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1. Introduction

The focus of this work is a general nonlinear doubly dispersive wave equation:

utt − Luxx = B(h(u))xx, (x, t) ∈ R × (0,T ) (1.1)

associated with the following initial profile:

u(x, 0) = u0, ut(x, 0) = u1, x ∈ R. (1.2)

Hereafter the nonlinearity h(u) indicates the following:

(H) h(u) = ±α|u|θ or − α|u|θ−1u, α > 0 and θ > 1.

Both L and B are linear pseudo-differential operators that can be respectively written as follows:

F (Lv)(ζ) = l(ζ)F (v)(ζ) (1.3)

and

F (Bv)(ζ) = b(ζ)F (v)(ζ), (1.4)
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whose symbols are l(ζ) and b(ζ) respectively satisfying

c2
1(1 + ζ2)

ρ
2 ≤ l(ζ) ≤ c2

2(1 + ζ2)
ρ
2 , ρ ≥ 0 (1.5)

and
0 < b(ζ) ≤ c2

3(1 + ζ2)
−r
2 , r ≥ 0 (1.6)

for all ζ ∈ R. Henceforth F denotes the Fourier transform and F −1 denotes the inverse Fourier
transform.

We note that Equation (1.1) arose from an integral-type non-locality of elastic materials (see [1,2] and
the references therein for more information about its physical background), and some Boussinesq-type
equations can be covered by Equation (1.1). For example, with the substitutions L = −a∂2

x + 1, B = I
and h(u) = αu2, (1.1) becomes the classical Boussinesq equation:

utt = −auxxxx + uxx + α(u2)xx, (1.7)

for shallow water (see [3]). Liu in [4] demonstrated that the traveling wave for the corresponding (1.7)
may be stable or unstable and established sharp conditions to support this. Using the potential well
method, the qualitative behavior for (1.7) with h(u) = u2 was derived in [5]. Also Equation (1.1) can be
reduced to the improved fourth-order Boussinesq equation:

utt − uxx − uxxtt = (u2)xx, (1.8)

with the selections B = (1 − ∂2
x)
−1,L = (1 − ∂2

x)
−1 and h(u) = u2 in Equation (1.1). Physically, Equation

(1.8) can be used to describe the role of inertia in the one-dimensional lateral dynamics of the elastic
rod [6]. Besides that, a class of fourth-order double-dispersion Boussinesq-type equations with terms
uxxxx and uxxtt given by

utt − uxx − uxxtt + uxxxx = (h(u))xx (1.9)

can also be derived by setting B = (1−∂2
x)
−1 and L = I in Equation (1.1). It is well known that Equation

(1.9) can yield longitudinal strain waves in a nonlinearly elastic rod [6] and has many interesting results
involving the initial data. For example, Liu and Xu in [7] demonstrated the influence of the nonlinearity
as h(u) = |u|p along with the initial data on dynamical behavior for Equation (1.9) with sub-critical and
critical initial energy. Further, a high-order Boussinesq equation written as

utt − uxx − uxxtt + uxxxx + uxxxxtt = (h(u))xx (1.10)

can also be included by setting B = (1 − ∂2
x + ∂4

x)
−1, L = (1 − ∂2

x + ∂4
x)
−1(1 − ∂2

x) and h(u) = |u|p in (1.1),
which can be applied to simulate the surface tension of water waves and the long-time behavior of small
initial data. And the nonlinear scattering for Equation (1.10) when h(u) = up (p > 1) as u → 0 was
established in [8].

From the above statements, we see that the general form, i.e., (1.1), can represent many important
interesting mathematical physics models reflecting the meaningful phenomenon from the real world, and
that the results on such models will deepen our knowledge regarding these physical problems. Hence,
the main goal of our work is to deal with how the structure of the wave Equation (1.1), especially the
dispersive effect induced by its pseudo-differential operator B and L, along with the initial condition
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(1.2), affects the dynamical characteristics of the corresponding solution. In fact, because the pseudo-
differential operators B and L in Equation (1.1) are identical and become a convolution integral operator
of the form

(Bv)(x) = (β ∗ v)(x) =

∫
β(x − y)v(y)dy, (1.11)

the considered Equation (1.1) reduces to

utt − (β ∗ u)xx = (β ∗ h(u))xx,

which was first considered in [2] with β(x) = F −1(b(ζ)) and b(ζ) satisfying (1.6). And the existence of
the local solution and global positive-definite energy solution as well as negative initial energy finite
time blowup were constructed in [2]. After that, some attention is paid to the case of B , L in Equation
(1.1) given that B behaves like case (1.11) with β(x) = F −1(b(ζ)) and b(ζ) satisfies (1.6) or B = I,
whereas the symbol l(ζ) of L is subject to (1.5).

For the case that the symbol l(ζ) of L satisfies (1.5) and B = I, the considered Equation (1.1)
becomes

utt − Luxx = (h(u))xx.

It is noted that for some sufficiently smooth nonlinearities h(u), Babaoglu et al., in [1], established the
local existence of the solution, the existence of the global positive-definite energy solution, and the
global non-existence of the sufficiently negative initial energy solution. Then, some improvements
of [1] were established in [9] and [10] by considering the non-positive-definite energy case due to the
nonlinearities. For the nonlinearity h(u) = −|u|p−1u as one case of (H), the dynamical behavior for low
initial energy was dealt with in [10] with the symbol b(ζ) of B as follows

c2
3(1 + ζ2)

−r
2 ≤ b(ζ) ≤ c2

4(1 + ζ2)
−r
2 , c3, c4 > 0, r ≥ 0, (1.12)

which also satisfies (1.6) considered in our work. In fact we can see that some special cases such as
b(ζ) = c2

3(1 + ζ2)
−r̃
2 with r̃ > r ≥ 0 for all ζ ∈ R can be included in (1.6) but not (1.12). The above

analysis means that some results obtained in [9] and [10] are special cases of our work. In fact, although
we carefully introduced these established related results above, it is still not easy to distinguish the
differences between them from the results of the present paper. Hence we use Table 1 to make it clear.
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Hence our work considers the generalized case that the pseudo-differential operators B and L satisfy
Equations (1.5) and (1.6), respectively. Some typical nonlinear terms like |h(u)| = α|u|p with α > 0
shown in (H) are considered, and the qualitative behavior for non-positive-definite energy (sub-critical,
critical and super-critical levels) is derived. Our work also improves some corresponding results for
those special cases.

The organization of this paper is as follows. Section 2 gives some preliminaries. The global existence
and finite time blowup for E(0) < d and E(0) = d are proved in Section 3 and Section 4, respectively.
Section 5 proves the finite time blowup for E(0) > 0.

2. Setup and notations

Throughout this paper,

‖u‖2Hs =

∫
R

(1 + ζ2)s|û(ζ)|2dζ,

‖u‖ and (u, v) respectively represent the norm of H s := H s(R), the L2 norm and the inner product in L2.
Further, we define K = L

1
2 with κ(ζ) =

√
l(ζ) and Λ−αω = F −1[|ζ |−αFω].

Some preliminaries are first introduced to help us consider the well-posedness for the considered
problem.

Definition 2.1 (Weak solution). A function u(t) ∈ C1(0,T ; H
ρ
2 + r

2 ) with ut ∈ C(0,T ; H
r
2−1) is called a

weak solution to (1.1) and (1.2) if u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1 and

(B−1/2Λ−1utt,B
−1/2Λ−1ω) + (B−1/2Ku,B−1/2Kω) + (h(u), ω) = 0, (2.1)

where ω ∈ C1(0,T ; H
ρ
2 + r

2 ).

Lemma 2.2 ( [9]). Let (H), u0 ∈ H
ρ
2 + r

2 and u1 ∈ H
r
2−1 hold and H(u) =

∫ u

0
h(s)ds hereafter; then, the

following conditions hold:

(i) |uh(u)| = α|u|θ+1, |H(u)| = α
θ+1 |u|

θ+1 for all u ∈ R;
(ii) (θ + 1)H(u) = uh(u) for all u ∈ R.

Lemma 2.3 (Local existence [1]). Let ρ

2 + r ≥ 1, s > 1
2 , u0 ∈ H s, u1 ∈ H s−1− ρ2 and h(u) ∈ C[s]+1(R).

Then there exist some functions T (u0, u1) ∈ [0,Tmax] such that the problem (1.1)-(1.2) have a unique
solution u ∈ C([0,Tmax],H s) ∩C1([0,Tmax],H s−1− ρ2 ). If the maximum time Tmax < ∞, then

lim
t→T−max

sup
(
‖u(t)‖s + ‖ut‖s−1− ρ2

)
= +∞.

Lemma 2.4 (Law of conservation of energy [1]). Let (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, B−1/2Λ−1u1 ∈ L2,

B−1/2Ku0 ∈ L2 and H(u0) ∈ L1. Then, over t ∈ [0,Tmax), we have

E(t) =
1
2
‖B−1/2Λ−1ut‖

2 +
1
2
‖B−1/2Ku‖2 +

∫
R

H(u)dx = E(0). (2.2)

Now some auxiliary functionals and sets for the problem (1.1)-(1.2) are introduced

J(u) =
1
2
‖B−1/2Ku‖2 +

∫
R

H(u)dx, (2.3)
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I(u) = ‖B−1/2Ku‖2 +

∫
R

h(u)udx, (2.4)

W = {u ∈ H
ρ
2 + r

2 |I(u) > 0 } ∪ {0} (2.5)

and

V = {u ∈ H
ρ
2 + r

2 | I(u) < 0}.

The following lemmas provide some properties of the functionals J(u) and I(u) defined above to
consider the depth of the potential well.

Lemma 2.5. Let (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, ‖B−1/2Ku‖ , 0 and

∫
R

uh(u)dx < 0 hold. Then, we have
the following:

(i) limς→0J(ςu) = 0, limς→+∞J(ςu) = −∞;
(ii) Over (0,+∞), there is a unique ς∗ = ς∗(u) assuring that

d
dς
J(ςu) > 0, as 0 < ς < ς∗,

d
dς
J(ςu) = 0, as ς = ς∗,

d
dς
J(ςu) < 0, as ς∗ < ς < +∞

and
max

ς∈(0,+∞)
J(ςu) = J(ς∗u);

(iii) I(ςu) is positive as ς ∈ (0, ς∗), arrives at zero when ς = ς∗ and becomes negative as ς ∈ (ς∗,+∞).

Proof.

(i) From the fact that θ > 1 and ς → 0, one knows that

J(ςu) =
ς2

2
‖B−1/2Ku‖2 +

ςθ+1

θ + 1

∫
R

uh(u)dx→ 0.

For ς → +∞ and
∫

Ω
uh(u)dx < 0, we know that

J(ςu) = ς2
(
1
2
‖B−1/2Ku‖2 +

ςθ−1

θ + 1

∫
R

uh(u)dx
)
→ −∞.

(ii) The conclusion follows from

d
dς
J(ςu) = ς‖B−1/2Ku‖2 + ςθ

∫
R

uh(u)dx. (2.6)

(iii) The fact that

I(ςu) = ς2‖B−1/2Ku‖2 + ςθ+1
∫
R

uh(u)dx = ς
d

dς
J(ςu)

directly gives the conclusion.
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With a similar argument as in Lemma 2.5, one can infer the following lemma.

Lemma 2.6. Let (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, ‖B−1/2Ku‖ , 0 and

∫
R

uh(u)dx > 0 hold. Then, we have
the following:

(i) limς→0J(ςu) = 0, limς→+∞J(ςu) = +∞;

(ii) dJ(ςu)
dς > 0 over (0,+∞);

(iii) I(ςu) is positive over (0,+∞).

Now, with the above estimates in hand, the depth of the potential well can be estimated in the
following lemma.

Lemma 2.7. Let (H), u0 ∈ H
ρ
2 + r

2 and u1 ∈ H
r
2−1 hold. The depth of the potential well d = infu∈N J(u)

with

N =
{
u ∈ H

ρ
2 + r

2 \{0}|I(u) = 0
}

for the problem (1.1)-(1.2) can be formulated as follows:

d =
θ − 1

2(θ + 1)

(
c1

c3

) 2(θ+1)
θ−1

α−
2
θ−1 C−

2(θ+1)
θ−1

∗

with

C∗ = sup
u∈H

ρ
2 + r

2 \{0}

‖u‖θ+1

‖u‖
H
ρ
2 + r

2

.

Proof. Given that u ∈ N , we can infer that

‖B−1/2Ku‖2 = −

∫
R

h(u)udx = α‖u‖θ+1
θ+1 ≤ αCθ+1

∗ ‖u‖
θ+1

H
ρ
2 + r

2
,

which together with

‖u(t)‖2
H
ρ
2 + r

2
=

∫
R

(1 + ζ2)
ρ
2 + r

2 |û(ζ)|2dζ

≤
c2

3

c2
1

∫
R

b−1(ζ)κ2(ζ)|û(ζ)|2dζ

=
c2

3

c2
1

‖B−1/2Ku‖2

(2.7)

yields

‖u‖2
H
ρ
2 + r

2
≥

(
c1

c3

) 4
θ−1

α−
2
θ−1 C−

2(θ+1)
θ−1

∗ . (2.8)
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Now, from (2.3), (2.4), u ∈ N , (2.7) and (2.8), we have

J(u) =
θ − 1

2(θ + 1)
‖B−1/2Ku‖2 +

1
θ + 1

I(u)

=
θ − 1

2(θ + 1)
‖B−1/2Ku‖2

≥
θ − 1

2(θ + 1)
c1

2

c3
2 ‖u‖

2

H
ρ
2 + r

2

≥
θ − 1

2(θ + 1)

(
c1

c3

) 2(θ+1)
θ−1

α−
2
θ−1 C−

2(θ+1)
θ−1

∗ ,

which completes the proof of this lemma.

3. Low initial energy case

The following lemma shows that both the setsW andV are invariant for E(0) < d.

Lemma 3.1. Let (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, ‖B−1/2Ku‖ , 0 and E(0) < d. Then, we have the following:

(i) u ∈ W if u0 ∈ W;

(ii) u ∈ V if u0 ∈ V,
where u(t) denotes a local solution to the problem (1.1)-(1.2).

Proof. Because the proofs of (i) and (ii) are similar, we only prove one. From the contradiction
arguments, it is supposed that there exists a first time t1 ∈ (0,Tmax) such that I(u(t1)) ≤ 0, which
together with Lemma 2.3, indicates that I(u(t2)) = 0 for certain t2 ∈ (0, t1). Together with Lemma 2.7
we can conclude the following contradiction

d ≤ J(u(t2)) ≤ E(u(t2)) = E(0) < d.

The following theorem presents the global existence for E(0) < d.

Theorem 3.2. If (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, E(0) < d and u0 ∈ W, then the problem (1.1)-(1.2) admits

a global weak solution

u(t) ∈ C1(0,+∞; H
ρ
2 + r

2 ), ut(t) ∈ C(0,+∞; H
r
2−1).

Proof. Let

un(x, t) =

n∑
j=1

φ jn(t)w j(x), n = 1, 2, · · ·

be the corresponding approximate solution that satisfies

(B−1/2Λ−1untt,B
−1/2Λ−1ws) + (B−1/2Kun, B−1/2Kws) + (h(un),ws) = 0, (3.1)
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un(x, 0) =

n∑
j=1

ι jnw j(x)→ u0(x) in H
ρ
2 + r

2 , (3.2)

unt(x, 0) =

n∑
j=1

ι jnw j(x)→ u1(x) in H
r
2−1, (3.3)

B−1/2Kun(x, 0) ∈ L2

and

B−1/2Λ−1unt(x, 0) ∈ L2

with a system of base functions denoted by {ω j(x)} in H
ρ
2 + r

2 ∩ H
r
2−1. From (3.2) and (3.3), we get

‖B−1/2Λ−1unt(0)‖2 + ‖B−1/2Kun(0)‖2 → ‖B−1/2Λ−1u1‖
2 + ‖B−1/2Ku0‖

2

as n→ +∞. Now we claim that∫
R

H(un(0))dx→
∫
R

H(u(0))dx, n→ +∞.

Indeed ∣∣∣∣ ∫
R

H(un(0))dx −
∫
R

H(u(0))dx
∣∣∣∣

≤

∫
R

|h(ϕn)||un(0) − u0|dx

≤‖h(ϕn)‖‖un(0) − u0‖,

where ϕn = u0 + ϑ(un(0) − u0) ∈ H
ρ
2 + r

2 and ϑ ∈ (0, 1). For θ > 1 and N = 1, it follows that
‖h(ϕn)‖2 = α2‖ϕn‖

2θ
2θ < C(α, ρ, θ)‖ϕn‖

2θ

H
ρ
2 + r

2
< C′ with C,C′ > 0. Thus the claim is proved and

Em(0)→ E(0) as n→ +∞. (3.4)

Recalling u0 ∈ W, and the fact that (3.2) and (3.3) imply that un(0) ∈ W as n → +∞, combining
the arguments of Lemma 3.1 and (3.4), one can see that un(t) ∈ W as n → +∞ for t ∈ [0,+∞).
Consequently, multiplying (3.1) by φ′sn(t) and summing for s we have

1
2

d
dt

(
‖B−1/2Λ−1unt‖

2 + ‖B−1/2Kun‖
2
)

+
d
dt

(∫
R

H(un)dx
)

= 0,

which gives

En(0) =En(t)

=
1
2
‖B−1/2Λ−1unt‖

2 +
1
2
‖B−1/2Kun‖

2 +

∫
R

H(un)dx
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=
1
2
‖B−1/2Λ−1unt‖

2 +
θ − 1

2(θ + 1)
‖B−1/2Kun‖

2 +
1

θ + 1
I(un)

≥
θ − 1

2(θ + 1)
‖B−1/2Kun‖

2.

Incorporating (3.4) we get

‖B−1/2Kun‖
2 <

2(θ + 1)
θ − 1

d

and
‖B−1/2Λ−1unt‖

2 < 2d

for t ∈ [0,+∞) as n→ +∞. Thus, by (1.5) and (1.6), we have

‖un(t)‖2
H
ρ
2 + r

2
=

∫
R

(1 + ζ2)
ρ
2 + r

2 |ûn(ζ)|2dζ

≤
c2

3

c2
1

∫
R

b−1(ζ)κ2(ζ)|ûn(ζ)|2dζ

=
c2

3

c2
1

‖B−1/2Kun‖
2

and

‖unt‖
2
H

r
2 −1 =

∫
R

(1 + ζ2)
r
2−1|ûnt(ζ)|2dζ

≤

∫
R

(1 + ζ2)
r
2

ζ2 |unt(ζ)|2dζ

≤c2
3

∫
R

b−1(ζ)
ζ2 |ûnt(ζ)|2dζ

=c2
3‖B

−1/2Λ−1unt‖
2,

which gives the following:

un is bounded in C1(0,+∞; H
ρ
2 + r

2 );

unt is bounded in C(0,+∞; H
r
2−1).

By an argument similar to that for h(ϕn), one can infer that

h(un) is bounded in C1(0,+∞; L2).

Integrating (3.1) over (0, t) yields

(B−1/2Λ−1unt,B
−1/2Λ−1ws) +

∫ t

0
(B−1/2Kun,B

−1/2Kws)ds

=(B−1/2Λ−1unt(0),B−1/2Λ−1ws) −
∫ t

0
(h(un),ws)ds.

(3.5)
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In (3.5), fix s and let n→ +∞, then, we get

(B−1/2Λ−1ut,B
−1/2Λ−1ws) +

∫ t

0
(h(u),ws)ds

= −

∫ t

0
(B−1/2Ku,B−1/2Kws)ds.

From (3.2) and (3.3) it follows that u(x, 0) = u0(x) is bounded in H
ρ
2 + r

2 and ut(x, 0) = u1(x) is bounded
in H

r
2−1. Thus, Theorem 3.2 is proved.

The following lemma is used to prove the finite time blowup for E(0) < d.

Lemma 3.3. Let (H), u0 ∈ H
ρ
2 + r

2 and u1 ∈ H
r
2−1 hold. If u0 ∈ V and E(0) < d, then

d <
θ − 1

2(θ + 1)
‖B−1/2Ku‖2. (3.6)

Proof. Lemma 2.7 implies that

‖u‖2
H
ρ
2 + r

2
≥

2c2
3(θ + 1)

c2
1(θ − 1)

d. (3.7)

Note that Lemma 3.1 (ii) ensures that u ∈ V, which together with (2.7) and (3.7) gives (3.6). So this
lemma is proved.

The next theorem states the finite time blowup for E(0) < d.

Theorem 3.4. If (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, E(0) < d and u0 ∈ V, then the problem (1.1)-(1.2) admits

a finite time blowup result.

Proof. Arguing by contradiction, we suppose that there exists a global solution u. Define

η(t) = ‖B−1/2Λ−1u‖2, t ∈ [0,T1] (3.8)

for any T1 > 0. So,
η(t) > σ > 0, t ∈ [0,T1]. (3.9)

Then,

η̇(t) = 2(B−1/2Λ−1u,B−1/2Λ−1ut). (3.10)

Applying the definition of I(u) and taking ω = u in (2.1), we get

η̈(t) =2‖B−1/2Λ−1ut‖
2 + 2(B−1/2Λ−1u,B−1/2Λ−1utt)

=2‖B−1/2Λ−1ut‖
2 − 2

(
(B−1/2Ku,B−1/2Ku) + (h(u), u)

)
=2‖B−1/2Λ−1ut‖

2 − 2I(u).

(3.11)

A substitution of both (2.2) and (2.4) into (3.11) gives

η̈(t) = (θ + 3)‖B−1/2Λ−1ut‖
2 + (θ − 1)‖B−1/2Ku‖2 − 2(θ + 1)E(0).

Communications in Analysis and Mechanics Volume 16, Issue 2, 416–430.



426

Then by Lemma 3.3, we see that

η̈(t) − (θ + 3)‖B−1/2Λ−1ut‖
2 = χ(t) > µ > 0, (3.12)

where we use the following relation:

χ(t) : = (θ − 1)‖B−1/2Ku‖2 − 2(θ + 1)E(0)
= (θ − 1)‖B−1/2Ku‖2 − 2(θ + 1)d + 2(θ + 1)d − 2(θ + 1)E(0).

At this point, (3.12) and (3.9) with the estimation

(η̇(t))2 ≤ 4‖B−1/2Λ−1u‖2‖B−1/2Λ−1ut‖
2

= 4η(t)‖B−1/2Λ−1ut‖
2

and

η(t)η̈(t) −
θ + 3

4
(η̇(t))2

≥η(t)(η̈(t) − (θ + 3)‖B−1/2Λ−1ut‖
2) (3.13)

=η(t)χ(t),

imply that

η(t)η̈(t) −
θ + 3

4
(η̇(t))2 ≥ σµ > 0.

Hence
η̈−

θ−1
4 (t) ≤ −

θ − 1
4

σµη−
θ+7
θ , t ∈ [0,T1].

Set t → T ∗ < T1; then,
lim
t→T ∗

η(t) = +∞.

Thus we complete the proof.

4. Critical initial energy case

In this section, we aim to adapt the method used in [11–13] to the critical initial energy case E(0) = d.

Theorem 4.1. If (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, E(0) = d and u0 ∈ W, then the problem (1.1)-(1.2) has a

global solution u(t) ∈ C1(0,+∞; H
ρ
2 + r

2 ), ut(t) ∈ C(0,+∞; H
r
2−1).

Proof. The proof is established by considering the following two cases.

Case I. ‖B−1/2Ku0‖
2 , 0.

(1)
∫
R

uh(u)dx < 0. Let ςn = 1 − 1
n and u0n = ςnu0, n = 2, 3 · · · . Consider Equation (1.1) with

u(x, 0) = u0n(x), ut(x, 0) = u1(x). (4.1)

From u0 ∈ W and (2.5), it follows that ς∗ = ς∗(u0) > 1 and hence 1 − 1
n < 1 < ς∗, which implies that

I(u0n) > 0, J(u0n) < J(u0), and

0 < En(0) =
1
2
‖u1‖

2 +J(u0n) <
1
2
‖u1‖

2 +J(u0) = E(0) = d.

Communications in Analysis and Mechanics Volume 16, Issue 2, 416–430.



427

(2)
∫
R

uh(u)dx > 0. From u0 ∈ W and Lemma 2.6, it follows that I(ςu0)
∣∣∣ς=1 = ς d

dςJ(ςu0)
∣∣∣ς=1 > 0, and

I(ςu0) > 0 for ς ∈ (ς′, ς′′) with 1 ∈ (ς′, ς′′). Lemma 2.6 yields that d
dςJ(ςu0) > 0 over (ς′, ς′′), which

yields a sequence ςn ∈ (ς′, 1), n = 1, 2, 3, · · · and ςn → 1 as n → +∞. Let u0n = ςnu0, n = 1, 2, 3, · · · .
Consider Equation (1.1) with

u(x, 0) = u0n(x), ut(x, 0) = u1(x).

At this point
I(u0n) = I(ςnu0) > 0

and Lemma 2.6 implies that
J(u0n) = J(ςnu0) < J(u0)

and
0 < En(0) =

1
2
‖u1‖

2 +J(u0n) <
1
2
‖u1‖

2 +J(u0) = E(0) = d.

Case II. ‖B−1/2Ku0‖
2 = 0.

Let ςn = 1 − 1
n , u1n(x) = ςnu1(x), n = 2, 3 · · · . Consider (1.1) with

u(x, 0) = u0(x), ut(x, 0) = u1n(x). (4.2)

From ‖B−1/2Ku0‖
2 = 0, it follows that J(u0) = 0 and 1

2‖u1‖
2 = E(0) = d. As a result,

0 < En(0) =
1
2
‖u1n‖

2 +J(u0) =
1
2
‖ςnu1‖

2 < E(0) = d.

Combining Case I and Case II, again by the argument of Theorem 3.2, we can conclude the result of
Theorem 4.1.

The next lemma is used to consider the finite time blowup for E(0) = d.

Lemma 4.2. Let (H), u0 ∈ H
ρ
2 + r

2 and u1 ∈ H
r
2−1 hold. Assume that E(0) = d, (B−1/2Λ−1u0,B

−1/2Λ−1u1) ≥
0 and u0 ∈ V; then, u ∈ V.

Proof. Arguing by contradiction, we suppose that I(u(t̃0)) = 0 and I(u(t)) < 0 for 0 < t < t̃0 and
t̃0 ∈ (0,Tmax). So Lemma 2.7 implies that J(u(t̃0)) ≥ d. By E(0) = d and Lemma 2.4, we have that
J(u(t̃0)) = d and ‖B−1/2Λ−1ut(t̃0)‖ = 0. As a result, (3.8), (3.10) and (3.11) yield

η̇(0) = 2(B−1/2Λ−1u0,B
−1/2Λ−1u1) ≥ 0

and
η̈(t) > 0, t ∈ [0, t̃0),

also
η̇(t) = 2(B−1/2Λ−1u(t),B−1/2Λ−1ut(t)) > 0, t ∈ (0, t̃0),

which implies that η(t) is increasing on [0, t̃0]. It contradicts that ‖B−1/2Λ−1ut(t̃0)‖ = 0. So, we complete
the proof.

Theorem 4.3. If (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1, (B−1/2Λ−1u0,B

−1/2Λ−1u1) ≥ 0, E(0) = d and u0 ∈ V hold,
then the problem (1.1)-(1.2) has a finite time blowup result.

Proof. It is not necessary to write down the completed proof as we can use the proof of Theorem 3.4
to make it. First, Equation (3.8) and the proof of Theorem 3.4 imply Equation (3.11). Then applying
Lemma 4.2, we obtain Equation (3.13). The reminder proof is similar to Theorem 3.4.
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5. Finite time blowup when E(0) > 0

Theorem 5.1. Assume that (H), u0 ∈ H
ρ
2 + r

2 , u1 ∈ H
r
2−1 and the following three conditions all hold

(i) I(u0) < 0;

(ii) (B−1/2Λ−1u0,B
−1/2Λ−1u1) ≥ 0;

(iii) ‖B−1/2Λ−1u0‖
2 > 2γ(θ+1)

θ−1 E(0) > 0 with γ > 0.
Then, the problem given by Equations (1.1)-(1.2) has an arbitrarily positive initial energy finite time
blowup solution.

Proof. Step I. We claim over [0,Tmax) that

I(u) < 0, ‖B−1/2Λ−1u‖2 >
2γ(θ + 1)
θ − 1

E(0).

Arguing by contradiction, suppose that I(u(t0)) = 0 for certain t0 ∈ [0,Tmax) and I(u(t)) < 0 for
0 ≤ t < t0. So, (3.11) implies that

η̈(t) > 0, t ∈ [0, t0)

where η̇(0) ≥ 0, which yields that η̇(t) > 0 over [0, t0) and

η(t) > η(0) = ‖B−1/2Λ−1u0‖
2 >

2γ(θ + 1)
θ − 1

E(0), t ∈ [0, t0).

Consequently,

η(t0) >
2γ(θ + 1)
θ − 1

E(0). (5.1)

Further (2.2), I(u(t0)) = 0 and Lemma 2.2 imply that

‖B−1/2Ku(t0)‖2 ≤
2(θ + 1)
θ − 1

E(0). (5.2)

By the multiplier theorem in [14], the definitions of operators B, Λ and (1.5), we infer that

‖B−1/2Λ−1u‖2 = ‖Λ−1B−1/2u‖2

≤ C̃‖B−1/2u‖2

≤ c1C̃‖B−1/2Ku‖2

:= γ‖B−1/2Ku‖2,

(5.3)

where
γ := c1C̃, C̃ := sup{M|‖ζ−1‖ ≤ M, ζ ∈ C(R)}.

Now, both (5.2) and (5.3) imply that

η(t0) =‖B−1/2Λ−1u(t0)‖2

≤γ‖B−1/2Ku(t0)‖2

≤
2γ(θ + 1)
θ − 1

E(0),
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which contradicts (5.1) and then confirms that I(u(t)) < 0 over [0,Tmax).
Combining (3.11) and I(u(t)) < 0 on [0,Tmax), one has

η̈(t) = 2‖B−1/2Λ−1ut‖
2 − 2I(u) > 0,

then η̇(t) > 0 on [0,Tmax) due to the condition (ii) as follows

η̇(0) = (B−1/2Λ−1u0,B
−1/2Λ−1u1) ≥ 0,

which implies that

η(t) >η(0), t ∈ [0,Tmax).

By the definition of η(t) in (3.8) and the condition (iii), we get

‖B−1/2Λ−1u‖2 >
2γ(θ + 1)
θ − 1

E(0).

Step II. By using the claim in Step I, i.e., ‖B−1/2Λ−1u‖2 > 2γ(θ+1)
θ−1 E(0) over [0,Tmax), we can infer

(3.13) with χ(t) = (θ−1)‖B−1/2Ku‖2−2(θ+1)E(0) > δ̃ > 0 over [0,Tmax), where (3.8) has been recalled.
The proof is similar to Theorem 3.4.
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