u2

ndx −
1
4
νµ‖un‖

4
4

=
a
2
‖wn‖

2 +
b
4
‖wn‖

4 +
b
4
‖wn‖

2‖u‖2 −
1
4
νµ‖wn‖

4
4 + on(1)

+
a
2
‖u‖2 +

b
4
‖u‖4 +

b
4
‖wn‖

2‖u‖2 +
2
q2λ‖u‖

q
q −

λ

q

∫
Ω

uq ln u2dx −
1
4
νµ‖u‖44

:= I1 + I2,

where

I1 =
a
2
‖wn‖

2 +
b
4
‖wn‖

4 +
b
4
‖wn‖

2‖u‖2 −
1
4
νµ‖wn‖

4
4 + on(1),

I2 =
a
2
‖u‖2 +

b
4
‖u‖4 +

b
4
‖wn‖

2‖u‖2 +
2
q2λ‖u‖

q
q −

λ

q

∫
Ω

uq ln u2dx −
1
4
νµ‖u‖44 + on(1).

By (3.19) and (3.20), we have, as n→ ∞,

I1 + on(1) = I1 −
1
4
〈I′ν(un), un〉 (3.21)

=
a
4
‖wn‖

2 ≥
a
4

(a + b‖u‖2)S 2

νµ − bS 2 =
a2S 2

4(νµ − bS 2)
+

abS 2

4(νµ − bS 2)
‖u‖2.

Applying (2.5) with δ < 4 − q, from (3.20) and the Sobolev embedding, one has, as n→ ∞,

I2 ≥
a
2
‖u‖2 +

b
4
‖u‖4 +

b
4
‖wn‖

2‖u‖2 −
λ

q
C‖u‖q+δ −

1
4
νµS −2‖u‖4 + on(1)

≥
a
2
‖u‖2 +

b
4
‖u‖4 +

b
4

(a + b‖u‖2)S 2

νµ − bS 2 ‖u‖2 −
λ

q
C‖u‖q+δ −

1
4
νµS −2‖u‖4 + on(1)

=
(1
2

+
bS 2

4(νµ − bS 2)

)
a‖u‖2 +

1
4

(
b +

b2S 2

νµ − bS 2 − νµS −2
)
‖u‖4 −

λ

q
C‖u‖q+δ + on(1)

=
2νµ − bS 2

4(νµ − bS 2)
a‖u‖2 +

νµ(2bS 2 − νµ)
4S 2(νµ − bS 2)

‖u‖4 −
λ

q
C‖u‖q+δ + on(1). (3.22)

In view of (3.21), (3.22), and the assumption of ν ∈ (σ, 1], we obtain, as n→ ∞,

c + on(1)

Communications in Analysis and Mechanics Volume 16, Issue 3, 578–598.



592

= Iν(un) = I1 + I2

≥
a2S 2

4(νµ − bS 2)
+

abS 2

4(νµ − bS 2)
‖u‖2 +

2νµ − bS 2

4(νµ − bS 2)
a‖u‖2

+
νµ(2bS 2 − νµ)
4S 2(νµ − bS 2)

‖u‖4 −
λ

q
C‖u‖q+δ

=
a2S 2

4(νµ − bS 2)
+

νµa
2(νµ − bS 2)

‖u‖2 +
νµ(2bS 2 − νµ)
4S 2(νµ − bS 2)

‖u‖4 −
λ

q
C‖u‖q+δ

=
a2S 2

4(νµ − bS 2)
+

µa
2(µ − bS 2ν−1)

‖u‖2 +
µ(2bS 2 − νµ)

4S 2(µ − bS 2ν−1)
‖u‖4 −

λ

q
C‖u‖q+δ

≥
a2S 2

4(νµ − bS 2)
+

µa
2(µ − bS 2)

‖u‖2 +
µ(2bS 2 − µ)
4S 2(µ − bS 2)

‖u‖4 −
λ

q
C‖u‖q+δ

:=
a2S 2

4(νµ − bS 2)
+ h(‖u‖), (3.23)

where

h(t) =
µa

2(µ − bS 2)
t2 +

µ(2bS 2 − µ)
4S 2(µ − bS 2)

t4 −
1
q
λCtq+δ, f or t > 0.

By a simple analysis, (C1), (C2), or (C3) imply that

h(t) > 0, for t > 0. (3.24)

Indeed, if the parameters satisfy (C1), then, for any a > 0, set

g1(t) :=
µaq

2C(µ − bS 2)
t2−q−δ +

µ(2bS 2 − µ)q
4CS 2(µ − bS 2)

t4−q−δ, t > 0.

From

g′1(t) =

(
µq(2bS 2 − µ)(4 − q − δ)

4CS 2(µ − bS 2)
t2 −

µaq(q + δ − 2)
2C(µ − bS 2)

)
t1−q−δ, t > 0,

we know that g1(t) has a unique critical point

t1 =

(
2aS 2(q + δ − 2)

(4 − q − δ)(2bS 2 − µ)

) 1
2

in (0,+∞). Moreover, g′1(t) < 0 in (0, t1), g′1(t) > 0 in (t1,+∞) and g1(t) attain their minimum at t1.
Consequently,

g1(t) ≥ g1(t1) =
µaq

2C(µ − bS 2)

(
2aS 2(q + δ − 2)

(4 − q − δ)(2bS 2 − µ)

)− q+δ−2
2

+
µq(2bS 2 − µ)

4CS 2(µ − bS 2)

(
2aS 2(q + δ − 2)

(4 − q − δ)(2bS 2 − µ)

) 4−q−δ
2

> 0.

Consequently, for λ > 0 small enough, we have g1(t) > λ for t ∈ (0,+∞). This implies (3.24). By
applying a similar argument, one can show that (3.24) is also true if (C2) or (C3) hold. It then follows
from (3.23) and (3.24) that c ≥ c(K) := a2S 2

4(νµ−bS 2) , a contradiction. Thus l = 0, i.e., un converges strongly
to u in H1

0(Ω). The proof is complete.

Communications in Analysis and Mechanics Volume 16, Issue 3, 578–598.



593

With the help of the Talenti functions given in Lemma 3.1, we show that the mountain pass level of
Iν(u) around 0 is smaller than c(K).

Lemma 3.4. Let b, µ > 0 satisfy bS 2 < µ and take σ < 1 such that
bS 2

σ
< µ. Suppose that ν ∈ (σ, 1].

Then there exists a u∗ > 0 such that

sup
t≥0

Iν(tu∗) < c(K), (3.25)

where c(K) is the positive constant given in Lemma 3.3.

Proof. Let vε be given in Lemma 3.1. According to the definition of Iν, one sees that lim
t→0

Iν(tvε) = 0 and
lim

t→+∞
Iν(tvε) = −∞ uniformly for ε ∈ (0, ε1), where ε1 is a sufficiently small but fixed number. Therefore,

there exists 0 < t1 < t2 < +∞, independent of ε, such that

Iν(tvε) < c(K), ∀ t ∈ (0, t1] ∪ [t2,+∞). (3.26)

For t ∈ [t1, t2], it follows from Lemma 3.1 that, as n→ ∞,

Iν(tvε) =
a
2

t2‖vε‖2 +
b
4

t4‖vε‖4 +
2
q2λtq‖vε‖qq −

λ

q
tq

∫
Ω

vq
ε ln(tvε)2dx −

1
4
νµt4‖vε‖44

=
a
2

t2(S + O(ε2)) +
b
4

t4(S + O(ε2))2 + O1(ε4−q) + O(εq)

−

[
O1

(
ε4−q ln

(1
ε

))
+ O(εq ln ε) + O(ε4−q)

]
−

1
4
νµt4

=
a
2

S t2 −
1
4

(νµ − bS 2)t4 + O(ε2) + O1(ε4−q) + O(εq)

− O1

(
ε4−q ln

(1
ε

))
+ O(εq ln ε) + O(ε4−q)

:= g(t) − O1

(
ε4−q ln

(1
ε

))
+ O(ε4−q),

where g(t) :=
a
2

S t2 −
1
4

(νµ − bS 2)t4. According to the positivity of g(t) for t > 0, suitably small,
and the fact that lim

t→∞
g(t) = −∞, there exists a t0 > 0 such that max

t>0
g(t) = g(t0). So, one has

g′(t0) = t0[aS − (νµ − bS 2)t2
0] = 0, that is,

t2
0 =

aS
νµ − bS 2 .

It follows from the definition of g(t) that

max
t>0

g(t) = g(t0) =
a2S 2

4(νµ − bS 2)
. (3.27)

Then, for t ∈ [t1, t2], one sees

Iν(tvε) ≤ max
t∈[t1,t2]

g(t) − O1

(
ε4−q ln

(1
ε

))
+ O(ε4−q) (3.28)
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≤ max
t>0

g(t) − O1

(
ε4−q ln

(1
ε

))
+ O(ε4−q), as ε→ 0.

From

lim
ε→0

ε4−q

ε4−q ln 1
ε

= 0,

we have

− O1

(
ε4−q ln

(1
ε

))
+ O(ε4−q) < 0, (3.29)

for suitably small ε. Fix such an ε > 0. It then follows from (3.27), (3.28), and (3.29) that

Iν(tvε) < c(K), t ∈ [t1, t2]. (3.30)

Take u∗ ≡ vε, and we obtain (3.25) by combining (3.26) with (3.30). The proof is complete.

On the basis of the above lemmas, we can now prove Theorem 2.1.

Proof of Theorem 2.1. From (3.10) and Lemma 3.4, we obtain

0 < β ≤ cν ≤ max
t∈[0,1]

Iν(tt∗vε) ≤ sup
t≥0

Iν(tvε) < c(K), (3.31)

where cν is defined in Lemma 3.2. This, together with Lemmas 3.2 and 3.3, shows that there exists
a bounded (PS )cν sequence of the energy functional Iν for almost every ν ∈ (σ, 1], which strongly
converges to some nontrivial function in H1

0(Ω) up to subsequences. Thus, the approximation problem
(2.7) has a nontrivial weak solution for almost every ν ∈ (σ, 1]. Take an increasing sequence νn ∈ (σ, 1]
such that νn → 1 as n→ ∞, and denote the corresponding solution by un, which fulfills Iν(un) = cνn ≥ β.
It is obvious that either ‖un‖ → ∞ as n→ ∞ or {un} ⊂ H1

0(Ω) is bounded.
To show that problem (1.1) admits a mountain pass-type solution for the latter case, we first prove

cνn → c1 as n→ ∞. (3.32)

Assume by contradiction that

c1 < lim
n→∞

cνn ,

where we have used the fact that cν is nonincreasing in ν since B(u) is nonnegative for all u ∈ H1
0(Ω).

Let

θ := lim
n→∞

cνn − c1 > 0. (3.33)

Following from the definition of c1, there exists a γ1 ∈ Γ such that

max
t∈[0,1]

I(γ1(t)) < c1 +
1
4
θ. (3.34)
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Then, in view of the fact that Iνn(γ1(t)) = I(γ1(t)) +
1
4

(1 − νn)µ‖γ1(t)‖44 and (3.34), we have

max
t∈[0,1]

Iνn(γ1(t)) < c1 +
1
4
θ +

1
4

(1 − νn)µ max
t∈[0,1]

‖γ1(t)‖44. (3.35)

Since µ‖γ1(t)‖44 is continuous in t, we deduce µ max
t∈[0,1]

‖γ1(t)‖44 ≤ C. From this and (3.35), one has

lim
n→∞

max
t∈[0,1]

Iνn(γ1(t)) ≤ c1 +
1
2
θ.

On the other hand, by virtue of the definition of cνn , we have

lim
n→∞

max
t∈[0,1]

Iνn(γ1(t)) ≥ lim
n→∞

cνn .

By using the above two inequalities, we obtain

lim
n→∞

cνn ≤ c1 +
1
2
θ,

a contradiction with (3.33).
Next, we claim that {un} is a (PS )c1 sequence of I(u). Indeed, by (3.32), one has

I(un)

=
a
2
‖un‖

2 +
b
4
‖un‖

4 +
2
q2λ‖un‖

q
q −

λ

q

∫
Ω

uq
n ln u2

ndx −
1
4
µ‖un‖

4
4

=
a
2
‖un‖

2 +
b
4
‖un‖

4 +
2
q2λ‖un‖

q
q −

λ

q

∫
Ω

uq
n ln u2

ndx −
1
4
νnµ‖un‖

4
4 +

1
4

(νn − 1)µ‖un‖
4
4

= Iνn(un) +
1
4

(νn − 1)µ‖un‖
4
4

= c1 + on(1), as n→ ∞.

Similarly, for any ϕ ∈ H1
0(Ω),

〈I′(un), ϕ〉

= a
∫

Ω

∇un∇ϕdx + b‖un‖
2
∫

Ω

∇un∇ϕdx − λ
∫

Ω

uq−1
n ϕ ln u2

ndx − µ
∫

Ω

u3
nϕdx

= a
∫

Ω

∇un∇ϕdx + b‖un‖
2
∫

Ω

∇un∇ϕdx − λ
∫

Ω

uq−1
n ϕ ln u2

ndx

− νnµ

∫
Ω

u3
nϕdx + (νn − 1)µ

∫
Ω

u3
nϕdx

= 〈I′νn
(un), ϕ〉 + (νn − 1)µ

∫
Ω

u3
nϕdx

= on(1), as n→ ∞.

Hence, {un} is a bounded (PS )c1 sequence for I. It then follows from (3.31) and Lemma 3.3 that there
exists a u ∈ H1

0(Ω) such that un → u in H1
0(Ω) as n → ∞, and u is a mountain pass-type solution to

problem (1.1).
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Finally, we prove the last part of Theorem 2.1. Take a sequence {νn} ⊂ (σ, 1] such that νn → 1
as n → ∞ and denote the corresponding solution to problem (2.7) by {un}. We first show that {un} is
bounded in H1

0(Ω). Assume by contradiction that ‖un‖ → ∞ as n → ∞. Set w̃n :=
un

‖un‖
≥ 0. Then

‖w̃n‖ = 1, and there is a subsequence of {w̃n} (which we still denote by {w̃n}) such that w̃n ⇀ w̃0 in
H1

0(Ω) as n→ ∞. Notice that, for all ϕ ∈ H1
0(Ω), we have

0 = 〈I′νn
(un), ϕ〉

= a
∫

Ω

∇un∇ϕdx + b‖un‖
2
∫

Ω

∇un∇ϕdx − λ
∫

Ω

uq−1
n ϕ ln u2

ndx − νnµ

∫
Ω

u3
nϕdx

= ‖un‖
3
[( a
‖un‖

2 + b
) ∫

Ω

∇w̃n∇ϕdx − λ‖un‖
q−4

∫
Ω

w̃q−1
n ϕ ln w̃2

ndx

− λ‖un‖
q−4 ln ‖un‖

2
∫

Ω

w̃q−1
n ϕdx − νnµ

∫
Ω

w̃3
nϕdx

]
, as n→ ∞.

Letting n → ∞ in the above equality and recalling the assumptions that νn → 1 and ‖un‖ → ∞ as
n→ ∞, one has

b
∫

Ω

∇w̃0∇ϕdx = µ

∫
Ω

w̃3
0ϕdx, ∀ ϕ ∈ H1

0(Ω), (3.36)

where we have used the fact that lim
x→∞

xq−4 ln x = 0 since q < 4. Since Ω is strictly star-shaped, we know

from Pohozaev’s identity that w̃0 = 0 (see [31]). Then, applying a similar argument to that of the proof
of Theorem 1.6 in [16], one obtains µ = bS 2, a contradiction with bS 2 < µ < 2bS 2. Therefore, {un} is
bounded, and problem (1.1) has a nontrivial weak solution. The proof is complete.
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