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Abstract: In this article, we mainly study the global existence of multiple positive solutions for the
logarithmic Schrödinger equation with a Coulomb type potential

−∆u + V(εx)u = λ(Iα ∗ |u|p)|u|p−1 + u log u2 in R3,

where u ∈ H1(R3), ε > 0, V is a continuous function with a global minimum, and Coulomb type energies
with 0 < α < 3 and p ≥ 1. We explore the existence of local positive solutions without the functional
having to be a combination of a C1 functional and a convex semicontinuous functional, as is required in
the global case.
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1. Introduction

Recently, some studies have focused on the nonlinear Schrödinger equation

iε∂tΨ = −ε2∆Ψ + (V(x) + w)Ψ − λ(Iα ∗ |Ψ|p)|Ψ|p−1 − Ψ log |Ψ|2, (1.1)

where Ψ : [0,∞) × RN → C,N ≥ 3, α ∈ (0,N), p > 1, λ is a physical constant and Iα is the Riesz
potential, defined for x ∈ RN \ {0} as

Iα(x) =
Aα

|x|N−α
, Aα =

Γ( N−α
2 )

Γ(α2 )πN/22α
.

The problem described in equation (1.1) has various practical applications in fields such as quantum
mechanics, quantum optics, nuclear physics, transport and diffusion phenomena, open quantum systems,
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effective quantum gravity, theory of superfluidity, and Bose-Einstein condensation. Notably, periodic
potentials V can play a significant role in crystals and artificial crystals formed by light beams. While
the logarithmic Schrödinger equation has been excluded as a fundamental quantum wave equation
based on precise neutron diffraction experiments, there is ongoing discussion regarding its suitability
as a simplified model for certain physical phenomena. The existence and uniqueness of solutions for
the associated Cauchy problem have been investigated in an appropriate functional framework [1–3],
and orbital stability of the ground state solution with respect to radial perturbations has also been
studied [4–6]. The results regarding the wave equation can be referred to in [7–10].

In the Schrödinger equation, the convolution term involve the Coulomb interaction between electrons
or interactions between other particles. In Schrödinger equations with convolution terms, this term
typically represents the potential energy arising from interactions between particles. Physically, it
implies that particles are influenced not only by external potential fields but also by the potential fields
created by other particles. These interactions could involve electromagnetic forces, gravitational forces,
or other types of interactions depending on the nature of the system. The introduction of the convolution
term adds complexity to the Schrödinger equation because particle interactions are often non-local,
extending across the entire spatial domain [11]. Overall, Schrödinger equations with convolution terms
provide a more realistic description of interactions in multi-particle systems, enabling a more accurate
understanding and prediction of the behavior of microscopic particles under mutual influences.

Understanding the solutions of the elliptic equation

− ∆u + V(εx)u = λ(Iα ∗ |u|p)|u|p−1 + u log u2 in RN (1.2)

holds significant significance in the examination of standing wave solutions for equation (1.1). These
standing wave solutions, characterized by the form Φ(t, x) = eiwt/εu(x), play a crucial role in various
contexts and provide valuable insights into the behavior and properties of the equation.

In 2018, C. O. Alves and Daniel C. de Morais Filho [12] focus on investigating the existence and
concentration of positive solutions for a logarithmic elliptic equation −ε2∆u + V(x)u = u log u2, in RN ,

u ∈ H1
(
RN

)
,

where ε > 0, N ≥ 3 and V is a continuous function with a global minimum. To study the problem,
the authors utilize a variational method developed by Szulkin for functionals that are a sum of a C1

functional with a convex lower semicontinuous functional.
In 2020, Alves and Ji [13] investigated the existence of multiple positive solutions for a logarithmic

Schrödinger equation  −ε2∆u + V(x)u = u log u2, in RN ,

u ∈ H1
(
RN

)
,

where ε > 0, N ≥ 1 and V is a continuous function with a global minimum. By employing the variational
method, the study demonstrates that when the parameter ε is sufficiently small, the number of nontrivial
solutions is influenced by the ”shape” of the graph of the function V .

In recent years, many authors have studied the nonlinear Schrödinger equation with the potential V .
In 2022, Guo et al. [14] utilized fractional logarithmic Sobolev techniques and the linking theorem to
elucidate existence theorems for equations with logarithmic nonlinearity. Further, a recent study [15]
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delineates conditions for a singular nonnegative solution in bounded Rn domains (n ≥ 2), providing
comprehensive insights into its behavior.

Inspired by the outcomes observed in the aforementioned papers, in this paper we aim to investigate
the existence of multiple positive solutions for the problem (1.2) when N = 3, λ > 0 and 1 ≤ p ≤ 2∗. It is
noteworthy that the introduction of a convolution term presents a notable aspect. The difficulty arises in
analyzing the unique existence of solutions to the energy functional when both the convolution term and the
logarithmic term operate concurrently. Addressing this challenge involves employing specialized analytical
techniques, setting it apart from the methods utilized in [13], marking a novel approach.

In this paper, we shall prove the existence of solution for (1.2) in H1(R3). The associated energy
functional of (1.2) will be defined as Jε : H1(R3)→ (−∞,+∞),

Jε(u) =
1
2

∫
R3

(|∇u|2 + (V(εx) + 1)u2)dx −
λ

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x − y|3−α
dxdy −

∫
R3

H(u)dx, (1.3)

where ∫
R3

H(u)dx =

∫
R3
−

u2

2
dx +

u2 log u2

2
dx, ∀u ∈ R3,

with

H(u) =

∫ u

0
s log s2ds = −

u2

2
+

u2 log u2

2
,

and
L(u) =

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x − y|3−α
dxdy.

Given the infinite character and lack of C1 smoothness of the functional Jε, a new approach is
required to find weak solutions since traditional methods are not effective here. In this scenario, the
fundamental element of our approach lies in harnessing the groundbreaking minimax method introduced
by Szulkin [16]. Furthermore, we will employ the Gagliardo-Nirenberg inequality [17, 18], the Brezis-
Lieb lemma [19], and other specifically techniques for handling the nonlinear Coulomb potential,
culminating in a robust result of strong convergence.

In our research, the potential V is based on the following assumptions [13]:
1◦. V : R3 → R is a continuous function such that

lim
|x|→+∞

V(x) = V∞.

with 0 < V(x) < V∞ for any x ∈ R3.
2◦. There are l points z1, · · · , zl in R3 with z1 = 0 such that

1 = V(zi) = min
x∈R3

V(x), for 1 ≤ i ≤ l.

By employing the variational method, we can establish the existence of non-trivial solutions for the
logarithmic Schrödinger equation with a Coulomb-type potential when ε is sufficiently small (ε > 0).
This outcome is contingent upon the distinctive characteristics of the graph of the function V .

A positive solution of problem (1.2) means that there exists a positive function u ∈ H1(R3)\{0} satisfy
u2 log u2 < +∞ and∫

R3
∇u · ∇v + V(εx)u · vdx = λ

∫
R3

(Iα ∗ |u|p)|u|p−1vdx +

∫
R3

uv log u2, for all v ∈ C∞0
(
R3

)
.
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The main result is as follows.
Suppose that V satisfies 1◦ and 2◦. There exists ε∗ > 0 such that problem (1.2) has l positive soutions

in H1(R3) for ε ∈ (0, ε∗).
The paper is organized as follows. In Section 2. we present several preliminary results that will be

employed in the proofs of our main theorems. In Section 3. we prove the main result which are in the
local case. In Section 4. we generalize the local results to the global space.

Notation: Henceforth, in this paper, unless otherwise specified, we adopt the following notations:

• BR(u) denotes an open ball centered at u with a radius of R > 0.
• If g is a measurable function, the integral

∫
RN g(x)dx will be denoted by

∫
g(x)dx.

• C, C1, C2 etc. will denote positive constants of negligible importance with respect to their exact
values.
• LR(u) denotes the function L(u) within the ball BR(0).
• ‖ · ‖p denotes the usual norm of the Lebesgue space Lp(R3), for p ∈ [1,+∞).
• on(1) denotes a real sequence with on(1)→ 0 as n→ +∞.
• The expression

!
· dxdy denotes

∫
RN

∫
RN · dxdy.

• 2∗ = 2N
N−2 .

2. Preliminaries

In this section, we give some results and technical tools used for the main results.
First, we define the effective domain of J,

D(Jε) := {u ∈ H1(R3) : Jε(u) < +∞}.

Considering the problem

− ∆u + V(0)u = λ(Iα ∗ |u|p)|u|p−1 + u log u2 in R3, (2.1)

the corresponding energy functional associated to (2.1) is

J0(u) =
1
2

∫
(|∇u|2 + (V(0) + 1)u2)dx −

λ

2p

"
|u(x)|p|u(y)|p

|x − y|3−α
dxdy −

1
2

∫
u2 log u2dx.

And define the Nehari manifold

Σ0 =
{
u ∈ D (J0) \(0) : J′0(u)u = 0

}
,

where
D (J0) = {u ∈ H1(R3) : J0(u) < +∞}.

The problem (2.1) has a positive solution attained at the infimum,

c0 := inf
u∈Σ0

J0(u),

which will be proved in the Lemma 3. We shall additionally utilize the energy level

c∞ := inf
u∈Σ∞

J∞(u),
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through replacing V(0) by V∞, and

Σ∞ =
{
u ∈ D (J∞) \(0) : J′∞(u)u = 0

}
,

it is clear that
c0 < c∞.

Regarding to the values of c0 and c∞, it should be noted that they correspond to the critical levels of
the functionals J0 and J∞, commonly referred to as the Mountain Pass levels.

Based on the approach discussed in previous studies [12, 20, 21], we address the issue of J0 and J∞
lacking smoothness by decomposing them into a sum of a differentiable C1 functional and a convex
lower semicontinuous functional, respectively. Following by [13], to facilitate this decomposition, for
δ > 0, we define the following functions:

F1(s) =


0, s = 0,
−1

2 s2 log s2, 0 < |s| < δ,
−1

2 s2
(
log δ2 + 3

)
+ 2δ|s| − 1

2δ
2, |s| ≥ δ,

and

F2(s) =

0, |s| < δ,
1
2 s2 log

(
s2/δ2

)
+ 2δ|s| − 3

2 s2 − 1
2δ

2, |s| ≥ δ.

Therefore
F2(s) − F1(s) =

1
2

s2 log s2, ∀s ∈ R. (2.2)

The functionals J0, J∞ : H1(R3)→ (−∞,+∞] can be reformulated as an alternative form denoted by

J0(u) = Φ0(u) + Ψ(u) and J∞(u) = Φ∞(u) + Ψ(u), u ∈ H1(R3) (2.3)

where
Φ0(u) =

1
2

∫
(|∇u|2 + (V(0) + 1)|u|2)dx −

λ

2p
L(u) −

∫
F2(u)dx (2.4)

Φ∞(u) =
1
2

∫
(|∇u|2 + (V∞ + 1)|u|2)dx −

λ

2p
L(u) −

∫
F2(u)dx (2.5)

and
Ψ(u) =

∫
F1(u)dx. (2.6)

The properties of F1 and F2, as demonstrated in [20] and [21], can be summarized as follows:

F1, F2 ∈ C1(R,R). (2.7)

For δ > 0 small enough, F1 is convex, even, F1(s) ≥ 0 for all s ∈ R and

F′1(s)s ≥ 0, s ∈ R. (2.8)

For each fixed q ∈ (2, 2∗), there is C > 0 such that∣∣∣F′2(s)
∣∣∣ ≤ C|s|q−1, ∀s ∈ R. (2.9)
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Utilizing the information provided earlier, it can be deduced that the functional Ψ possesses the
properties of convexity and lower semicontinuity. Additionally, we can observe that the function Φ

belongs to the class of C1 functions.
As we’ve discussed earlier, solutions to equation (1.2) within a localized context can be addressed

through conventional techniques. However, the situation undergoes a transformation when we expand
our scope to encompass the entire space. Within this broader perspective, it becomes apparent that the
functional Ψ lacks the characteristic of continuous differentiability (C1). This particular case necessitates
the application of a novel and separate critical point theorem. In the subsequent section, dedicated to
the global case, it becomes essential to introduce definitions that were originally presented in the work
referenced as [16].

Let J be a C1 functional defined on Banach space X, we say that {un} is a Palais-Smale sequence of
J at c ((PS )c sequence, for short) if

J (un)→ c, and J′ (un)→ 0, as n→ +∞ (2.10)

Let E be a Banach space, E′ be the dual space of E and 〈·, ·〉 be the duality paring between E′ and E.
Let J : E → R be a functional of the form J(u) = Φ(u) + Ψ(u), where Φ ∈ C1(E,R) and Ψ is convex
and lower semicontinuous. Let us list some definitions:

1. The sub-differential ∂J(u) of the functional J at a point u ∈ H1
(
RN

)
is the following set

{w ∈ E′ : 〈Φ′(u), v − u〉 + Ψ(v) − Ψ(u) ≥ 〈w, v − u〉,∀v ∈ E} (2.11)

2. A critical point of J is a point u ∈ E such that J(u) < +∞ and 0 ∈ ∂J(u), i.e.,

〈Φ′(u), v − u〉 + Ψ(v) − Ψ(u) ≥ 0,∀v ∈ E (2.12)

3. A PS sequence at level d for J is a sequence (un) ⊂ E such that J (un)→ d and there is a numerical
sequence τn → 0+ with

〈Φ′ (un) , v − un〉 + Ψ(v) − Ψ (un) ≥ −τn ‖v − un‖ , ∀v ∈ E (2.13)

4. The functional J satisfies the PS condition at level d ((PS )d condition, for short) if all PS sequences
at level d has a convergent subsequence.

As [21] Lemma 2.2, J is of class C1 in H1(Ω) with Ω is a bounded domian. Hence we can
construct the mountain pass structure and find the boundedness of the (PS ) sequence without using the
decomposition method in the local case, which is different from [12, 13, 20, 21].

In order to make the subsequent theorem proof involving the whole space situation clearer, we explain
some necessary concepts here. Henceforward, for every ω ∈ D(J0), the functional J1

0(w) : H1
c

(
R3

)
→ R

given by 〈
J′0(w), z

〉
= 〈Φ′V(w), z〉 +

∫
F′1(w)z, ∀z ∈ H1

c

(
R3

)
and ∥∥∥J′0(w)

∥∥∥ = sup
{〈

J′0(w), z
〉

: z ∈ H1
c

(
R3

)
, and ‖z‖v ≤ 1} .
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If
∥∥∥J′0(ω)

∥∥∥ is finite, then J′0(w) can be extended to a bounded operator in H1(R3) and can be therefore be
viewed as an element of

(
H1(R3)

)′
.

If {un} ⊂ D(J)\{0} is a (PS ) sequence for Jε, then J′ε (un) un = on(1) ‖un‖V . If {un} is bounded, we
have

Jε (un) = Jε (un) −
1
2

J′ε (un) un + on(1) ‖un‖V

=
1
2

∫
|un|

2 dx +
λ

2
(1 −

1
p

)L(un) + on(1) ‖un‖V , ∀n ∈ N.

3. The local case

In this section, we provide the proof of the existence of l nontrivial critical points for Jε,R to equation
(1.2) on a local case, which constitutes the preliminary step necessary for our main result. This serves
as the foundational work leading up to our primary outcome.

Fix R0 > 0 such that zi ∈ BR0(0) for all i ∈ {1, · · · , l}. So for all R > R0 and u ∈ H1 (BR(0)),

Jε,R(u) =
1
2

∫
BR(0)

(|∇u|2 + (V(εx) + 1)u2)dx −
λ

2p
LR(u) −

1
2

∫
BR(0)

u2 log u2dx.

For any u, v ∈ H1(BR(0)), it is easy to verify that Jε,R ∈ C1
(
H1(BR(0)),R

)
and

J′ε,R(u)v =

∫
BR(0)
∇u · ∇vdx + V(εx)uvdx − λ

∫
BR(0)

(Iα ∗ |u|p)|u|p−1vdx −
∫

BR(0)
uv log u2dx.

The local space H1(BR(0)) is endow with the norm

‖u‖V =

(∫
BR(0)

(|∇u|2 + (V(εx) + 1)u2)dx
) 1

2

which is also a norm in H1(R3).
According to the definition of V-norm and H1-norm, we have the following inequality

C1‖u‖H1 ≤

(∫
(|∇u|2 + (V(εx) + 1)u2)dx − λL(u)

1
2

) 1
2

≤ ‖u‖V ≤ C2‖u‖H1 .

One can see that V-norm is equivalent to H1-norm.
In the subsequent analysis, we denote Σε,R as the Nehari manifold correspond to Jε,R, which can be

defined as follows:

Σε,R =
{
u ∈ H1(B)\

{
0}, J′ε,R(u)u = 0

}
=

{
u ∈ H1(B)\{0}, Jε,R(u) =

1
2

∫
BR(0)

u2 +
λ

2
(1 −

1
p

)LR(u)
}
.

For all ε > 0, R > R0, Jε,R has the Mountain Pass geometry.
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Proof. (i) Recall that

Jε,R(u) =
1
2

∫
BR(0)

(|∇u|2 + (V(εx) + 1)u2)dx −
λ

2p
LR(u) −

1
2

∫
BR(0)

u2 log u2dx. (3.1)

Following by the Hardy-Littlewood-Sobolev inequality and Sobolev imbedding, we obtain

LB(u) ≤
"

|u(x)|p|u(y)|p

|x − y|N−α
dxdy ≤

(∫
|u|

2N p
N+α dx

) N+α
N

≤ C‖u‖2p
V , (3.2)

where N+α
N < p < N+α

N−2 . And for q > 2 small and u > 0, we have∫
u2 log u2dx ≤ Cq

∫
|u|q ≤ ‖u‖qV . (3.3)

Hence, by (3.1),(3.2) and (3.3), it follows that

Jε,R(u) ≥
1
2
‖u‖2V − λC1‖u‖

2p
V −C2‖u‖

q
V > C > 0,

for a constant C > 0, and ‖u‖V > 0 small enough.
(ii) Fix u ∈ D(J)\{0} with supp u ⊂ BR(0), and for s > 0, λ > 0, we have

Jε,R(su) =
1
2

∫
BR(0)

(s2|∇u|2 + s2(V(εx) + 1)u2)dx −
λ

2p
s2pLR(u) −

1
2

s2 log s2
∫

BR(0)
u2dx

−
1
2

s2
∫

BR(0)
u2 log u2dx

≤s2
(
1
2

∫
BR(0)

(|∇u|2 + (V(εx) + 1)u2)dx − log s
∫

BR(0)
u2dx −

1
2

∫
BR(0)

u2 log u2dx
)
.

Because of the boundness of Jε,R, there exist three bounded terms in the right side of the above inequality,
except for the third term. Therefore, we obtain that Jε,R(u)→ −∞ as s→ +∞. So there exists s0 > 0
independent of ε > 0 small enough and R > R0 such that Jε,R (s0u) < 0.

All (PS ) sequence of Jε,R are bounded in H1(BR(0)).

Proof. Let {un} ⊂ H1(BR(0)) be a (PS )d sequaence. Then,

|un|
2
L2(BR(0)) + λ(1 −

1
p

)LR (un) ≤ 2Jε,R (un) − J′ε,R (un) un

= 2d + on(1) + on(1) ‖un‖V

≤ C + on(1) ‖un‖V .

(3.4)

for some C > 0. And we ultilize the following logarithmic Sobolev inequality [11],∫
u2 log u2 ≤

a2

π
‖∇u‖2

L2(RN) +

(
log ‖u‖2

L2(RN) − N(1 + log a)
)
‖u‖2

L2(RN) (3.5)
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for all a > 0. By taking a2

π
= 1

2 , ξ ∈ (0, 1) and combining (3.4) and(3.5) we get∫
BR(0)

u2
n log u2

n ≤
1
4
‖∇un‖

2
2 + C (1 + ‖un‖V)1+ξ . (3.6)

Above all, for some ξ ∈ (0, 1),

d + on(1) = Jε,R (un) =
1
2

∫
BR(0)
|∇un|

2 +
1
2

∫
BR(0)

(V (εx) + 1) u2
n −

λ

2p
LR (un)

−
1
2

∫
BR(0)

u2
n log u2

n

≥ C ‖un‖
2
V − (1 + ‖un‖V)1+ξ

−
λ

2p
LR (un) .

By (3.4) we have λ
2p LR (un) ≤ λ

2 (1 − 1
p)LR (un) ≤ C + on(1) ‖un‖V , α ∈ ( N

2 ,N); p ∈ (2, N+α
N−2 ) therefore it

implies that
C ‖un‖

2
V ≤ C (1 + ‖un‖V)1+ξ + C + on(1) ‖un‖V ,

which means ‖un‖V ≤ C, i.e. (un) is bounded in H1(BR(0)).

Fix u0 , 0, u0 ∈ H1(BR(0)) and
∫

u2
0 log u2

0dx > −∞. According to

cε,R = inf
γ∈Γ

sup
t∈[0,1]

Jε,R(γ(t)) ≤ sup
t>0

Jε,R (tu0) = D0.

where the definition of the path set γ is given in the lemma 3 and D0 is a uniform constant. Hence we
obtain {un} is also bounded in H1(R3).

Now, for a fixed u ∈ D(J0)\{0}, and t > 0. Define the function

t → φ(t) := Jε(tu).

Via computation, we have

φ′(t) = t
(∫

(|∇u|2 + V(εx)u2)dx − λt2p−2L(u) − 2 log t
∫

u2dx −
∫

u2 log u2dx
)
.

Setting f (t) = λat2p−1 + 2b log t, for a, b > 0 and p > 1. In the following, we prove that there exists an
unique critical point t̃, with t̃ > 0, at which the function φ attains its maximum positive value.
1◦. According to Mountain Pass Geometry, there exists t̃ > 0 such that f (t̃) = 0, i.e. φ′

(
t̃
)

= 0.
2◦. Since f ′(t) = (2p − 1)λat2p−2 + 2b

t > 0, we know that the function f is a monotonically increasing
function, and furthermore, this means that φ reaches a positive maximum at the unique critical point t̃.
Hence, for any u ∈ D(Jε)\{0}, the intersection of every path {tu; t > 0} forms a set

Σε =

{
u ∈ D(Jε)\{0}; Jε(u) =

1
2

∫
u2dx +

λ

2
(1 −

1
p

)L(u)
}

exactly at the unique point t̃u. Moreover, t̃ = 1 if and only if

u ∈ Σε
(
t̃ = 1 ⇐⇒ φ′(t̃) = J′ε(t̃u)u = J′ε(u)u = 0

)
.
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Based on the energy levels shown above, the following results are obtained. For ε ≥ 0,

cε = inf
u∈Σε

Jε(u). (3.7)

Proof. Let
Γ := {γ ∈ C([0, 1],H1(R3)) : γ(0) = 0, J(γ(1)) < 0}

we can define the mountain pass energy level

c := inf
η∈Γ

sup
t∈[0,1]

J(η(t)).

Let u ∈ Σε , we consider Jε (t0u) < 0 for some t0 > 0. Then for the continuous path γε(t) = t · t0u, we
have

inf
γ∈Γ

sup
t∈[0,1]

Jε (γε(t)) = cε ≤ max
t∈[0,1]

Jε (γε(t)) ≤ max
t>0

Jε(tu) = Jε(u).

Hence
cε ≤ inf

u∈Σε
Jε(u). (3.8)

On the other hand, we will prove that cε ≥ infu∈Σε Jε(u). Take a (PS ) sequence {un} ⊂ H1(R3) for Jε .
By Lemma 3, (un) is bounded in H1(R3). We claim ‖un‖2 9 0. By contradiction, if ‖un‖2 → 0, using
interpolation, ‖un‖q → 0, for any q ∈ [2, 2∗). Because

∣∣∣F′2(s)
∣∣∣ ≤ C|s|q−1, then∫

F′2 (un) un → 0,

and using Hardy-Littlewood-Sobolev inequality again, we obtain L (un)→ 0. Recall that

‖un‖
2
V +

∫
F′1 (un) undx = J′ε (un) un + λL (un) +

∫
u2

ndx +

∫
F′2 (un) undx

= on(1) ‖un‖V + λL (un) +

∫
u2

ndx +

∫
F′2 (un) undx

= on(1),

(3.9)

from where it follows that ‖un‖V → 0 and
∫

F′1 (un) un → 0.
Since F1 is convex, even and F1(t) ≥ F1(0) = 0, for all t ∈ R, we derive that 0 ≤ F1(t) ≤ F′1(t)t for

all t ∈ R. Hence F1(un) → 0 in L1(R3). Then Jε(un) → Jε(0) = 0, which contradicts to cε > 0. Our
claim is proved. Hence, there are constants b1 and b2 such that

0 < b1 ≤ ‖un‖2 ≤ b2. (3.10)

Next, let tn ∈ (0, 1), tnun ∈ Σε , and recalling that

Jε (tnun) =
1
2

∫
|tnun|

2 dx +
λ

2
(1 −

1
p

)L (tnun)

=
1
2

t2
n

∫
|∇un|

2 dx + (V(εx) + 1)u2
ndx −

λ

2p
t2p
n L (un) −

1
2

t2
n log t2

n

∫
u2

ndx

−
1
2

t2
n

∫
u2

n log u2
ndx.

(3.11)
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and
J′ε(un)un =

∫
(|∇un|

2 + V(εx)u2
n)dx − λL (un) −

∫
u2

n log u2
ndx.

Then we get

λ
(
t2p−2
n − 1

)
L (un) + log t2

n

∫
u2

ndx = J′ε(un)un = on(1)‖un‖V .

According to (3.10) and L(u) ≥ 0, this equation implies tn → 1. In addition, by (3.11) and Remark 2 we
have

inf
u∈Σε

Jε(u) ≤ Jε (tnun) =
t2
n

2

∫
u2

ndx +
λ

2
(1 −

1
p

)t2p
n L (un)

≤ t2
n

(
1
2

∫
u2

ndx +
λ

2
(1 −

1
p

)L (un)
)

= t2
n (Jε (un) + on(1) ‖un‖V) .

Therefore, taking the limit we get
inf
u∈Σε

Jε(u) ≤ cε .

The functional Jε,R satisfies the (PS ) condition.

Proof. Take a (PS ) sequence {un} ⊂ H1(BR(0)), it means that

Jε,R (un)→ d,

J′ε,R (un) un = on(1) ‖un‖V .

By Lemma 3, we know there exists {un} ⊂ H1(BR(0)), and a subsequence of un, which still denoted by
itself such that ‖un‖V , i.e.

un → u in H1 (BR(0)) ,

un → u in Lq (BR(0)) ,∀q ∈ [1, 2∗) ,

un → u a.e. in BR(0).

From [13], we set f (t) = t log t2, F(t) =
∫ t

0
f (s)ds = 1

2

(
t2 log t2 − t2

)
for all t ∈ R and for p ∈ (2, 2∗),

there is C > 0 such that
| f (t)| ≤ C

(
1 + |t|p−1

)
, ∀t ∈ R

and
|F(t)| ≤ C (1 + |t|p) , ∀t ∈ R.

In addition, by definition of the norm in H1(BR(0)), we get

‖un − u‖2V =

∫
|∇ (un − u)|2 dx + (V(εx) + 1) |un − u|2 dx,

J′ε,R (un) (un − u) =

∫
∇un∇ (un − u) dx + V(εx)un (un − u) dx − λ

∫ (
Iα ∗ |un|

2
)
|un − u| undx
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−

∫
(un − u) un log u2

ndx

=

∫
|∇ (un − u)|2 dx + V(εx) |un − u|2 dx − λ

∫ (
Iα ∗ |un − u|2

)
|un − u|2 dx

−

∫
f (un) |un − u| dx = on(1).

Hence, it is easy to see that∫
|∇ (un − u)|2 dx + V(εx) |un − u|2 dx =λ

∫ (
Iα ∗ |un − u|2

)
|un − u|2 dx

+

∫
f (un) (un − u) dx + on(1)

=on(1).

It implies that
‖un − u‖V → 0,

which means the sequence {un} satisfies (PS ) condition.

In fact, Theorem 3 concerns the existence of multiple solutions for equation (1.2) on a ball, which is
crucial for the study of the existence of multiple solutions on the entire space as we desire. In order to
prove this crucial result, we first present several lemmas. Next, we use the tricks in [13], by constructing
l small balls and finding the center of mass, it plays a key role in the proof of the following theorem.

Fix ρ0 > 0 so that it satisfies Bρ0 (zi)∩Bρ0

(
z j

)
= φ for i , j, i, j ∈ {1, · · · , l} and

⋃l
i=1 Bρ0 (zi) ⊂ BR0(0).

Denote K ρ0
2

=
⋃l

i=1 B ρ0
2

(zi), and define the functional Qε : H1
(
R3

)
\{0} → R3 by

Qε(u) =

∫
χ(εx)g(εx)|u|2dx∫

g(εx)|u|2dx

where χ : R3 → R3 is given by χ(x) =

x, |x| ≤ R0.

R0
x
|x| , |x| > R0.

and g : R3 → R3 is a radial positive continuous

function with
g (zi) = 1, i ∈ {1, · · · , l} and g(x)→ 0, as |x| → +∞.

The next lemma provides a useful way to generate (PS )c sequence associated with Jε . There exist
α0 > 0, ε0 > 0, and R0 > 0 such that ε1 ∈ (0, ε0) small enough and R1 > R0 large enough, if u ∈ Σε,R and
Jε,R(u) ≤ c0 + α0, then Qε(u) ∈ K ρ0

2
for any ε ∈ (0, ε1) and R ≥ R1.

Proof. We prove this lemma by contradiction. If there is αn → 0, εn → 0 and Rn → ∞, un ∈ Σεn,Rn

satisfies
Jεn,Rn(u) ≤ c0 + αn,

but
Qε(un) < K ρ0

2
.
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By definition of c0 and Lemma 3, c0 ≤ cεn,Rn , it is easy to see that

c0 ≤ cεn,Rn ≤ Jεn,Rn(un) ≤ c0 + αn

which means JεnRn (un) = cεn,Rn + on(1). Denote the functional Ψεn,Rn : H1 (
BRn(0)

)
→ R by

Ψεn,Rn(u) = Jεn,Rn(u) −
1
2

∫
BRn (0)

|u|2 −
λ

2
(1 −

1
p

)LR(u).

It implies that
Σεn,Rn =

{
u ∈ H1 (BR(0)) \{0} : Ψεn,Rn(u) = 0

}
.

Via computation, we obtain

Ψ′εn,Rn
(u)u = −

∫
|u|2 − λ(p − 1)L(u) ≤ −β, ∀n ∈ N,

where β > 0 to guarantee cεn,Rn > 0. Without loss of generality, we have the above conditions. We can
then proceed to apply the Ekeland Variational Principle from Theorem 8.5 in [22], assuming that∥∥∥J′εn,Rn

(un)
∥∥∥→ ∞, as n→ ∞.

Now, from Jεn,Rn (un) = 1
2

∫
BRn (0)

|un|
2 dx + λ

2 (1 − 1
p)LRn (un) ≥ c0 > 0, we have lim infn→∞ Rn > 0. And

according to Section 6 in [12] , there are two cases:

1. un → u , 0 in L2
(
RN

)
, and u ∈ H1

(
RN

)
.

2. There exists (yn) ⊂ RN such that vn = un (· + yn) −→ v , 0 in L2
(
RN

)
, and v ∈ H1

(
RN

)
.

For case (1), recall that our assumption ε→ 0, χ(0) = 0 and g(0) = 1

Qεn (un) =

∫
χ (εnx) g (εnx) |un|

2 dx∫
g (εnx) |un|

2 dx
→

∫
χ(0)g(0) |un|

2 dx∫
g(0) |un|

2 dx
= 0 ∈ K ρ0

2
.

This contradicts to Qεn < K ρ0
2

.
For case (2), there are two different situations. If |εnyn| → +∞, then J′∞(v)v ≤ 0. Thus, for s ∈ (0, 1]
such that sv ∈ Σ∞,

2c∞ ≤ 2J∞(sv) = 2J∞(sv) − J′∞(sv)sv

=

∫
|sv|2 + λ(1 −

1
p

)
"

s2p |v|
p(x)|v|p(y)
|x − y|N−α

dxdy

≤

∫
|v|2 + λ(1 −

1
p

)
"

|v|p(x)|v|p(y)
|x − y|N−α

dxdy

≤ lim inf
n→+∞

∫
|vn|

2 + λ(1 −
1
p

)
"

|vn|
p(x)|vn|

p(y)
|x − y|N−α

dxdy

= lim inf
n→+∞

∫
|un|

2 + λ(1 −
1
p

)
"

|un|
p(x)|un|

p(y)
|x − y|N−α

dxdy

= lim
n→∞

2Jεn,Rn (un) = 2c0,
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which contradicts c0 < c∞. If εnyn → y for some y ∈ RN , and some subsequence. In this case, the
functional JV : H1(RN

)
→ R is given by

JV(u) =
1
2

∫
(|∇u|2 + (V(y) + 1)u2)dx −

λ

2p

"
|un|

p(x)|un|
p(y)

|x − y|N−α
dxdy −

1
2

∫
u2 log u2dx,

and cV is the moutain pass level of JV . Similar as before,

cV = inf
u∈ΣV

JV(u),

where

ΣV =

{
u ∈ D (JV) \{0} : JV(u) =

1
2

∫
u2 +

λ

2
(1 −

1
p

)
"

|u|p(x)|u|p(y)
|x − y|N−α

dxdy
}
.

If V(y) > 1 = mini V (xi) , i ∈ {1, · · · , l}, then

cV > c0,

but according to the previous arguments
cV ≤ c0,

which is a contradiction. So V(y) = 1 and y = zi for i ∈ {1, · · · , l}.

Qεn (un) =

∫
χ (εnx) g (εnx) |un|

2 dx∫
g (εnx) |un|

2 dx
=

∫
χ (εn (x + yn)) g (εn (x + yn)) |vn|

2 dx∫
g (εn (x + yn)) |vn|

2 dx

→

∫
χ(zi)g(zi)|v|2dx∫

g(zi)|v|2dx
= zi ∈ K ρ0

2
.

This is contrary to our initial hypothesis, and the proof is done.

In the following, for simplicity, we indicate the following notations.

Ωi
ε,R ,

{
u ∈ Σε,R : |Qε(u) − zi| < ρ0

}
,

∂Ωi
ε,R ,

{
u ∈ Σε,R : |Qε(u) − zi| = ρ0

}
,

αi
ε,R , inf

u∈Ωi
ε,R

Jε,R(u),

α̃i
ε,R , inf

u∈∂Ωi
ε,R

Jε,R(u).

For γ ∈
(

c∞−c0
8 , c∞−c0

2

)
, there exists ε2 ∈ (0, ε1) small enough such that

αi
ε,R < c0 + γ and αi

ε,R < α̃
i
ε,R

for all ε ∈ (0, ε2) , and R ≥ R1(ε) > R0.
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Proof. Let u ∈ H1
(
R3

)
be a ground state solution of J0, that is for u ∈ Σ0,

J0(u) = inf
u∈Σ0

J0(u) = c0, and J′0(u) = 0.

For any i ∈ {1, · · · , l}, there exists ε1 > 0 such that∣∣∣∣∣Qε

(
u
(
· −

zi

ε

))
− zi

∣∣∣∣∣ < ρ, ∀ε ∈ (0, ε1) .

Fix R > R1 = R1(ε) and tε,R > 0 such that ui
ε,R(x) = tε,RϕR(x)u

(
x − zi

ε

)
∈ Σε,R,∣∣∣∣Qε

(
ui
ε,R

)
− zi

∣∣∣∣ < ρ, ∀ε ∈ (0, ε1) and R > R1,

and
Jε,R

(
ui
ε,R

)
≤ c0 +

α0

8
, ∀ε ∈ (0, ε1) , R > R1, (3.12)

where ϕR(x) = ϕ
(

x
R

)
with ϕ ∈ C∞0

(
R3

)
, 0 ≤ ϕ(x) ≤ 1 for all x ∈ R3, ϕ(x) = 1 for x ∈ B 1

2
(0) and ϕ(x) = 0

for x ∈ Bc
1(0). So

ui
ε,R ∈ Ωi

ε,R ∀ε ∈ (0, ε2) and R > R1.

Take the infimum for (3.12), thanks to α0 <
c∞−c0

2 , Jε,R ≤ c0 + α0 <
c∞+c0

2 , we get

αi
ε,R < c0 +

α0

4
< c0 + γ. (3.13)

Now let c∞−c0
8 < γ < c∞−c0

2 , then the first inequality is done. Next, if u ∈ ∂Ωi
ε,R, then there is

u ∈ Σε,R and |Qε(u) − zi| = ρ0 >
ρ0

2
,

hence Qε(u) < K ρ0
2

. By Lemma 3, we have

Jε,R(u) > c0 + α0 (3.14)

for u ∈ ∂Ωi
ε,R and ε ∈ (0, ε2), R ≥ R1. Take the infimum for (3.14) we obtain

α̃ε1R = inf
∂Ωε,R

Jε,R(u) ≥ c0 + α0, ∀ε ∈ (0, ε2) , R ≥ R1. (3.15)

Above all, from (3.13) and (3.15)

αi
ε,R < α̃

i
ε,R for ε ∈ (0, ε2) , and R ≥ R1,

where ε2 ∈ (0, ε1).

For ε∗ ∈ (0, ε2) small enough and R1 = R1(ε) > R0 large enough, there exist at least l nontrival
critical points of Jε,R for ε ∈ (0, ε0) and R ≥ R1. Moreover, all of the solutions are positive.
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Proof. From Lemma 3, for ε∗ ∈ (0, ε2) small enough and R1 > R0 large enough, there is

αi
ε,R < α̃

i
ε,R for ε ∈ (0, ε∗) for R ≥ R1.

As stated Theorem 2.1 in [23], the inequalities mentioned above enable us to employ Ekeland’s
variational principle to establish the (PS )αi

ε,R
sequence

(
ui

n

)
⊂ Ωi

ε,R for Jε,R. Following by Lemma 3,
since αi

ε,R < c0 + γ, there is ui such that ui
n → ui in H1 (BR(0)). Then

ui ∈ Ωi
ε,R, Jε,R

(
ui
)

= αi
ε,R, J′ε,R

(
ui
)

= 0.

Recall that
Bρ0(zi) ∩ Bρ0(z j) , φ, i , j,

and

Qε

(
ui
)
∈ Bρ0(zi)

Qε ∈ K ρ
2

=

l⋃
i=1

B ρ
2
(zi)

 .
We have ui , u j, i , j, i, j ∈ {1, · · · , l}. If we decrease γ and increase R1 when necessary, we can assume
that

2cε,R < c0 + γ.

for ε ∈ (0, ε∗) ,R ≥ R1. So all of the solutions do not charge sign, and because the function f (u) =

u log u2 is odd, we make them nonnegative. The maximum principle implies that any solution to a given
equation or system of equations within the open ball BR(0) will necessarily be positive throughout the
entire ball, provided that it is positive on the boundary.

4. Existence of solution for the original equation

In this section, we prove the existence of solution for the original equation (1.2).
For v ∈ H1 (

BRn(0)
)
, ui

n = ui
ε,Rn

be a solution obtained in Theorem 3.∫
BRn

∇ui
n∇v + V(εx)ui

nv = λ

∫
BRn

(Iα ∗
∣∣∣ui

n

∣∣∣p)|ui
n|

p−1vdx +

∫
BRn

ui
n log

∣∣∣ui
n

∣∣∣2 vdx,

Jε,Rn

(
ui

n

)
= αi

ε,Rn
, ∀n ∈ N.

There exists ui ∈ H1
(
R3

)
satisfies ui

n ⇀ ui in H1(R3) and ui , 0, i ∈ {1, · · · , l}.

Proof. From Lemma 3, we know that {αi
ε,Rn
} is a bounded sequence,

Jε,Rn

(
ui

n

)
= αi

ε,Rn
< c0 + γ

which implies that {ui
n} is a bounded sequence. So we can assume that ui

n ⇀ ui for some ui ∈ H1
(
R3

)
.

Next, we prove ui , 0. In the following, we use {un} and {αn} to denote {ui
n} and {αi

ε,Rn
} for convenience.
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To continue, let us utilize the Concentration Compactness Principle, originally introduced by Lions [13],
applied to the following sequence.

ρn(x) :=
|un(x)|2

‖un‖
2
2

, ∀x ∈ R3.

This principle guarantees that one and only one of the following statements is true for a subsequence for
{ρn}, which we will still refer to as {ρn}:
(Vanishing) For all K > 0, one has:

lim
n→+∞

sup
y∈RN

∫
BK (y)

ρndx = 0; (4.1)

(Compactness) There exists a sequence {yn} in R3 with the property that for all ε > 0, there exists K > 0
such that for all n ∈ N, one has: ∫

BK (yn)
ρndx ≥ 1 − η; (4.2)

(Dichotomy) There exists {yn} ⊂ R
N , α ∈ (0, 1), K1 > 0, Kn → +∞ such that the functions ρ1,n(x) =

χBK1 (yn)(x)ρn(x) and ρ2,n(x) := χBc
Kn

(yn)(x)ρn(x) satisfy:∫
ρ1,ndx→ α and

∫
ρ2,ndx→ 1 − α. (4.3)

Our goal is to demonstrate that the sequence {ρn} satisfies the Compactness condition, and to achieve
this, we will exclude the other two possibilities. By doing so, we will arrive at a contradiction, thus
proving the proposition.

The vanishing case (4.1) can not occur, otherwise we deduce that ‖un‖p → 0, and consequently∫
F′2 (un) un < ∞. By employing the same reasoning as in the previous section, it can be proven that

un → 0 in H1(R3). However, this contradicts the fact that αn ≥ c1 for all n ∈ N, as stated in Lemma 3.
The Dichotomy case (4.3) can not occur. Let us assume that the dichotomy case holds, under this

assumption, we claim that the sequence {yn} is unbounded. If this were not the case and {yn} were
bounded, then in that situation,utilizing the fact that ‖un‖L2(R3) 9 0, the first convergence in (4.3) would
lead to ∫

BK1 (yn)
|un|

2 dx = |un|
2
2

∫
R3
ρ1,ndx > δ,

for some δ > 0 and n large enough. Therefore, taking R′ > 0 such that BK1 (yn) ⊂ BR′(0) for all
n ∈ N, it follows that

∫
BR′ (0)

|un|
2dx ≥ δ, for all n sufficiently large.Becauseun → 0 in L2 (BR′(0)), the

inequality above is impossible. As a result, {yn} is an unbounded sequence. In the following, denote:

vn(x) := un (x + yn) , x ∈ R3.

Since the boundness of the sequence (vn) ⊂ H1(R3
)

and up to subsequence, we may assume that vn ⇀ v.
By the first part of (4.3), v . 0 holds.
Claim4.1. F′1(v)v ∈ L1

(
R3

)
and J′∞(v)v ≤ 0. For η ∈ C∞0 (R3), 0 ≤ η ≤ 1, η ≡ 1 in B1(0) and η ≡ 0 in

B2(0)c, we define ηR := η
(
·

R

)
and v = ηR (· − yn) un, we get∫

∇vn∇ (ηRvn) dx + (V (ε (x + yn)) + 1) v2
nηRdx +

∫
F′1 (vn) vnηRdx
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=

∫
F′2 (vn) vnηRdx + λ

∫
(Iα ∗ |vn|

p) |vn|
pηRdx + on(1).

If we fix R and go to the limit in the above equation when n→ ∞, we get∫
|∇v|2ηRdx + v∇ηR · ∇vdx + (V∞ + 1) v2ηRdx +

∫
F′1(v)vηRdx

≤

∫
F′2(v)vηRdx + λ

∫
(Iα ∗ |v|p) |v|pηRdx

where |∇ηR| ≤
2
R , using that F′1(t)t ≥ 0 for all t ∈ R, and Fatou’s lemma as R→ +∞, we obtain∫

|∇v|2dx + (V∞ + 1) v2dx − λ
∫

(Iα ∗ |v|p) |v|pdx +

∫
F′1(v)vdx

−

∫
F′2(v)vdx ≤ 0,

that is J′∞(v)v ≤ 0.
On this account, there exists t∞ ∈ (0, 1] such that t∞v ∈ Σ∞, then

c∞ ≤ J∞ (t∞v) =
t2
∞

2

∫
|v|2dx +

λ

2
(1 −

1
p

)t2p
∞ L(v)

≤ lim inf
n→+∞

[
1
2

∫
|vn|

2 dx +
λ

2
(1 −

1
p

)L (vn)
]

≤ lim sup
n→+∞

[
1
2

∫
|un|

2 dx +
λ

2
(1 −

1
p

)L (un)
]

= lim sup
n→+∞

Jεn,Rn (un)

= lim sup
n→∞

αn ≤ c0 + γ.

But we have γ < c∞ − c0, it is absurd. Hence, there is no dichotomy, and in fact compactness must hold.
We make the last requirement to achieve our aim.
Claim4.2. The sequence of points {yn} ⊂ R

3 in (4.2) is bounded.
To establish this claim, we employ a proof by contradiction by assuming that the sequence of {yn} is
bounded. However, by considering a subsequence, we observe that |yn| → +∞. Following a similar
approach as in the case of the Dichotomy, where {yn} was unbounded, we eventually arrive at the
inequality c0 + γ ≥ c∞.

For a given η > 0, there is R > 0 such that∫
Bc

R(0)
ρndx < η, ∀n ∈ N,

that is ∫
Bc

R(0)
|un|

2 dx ≤ η |un|
2
2 ≤ η sup

n∈N
|un|

2
2 = bη.
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Therefore, for R1 ≥ max {R,R′}, since un → 0 in L2 (
BR1(0)

)
, there is n0 ∈ N large enough such that∫

BR1 (0)
|un|

2 dx ≤ η, ∀n ≥ n0.

Thereby, we conslude ∫
|un|

2 dx ≤ η +

∫
Bc

R1
(0)
|un|

2 dx ≤ η + bη ≤ Cη,

where C / η. Due to the arbitrary nature of η, we can deduce that un → 0 in L2
(
R3

)
. By interpolation

on the Lebesgue spaces and {un} is bounded in H1(R3), it follows that

un → 0 in Lp
(
R3

)
, 2 ≤ p < 2∗.

Using the trick that for some p > 1 small, t log t ≤ Ctp, it implies that∫
u2

n log u2
n → 0.

For p ∈ (3+α
3 , 3 + α), the sequence {‖un‖p}n∈N converges to ‖u‖p in the sense of measures, {un}n∈N

converges to u almost everywhere, the sequence {Iα ∗ |un|p}n∈Nis bounded in L2(R3) and u , 0.
From Proposition 4.8 in [24], since un ∈ D(J)\{0} then we have

lim
n→∞

∫
R3

Iα ∗ |un|
p)|un|

p − (Iα ∗ |un − u|p) |un − u|p =

∫
(Iα ∗ |u|p)|u|p. (4.4)

Above all, Jε,Rn (un) = αn → 0, which contradicts αn ≥ cε > 0, for all n ∈ N.

Proposition 4 yields a direct corollary as follows. For ε ∈ (0, ε∗) small, considering each sequence
{ui

n} ⊂ H1
(
R3

)
as stated in Proposition 4, we have ui , 0 and J′ε

(
ui
)

v = 0 for all v ∈ C∞0
(
R3

)
, i.e. Jε

has a nontrival weak solution ui. Moreover, for i ∈ {1, · · · , l},

Qε

(
ui

n

)
−→ Qε

(
ui
)
. (4.5)

And since
Qε

(
ui

n

)
∈ Bρ0 (zi), ∀n ∈ N,

we have
Qε

(
ui
)
∈ Bρ0 (zi). (4.6)

Proof. By Proposition 4, ui , 0, i ∈ {1, · · · , l} and ui
n → ui in Lp

1oc

(
R3

)
for p ∈ [2, 2∗), we obtain that∫

ui
n log

∣∣∣ui
n

∣∣∣2 vdx→
∫

ui log
∣∣∣ui

∣∣∣2 vdx, ∀v ∈ C∞0
(
R3

)
Besides, as in Proposition 4 and (4.4), we have

lim
n→∞

∫
R3

(Iα ∗ |ui
n|

p)|ui
n|

p−1v − (Iα ∗ |ui
n − ui|p)|ui

n − ui|p−1v =

∫
R3

(Iα ∗ |ui|p)|ui|p−1v,
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for all v ∈ C∞0 (R3). And since∫ (
∇ui

n · ∇v + (V(εx) + 1)ui
nv

)
dx→

∫
(∇ui · ∇v + V(εx) + 1)uiv)dx,

for all v ∈ C∞0
(
R3

)
. We conclude that J′ε

(
ui
)

v = 0 for all v ∈ C∞0
(
R3

)
. By definition of g we have

g(x)→ 0 as |x| → +∞, it is clear that∫
χ(εx)g(εx)

∣∣∣ui
n

∣∣∣2 dx −→
∫

χ(εx)g(εx)
∣∣∣ui

∣∣∣2 dx

and ∫
g(εx)

∣∣∣ui
n

∣∣∣2 dx→
∫

g(εx)
∣∣∣ui

∣∣∣2 dx.

Under the condition that these two limits hold, (4.5) and (4.6) are guaranteed.

Next, we give a proof of Theorem 1, that is, there exist l solutions ui ∈ H1
(
R3

)
\{0}.

Proof of Theorem 1.
According to Corollary 4, for i ∈ {1, · · · , l} and ε ∈ (0, ε∗), there exists a solution ui ∈ H1

(
R3

)
\{0} for

problem (1.2) such that
Qε

(
ui
)
∈ Bρ0 (zi).

Because we have
Bρ0 (zi) ∩ Bρ0(z j) = φ, i , j.

Then it implies that ui , u j for i , j.
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