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1. Introduction

In this paper, we study the Hamiltonian vector field (denoted also by XH)

q̇ j =
∂H
∂p j
, ṗ j = −

∂H
∂q j
, (1.1)

j = 1, . . . ,m, generated by the following Hamilton function:

H =
1
2

(
|z1|

2 + |z2|
2
− |z3|

2
)
+
(
|z2|

2 + |z3|
2
)

Re (z2z3) + |z1|
2 Re (z̄1 (z2 + εz̄3)) , (1.2)

where z j = q j + ip j, i =
√
−1, m = 3, and ε is a complex parameter.

Note that the linear part of system (1.1) at the origin z = 0 has eigenvalues ±i, each with multiplicity
3, but with trivial Jordan cells. Thus, all solutions of the corresponding linear system are 2π−periodic.
Moreover, the quadratic part

F =
1
2

(
|z1|

2 + |z2|
2
− |z3|

2
)

(1.3)

of H is indefinite, with the Morse index (the number of negative terms) equal 2.
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Theorem 1. System (1.1), with the Hamilton function (1.2), does not have periodic solutions near
z = 0 of period ≈ 2π for ε in a neighborhood of the origin in C ≃ R2 minus a finite collection of real
analytic curves.

Let us remind ourselves of the history of the problem of small-amplitude periodic solutions to
autonomous differential systems. It has begun with Lyapunov theorems (see [1, 2]); we present the last
of them.

Consider an autonomous differential system

ẋ = Ax + . . . , x ∈ (Rn, 0) , (1.4)

with analytic right-hand sides such that the matrix A has pure imaginary eigenvalues

±iω1, . . . ,±iωm, ω j > 0, (1.5)

m = n
2 , and one of the frequencies, say ω1, is such that none of the other frequencies is is an integer

multiple of it; thus
ω j/ω1 < Z, j ≥ 2. (1.6)

One can define formal obstructions to the existence of a 1–parameter family of periodic solutions
of period ≈ 2π/ω1. For this, one uses the so-called Poincaré–Dulac normal form. There exists a formal
invariant surfaceV tangent to the invariant plane E for A with the eigenvalues ±iω1 and one defines so-
called Poincaré–Lyapunov focus quantities, which constitute obstructions to the existence of a formal
first integral onV.

Lyapunov proved that:

in this case, if all the focus quantities vanish, then there exists a family of periodic solutions
x = ϕ (t; c) , c ∈ (R+, 0) , of period T (c)→ 2π/ω1 as c→ 0, depending analytically on c, and such that
ϕ (t; 0) ≡ 0.

In the case n = 2, this result was independently proved by Poincaré [3] and is known as the
Lyapunov–Poincaré theorem.

The Lyapunov theorem has attracted the attention of specialists in the Hamiltonian dynamics. Note
that, in the Hamiltonian case, the above-mentioned obstructions are absent, because H restricted to the
invariant plane V is a suitable first integral. Therefore, inequalities (1.6) are the only assumption of
the Hamiltonian version of the Lyapunov theorem.

Assume that system (1.1) has equilibrium point q = p = 0 with the eigenvalues ±iω1, . . . ,±iωm,

ω j > 0. Assuming H (0) = 0 the leading part of the Taylor expansion of the Hamilton function is

F =
∑ 1

2
ϵ jω j

(
q2

j + p2
j

)
, (1.7)

where q j, p j are suitable canonical variables, i.e., with the Poisson brackets
{
pi, q j

}
= δi j, and ϵ j = ±1

are well defined signs. *

*We have ḟ = { f ,H} in the case of a general Hamiltonian system with the symplectic structure defined by a Poisson bracket.
In particular, for z j = q j+ip j and z̄ j = q j−ip j,we have

{
z j, zk

}
=
{
z̄ j, z̄k

}
= 0 and

{
z j, z̄k

}
= 2iδ jk. Thus ż j =

{
z j, z̄ j

}
∂H/∂z̄ j = 2i·∂H/∂z̄ j.

Also the resonant monomials g = zαz̄β form the Birkhoff theorem satisfy {g, F} = 0.
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D. Schmidt [4] studied 1–parameter families of periodic solutions for such systems with two degrees
of freedom in the cases of resonant frequencies ω1 and ω2. His analysis was mainly focused on definite
Hamiltonians, i.e., when ϵ1 = ϵ2, but he also considered the situation near the Lagrangian libration
point in the restricted three-body problem, where the Hamilton function is indefinite. He did not refer
to the Lyapunov theorem.

A. Weinstein [5] has applied the Lusternik–Schnirelmann category to prove that:

if the quadratic part F of H is positive definite, i.e., all ϵ j = 1 in Eq. (1.7), then the vector
field XH has at least m = n

2 1–parameter families of periodic solutions.

In [5], it was stated that each hypersurface {H = c} , c > 0, contains at least m periodic trajectories;
but, in the analytic case, these trajectories form families parametrized by c.

The positive definiteness of the F condition is important, because we have the following example
from the book [6, Example 9.2] by J. Mawhin and J. Willem.

Example 1. Let

H =
1
2

(
|z1|

2
− |z2|

2
)
+ |z|2 Re (z1z2) . (1.8)

It generates the system

ż1 = iz1 (1 + 2Re (z1z2)) + i |z|2 z̄2, ż2 = −iz2 (1 − 2Re (z1z2)) + i |z|2 z̄1.

One finds
d
dt

Im (z1z2) = 2 [Re (z1z2)]2 + |z|4 ,

which excludes the existence of nontrivial periodic solutions.

Next, J. Moser has somehow specified Weinstein’s result, but his statements were not precise and
his own example [7, Example 2] was confusing; see also my discussion of Moser’s approach in Remark
1 in the next section.

Next, this subject was brought up by specialists in nonlinear functional analysis. In particular, A.
Szulkin [8] considered the case when one of the frequencies, say ω1, of multiplicity k, is such that
condition (1.6) holds for all ω j , ω1 and ∑

ω j=ω1

ϵ j , 0, (1.9)

i.e., the Morse index m− (F1) (= the number of minuses) of the quadratic form F1 = F restricted to
the invariant subspace E1 associated with the eigenvalues ±iω1 differs from m+ (F1) = m− (−F1) . He
claimed that:

then there exists a sequence {γn (t)} of non-constant periodic solutions to the system ẋ = XH (x)
tending to γ (t) ≡ 0 of periods tending to 2π/ω1.†

†His (not very long) proof is quite technical, i.e., with many homological groups in an infinite dimensional context.
There is also another paper [9] by E. N. Dancer and S. Rybicki, where the Szulkin’s statement is confirmed and generalized. The

corresponding ‘bifurcations’ are investigated in the context of S1− invariant Hamiltonian systems. There some S1–equivariant indices
and degrees are defined and used.
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In the case of the quadratic part of the Hamiltonian (1.2), we have m− (F) = 2 and m+ (F) = 4;
hence, our Theorem 1 contrasts with the Szulkin’s claim.

Szulkin’s statement was used by other specialists in this field: E. Pérez-Chavela, A. Gołȩbiewska,
S. Rybicki, D. Strzelecki, and A. Ureña, see [10, 11] for example. Fortunately, those results are correct,
because the corresponding Hamiltonians restricted to the center manifold are positive-definite.

Finally, it worth mentioning the paper of S. van Straten [12], where the number of 1–parameter
families is calculated in the cases of Hamiltonians of the form

H =
1
2
|z|2 + H2d (z, z̄) ,

where H2d is a generic homogeneous polynomial of degree 2d in the Birkhoff normal form.

In the next section, we recall some tools developed in [2], e.g., we replace our dynamical problem
with a suitable algebraic problem, and in the third section, we complete the proof of Theorem 1.

2. Birkhoff normal form, twisted Poincaré map and symplectic reduction

The aim of this section is to reformulate the problem of small-amplitude periodic solutions to some
algebraic problem.

Proposition 1. The small-amplitude periodic solutions of system (1.1) of period ≈ 2π with H given in
Eq. (1.2) correspond to small solutions of the following system:

r2Im (u + εv̄) = 0
uRe (2uv − 3r (u + εv̄)) +

(
|u|2 + |v|2

)
v̄ + r3 = 0

vRe (2uv + 3r (u + εv̄)) +
(
|u|2 + |v|2

)
ū + εr3 = 0

(2.1)

for
r > 0

and complex u and v.

Before proving this statement, we present some tools introduced in [2].

2.1. Birkhoff normal form

Recall that the Hamiltonian system generated by a Hamilton function with the quadratic part (1.7)
takes the form

ż j = λ jz j + . . . = iϵ jω jz j + . . . , v̇ j = −λ jv j + . . . = −iϵ jω jv j + . . . ,

where z j = q j+ ip j and v j = q j− ip j; in the real domain, we have v j = z̄ j.We assume that the right-hand
sides are analytic.
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G. Birkhoff [13] proved that there exists a formal symplectic change (z, v) 7−→ (Z,V) which reduces
the Hamilton function to the following Birkhoff normal form:

F (Z,V) +
∑

ak;lZkV l,

where the summation runs over the pairs (k; l) = (k1, . . . , km; l1, . . . , lm) ∈ Zm
≥0 × Z

m
≥0 such that the

resonant relations
(k − l, λ) =

∑(
k j − l j

)
λ j = 0

hold, and |k| + |l| ≥ 3.
Note that the Hamiltonian (1.1) is in the Birkhoff normal form.

From the dynamical point of view, the property of H being in the Birkhoff normal form means that
the Hamiltonian flow

{
gt

XH

}
commutes with the Hamiltonian flow

{
gs

XF

}
generated by the quadratic part

F of H; thus, {H, F} = 0. The second flow is the following:

z j 7−→ eiϵ jω j sz j, j = 1, . . . ,m.

2.2. Return system

Assume firstly that
ω1 = ω2 = . . . = ωm = ω, (2.2)

i.e., all solutions to the corresponding linear system defined by F are 2π/ω−periodic, and

ϵ1 = 1.

Moreover, assume that the Birkhoff normal form is analytic (or that the analytic Hamilton function is
in the Birkhoff normal form). We look for periodic solutions close to periodic solutions of the linear
approximation of period ≈ 2π/ω.

Such a periodic solution, of period T = 2π/η with η ≈ ω, is of the form z j (t) ≈ c jeiϵ jηt, where c j are
small constants, not all of which equal zero. Assume that c1 , 0. The angle θ = arg z1 is of the form
θ (t) ≈ θ0 + ϵ1ηt + θ1 (t) (where θ1(t) is small, 2π/η−periodic) and varies along the whole S1 = R/Z.
Therefore, the phase curves are graphs of functions of θ :

|z1| = r = r (θ) , z j = z j (θ) , ( j > 1) ,

which are 2π−periodic.
We define the Poincaré return map

P : S 7−→ S ,

where S = (R+, 0) ×
(
Cm−1, 0

)
is the Poincaré section. This amounts to putting z1 = reiθ, writing down

equations for dr/dθ = ṙ/θ̇ and for dz j/dθ, j > 1, (elimination of time), and evaluating the solution after
the new time 2π of a corresponding initial value problem. Since θ̇ ≈ ϵ1ω , 0, the return time to the
section S is ≈ 2π/ω, and the map P is well defined.

The fixed points of this map correspond to periodic orbits of the Hamiltonian system of period
≈ 2π/ω. Other periodic orbits of P correspond to periodic orbits of XH of period being approximately
a multiple of 2π/ω.
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Moreover, due to the analyticity of the right-hand sides of the differential equations for r and z j’s,
the equilibrium points of the return system are of two types:

equal (r, z) = (0, 0) , i.e., there are no nontrivial periodic solutions; or
a real analytic subvariety of

(
R+ × C

m−1, (0, 0)
)

of positive dimension, usually a 1–dimensional
curve.

Now we slightly change our point of view. We apply the following change:

z1 = reiθ, z j = w jeiϵ jθ, ( j > 1) , (2.3)

where r ≥ 0 and w j ∈ (C, 0). This is the same as the action of the flow
{
gs

XF

}
generated by the quadratic

part F of H (see the previous section). In fact, the variables r and w j are invariant for the flow
{
gs

XF

}
.

The property of commuting of the two Hamiltonian flows (as H is in the Birkhoff normal form)
implies that corresponding differential equations, after elimination of the time, take the form

dr
dθ
= Π (r,w, w̄) ,

dw j

dθ
= Λ j (r,w, w̄) , (2.4)

i.e., the right-hand sides do not depend on θ. We call system (2.4) the return system. We define the
twisted Poincaré map Ptw via solutions of Eqs. (2.4) after the new time 2π.

Of course, the fixed points of the twisted Poincaré map are the fixed points of the twisted Poincaré
map. Among them are the equilibrium points of the return system, i.e., defined by the equations
Π = Λ2 = . . . = Λm = 0.

Assume now that the hyperplane {z1 = 0} is invariant; this means that the right-hand side of the
equation for ż1 lies in the ideal generated by z1 and z̄1. For the return system, it means that ṙ is divided
by r and θ̇ = ω+. . .; thus,Π(r,w) = rΠ̃(r,w), with analytic Π̃. (The opposite case is more complicated.)

We claim that:

Under the invariance of the hyperplane {z1 = 0} assumption, the fixed points, being the
equilibrium points of the return system, are the only fixed points of the twisted Poincaré map in a
neighborhood of the origin.

Indeed, other fixed points of Ptw would correspond to (nontrivial) closed phase curves of the return
vector field; moreover, of period 2π/k for an integer k. In fact, such periodic curves should lie in
analytic families, {γc}c∈(R+,0) (by the analyticity of the right-hand sides). The period of γc is calculated
as follows:

T (c) =
∫
γc

dθ =
∫
γc

dr
Π (r,w)

.

But Π (r,w) = rΠ̃(r,w) and is of high order, ≥ 2. If the variables r, w j, w̄ j at γc are of given orders of
c, e.g., r ∼ cα → 0, then T (c) ∼ c−β → ∞ as c→ 0.

By the way, such solutions would not approximate the corresponding solutions of the linear system
(like in the Weinstein theorem).

Recall that the solutions to the system Π = Λ2 = . . . = Λm = 0 are of two types:
(i) equal (r, z) = (0, 0); or
(ii) a real analytic variety of positive dimension, usually a 1–dimensional curve.
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Example 2. (Example 1 revisited). The Hamiltonian (1.8) is in Birkhoff normal form. The change
(2.3) means

z1 = reiθ, z2 = we−iθ.

We have the following return system:

dr
dθ
=
−r
(
r2 + |w|2

)
Imw

r +
(
3r2 + |w|2

)
Rew
,

dw
dθ
= i

(
5r2 + |w|2

)
wRew + r2

(
r2 + |w|2

)
r +
(
3r2 + |w|2

)
Rew

.

Its equilibrium points are defined by: either r = 0, and then w = 0; or Imw = 0, i.e., Rew = w,
and hence

(
5r2 + |w|2

)
|w|2 + r2

(
r2 + |w|2

)
= 0, and then again r = w = 0. So, there are no nontrivial

equilibrium points.
But the differential system from Example 1 does not have invariant planes; so, one needs an

additional argument provided in Example 1.

2.3. Proof of Proposition 1

Recall that the Hamiltonian (1.1) is in Birkhoff normal form. It generates the system

ż1 = i
{
z1 (1 + 2Rez̄1 (z2 + εz̄3)) + |z1|

2 (z2 + εz̄3)
}
,

ż2 = i
{
z2 (1 + 2Re (z2z3)) +

(
|z2|

2 + |z3|
2
)

z̄3 + |z1|
2 z1

}
,

ż3 = i
{
z3 (−1 + 2Re (z2z3)) +

(
|z2|

2 + |z3|
2
)

z̄2 + ε |z1|
2 z̄1

}
.

(2.5)

One can see that neither of the coordinate 4–spaces {z2 = 0} , {z3 = 0} nor of the coordinate planes{
z j = zk = 0

}
is invariant, but the subspace {z1 = 0} is invariant.

However, system (2.5) restricted to the subspace {z1 = 0} , i.e., the last two equations, is the same as
the system from Example 1, which is without periodic solutions.

Therefore, we can introduce the variables r ≥ 0, θ, u, v (analogues of the variables (2.3)) via the
formulas

z1 = reiθ, z2 = ueiθ, z3 = ve−iθ,

or r = |z1| , θ = arg z1, u = z̄1z2/ |z1| , v = z1z3/ |z1|. In fact, we have r > 0.
We get

θ̇ = 1 + 3rRe (u + εv̄) (2.6)

and
ṙ = −r2Im (u + εv̄) ,
u̇ = i

{
uRe (2uv − 3r (u + εv̄)) +

(
|u|2 + |v|2

)
v̄ + r3

}
,

v̇ = i
{
vRe (2uv + 3r (u + εv̄)) +

(
|u|2 + |v|2

)
ū + εr3

}
.

(2.7)

By the arguments given in Section 2.2 the small-amplitude periodic solutions to our Hamiltonian
system of period ≈ 2πare in one-to-one correspondence with the equilibrium points of the above
system.

But the right-hand sides of system (2.7) are the left-hand sides of Eqs. (2.1).
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Note also that the period of a periodic solution z1(t) ≈ r0eit, z2 (t) ≈ u0eit, z2 (t) ≈ v0e−it,
corresponding to an eventual equilibrium point (r0, u0, v0) , equals

T =
∫ 2π

0

dθ
1 + 3r (θ) Re (u (θ) + εv̄ (θ))

=
2π

1 + 3r0Re (u0 + εv̄0)
,

where r (θ) ≡ r0, u (θ) ≡ u0 and v (θ) ≡ v0 are solutions to the corresponding return system with the
initial condition r (0) = r0, u (0) = u0, v (0) = v0.

Finally, since the right-hand sides of Eqs. (2.7) are homogeneous, eventual equilibrium points
are not isolated. They should form 1–dimensional straight semi-lines, corresponding to 1–parameter
families of periodic solutions to the Hamiltonian system. □

2.4. Symplectic reduction

We complete this section with a short discussion of the additional elements of the novel approach
to the problem started in [2], which are potentially interesting to the reader.

In [2, Proposition 6], it was proved that a Hamiltonian in the Birkhoff normal form, under
assumptions (2.2), is invariant with respect to the following action of circle S1 :

z = (z1, . . . , zm) 7−→ σϕ (z) =
(
eiϵ1ϕz1, . . . , eiϵmϕzm

)
, 0 ≤ ϕ ≤ 2π. (2.8)

Action (2.8) is symplectic, it is a periodic phase flow generated by the Hamilton function F (z, z̄) ,
i.e., the homogeneous quadratic part of H.

We deal with the classical phenomenon called symplectic reduction (see [14]). The function F,
called momentum mapping, is the first integral for the Hamiltonian vector field XH system. So, we
take the invariant manifolds

M f = {F(z, z̄) = f } , (2.9)

and their quotients
N f = M f /S

1 (2.10)

of dimension 2m − 2. The latter varieties are smooth and equipped with a natural symplectic structure
and support vector fields Y f obtained from the Hamiltonian vector field XH. Each vector field Y f is
Hamiltonian with the Hamilton function π∗H = π∗F + π∗G, where π : M f 7−→ N f is the projection and

G = H − F (2.11)

contain higher order terms.
The variables (r,w) =

(
r(1),w(1)

)
from Eqs. (2.3) form a local chart in the quotient variety N f . Other

local charts,
(
r(l),w(l)

)
, l > 1, are defined via the formulas

zl = r(l)eiθ, z j = w(l)
j eiϵ jθ/ϵl , ( j , l) ,

where r(l) ≥ 0 and w(l)
j ∈ (C, 0). With each such chart, we associate a corresponding return system, like

system (2.4), whose equilibrium locus either reduces to
(
r(l),w(l)

)
= (0, 0) or is a real analytic set of the

positive dimension (corresponding to some families of periodic solutions with period ≈ 2π/ω).
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In [2, Proposition 8], it was proved that the periodic orbits of XH in M f of period ≈ 2π/ω correspond
to the critical points of the function π∗G on N f .

In the case of a definite (say positive definite) momentum map F, the quotient varieties N f , f > 0,
are complex projective spaces ≃ Pm−1. Here, the number of critical points of π∗G on N f is estimated
from below using the Schnirelmann–Lusternik category; this is the estimate from the Weinstein
theorem. ‡ Moreover, we also have the Poincaré–Hopf formula at our disposal.

But in the case of indefinite Hamiltonians, one cannot use the above topological tools. Here, the
varieties N f are non-compact, and it is easy to find vector fields without singular points on them.

2.5. Generalizations

Following [5, Proof of Theorem 2.1], we consider the following equivalence relation on the set
{ω1, . . . , ωm} of frequencies:

ωi ∼ ω j iff ωi/ω j ∈ Q.

Assume firstly that there is only one equivalent class and H is in analytic Birkhoff normal form.
So, we can write

ω j = p jω0, p j ∈ N, gcd (p1, . . . , pm) = 1. (2.12)

In [2, Proposition 6], it was proved that in this case the Birkhoff normal form is invariant with respect
to the following action of the circle S1 (generalization of action (2.8)):

z = (z1, . . . , zm) 7−→ σϕ (z) =
(
eiϵ1 p1ϕz1, . . . , eiϵm pmϕzm

)
, 0 ≤ ϕ ≤ 2π. (2.13)

This action is also symplectic and its periodic phase flow is generated by the Hamilton function
F (z, z̄), the homogeneous quadratic part of H.

Again, we deal with the symplectic reduction. The function F, called momentum mapping, is
the first integral for the vector field XH. So, we take the invariant manifolds

M f = {F(z, z̄) = f } ,

and their quotients
N f = M f /S

1

of dimension 2m − 2. The latter varieties are equipped with a natural symplectic structure and support
vector fields Y f obtained from the Hamiltonian vector field XH. Each vector field Y f is Hamiltonian
with the Hamilton function π∗H = π∗F + π∗G, where π : M f 7−→ N f is the projection and

G = H − F

contain higher order terms.
But now the quotient varieties N f may be singular, but with with normal singularities (quotients of(
Ck, 0
)

by an action of a finite group). For example, in the cases of positive definite F, the sets M f , f >

‡Weinstein skillfully constructed a function on the level hypersurface Lh = {H (z, z̄) = h} , h > 0, which has critical locus at the set
of periodic phase curves of XH in Lh. His construction is not direct and involves many technical details. The approach from [2] is more
direct.
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0, are diffeomorphic with S2m−1 and their quotients are the weighted projective spaces. Nevertheless,
due to normality, the corresponding functions π∗F, π∗G, and the vector field Y f are well defined.

We have the local charts defined by

zl = r(l)eiθ, z j = w(l)
j eiϵ j p jθ/ϵl pl , ( j , l) ,

and corresponding return systems whose equilibrium points correspond to periodic orbits of XH with
period ≈ 2π/ωk.

Those equilibrium points correspond to the critical points of the function π∗G on N f . Again, in the
case of compact N f , the number of critical points of π∗G on N f is estimated from below using the
Schnirelmann–Lusternik category. In the non-compact case we do not have such tools.

Consider now the case of several equivalent classes for the collection of frequencies.
For each equivalence class Cν we have a linear subspace Eν invariant for the linear part of the

system, but we can say more. In [2, Proposition 3], it was proved that for each such class, there exists
a formal invariant submanifoldVν tangent to Eν at the origin.

Remark 1. Here I would like to comment on Moser’s statement mentioned in the introduction. Let us
recall it (compare [7, Theorem 4]):

‘Assume that R2m = E ⊕ F , where E and F are invariant subspaces of the matrix A defining the
linear part of XH, such that all solutions in E of the linear system have the same period T > 0, while
no nontrivial solution in F has this period. Assume also that the quadratic part F of H restricted to
E is positive definite. Then, on each energy surface {H = c} , c > 0 and small, the number of periodic
orbits of XH is at least 1

2 dimE.’

In [2], I have expressed the opinion that this statement must be wrong. My argument relied upon an
analysis of Moser’s example ([7, Example 2]) with the Hamiltonian H = 1

2

(
|z1|

2
− j |z2|

2
)
+ Re(z1z j

2),
which is not in the Birkhoff normal form and leads to wrong statements. Recently I realized that the
latter example was given with a mistake, and the correct Hamiltonian is

H =
1
2

{
j |z1|

2
− |z2|

2 + z1z j
2 + z̄1z̄ j

2

}
,

where j ≥ 2 is an integer; note that it is in the Birkhoff normal form. We have

d
dt

Im(z1z j
2) = |z2|

2 j + j2 |z1|
2
|z2|

2 j−2 .

The quadratic part is positive definite on the plane {z2 = 0} with periodic solutions for the linear system
of period 2π/ j; other periodic solutions in the plane {z1 = 0} have period 2π. But the corresponding
nonlinear system has only 2π/ j−periodic solutions in {z2 = 0} .

Next, I have assumed that the period T in Moser’s theorem is the minimal period, but the reviewer of
this work has pointed out that I could be wrong. Plausibly, Moser had in mind an invariant subspace E
corresponding to one of Weinstein’s equivalence classes of frequencies. Otherwise, he could not claim
the consequence of Weinstein’s theorem from his statement.

Indeed, consider the case with three frequencies: ω1 = 2, ω2 = 3, and ω3 = 6. Then we have
two invariant linear subspaces: E1 associated with ω1 and ω3 and E2 associated with ω2 and ω3; all
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solutions of the linear system in E1 have period T1 = π, and all solutions in E2 have period T2 = 2π/3.
One can show that there exist corresponding formal invariant subspacesV1 andV2 for XH; moreover,
we have the invariant subspaces E3 = E1 ∩ E2 and V3 = V1 ∩ V2. From the original statement of
Moser’s theorem it follows that there exist many periodic orbits inV1 and inV2, but all of them could
lie inV3 (provided dimE3 > 2).

Finally, I want to note that in [2, Theorem 5], I have specified the Weinstein theorem. It is associated
with the ordering of the different frequencies in one of Weinsten’s equivalence classes.

Remark 2. (a correction) I would like to use this opportunity to make a correction to my previous
paper [2]. Namely, Propositions 3 and 4 in Section 6, about the analytic property of the invariant
submanifolds, are not true, at least without an additional assumption. That assumption is the center
condition, i.e., that there is a family of periodic solutions at the formal level. Of course, everything is
OK when the Poincaré–Dulac–Birkhoff normal forms are analytic.

In the general case, in the proofs of Theorem 4 (in Section 8.2), Theorem 5 (in Section 8.3), and
Theorem 7 (in Section 8.1), one should first use the approximation argument. It relies on the fact that
the general (topological) properties of an analytic curve, defined by the fixed-point equation for the
twisted Poincaré map, are determined by the polynomial approximation of this map. Therefore, we can
approximate the corresponding system by a truncated Poincaré–Dulac or Birkhoff normal form. Then
the corresponding invariant manifolds become analytic.

Moreover, in [2, Eq. (6.2)], the action of S1 (in the case of one equivalence class) was defined
incorrectly; the correct formula is Eq. (2.13)

3. Proof of Theorem 1

We shall show that system (2.1) does not have nontrivial solutions.
Since Eqs. (2.1) are homogeneous and we assume r , 0, we put

r = 1

(dehomogenization); thus, we replace u with ru and v with rv. We get the algebraic system

f := Im (u + εv̄) = 0,
g := u {2Reuv − 3u − 3εv̄} +

(
|u|2 + |v|2

)
v̄ + 1 = 0,

h := v {2Reuv + 3u + 3εv̄} +
(
|u|2 + |v|2

)
ū + ε = 0.

(3.1)

We treat Eqs. (3.1) as a system of five real algebraic equations on six real variables Reε, Imε, Reu,
Imu, Rev, Imv, i.e., in R6. It defines an algebraic variety C ⊂ R6. The projection of the variety C
to the ε−plane is an semi-algebraic variety D ⊂ R2 consisting of those parameters for which there
exists a 1−parameter family of periodic solutions to the perturbed Hamiltonian system near z (t) ≈(
reit, rueit, rve−it

)
. For ε’s outside D, there are no such periodic solutions. Our goal is to prove that

the intersection of D with a neighborhood of ε = 0 is 1–dimensional, a union of germs of irreducible
curves (its components).

For this, it is enough to show that the part of the variety C above a neighborhood of ε = 0 is a
1−dimensional algebraic curve, a union of irreducible local curves (components).
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Assume firstly that
ε = 0. (3.2)

Lemma 1. Under assumption (3.2), system (3.1) has three solutions:
ũ0 = 0, ṽ0 = −1;

ũ1,2 = ±

√
3
8

(
4
√

6 − 9
)
≈ ±0.54702, ṽ1,2 =

1
4

(
2 −
√

6
)
≈ −0.11237.

Proof. Indeed, by the first of Eqs. (3.1) we can assume that u is real. Then the third of these
equations factorizes,

u
{
2vRev + 3v + u2 + |v|2

}
= 0.

If u = 0 then the second of Eqs. (3.1) gives the solution (ũ0, ṽ0).
Otherwise, v is also real and we have

u2 = −3v (v + 1) .

Then the second equation gives 3u2 (v − 1)+v3+1 = 0, i.e., −8v3+9v+1 = − (v + 1)
(
−8v + 8v2 − 1

)
=

0, with the additional values v = 1
4

(
2 ±
√

6
)
. But only for v = ṽ1 = ṽ2 =

1
4

(
2 −
√

6
)

the quantity
−3v (v + 1) is positive and gives u = ũ1,2 = ±

√
−3ṽ1 (ṽ1 + 1) form the thesis of the lemma. □

Let now
ε = ε1 + iε2 , 0. (3.3)

We claim that no solution to system (3.1) bifurcates as ε approaches zero along a generic ray.

Lemma 2. No solution bifurcates from infinity. Namely, there exist ε0 > 0 and R > 0 such that system
(3.1), with |ε| < ε0, does not have solutions in {R < |u| + |v| < ∞} .

Proof. Let us sum up the left-hand side of the second of Eqs. (3.1) multiplied by v and the third
multiplied by u.We get

4uvRe (uv) +
(
|u|2 + |v|2

)2
+ . . . ,

where the dots mean lower-degree terms. This expression is separated from 0 for large |u| + |v| and
small |ε|. □

Therefore, any eventual solution could bifurcate only from one of the points
(
ũ j, ṽ j

)
.

Lemma 3. No solution bifurcates from
(
ũ j, ṽ j

)
, j = 0, 1, 2, as ε varies in a neighborhood of ε = 0

outside a finite number of real analytic curves. Namely, for any δ > 0, there exists ε0 = ε0 (δ) > 0
and a finite collection of germs (Dk, 0) ⊂ (C, 0) of real analytic curves such that, if 0 < |ε| < ε0 and
ε <
⋃

Dk, then system (3.1) does not have solutions in
⋃

j

{∣∣∣u − ũ j

∣∣∣ + ∣∣∣v − ṽ j

∣∣∣ < δ} .
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Proof. Putting
u = ũ j + u1 + iu2, v = ṽ j + v1 + iv2, (3.4)

with ε = ε1 + iε2, we can treat Eqs. (3.1), near
(
ũ j, ṽ j, 0

)
as a system of five real analytic equations in

six real variables u1,2, v1,2 and ε1,2, i.e., in
(
R6, 0
)
.

One solves system (3.1) by successive approximations; first, considering the linear approximation
of system (3.1), we find initial (linear) terms of the Puiseux type expansions of a corresponding
component Ck. Next, one finds several further terms using higher-order terms in system (3.1) and the
linear approximation of Ck, etc. In the expansion of the curves C1 and C2, the corresponding
coefficients will not be exact, only approximate, like the values of ũ1,2 and ṽ1,2 in Lemma 1.

In Case (ũ0, ṽ0) we arrive at the following system:

f = u2 − ε2 + v1ε2 − v2ε1 = 0,

g = 3v1 − 5u2
1 + 2u2

2 + 3ε1u1 − 3ε2u2

+i (−v2 − 7u1u2 + 3ε2u1 + 3ε1u2) + . . . = 0,

h = 4ε1 − u1 + u1u2
2 + u3

1 + i
(
4ε2 − 4u2 − u3

2 − u2
1u2

)
+ . . . = 0,

where the dots in the second equation mean quadratic and cubic terms containing v j and the dots in the
third equation mean cubic terms with v j. The linear parts of these equations define the plane

ε1 =
1
4

u1, ε2 = u2, v1 = v2 = 0;

note that f and Imh have proportional linear parts. This plane is parametrized by u1 and u2; we can
assume that εi and v j are functions of u1,2.

Taking into account nonlinear terms in the second and third equations, with ε1 ≈
1
4u1 and ε2 ≈ u2,

we get
v1 =

17
12u2

1 −
2
3u2

2 + . . . , v2 = −
13
4 u1u2 + . . . ,

ε1 =
1
4u1

(
1 − |u|2

)
+ . . . , ε2 = u2

(
1 + 1

4 |u|
2
)
+ . . . ,

(3.5)

where now the dots mean higher-order terms in u. Then the first equation implies

f =
1

48
u2

(
95u2

1 − 44u2
2

)
+ . . . = 0. (3.6)

Eqs (3.5)–(3.6) define the curve C0. It has three components: one is defined by u2 = O
(
u2

1

)
(and Eqs.

(3.5)), one by u2 =
√

44/95u1 + O
(
u2

1

)
and one by u2 = −

√
44/95u1 + O(u2

1). The projection D0 of C0

has at most three components, defined by:

ε2 = O
(
ε2

1

)
, ε2 = 4

√
95
44
ε1 + O

(
ε2

1

)
, ε2 = −4

√
95
44
ε1 + O

(
ε2

1

)
. (3.7)

Consider Case (ũ1, ṽ1) ≈ (0.54702,−0.11237) . By abuse of notation, we put

ε = ε1 + iε2, ϵ = ε̄ (3.8)
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and replace u, ū, v, and v̄, by

u→ 0.54702 + u, ū→ 0.54702 + w,
v→ −0.11237 + v, v̄→ −0.11237 + t,

(3.9)

respectively.
The notation ≈ above and below will mean that the coefficients are not exact, only approximate.

Dealing with the exact values given in Lemma 1 would lead only to much more complicated
expressions without affecting the conclusions.

We have f = f1 + f2, g = g1 + g2 + . . . , h = h1 + h2 + . . . , where f j, g j, h j are homogeneous
polynomials of degree j. Namely,

2 f1 ≈ u − w + 0.11237 ϵ − 0.11237 ε,
2 f2 = εt − ϵv,

g1 ≈ 0.62372 t − 3.5280 u + 0.31186 v − 0.12294 w + 0.18441 ε,
g2 ≈ −1.6411 tε + 0.33711 uε + 1.094 tu − 0.22474 tv + 1.094 tw + 1.094 uv

−0.22474 uw − 0.11237 t2 − 3.1124 u2,

h1 ≈ 1.3952 v − 2.2 × 10−2 u − 0.12294 t + 0.62372 w + 1.0379 ε,
h2 ≈ −0.33711 tε − 0.33711 vε − 0.22474 tw + 2.7753 uv + 1.094 uw

−0.22474 vw + 0.54702 v2 + 0.54702 w2.

First, we solve the corresponding linear equations. From 2 f1 = 0, we express u as linear function of
w, v, t, ε, ϵ, and substitute it to g1 = 0; then we get w as a linear function of v, t, ε, ϵ, and also u becomes
expressed via v, t, ε, ϵ. Finally, we substitute these u and w to h1 = 0; we get a linear complex equation
for v, t = v̄; by comparing the real and imaginary parts, we get

v ≈ −0.74923 ε1 − 0.63564 iε2 + O
(
|ε|2
)
.

Then we find

u ≈ −0.14148 ε1 + 0.11237 iε2 + O
(
|ε|2
)
, w ≈ −0.14148 ε1 − 0.11237 iε2 + O

(
|ε|2
)
.

We see that u and v become functions of ε1 and ε2.

Moreover, this suggests that w = ū in a linear approximation. If w were not equal ū for all ε j then
the condition w = ū would imply a linear restriction for ε j’s.

Next, we expand the solutions v, u and w in powers of ε j modulo O
(
|ε|3
)
. For this, we firstly express

f2, g2, and h2 via ε j, and then we repeat calculations for v, u, and w.We get

2 f2 ≈ −954.11 iε1ε2 + O
(
|ε|3
)
,

g2 ≈ 65688. ε2
1 + 751.70 iε1 ε2 + 1.0745 ε2

2 + O
(
|ε|3
)
,

h2 ≈ 2.8566 × 105 ε2
1 + 712.06 iε1ε2 − 1.5879 × 10−2 ε2

2 + O
(
|ε|3
)
.

Next, we find

v ≈ −0.74923 ε1 − 0.63564 iε2 − 2.0793 × 105 ε2
1 − 0.11242 ε2

2 − 176.82 iε1ε2
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+O
(
|ε|3
)
,

u ≈ −0.14148 ε1 + 0.11237 iε2 − 35292. ε2
1 + 0.2655 ε2

2 + 253.11 iε1ε2

+O
(
|ε|3
)
,

w ≈ −0.14148 ε1 − 0.11237 iε2 − 35292. ε2
1 + 0.2655 ε2

2 − 701.00 iε1ε2

+O
(
|ε|3
)
.

We see that the real parts of ū and w agree, but the imaginary parts disagree:

ū − w ≈ 447.89 iε1ε2 + O
(
|ε|3
)
. (3.10)

This suggests that the projected curve D1 has two components, one defined by {ε1 ≈ 0} and, the
other defined by {ε2 ≈ 0} ; also, the curve C1 has two components. (If also the real parts of u and w
disagreed, then we would have another restriction on ε j’s.)

Consider now Case (ũ2, ṽ2) ≈ (−0.54702,−0.11237) .We follow the method from the previous case.
Using notations analogous to (3.8)–(3.9), we get

2 f1 ≈ u − w − 0.11237 ϵ + 0.11237 ε, 2 f2 = εt − ϵv,

g1 ≈ 0.62372 t + 3.5280 u + 0.31186 v + 0.12294 w − 0.18441 ε,
g2 ≈ 1.6411 tε + 0.33711 uε − 1.094 tu − 0.22474 tv − 1.094 tw − 1.094 uv

−0.22474 uw − 0.11237 t2 − 3.1124 u2,

h1 ≈ 0.12294 t − 0.62371 u − 1.3952 v + 2.5254 × 10−2 w + 1.0379 ε,
h2 ≈ −0.33711 tε − 0.33711 vε − 1.094 tv − 0.22474 tw + 2.7753 uv

−0.22474 vw − 0.54702 v2 + 0.54702 w2.

The solution of the linear equations gives

v ≈ 0.90062 ε1 + 0.63563 iε2 + O
(
|ε|2
)

and

u ≈ −0.18028 ε1 + 0.11237 iε2 + O
(
|ε|2
)
, w ≈ −0.18028 ε1 − 0.11237 iε2 + O

(
|ε|2
)
.

Again, we find that u and v become functions of ε1 and ε2 and that w ≈ ū in linear approximation.
Substituting the above values into quadratic parts of our equations, we find

2 f2 ≈ 0.52998 iε1ε2 + O
(
|ε|3
)
,

g2 ≈ 1.5682 ε2
1 + 0.43066 iε1ε2 + 1.0745 ε2

2 + O
(
|ε|3
)
,

h2 ≈ −2.2981 ε2
1 − 1.203 iε1ε2 − 0.42613 ε2

2 + O
(
|ε|3
)
.

Then the solutions up to O
(
|ε|3
)

are the following:

v ≈ 0.90062 ε1 + 0.63563 iε2 − 1.8241 ε2
1 − 0.22343 ε2

2
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−0.70624 iε1ε2 + O
(
|ε|3
)
,

u ≈ −0.18028 ε1 + 0.11237 iε2 + 3.7904 × 10−2 ε2
1 − 0.23705 ε2

2

−0.19613 iε1ε2 + O
(
|ε|3
)
,

w ≈ −0.18028 ε1 − 0.11237 iε2 + 3.7904 × 10−2 ε2
1 − 0.23705 ε2

2

+0.33385 iε1ε2 + O
(
|ε|3
)
.

We see that the real parts of w and ū agree, but

ū − w ≈ −0.13772 iε1ε2 + O
(
|ε|3
)
. (3.11)

Like in the previous case, the curve C2 and its projection D2 have two components. □
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