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Abstract: For a spatial twisted central configuration of the Newtonian (2N+1)-body problem where
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1. Introduction

For the spatial Newtonian n-body problem, the equations of motion for the n masses mk > 0 and
positions xk ∈ R

3 with k ∈ {1, . . . , n} can be described by Newton’s second law and Newton’s universal
gravitation law:

mk ẍk =

∂(
∑

1≤s< j≤n

m jms

|x j − xs|
)

∂xk
.

Define
Ω = {x : x = (x1, x2, . . . , xn) ∈ (R3)n},

and let
△ =

⋃
1≤ j,s≤n

{x = (x1, x2, . . . , xn) | x j = xs, 1 ≤ j , s ≤ n}
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be the collision set. As usual, the set Ω \ △ is called the configuration space. First, we introduce the
definition of central configuration for the Newtonian n-body problem (see [1]).

Definition 1.1. Given n masses mk > 0 with positions qk ∈ R
3, k = 1, . . . , n, we say a configuration

q ∈ Ω\△ is a central configuration at some moment if there exists a constant λ ∈ R such that

∑
j,k

1≤ j≤n

m jmk(q j−qk)
|q j−qk |3

= −λmk(qk − x0), k = 1, 2, . . . , n,

x0 =

∑
1≤k≤n

mkqk∑
1≤k≤n

mk

.
(1.1)
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Figure 1. Planar N-body problem.
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Figure 2. Planar 2N-body problem.

Central configurations play a very important role in the study of the Newtonian n-body problem,
and especially, central configurations can lead to rigid-motion solutions and homothetically collapsing
solutions [1]. Central configurations of the Newtonian three-body (n = 3) problem with any given
three masses have long been known, and there are always exactly two kinds of central configurations:
Euler collinear central configuration and Lagrange equilateral-triangle central configuration [2,3]. For
a planar Newtonian N-body problem with n = N ≥ 4, Perko and Walter [4] proved that if N masses are
located at the vertices of a regular N-polygon (see Figure 1), then they can form a regular polygonal
central configuration if and only if all the values of N masses are equal to each other. For more results
of planar central configuration with one regular N-polygon, one can refer to [5–8].

For a planar central configuration with n = 2N and N ≥ 2 such that two regular N-polygons
are concentric and that 2N equal masses are placed at the vertices of the two regular N-polygons
(see Figure 2), Zhang and Zhou [9] proved that the values of masses in each separate regular N-
polygon were equal. We say that p regular N-polygons with p ≥ 2 are nested if they are coplanar
and have the same number of vertices N and the same center, and the positions of the vertices of the
innermost regular N-polygon R(1)

j and those of the remaining p-1 regular N-polygons R(k)
j with any
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k ∈ {2, . . . , p} satisfy the relation that R(p)
j = s1R(p−1)

j = s2R(p−2)
j = . . . = sp−1R(1)

j for some scale
factors sp−1 > sp−2 > . . . > s1 > 1 and for all j = 1, 2, . . . ,N. For the central configuration such
that two regular N-polygons are nested, masses on different regular N-polygons may be different, and
Moeckel and Simó [10] proved that for every mass ratio b between the two masses, there were exactly
two planar central configurations. Also, for the case of n = 2N such that N equal masses are placed at
the vertices of one regular N-polygon and the remaining N equal masses are placed at the vertices of
the other regular N-polygon, which is rotated exactly at an angle θ = π/N with respect to the former
regular N-polygon, Barrabés and Cors [11] proved the existence of the planar central configuration
with any value of the mass ratio. For the case of n = pN and p ≥ 2, Corbera, Delgado, and Llibre [12]
proved the existence of the nested central configuration such that pN masses were at the vertices of
the p nested regular N-polygon with a common center. Moreover, all the masses on the same regular
N-polygon were equal, but masses on a different regular N-polygon could be different. For the case
of n = pN + gN with p ≥ 1 and g ≥ 1, Zhao and Chen [13] proved the existence of planar central
configurations such that p regular N-polygons were nested, and g regular N-polygons were rotated
exactly at an angle π/N with respect to the other ones. For more details in this direction, we refer
to [14–21] and the references therein.

Note that for a planar central configuration with n = N + 1, Chen and Luo [22] proved that if N
masses are located at the vertices of one regular N-polygon and the position of the (N+1)-th mass is
on the plane containing the regular N-polygon (see Figure 3), then all the values of N masses located
at the vertices of the regular N-polygon are equal to each other. For a spatial central configuration
with n = N + 1 and the (N+1)-th mass off the plane containing the regular N-polygon (see Figure
4), Ouyang, Xie, and Zhang [23] showed that the distance between the (N+1)-th mass and the regular
N-polygon was unique.
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Figure 3. Planar (N+1)-body problem.
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Figure 4. Spatial (N+1)-body problem.
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Figure 5. Spatial (2N+1)-body problem.

In this paper, we consider the spatial central configuration of a Newtonian (2N+1)-body problem
in R3 formed by 2N masses placed at the vertices of two paralleled regular N-polygons with distance
h > 0. It is assumed that the lower layer regular N-polygon lies in a horizontal plane, and the upper
regular N-polygon parallels the lower one in R3 with distance h, and the z-axis passes through both
centers of the two regular N-polygons (see Figure 5). For convenience, when choosing the coordinates,
we treat R3 as the direct product of the complex plane and real axis. For the positions of the 2N+1
masses q = (q1, q2, . . . , q2N , q2N+1) ∈ Ω\△, we have

 qk = (ρk, 0), k = 1, . . . ,N,

ql = (aρleiθ, h), 0 ≤ θ < 2π, l = N + 1, . . . , 2N, a > 0, h > 0,
(1.2)

where a is the ratio of the sizes of the two regular N-polygons, ρd is the d(mod N)-th complex root of
unity, i.e., ρk = eiθk with k = 1, 2, . . . ,N, and ρl = eiθl with l = N + 1,N + 2, . . . , 2N and θd = 2dπ/N
with d ∈ Z. Here, we define θ as the twist angle between the two paralleled regular N-polygons with
distance h > 0. Moreover, for the position of the (2N+1)-th mass and the barycenter x0 = (c0, h0), we
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define 

q2N+1 = (a1eiα, h2N+1), a1 ≥ 0, 0 ≤ α < 2π, −∞ < h2N+1 < +∞,

c0 =

∑
1≤k≤N

mkρk +
∑

N+1≤l≤2N

amlρleiθ + a1m2N+1eiα

m2N+1+

∑
1≤k≤N

mk +
∑

N+1≤l≤2N

ml

,

h0 =

∑
N+1≤l≤2N

mlh + m2N+1h2N+1

m2N+1+

∑
1≤k≤N

mk +
∑

N+1≤l≤2N

ml

.

(1.3)

Then, for the spatial twisted configuration with n = 2N + 1 and the notations (1.2)–(1.3), we have the
following results.

For the existence, we have the following:

Theorem 1.1. Suppose the values of N masses with N ≥ 2 located at the vertices of one regular N-
polygon are equal to each other, and all of the sides in the two regular N-polygons have the same size.
Define the position of q2N+1 as (1.3). Then, the 2N+1 masses form a central configuration if and only if
all the values of the 2N masses located at the vertices of the two regular N-polygons are equal to each
other, a1 = 0 and h2N+1 = h/2, and the twist angle is θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}.
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Figure 6. Spatial 2N-body problem with θ = 0.
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Figure 7. Spatial 2N-body problem with θ = π/N .

Remark 1.1. For the spatial twisted central configuration of the Newtonian 2N-body problem, under
the assumption that the values of masses in each separate regular N-polygon were equal, Yu and
Zhang [24] proved that the twist angle must be θ = 0 or θ = π/N (see Figures 6 and 7). Meanwhile,
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in Theorem 1.1, we consider the spatial twisted central configuration of the Newtonian (2N+1)-body
problem. Under the assumptions that the values of the N masses located at the vertices of one regular
N-polygon are equal and that all of the sides in the two regular N-polygons have the same size, we not
only obtain the values of the twist angle; but also prove that all 2N masses must be equal. Moreover,
we know the position of the (2N+1)-th mass is (0, 0, h/2).

For the uniqueness, we have the following:

Theorem 1.2. For the spatial twisted central configuration, if the values of the N masses located at
the vertices of one regular N-polygon are equal to each other and all of the sides in the two regular N-
polygons have the same size, then for any N ≥ 2, both the distance between the two regular N-polygons
and the position of the (2N+1)-th mass are unique.

2. Preliminaries

Lemma 2.1. [24, Lemma 2.9] For any a > 0, any γ ∈ (−∞, +∞), any h > 0, and any N ≥ 2, let

f (γ) =
∑
1≤ j≤N

a sin(θ j + γ)

[1 + a2 − 2a cos(θ j + γ) + h2]
3
2

. (2.1)

Then,

f (
π

N
) = 0, f (−γ) = − f (γ) and f (γ +

2π
N

) = f (γ).

Remark 2.1. In Lemma 2.1, if we choose a = 1 and γ = π/N where N ≥ 2, then∑
1≤ j≤N

sin(θ j −
π
N )

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

=
∑
1≤ j≤N

sin(θ j +
π
N )

[2 − 2 cos(θ j +
π
N ) + h2]

3
2

= 0, where h > 0.

Lemma 2.2. [24, Lemma 2.10] If γ ∈ (0, π/N) with N ≥ 2, then for any a > 0 and any h > 0, we have
f (γ) > 0.

Lemma 2.3. If θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1} and N ≥ 2, then for any k′ ∈ {1, 2, . . . ,N}, any
l′ ∈ {N + 1,N + 2, . . . , 2N}, and any h > 0, we have

∑
1≤k≤N

ei(θk−l′ −θ)−1

[|ei(θk−l′ −θ)−1|2+h2]
3
2
=

∑
N+1≤l≤2N

ei(θl−k′+θ)−1

[|ei(θl−k′+θ)−1|2+h2]
3
2
=

∑
1≤ j≤N

ei(θ j+θ)−1

[|ei(θ j+θ)−1|2+h2]
3
2
∈ R,∑

1≤k≤N

h

[|ei(θk−l′ −θ)−1|2+h2]
3
2
=

∑
N+1≤l≤2N

h

[|ei(θl−k′+θ)−1|2+h2]
3
2
=

∑
1≤ j≤N

h

[|ei(θ j+θ)−1|2+h2]
3
2
.

(2.2)

Proof. Let µ̂ ∈ {1, 2, . . . ,N}, µ̃ ∈ {0, 1, . . . ,N − 1}, α̃ ∈ (−2π, 2π), and κ ∈ {0, 1}. We define a
mapping σ by {κN + 1, κN + 2, . . . , κN + N}

σ
−→ {α̃, 2π

N + α̃, ...,
2(N−1)π

N + α̃},

σ(µ) =
[
(µ − µ̂ + µ̃)(mod N)

]
2π
N + α̃, ∀ µ ∈ {κN + 1, κN + 2, . . . , κN + N}.

(2.3)
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Notice that both {κN+1, κN+2, . . . , κN+N} and {α̃, (2π)/N+ α̃, . . . , 2(N−1)π/N+ α̃} are finite sets;
the mapping σ is a surjection. Let us show σ is an injective mapping. The proof for κ = 0 is similar to
κ = 1; we only check for κ = 1. Let µ1 , µ2 and µ1, µ2 ∈ {N + 1,N + 2, . . . , 2N}. If σ(µ1) = σ(µ2), then
there exist s1, s2 ∈ Z such that

(µ1 − µ̂ + µ̃) + s1N = (µ2 − µ̂ + µ̃) + s2N. (2.4)

Hence, µ1 − µ2 = (s2 − s1)N. By the facts that −N < µ1 − µ2 < N and s2 − s1 ∈ Z, s2 = s1, and thus
µ1 = µ2, which is a contradiction. Therefore, σ is injective, which implies that σ is a bijection.

Similarly, for l ∈ {N + 1,N + 2, . . . , 2N}, s̃ ∈ {0, 1, . . . ,N − 1}, and θ ∈ [0, 2π), if we define another
mapping σ1 by  {1, 2, . . . ,N}

σ1
−→ {θ, 2π

N + θ, . . . ,
2(N−1)π

N + θ},

σ1(k′) =
[
(l − k′ + s̃)(mod N)

]
2π
N + θ, ∀ k′ ∈ {1, 2, . . . ,N},

(2.5)

then σ1 is a bijection as well. Together with the fact that θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1} is
equivalent to θ = 2s̃π/N or θ = 2s̃π/N + π/N with s̃ ∈ {0, 1, . . . ,N − 1}, let us show (2.2) holds by
considering the following two cases.

Case 1. θ = 2s̃π/N with s̃ ∈ {0, 1, . . . ,N − 1}.
Observing that θ j = 2 jπ/N with j ∈ {1, 2, . . . ,N},∑

1≤ j≤N

sin θ j

[2 − 2 cos θ j + h2]
3
2

=
∑
1≤ j≤N

sin 2πN− j
N

[2 − 2 cos 2πN− j
N + h2]

3
2

= −
∑
1≤ j≤N

sin θ j

[2 − 2 cos θ j + h2]
3
2

,

which implies that ∑
1≤ j≤N

sin θ j

[2 − 2 cos θ j + h2]
3
2

= 0. (2.6)

Let k′ ∈ {1, 2, . . . ,N} and s̃ ∈ {0, 1, . . . ,N − 1}. In (2.3), if we choose µ = l, µ̂ = k′, µ̃ = s̃, κ = 1, and
α̃ = 0, then the mapping {N + 1,N + 2, . . . , 2N}

σ
−→ {0, 2π

N , . . . ,
2(N−1)π

N },

σ(l) =
[
(l − k′ + s̃)(mod N)

]
2π
N , ∀ l ∈ {N + 1,N + 2, . . . , 2N}

is a bijection. Combining (2.6), and θd = 2πd/N with d ∈ Z and cos(θl−k′ +
2π
N s̃) = cos

(
2π
N [(l − k′ + s̃)(mod N)]

)
,

sin(θl−k′ +
2π
N s̃) = sin

(
2π
N [(l − k′ + s̃)(mod N)]

)
for any k′ ∈ {1, 2, . . . ,N} and any s̃ ∈ {0, 1, . . . ,N − 1}, we have

∑
N+1≤l≤2N

sin(θl−k′+
2π
N s̃)

[2−2 cos(θl−k′+
2π
N s̃)+h2]

3
2
=

∑
N+1≤l≤2N

sin θl−k′+s̃

[2−2 cos θl−k′+s̃+h2]
3
2
=

∑
1≤ j≤N

sin θ j

[2−2 cos θ j+h2]
3
2
= 0,∑

N+1≤l≤2N

cos(θl−k′+
2π
N s̃)−1

[2−2 cos(θl−k′+
2π
N s̃)+h2]

3
2
=

∑
N+1≤l≤2N

cos(θl−k′+s̃)−1

[2−2 cos(θl−k′+s̃)+h2]
3
2
=

∑
1≤ j≤N

cos θ j−1

[2−2 cos θ j+h2]
3
2
,∑

N+1≤l≤2N

h

[2−2 cos(θl−k′+
2π
N s̃)+h2]

3
2
=

∑
N+1≤l≤2N

h

[2−2 cos(θl−k′+s̃)+h2]
3
2
=

∑
1≤ j≤N

h

[2−2 cos θ j+h2]
3
2
.

(2.7)
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On the other hand, in (2.3), for any l′ ∈ {N + 1,N + 2, . . . , 2N} and any s̃ ∈ {0, 1, . . . ,N − 1}, if we
let µ = k, µ̂ = l′, µ̃ = N − s̃, κ = 0, and α̃ = 0, then we know that the mapping {1, 2, . . . ,N}

σ
−→ {0, 2π

N , . . . ,
2(N−1)π

N },

σ(k) =
[
(k − l′ + (N − s̃))(mod N)

]
2π
N =

[
(k − l′ − s̃)(mod N)

]
2π
N , ∀ k ∈ {1, 2, . . . ,N}

is a bijection as well. Thus, similar to the procedure of obtaining (2.7), for any l′ ∈ {N + 1,N +
2, . . . , 2N}, any s̃ ∈ {0, 1, . . . ,N − 1}, and any h > 0, we have

∑
1≤k≤N

sin(θk−l′−
2π
N s̃)

[2−2 cos(θk−l′−
2π
N s̃)+h2]

3
2
=

∑
1≤ j≤N

sin θ j

[2−2 cos θ j+h2]
3
2
= 0,∑

1≤k≤N

cos(θk−l′−
2π
N s̃)−1

[2−2 cos(θk−l′−
2π
N s̃)+h2]

3
2
=

∑
1≤ j≤N

cos θ j−1

[2−2 cos θ j+h2]
3
2
,∑

1≤k≤N

h

[2−2 cos(θk−l′−
2π
N s̃)+h2]

3
2
=

∑
1≤ j≤N

h

[2−2 cos θ j+h2]
3
2
.

(2.8)

Employing (2.7), (2.8), and θd = 2πd/N with d ∈ Z, we have∑
N+1≤l≤2N

ei(θl−k′+
2π
N s̃) − 1

[|ei(θl−k′+
2π
N s̃) − 1|2 + h2]

3
2

=
∑

N+1≤l≤2N

[cos(θl−k′ +
2π
N s̃) − 1] + i sin(θl−k′ +

2π
N s̃)

[2 − 2 cos(θl−k′ +
2π
N s̃) + h2]

3
2

=
∑
1≤ j≤N

(cos θ j − 1) + i sin θ j

[2 − 2 cos θ j + h2]
3
2

=
∑
1≤ j≤N

cos θ j − 1

[2 − 2 cos θ j + h2]
3
2

=
∑
1≤k≤N

[cos(θk−l′ −
2π
N s̃) − 1] + i sin(θk−l′ −

2π
N s̃)

[2 − 2 cos(θk−l′ −
2π
N s̃) + h2]

3
2

=
∑
1≤k≤N

ei(θk−l′−
2π
N s̃) − 1

[|ei(θk−l′−
2π
N s̃) − 1|2 + h2]

3
2

∈ R

and ∑
N+1≤l≤2N

h

[|ei(θl−k′+
2π
N s̃) − 1|2 + h2]

3
2

=
∑

N+1≤l≤2N

h

[2 − 2 cos(θl−k′ +
2π
N s̃) + h2]

3
2

=
∑
1≤ j≤N

h

[2 − 2 cos θ j + h2]
3
2

=
∑
1≤ j≤N

h

[2 − 2 cos θ j + h2]
3
2

=
∑
1≤k≤N

h

[2 − 2 cos(θk−l′ −
2π
N s̃) + h2]

3
2

=
∑
1≤k≤N

h

[|ei(θk−l′−
2π
N s̃) − 1|2 + h2]

3
2

,

where s̃ ∈ {0, 1, . . . ,N − 1}, k′ ∈ {1, 2, . . . ,N}, and l′ ∈ {N + 1,N + 2, . . . , 2N}. Thus, (2.2) holds for the
case of θ = 2s̃π/N with s̃ ∈ {0, 1, 2, . . . ,N − 1}.

Case 2. θ = 2s̃π/N + π/N with s̃ ∈ {0, 1, 2, . . . ,N − 1}.
For any l′ ∈ {N + 1,N + 2, . . . , 2N} and any s̃ ∈ {0, 1, . . . ,N − 1}, in (2.3), if we choose µ = k, µ̂ = l′,

µ̃ = N − s̃, κ = 0, and α̃ = −π/N, then the mapping {1, 2, . . . ,N}
σ
−→

{
− πN ,

2π
N −

π
N , . . . ,

2(N−1)π
N − πN

}
,

σ(k) =
[
(k − l′ + (N − s̃))(mod N)

]
2π
N −

π
N =

[
(k − l′ − s̃)(mod N)

]
2π
N −

π
N , ∀ k ∈ {1, 2, . . . ,N}
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is a bijection. Then, we have
∑

1≤k≤N

sin(θk−l′−
2π
N s̃− πN )

[2−2 cos(θk−l′−
2π
N s̃− πN )+h2]

3
2
=

∑
1≤k≤N

sin(θk−l′−s̃−
π
N )

[2−2 cos(θk−l′−s̃−
π
N )+h2]

3
2
=

∑
1≤ j≤N

sin(θ j−
π
N )

[2−2 cos(θ j−
π
N )+h2]

3
2
,∑

1≤k≤N

cos(θk−l′−
2π
N s̃− πN )−1

[2−2 cos(θk−l′−
2π
N s̃− πN )+h2]

3
2
=

∑
1≤k≤N

cos(θk−l′−s̃−
π
N )−1

[2−2 cos(θk−l′−s̃−
π
N )+h2]

3
2
=

∑
1≤ j≤N

cos(θ j−
π
N )−1

[2−2 cos(θ j−
π
N )+h2]

3
2
,

(2.9)

where s̃ ∈ {0, 1, . . . ,N − 1}, l′ ∈ {N + 1,N + 2, . . . , 2N}, and h > 0.
By the first equation of (2.9) and Remark 2.1, for any s̃ ∈ {0, 1, . . . ,N − 1}, any l′ ∈ {N + 1,N +

2, . . . , 2N}, and any h > 0, we see that

∑
1≤k≤N

sin(θk−l′ −
2π
N s̃ − πN )

[2 − 2 cos(θk−l′ +
2π
N s̃ − πN ) + h2]

3
2

=
∑
1≤ j≤N

sin(θ j −
π
N )

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

=
∑
1≤ j≤N

sin(θ j +
π
N )

[2 − 2 cos(θ j +
π
N ) + h2]

3
2

= 0. (2.10)

Moreover, in (2.5), for any l ∈ {N + 1,N + 2, . . . , 2N} and any s̃ ∈ {0, 1, . . . ,N − 1}, if we choose
θ = π/N, then the mapping {1, 2, . . . ,N}

σ1
−→

{
π
N ,

2π
N +

π
N , . . . ,

2(N−1)π
N + πN

}
,

σ1(k′) =
[
(l − k′ + s̃)(mod N)

]
2π
N +

π
N , ∀ k′ ∈ {1, 2, . . . ,N}

is a bijection. Hence, combining (2.10), this leads to
∑

1≤k′≤N

sin(θl−k′+
2π
N s̃+ πN )

[2−2 cos(θl−k′+
2π
N s̃+ πN )+h2]

3
2
=

∑
1≤k′≤N

sin(θl−k′+s̃+
π
N )

[2−2 cos(θl−k′+s̃+
π
N )+h2]

3
2
=

∑
1≤ j≤N

sin(θ j+
π
N )

[2−2 cos(θ j+
π
N )+h2]

3
2
= 0,∑

1≤k′≤N

cos(θl−k′+
2π
N s̃+ πN )−1

[2−2 cos(θl−k′+
2π
N s̃+ πN )+h2]

3
2
=

∑
1≤k′≤N

cos(θl−k′+s̃+
π
N )−1

[2−2 cos(θl−k′+s̃+
π
N )+h2]

3
2
=

∑
1≤ j≤N

cos(θ j+
π
N )−1

[2−2 cos(θ j+
π
N )+h2]

3
2
.

(2.11)

Furthermore, one can verify that

∑
1≤ j≤N

cos(θ j +
π
N ) − 1

[2 − 2 cos(θ j +
π
N ) + h2]

3
2

−
∑
1≤ j≤N

cos(θ j −
π
N ) − 1

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

=
∑

2≤ j≤N+1

cos(θ j −
π
N ) − 1

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

−
∑
1≤ j≤N

cos(θ j −
π
N ) − 1

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

=
∑
1≤ j≤N

cos(θ j −
π
N ) − 1

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

−
∑
1≤ j≤N

cos(θ j −
π
N ) − 1

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

= 0,

and this implies that

∑
1≤ j≤N

cos(θ j +
π
N ) − 1

[2 − 2 cos(θ j +
π
N ) + h2]

3
2

=
∑
1≤ j≤N

cos(θ j −
π
N ) − 1

[2 − 2 cos(θ j −
π
N ) + h2]

3
2

. (2.12)
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Employing (2.9), (2.10), (2.11), and (2.12), for any l, l′ ∈ {N + 1,N + 2, . . . , 2N} and any s̃ ∈
{0, 1, . . . ,N − 1}, we have

∑
1≤k≤N

cos(θk−l′−
2π
N s̃− πN )−1

[2−2 cos θ(k−l′−
2π
N s̃− πN )+h2]

3
2
=

∑
1≤k≤N

cos(θl−k′+
2π
N s̃+ πN )−1

[2−2 cos θ(l−k′+
2π
N s̃+ πN )+h2]

3
2
=

∑
1≤ j≤N

cos(θ j−
π
N )−1

[2−2 cos(θ j−
π
N )+h2]

3
2
,∑

1≤k≤N

sin(θk−l′−
2π
N s̃− πN )

[2−2 cos(θk−l′−
2π
N s̃− πN )+h2]

3
2
=

∑
1≤k≤N

sin(θl−k′+
2π
N s̃+ πN )

[2−2 cos(θl−k′+
2π
N s̃+ πN )+h2]

3
2
=

∑
1≤ j≤N

sin(θ j−
π
N )

[2−2 cos(θ j−
π
N )+h2]

3
2
= 0.

Thus, (2.2) holds for the case of θ = 2s̃π/N + π/N, where s̃ ∈ {0, 1, 2, . . . ,N − 1}.

By Cases 1–2, we arrive at the conclusion that (2.2) holds for θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}.
□

Remark 2.2. Similar to dealing with the mappings σ and σ1, for any k′ ∈ {1, 2, . . . ,N} and any
l′ ∈ {N + 1,N + 2, . . . , 2N} with N ≥ 2, if one defines σ2 and σ3 by {1, 2, . . . ,N} \ {k

′}
σ2
−→ {2πN ,

4π
N , . . . ,

2(N−1)π
N },

σ2(k) =
[
(k − k′)(mod N)

]
2π
N , ∀ k ∈ {1, 2, . . . ,N}\{k′},

and  {N + 1,N + 2, . . . , 2N}\{l′}
σ3
−→ {2πN ,

4π
N , . . . ,

2(N−1)π
N },

σ3(l) =
[
(l − l′)(mod N)

]
2π
N , ∀ l ∈ {N + 1,N + 2, . . . , 2N}\{l′},

then σ2 and σ3 are bijections.

Lemma 2.4. For any θ ∈ R, N ≥ 2, a > 0, h > 0, and m > 0, we have∑
1≤k≤N

−hm

[|eiθk − aei(θl′+θ)|2 + h2]
3
2

≡ constant, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}. (2.13)

Proof. In fact, (2.13) is equivalent to∑
1≤k≤N

−h

[|ei(θk−l′−θ) − a|2 + h2]
3
2

≡ constant, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}.

It is easy to see that k−l′ ∈ Z. Moreover, in (2.3), for any l′ ∈ {N+1,N+2, . . . , 2N} and any θ ∈ [0, 2π),
if we let µ = k, µ̂ = l′ − N, µ̃ = 0, κ = 0, and α = θ, then the mapping {1, 2, . . . ,N}

σ
−→ {θ, 2π

N + θ, . . . ,
2(N−1)π

N + θ},

σ(k) =
[
(k − (l′ − N))(mod N)

]
2π
N + θ =

[
(k − l′)(mod N)

]
2π
N + θ, ∀ k ∈ {1, 2, . . . ,N}

is a bijection, which implies that∑
1≤k≤N

−h

[|ei(θk−l′−θ) − a|2 + h2]
3
2

=
∑
1≤ j≤N

−h

[|ei(θ j−θ) − a|2 + h2]
3
2

, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}.

Thus, Lemma 2.4 is true. □
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Lemma 2.5. [4, Page 304] For any N ≥ 2,
∑

1≤ j≤N−1

(1 − eiθ j)/|1 − eiθ j |3 = [
∑

1≤ j≤N−1

csc( jπ/N)]/4.

Lemma 2.6. [20, Pages 1431 and 1437] For any N ≥ 2, the inequality∑
1≤ j≤N

1 + cos(θ j +
π
N )

[2 − 2 cos(θ j +
π
N )]

3
2

−
∑

1≤ j≤N−1

1 − eiθ j

|1 − eiθ j |
3
2

> 0

holds.

Now, we introduce the definition of circulant matrix and state its properties.

Definition 2.1. [25, Pages 65–66] A matrix C̃ = (c̃k j)N×N is circulant if c̃k̂, ĵ = c̃k̂−1, ĵ−1 where 1 ≤
k, j, k̂, ĵ ≤ N and N ≥ 2.

In Definition 2.1, we take the circulant matrix C̃ as the following:

C̃ =: C = (ck, j), where ck, j =

 1−ρk− j

|1−ρk− j |3
, k , j,

0, k = j.
(2.14)

We have some properties for the special circulant matrix C.

Lemma 2.7. [4, Page 303] The circulant matrix C has the same forms of the eigenvalues λ j(C) and
the corresponding eigenvectors ξ j; more precisely,

λ j(C) =
∑

1≤k≤N

c1,kρ
k−1
j−1, ξ j = (ρ j−1, ρ

2
j−1, . . . , ρ

N
j−1)T , j = 1, 2, . . . ,N,

where N ≥ 2 and ρ j−1 = eiθ j−1 = e2( j−1)πi/N .

Lemma 2.8. [4, Corollary and Lemma 12] For the eigenvalues of C with j , N and N ≥ 4, λ j , 0
except that λ(N+1)/2 = 0 for odd N.

Lemma 2.9. [22, Proposition 2.2] The eigenvectors ξ j ( j = 1, 2, . . . ,N and N ≥ 3) of circulant matrix
C form a basis of CN .

Lemma 2.10. [25, Page 65] Denote the conjugate transpose of νk by (ν̄k)T . Then,

(ξ̄k)Tξ j =

{
N, k = j,
0, k , j,

(ρ−1, ρ−2, . . . , ρ−N)(ξ̄N)T = N.

3. Proof of Theorem 1.1

3.1. To prove the necessity

Let k′ ∈ {1, 2, . . . ,N} and l′ ∈ {N + 1,N + 2, . . . , 2N}. By Definition 1.1, it suffices to study the
following system:

(q2N+1−qk′ )m2N+1mk′

|q2N+1−qk′ |
3 +

∑
N+1≤l≤2N

(ql−qk′ )mlmk′

|ql−qk′ |
3 +

∑
1≤k,k′≤N

(qk−qk′ )mkmk′

|qk−qk′ |
3 = −λmk′(qk′ − x0),

(q2N+1−ql′ )m2N+1ml′

|q2N+1−ql′ |
3 +

∑
1≤k≤N

(qk−ql′ )mkml′

|qk−ql′ |
3 +

∑
N+1≤l,l′≤2N

(ql−ql′ )mlml′

|qk−ql′ |
3 = −λml′(ql′ − x0),∑

1≤k≤N

(qk−q2N+1)mkm2N+1
|qk−q2N+1 |3

+
∑

N+1≤l≤2N

(ql−q2N+1)mlm2N+1
|ql−q2N+1 |3

= −λm2N+1(q2N+1 − x0).

(3.1)
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Thanks to (1.2), (1.3), and (3.1), the 2N+1 masses form a central configuration if and only if

(a1eiα−eiθk′ , h2N+1)m2N+1mk′

[|a1eiα−eiθk′ |2+h2
2N+1]

3
2
+

∑
N+1≤l≤2N

(aei(θl+θ)−eiθk′ , h)mlmk′

[|aei(θl+θ)−eiθk′ |2+h2]
3
2
+

∑
1≤k,k′≤N

(eiθk−eiθk′ , 0)mkmk′

|eiθk−eiθk′ |3
= −λmk′(eiθk′ − c0, −h0),

(a1eiα−aei(θl′+θ), h2N+1−h)m2N+1ml′

[|a1eiα−aei(θl′+θ) |2+(h2N+1−h)2]
3
2
+

∑
1≤k≤N

(eiθk−aei(θl′+θ),−h)mkml′

[|eiθk−aei(θl′+θ) |2+h2]
3
2
+

∑
N+1≤l,l′≤2N

(aei(θl+θ)−aei(θl′+θ), 0)mlml′

|aei(θl+θ)−aei(θl′+θ) |3

= −λml′(aei(θl′+θ) − c0, h − h0),∑
1≤k≤N

(eiθk−a1eiα,−h2N+1)mkm2N+1

[|eiθk−a1eiα |2+h2
2N+1]

3
2
+

∑
N+1≤l≤2N

(aei(θl+θ)−a1eiα, h−h2N+1)mlm2N+1

[|aei(θl+θ)−a1eiα |2+(h−h2N+1)2]
3
2
= −λm2N+1(a1eiα − c0, h2N+1 − h0).

(3.2)

By the assumption that the values of N masses located at the vertices of one regular N-polygon are
equal to each other, without loss of generality, we suppose that m1 = m2 = . . . = mN := m > 0, and we
divide the proof of the necessity into four steps.

Step 1. We prove that a1 = 0.
Employing m1 = m2 = . . . = mN = m > 0 and the second equation of (3.2), we have

(h2N+1 − h)m2N+1

[|a1eiα − aei(θl′+θ)|2 + (h2N+1 − h)2]
3
2

+
∑
1≤k≤N

−hm

[|eiθk − aei(θl′+θ)|2 + h2]
3
2

= −λ(h − h0), (3.3)

where l′ ∈ {N + 1,N + 2, . . . , 2N}. Combining Lemma 2.4, (3.3),

h0 =

∑
N+1≤l≤2N

mlh + m2N+1h2N+1

m2N+1 +
∑

1≤k≤N

mk +
∑

N+1≤l≤2N

ml

,

and that λ is independent of the choice of l′, we deduce that

(h2N+1 − h)m2N+1

[|a1eiα − aei(θl′+θ)|2 + (h2N+1 − h)2]
3
2

≡ constant, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}.

Thus, for any l′ ∈ {N + 1,N + 2, . . . , 2N}, we have |a1eiα − aei(θl′+θ)|2 ≡ constant, i.e.,

|[a1 cosα − a cos(θl′ + θ)] + i[a1 sinα − a sin(θl′ + θ)]|2 ≡ constant, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}.

Then, one computes that

a1a cos(θl′ + θ − α) ≡ constant, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}.

Since a represents the ratio of the sizes of the two regular N-polygons, a > 0. Hence, if a1 , 0, then

cos(θl′ + θ − α) ≡ constant, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}. (3.4)

In what follows, we assume that a1 , 0, and we divide the proof of impossibility of a1 , 0 into two
cases: N = 2 and N ≥ 3.

(i) N = 2:
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In this case, l′ ∈ {3, 4}, and a1 , 0. Then, by (3.4), we have cos(3π+ θ−α) = cos(4π+ θ−α), which
implies that cos(θ − α) = 0.

Under the assumption that m1 = m2 = m, we convert (1.2) and (1.3) into

q1 = (−1, 0), q2 = (1, 0),

q3 = (aρ3eiθ, h) = (−aeiθ, h), q4 = (aρ4eiθ, h) = (aeiθ, h), 0 ≤ θ < 2π, a > 0, h ≥ 0,

q5 = (a1eiα, h5), a1 ≥ 0, 0 ≤ α ≤ 2π, −∞ < h5 < +∞,

c0 =
aeiθ(m4−m3)+a1m5eiα

m1+m2+m3+m4+m5
=

aeiθ(m4−m3)+a1m5eiα

2m+m3+m4+m5
,

h0 =
(m3+m4)h+m5h5

m1+m2+m3+m4+m5
=

(m3+m4)h+m5h5
2m+m3+m4+m5

.

(3.5)

First, in (2.3), for any θ ∈ [0, 2π) and any l′ ∈ {N + 1,N + 2, . . . , 2N} with N ≥ 2, if we let µ = k,
µ̂ = l′ − N, µ̃ = 0, κ = 0, and α̃ = −θ ∈ (−2π, 0], then the mapping {1, 2, . . . ,N}

σ
−→ {−θ, 2π

N − θ, . . . ,
2(N−1)π

N − θ},

σ(k) =
[
(k − (l′ − N))(mod N)

]
2π
N − θ =

[
(k − l′)(mod N)

]
2π
N − θ, ∀ k ∈ {1, 2, . . . ,N}

is a bijection. Then, by the second equation of (3.2) and m1 = m2 = . . . = mN = m > 0, we have

(1 − a1
a ei(α−θ−θl′ ))m2N+1

[|a − a1ei(α−θ−θl′ )|2 + (h2N+1 − h)2]
3
2

+
∑
1≤k≤N

(1 − ei(θk−l′ −θ)

a )m

[|a − ei(θk−l′−θ)| + h2]
3
2

+
∑

N+1≤l,l′≤2N

(1 − eiθl−l′ )ml

a3|1 − eiθl−l′ |3

=
(1 − a1

a ei(α−θ−θl′ ))m2N+1

[|a − a1ei(α−θ−θl′ )|2 + (h2N+1 − h)2]
3
2

+
∑
1≤k≤N

(1 − ei(θk−θ)

a )m

[|a − ei(θk−θ)|2 + h2]
3
2

+
∑

N+1≤l,l′≤2N

(1 − eiθl−l′ )ml

a3|1 − eiθl−l′ |3

= λ −
λ

a
c0e−i(θl′+θ), where l′ ∈ {N + 1,N + 2, . . . , 2N}. (3.6)

Note that all of the sides in the two regular N-polygons have the same size, and a represents the ratio of
the sizes of the two regular N-polygons, so a = 1. Choosing θl′ = 4π with l′ = 4, and then employing
(3.6) with a = 1 and N = 2, we have

(1 − a1ei(α−θ))m5

[|1 − a1ei(α−θ)|2 + (h5 − h)2]
3
2

+
∑
1≤k≤2

(1 − ei(θk−θ))m

[|1 − ei(θk−θ)| + h2]
3
2

+
∑

3≤l,l′≤4

(1 − eiθl−l′ )ml

|1 − eiθl−l′ |3

= λ − λc0e−iθ, where l′ ∈ {3, 4}. (3.7)

Combining N = 2, (3.7) and the definition of circulant matrix C in (2.14),

CM = b̃1ξ̃1 − b̃2ξ̃2,
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where

b̃1 = λ −
(1 − a1ei(α−θ))m5

[|1 − a1ei(α−θ)|2 + (h5 − h)2]
3
2

−
∑
1≤k≤2

(1 − ei(θk−θ))m

[|1 − ei(θk−θ)| + h2]
3
2

,

b̃2 = λe−iθc0 = λe−iθ aeiθ(m4 − m3) + a1m2N+1eiα

m1 + m2 + m3 + m4 + m5
,

M = (m3,m4)T , ξ̃1 = (1, 1)T , and ξ̃2 = (ρ1, ρ
2
1)T = (−1, 1)T . Thus, we have(

b̃1 − b̃2ρ1

b̃1 − b̃2ρ2

)
=

 0 1−ρ−1
|1−ρ−1 |3

1−ρ1
|1−ρ1 |3

0

 ( m3

m4

)
.

Then, by ρ−1 = ρ−1+2 = ρ1 = −1, one computes that b̃2 = (m4 − m3)/8.
On the other hand, by (3.5), we have

m4 − m3

8
= b̃2 = λe−iθc0 = λ

a(m4 − m3) + a1m2N+1ei(α−θ)

2m + m3 + m4 + m5
∈ R.

In addition, according to lines 1-8 of page 109 of [7], we have λ > 0 for Definition 1.1. Combining
a ∈ R and a1 , 0, one computes that Im(ei(α−θ)) = 0, i.e., sin(α − θ) = 0, which contradicts with
cos(θ − α) = 0. Thus, cos(θ − α) = 0 is impossible, which implies that for the spatial twisted central
configuration with N = 2, we deduce the conclusion that a1 = 0.

(ii) N ≥ 3:
For (3.4), if we let β = θ − α and choose l′ = N + 1,N + 2, and N + 3, then cos( 4π

N + β) − cos( 2π
N + β) = 0,

cos( 6π
N + β) − cos( 2π

N + β) = 0,

and this is equivalent to  sin πN sin(β + 3π
N ) = 0,

sin 2π
N sin(β + 4π

N ) = 0.
(3.8)

Observing that N ≥ 3, sin(π/N) , 0, and sin(2π/N) , 0. Combining with (3.8), we have β = k1π −
3π
N , k1 ∈ Z,

β = k2π −
4π
N , k2 ∈ Z,

which implies that k1π − 3π/N = k2π − 4π/N. So, (k2 − k1)π = π/N where positive integer N ≥ 3, and
this is impossible. Therefore, (3.4) does not hold. Then, for the spatial twisted central configuration
with N ≥ 3, we arrive at the conclusion that a1 = 0, too.

Step 2. We prove that θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}, and we divide the proof into two
sub-steps.

Step 2.1. We show that mN+1 = mN+2 = . . . = m2N .
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In fact, inserting a = 1 and a1 = 0 into (3.6), we have

m2N+1

[1 + (h2N+1 − h)2]
3
2

+
∑
1≤k≤N

(1 − ei(θk−θ))m

[|1 − ei(θk−θ)|2 + h2]
3
2

+
∑

N+1≤l,l′≤2N

(1 − eiθl−l′ )ml

|1 − eiθl−l′ |3

= λ − λc0e−i(θl′+θ), where l′ ∈ {N + 1,N + 2, . . . , 2N}. (3.9)

Combining N ≥ 2, m1 = m2 = . . . = mN = m, (3.9), ρd = eiθd with θd = 2dπ/N and d ∈ Z, along with
the definition of circulant matrix C in (2.14),

CM = b1ξ1 − b2ξN , (3.10)

where

b1 = λ −
m2N+1

[1 + (h2N+1 − h)2]
3
2

−
∑
1≤k≤N

(1 − ei(θk−θ))m

[|1 − ei(θk−θ)| + h2]
3
2

,

b2 = λe−iθc0 = λe−iθ

∑
1≤k≤N

mkρk +
∑

N+1≤l≤2N

mlρleiθ

m2N+1 +
∑

1≤k≤N

mk +
∑

N+1≤l≤2N

ml

=

λ
∑

N+1≤l≤2N

mlρl

m2N+1 +
∑

1≤k≤N

mk +
∑

N+1≤l≤2N

ml

, (3.11)

M = (mN+1,mN+2, . . . ,m2N)T , ξ1 = (1, 1, . . . , 1)T and ξN = (ρN−1, ρ
2
N−1, . . . , ρ

N
N−1)T .

In the following, we divide the proof of mN+1 = mN+2 = . . . = m2N into three cases: N = 2, N = 3,
and N ≥ 4.

(i) N = 2:
By (3.10) with N = 2, (

b1 − b2ρ1

b1 − b2ρ2

)
=

 0 1−ρ−1
|1−ρ−1 |3

1−ρ1
|1−ρ1 |3

0

 ( m3

m4

)
.

Moreover, when N = 2, it is easy to see that ρ1 + ρ2 = 0 and ρ−1 = ρ1 = −1. Thus,

2b2 =
1 − ρ−1

|1 − ρ−1|
3 m4 −

1 − ρ1

|1 − ρ1|
3 m3 =

1 − ρ1

|1 − ρ1|
3 (m4 − m3),

which implies that b2 = (m4−m3)/8. Thus, when N = 2, then inserting ρ3 = −1, and ρ4 = 1 into (3.11)
and combining with b2 = (m4 − m3)/8, we have

b2 =
λ(m4 − m3)∑

1≤k≤5

mk

=
(m4 − m3)

8
. (3.12)
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In what follows, we prove that for the spatial twisted central configuration with N = 2, m3 = m4,
and we prove it by contradiction. We assume m3 , m4.

In fact, on the one hand, by m3 , m4, m1 = m2 = m, and (3.12), we have

λ =
(2m + m3 + m4 + m5)

8
. (3.13)

Moreover, thanks to N = 2, a = 1, a1 = 0, and the fourth equation of (3.5), one computes that

c0 =
aeiθ(m4 − m3) + a1m5eiα

2m + m3 + m4 + m5
=

eiθ(m4 − m3)
2m + m3 + m4 + m5

. (3.14)

Summing the equations of the first part of (3.2) over k′ = 1 and k′ = 2, by N = 2, a1 = 0, m1 = m2 = m,
(3.13), and (3.14), we have∑

1≤k′≤2

−eiθk′m5

[1 + h2
5]

3
2

+
∑

1≤k′≤2

∑
3≤l≤4

(aei(θl+θ) − eiθk′ )ml

[|aei(θl+θ) − eiθk′ |2 + h2]
3
2

+
∑

1≤k′≤2

∑
1≤k,k′≤2

(eiθk − eiθk′ )mk

|eiθk − eiθk′ |3

= −λ
∑

1≤k′≤2

eiθk′ + 2λc0 =
eiθ(m4 − m3)

4
.

Then, combining eiθ1 = eiθ−1 = −1 (N = 2), we have

0 +
∑

1≤k′≤2

eiθk′
∑
3≤l≤4

(aei(θl−k′+θ) − 1)ml

[|aei(θl−k′+θ) − 1|2 + h2]
3
2

+
∑

1≤k′≤2

∑
1≤k,k′≤2

(eiθk − eiθk′ )m
|eiθk − eiθk′ |3

=
∑

1≤k′≤2

eiθk′
∑
3≤l≤4

(aei(θl+θ) − 1)ml

[|aei(θl+θ) − 1|2 + h2]
3
2

+
∑

1≤k′≤2

eiθk′
∑

1≤k,k′≤2

(eiθk−k′ − 1)m
|eiθk−k′ − 1|3

=
(eiθ1 − 1)m
|eiθ1 − 1|3

∑
1≤k′≤2

eiθk′ = 0 =
eiθ(m4 − m3)

4
,

i.e., m3 = m4, and this contradicts with the assumption that m3 , m4. Hence, for the spatial twisted
central configuration with N = 2, we deduce that m3 = m4.

(ii) N = 3:
By (3.10), 

b1 − b2ρ2

b1 − b2ρ1

b1 − b2ρ3

 =


0 1−ρ−1
|1−ρ−1 |3

1−ρ−2
|1−ρ−2 |3

1−ρ1
|1−ρ1 |3

0 1−ρ2
|1−ρ2 |3

1−ρ2
|1−ρ2 |3

1−ρ1
|1−ρ1 |3

0




m4

m5

m6

 . (3.15)

From N = 3, we have ρ−1 = ρ2 and ρ−2 = ρ1; thus, ρ1 + ρ2 + ρ3 = 0. Together with (3.15) and Re( 1−ρ1
|1−ρ1 |3

) = Re( 1−ρ2
|1−ρ2 |3

),

Im( 1−ρ1
|1−ρ1 |3

) = −Im( 1−ρ2
|1−ρ2 |3

),

there is

3b1 = 3b1 − b2(ρ1 + ρ2 + ρ3) =
1 − ρ−1

|1 − ρ−1|
3 m5 +

1 − ρ−2

|1 − ρ−2|
3 m6 +

1 − ρ1

|1 − ρ1|
3 m4 +

1 − ρ2

|1 − ρ2|
3 m6
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+
1 − ρ2

|1 − ρ2|
3 m4 +

1 − ρ1

|1 − ρ1|
3 m5

= (
1 − ρ1

|1 − ρ1|
3 +

1 − ρ2

|1 − ρ2|
3 )m4 + (

1 − ρ1

|1 − ρ1|
3 +

1 − ρ2

|1 − ρ2|
3 )m5

+ (
1 − ρ1

|1 − ρ1|
3 +

1 − ρ2

|1 − ρ2|
3 )m6 ∈ R,

which implies that b1 ∈ R.
On the other hand, for N = 3, Lemma 2.9 gives us information that there exist constants c1, c2, and

c3 such that M = c1ξ1 + c2ξ2 + c3ξ3 where M = (m4,m5,m6)T . Thus, combining (3.10), we obtain

c1λ1(C)ξ1 + c2λ2(C)ξ2 + c3λ3(C)ξ3 = b1ξ1 − b2ξ3. (3.16)

Then, it follows from (3.16) and Lemma 2.9 that c1λ1(C)ξ1 = b1ξ1 and c3λ3(C)ξ3 = −b2ξ3.
Employing Lemma 2.5, Lemma 2.7, ρ3 = 1, ρ4 = ρ1, ρ1 + ρ2 = −1, and |1 − ρ1| = |1 − ρ2|, we have λ1(C) = 1−ρ1

|1−ρ1 |3
+

1−ρ2
|1−ρ2 |3

=
∑

1≤ j≤2

1−eiθ j

|1−eiθ j |3
∈ R,

λ3(C) = (1−ρ1)ρ2
|1−ρ1 |3

+
(1−ρ2)ρ1
|1−ρ2 |3

=
ρ2−ρ3+ρ1−ρ3
|1−ρ1 |3

= −3
|1−ρ1 |3

∈ R.
(3.17)

Then, thanks to b1 ∈ R, ξ1 = (1, 1, . . . , 1)T , and c1λ1(C)ξ1 = b1ξ1, one computes that c1 ∈ R. In what
follows, we will prove that c2 ∈ R and c3 ∈ R.

By ξ1 = (ρ0, ρ0, ρ0), ξ2 = (ρ1, ρ2, ρ3), ξ3 = (ρ2, ρ1, ρ3), and M = c1ξ1 + c2ξ2 + c3ξ3 with N = 3, we
have 

Im(c1ρ0 + c2ρ1 + c3ρ2) = 0,

Im(c1ρ0 + c2ρ2 + c3ρ1) = 0,

Im(c1ρ0 + c2ρ3 + c3ρ3) = 0.

(3.18)

Based upon ρ0 = ρ3 = 1, c1 ∈ R, and the third equation of (3.18), we have c2 + c3 ∈ R.
Employing ρ0 = 1, c1 ∈ R, and the first equation of (3.18), we see that c2ρ1 + c3ρ2 ∈ R. Note that

c2ρ1 + c3ρ2 = (c2 cos
2π
3
+ ic2 sin

2π
3

) + (c3 cos
4π
3
+ ic3 sin

4π
3

)

= (c2 + c3) cos
2π
3
+ (c2 − c3)i sin

2π
3
,

and then c2 = c3. Therefore, with the help of c2 + c3 ∈ R, we have c3 ∈ R.
In virtue of (3.17), λ3(C) ∈ R. Moreover, combining c3 ∈ R and c3λ3(C)ξ3 = −b2ξ3 where ξ3 =

(ρ2, ρ4, ρ6)T = (ρ2, ρ1, ρ3)T , one computes that b2 ∈ R.
By now, for (3.15), by the accumulated facts b1 ∈ R, b2 ∈ R, |1 − ρ1| = |1 − ρ2|, ρ−1 = ρ2, ρ−2 = ρ1,

and Im(ρ1) = −Im(ρ2), we have m4 = m5 = m6.
(iii) N ≥ 4:
Lemma 2.9 gives us information that there exist constants c̃1, c̃2, . . . , c̃N such that M = c̃1ξ1 + c̃2ξ2 +

. . . + c̃NξN where M = (mN+1,mN+2, . . . ,m2N)T . We can regard (3.10) as (3.11) of [26]; moreover, we
regard C, b1, and b2 of this paper as Aα,

∑N
k=1 mk, and

∑N
k=1 mkqk of [26], respectively. Then, combining
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N ≥ 4 and Lemmas 2.8–2.10, similar to the procedure of Case 2.1 on pages 6–7 of [26], we obtain
mN+1 = mN+2 = . . . = m2N .

Step 2.2. Based on Step 1 and Step 2.1, we prove that θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}.
Inserting m1 = m2 = . . . = mN , a1 = 0, and mN+1 = mN+2 = . . . = m2N into the second equality of

(1.3), we have c0 = 0. Then, with the help of the first equation of (3.2), for any k′ ∈ {1, 2, . . . ,N}, we
obtain

−m2N+1

[1 + h2
2N+1]

3
2

+
∑

N+1≤l≤2N

(aei(θl−k′+θ) − 1)ml

[|aei(θl−k′+θ) − 1|2 + h2]
3
2

+
∑

1≤k,k′≤N

(eiθk−k′ − 1)mk

|eiθk−k′ − 1|3
= −λ ∈ R. (3.19)

For any k′ ∈ {1, 2, . . . ,N}, it follows from Remark 2.2 that the mapping

{1, 2, . . . ,N}\{k′}
σ2
−→

{2π
N
,

4π
N
, . . . ,

2(N − 1)π
N

}
,

where

σ2(k) =
[
(k − k′)(mod N)

]2π
N
, ∀ k ∈ {1, 2, . . . ,N}\{k′},

is a bijection. Thus, by the procedure of obtaining (2.6), and θd = 2πd/N with d ∈ Z, we have

∑
k,k′

1≤k≤N

sin θk−k′

|2−2 cos θk−k′ |
3 =

∑
1≤ j≤N−1

sin θ j

|2−2 cos θ j |3
= 0, ∀ k′ ∈ {1, 2, . . . ,N},∑

k,k′
1≤k≤N

cos θk−k′−1
|2−2 cos θk−k′ |

3 =
∑

1≤ j≤N−1

cos θ j−1
|2−2 cos θ j |3

, ∀ k′ ∈ {1, 2, . . . ,N},∑
k,k′

1≤k≤N

1
|2−2 cos θk−k′ |

3 =
∑

1≤ j≤N−1

1
|2−2 cos θ j |3

, ∀ k′ ∈ {1, 2, . . . ,N},

(3.20)

and then ∑
1≤k,k′≤N

eiθk−k′ − 1
|eiθk−k′ − 1|3

∈ R. (3.21)

Combining (3.19) with (3.21), we have

Im(
∑

N+1≤l≤2N

aei(θl−k′+θ) − 1

[|aei(θl−k′+θ) − 1|2 + h2]
3
2

) = 0, where h > 0 and k′ ∈ {1, 2, . . . ,N}. (3.22)

For any l ∈ {N + 1,N + 2, . . . , 2N}, in (2.5), if we let s̃ = 0, then the mapping {1, 2, . . . ,N}
σ1
−→ {θ, 2π

N + θ, . . . ,
2(N−1)π

N + θ},

σ1(k′) =
[
(l − k′)(mod N)

]
2π
N + θ, ∀ k′ ∈ {1, 2, . . . ,N}

is a bijection, too. Hence, we have
∑

1≤k′≤N

a cos(θl−k′+θ)−1

[1+a2−2a cos θ(l−k′+
π
N )+h2]

3
2
=

∑
1≤ j≤N

a cos(θ j+θ)−1

[1+a2−2a cos(θ j+θ)+h2]
3
2
,∑

1≤k′≤N

a sin(θl−k′+θ)

[1+a2−2a cos(θl−k′+θ)+h2]
3
2
=

∑
1≤ j≤N

a sin(θ j+θ)

[1+a2−2a cos(θ j+θ)+h2]
3
2
.

(3.23)
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Using the definition of f (θ) in (2.1), (3.22), and the second equation of (3.23), we can see that

f (θ) =
∑
1≤ j≤N

a sin(θ j + θ)

[|1 + a2 − 2a cos(θ j + θ)|2 + h2]
3
2

= 0. (3.24)

On the one hand, if θ ∈ (2s̃π/N, 2s̃π/N +π/N) where s̃ ∈ {0, 1, . . . ,N −1}, then by Lemmas 2.1-2.2,
there is f (θ) > 0, which contradicts (3.24).

On the other hand, if θ ∈ (2s̃π/N +π/N, 2s̃π/N +2π/N) where s̃ ∈ {0, 1, . . . ,N −1}, then by Lemma
2.1, we have f (θ) = − f (−θ) = − f (−θ + 2π/N) and −θ + 2π/N ∈ (−2s̃π/N, −2s̃π/N + π/N). Therefore,
it follows from Lemma 2.2 that f (θ) < 0, which also contradicts (3.24).

Thus, combining θ ∈ [0, 2π), we conclude that the twist angle must be θ = 2s̃π/N or θ = 2s̃π/N +
π/N with s̃ ∈ {0, 1, . . . ,N − 1}, and then θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}.

Step 3. We show that m1 = m2 = . . . = mN = mN+1 = mN+2 = . . . = m2N .
Based on the first part of Step 2, we can assume that mN+1 = mN+2 = . . . = m2N := bm where

constant b > 0. By the assumption that m1 = m2 = . . . = mN := m, it suffices to show that the value of
b can only take b = 1, and we prove it by contradiction. We assume that b , 1.

Thanks to a = 1, m1 = m2 = . . . = mN := m, a1 = 0, and mN+1 = mN+2 = . . . = m2N := bm, for (3.2)
we have 

Nm2N+1h2N+1

[1+h2
2N+1]

3
2
+

∑
N+1≤l≤2N

bmh

[|ei(θl−k′+θ)−1|2+h2]
3
2
= λh0,

Nm2N+1(h2N+1−h)

[1+(h2N+1−h)2]
3
2
−

∑
1≤k≤N

mh

[|ei(θk−l′ −θ)−1|2+h2]
3
2
= λ(h0 − h),

Nmh2N+1

[1+h2
2N+1]

3
2
+

Nbm(h2N+1−h)

[1+(h−h2N+1)2]
3
2
= λ(h2N+1 − h0),

(3.25)

where k′ ∈ {1, 2, . . . ,N} and l′ ∈ {N + 1,N + 2, . . . , 2N}. Combining the first and second equations of
(3.25) with (2.7), 

Nm2N+1h2N+1

[1+h2
2N+1]

3
2
+

∑
1≤ j≤N

bmh

[|ei(θ j+θ)−1|2+h2]
3
2
= λh0,

Nm2N+1(h2N+1−h)

[1+(h2N+1−h)2]
3
2
−

∑
1≤ j≤N

mh

[|ei(θ j+θ)−1|2+h2]
3
2
= λ(h0 − h),

Nmh2N+1

[1+h2
2N+1]

3
2
+

Nbm(h2N+1−h)

[1+(h2N+1−h)2]
3
2
= λ(h2N+1 − h0).

(3.26)

Let 
x̂ = Nh2N+1

[1+h2
2N+1]

3
2
,

y = N(h2N+1−h)

[1+(h2N+1−h)2]
3
2
,

z =
∑

1≤ j≤N

mh

[|ei(θ j+θ)−1|2+h2]
3
2
.

(3.27)

Thus, (3.26) can be simplified into
m2N+1 x̂ + bz = λh0,

m2N+1y − z = λ(h0 − h),

mx̂ + bmy = λ(h2N+1 − h0).

(3.28)
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On the one hand, by (3.28), we see that m2N+1 x̂ − m2N+1y + (b + 1)z = λh,

mx̂ + bmy = λ(h2N+1 − h0),
(3.29)

and  m2N+1 x̂ + m2N+1y + (b − 1)z = 2λh0 − λh,

mx̂ + bmy = λ(h2N+1 − h0).
(3.30)

Then, it follows from (3.29), (3.30), and b , 1 that

−λh0m2N+1 + λm2N+1h2N+1 − λmh + m(b + 1)z
mm2N+1(b + 1)

= y

=
−λh0m2N+1 − 2λmh0 + λm2N+1h2N+1 + λmh + m(b − 1)z

mm2N+1(b − 1)
.

Thus,

h0 =
bmh + m2N+1h2N+1

m2N+1 + m + bm
.

Combining with

h0 =

∑
N+1≤l≤2N

mlh + m2N+1h2N+1

m2N+1 +
∑

1≤k≤N

mk +
∑

N+1≤l≤2N

ml

=
bNmh + m2N+1h2N+1

m2N+1 + Nm + bNm
, (3.31)

we have

bmh + m2N+1h2N+1

m2N+1 + m + bm
=

bNmh + m2N+1h2N+1

m2N+1 + Nm + bNm
,

which implies that (1+ b)h2N+1 = bh. Moreover, with the help of (3.31), one computes that h0 = h2N+1.
Then, it follows from the second equation of (3.29) that x = −by. Hence, with the aid of (3.27) and
(1 + b)h2N+1 = bh, we have

bh
1+b

[1 + b2h2

(1+b)2 ]
3
2

=

bh
1+b

[1 + h2

(1+b)2 ]
3
2

,

that is, b = ±1, which contradicts b > 0 and the assumption b , 1. So, b = 1, and we arrive at the
conclusion that m1 = m2 = . . . = mN = mN+1 = mN+2 = . . . = m2N .

Step 4. We prove that h2N+1 = h/2.
In virtue of (3.30), we have

m(2λh0 − λh) = m2N+1λ(h2N+1 − h0).
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Note that lines 1–8 of page 109 of [7] show us that in Definition 1.1, λ must be a positive number.
Then, combining the last equality of (1.3) and m1 = m2 = . . . = mN = mN+1 = mN+2 = . . . = m2N = m,

m(
2Nmh + 2h2N+1m2N+1

2Nm + m2N+1
− h) = m2N+1(−

Nmh + h2N+1m2N+1

2Nm + m2N+1
+ h2N+1),

which implies that N = 1 or h = 2h2N+1. Combining with N ≥ 2, for the spatial twisted central
configuration, we have h2N+1 = h/2. □

Remark 3.1. The proof of Step 1 is independent of the condition that a = 1. That is, for the twisted
central configuration of the (2N+1)-body problem with the assumption that m1 = m2 = . . . = mN , and
without the assumption that a = 1, we have a1 = 0. That is, the (2N+1)-th mass must be in the vertical
line of the two paralleled planes containing the two regular N-polygons, respectively, and the vertical
line segment passes through the geometric centers of the two regular N-polygons.

3.2. To prove the sufficiency

We divide the proof into two steps.

Step 1. Based on the assumptions that θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}, a = 1, h2N+1 = h/2,
a1 = 0, and m1 = m2 = . . . = mN = mN+1 = mN+2 = . . . = m2N = m, we show that if there exists a
constant λ ∈ R such that

m2N+1

[1+ h2
4 ]

3
2
+

∑
1≤ j≤N

(1−ei(θ j+θ))m

[|ei(θ j+θ)−1|2+h2]
3
2
+

∑
1≤ j≤N

(1−eiθ j )m
|eiθ j−1|3

= λ,

m2N+1

[1+ h2
4 ]

3
2
+

∑
1≤ j≤N

2m

[|ei(θ j+θ)−1|2+h2]
3
2
= λ,

(3.32)

then the 2N+1 masses can form a central configuration.
In fact, by (1.3), in this situation we get

c0 =

∑
1≤k≤N

mρk + meiθ
∑

N+1≤l≤2N

ρl

2Nm+m2N+1
= 0,

h0 =

∑
N+1≤l≤2N

mh + m2N+1h2N+1

2Nm+m2N+1
=

Nmh+m2N+1
h
2

2Nm+m2N+1
= h

2 .

(3.33)

Employing a = 1, h2N+1 = h/2, a1 = 0, m1 = m2 = . . . = mN = mN+1 = mN+2 = . . . = m2N = m, (3.33)
and ∑

1≤k≤N

eiθk =
∑

N+1≤l≤2N

ei(θl+θ) = 0,

we see that (3.2) holds if and only if
(−eiθk′ , h

2 )mm2N+1

[1+ h2
4 ]

3
2
+

∑
N+1≤l≤2N

(ei(θl+θ)−eiθk′ , h)m2

[|ei(θl+θ)−eiθk′ |2+h2]
3
2
+

∑
1≤k,k′≤N

(eiθk−eiθk′ , 0)m2

|eiθk−eiθk′ |3
= −λm(eiθk′ , −h

2 ),

(−ei(θl′+θ),− h
2 )mm2N+1

[1+ h2
4 ]

3
2

+
∑

1≤k≤N

(eiθk−ei(θl′+θ),−h)m2

[|eiθk−ei(θl′+θ) |2+h2]
3
2
+

∑
N+1≤l,l′≤2N

(ei(θl+θ)−ei(θl′+θ), 0)m2

|ei(θl+θ)−ei(θl′+θ) |3
= −λm(ei(θl′+θ), h

2 ).
(3.34)
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Therefore, it suffices to verify (3.34) holds. Clearly, (3.34) is equivalent to
(−1, h

2 )m2N+1

[1+ h2
4 ]

3
2
+

∑
N+1≤l≤2N

(ei(θl−k′+θ)−1, h)m

[|ei(θl−k′+θ)−1|2+h2]
3
2
+

∑
1≤k,k′≤N

(eiθk−k′−1, 0)m
|eiθk−k′−1|3

= −λ(1, −h
2 ),

(−1,− h
2 )m2N+1

[1+ h2
4 ]

3
2
+

∑
1≤k≤N

(ei(θk−l′ −θ)−1,−h)m

[|ei(θk−l′ −θ)−1|2+h2]
3
2
+

∑
N+1≤l,l′≤2N

(eiθl−l′−1, 0)m
|eiθl−l′−1|3

= −λ(1, h
2 ).

(3.35)

On the other hand, for any l′ ∈ {N + 1,N + 2, . . . , 2N}, it follows from Remark 2.2 that the mapping

{N + 1,N + 2, . . . , 2N}
σ3
−→

{2π
N
,

4π
N
, . . . ,

2(N − 1)π
N

}
,

where

σ3(l) =
[
(l − l′)(mod N)

]2π
N
, ∀ l ∈ {N + 1,N + 2, . . . , 2N}\{l′},

is a bijection. Thus, by θd = 2πd/N with d ∈ Z, we have

∑
l,l′

N+1≤l≤2N

sin θl−l′

|2−2 cos θl−l′ |
3 =

∑
1≤ j≤N−1

sin θ j

|2−2 cos θ j |3
, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N},∑

l,l′
N+1≤l≤2N

cos θl−l′−1
[|2−2 cos θl−l′ |

3 =
∑

1≤ j≤N−1

cos θ j−1
|2−2 cos θ j |3

, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N},∑
l,l′

N+1≤l≤2N

1
|2−2 cos θl−l′ |

3 =
∑

1≤ j≤N−1

1
|2−2 cos θ j |3

, ∀ l′ ∈ {N + 1,N + 2, . . . , 2N}.

Together with (3.20), for any k′ ∈ {1, 2, . . . ,N} and any l′ ∈ {N + 1,N + 2, . . . , 2N}, it follows that∑
k,k′

1≤k≤N

(eiθk−k′ − 1)m
|eiθk−k′ − 1|3

= −
∑

1≤ j≤N−1

(1 − eiθ j)m
|eiθ j − 1|3

=
∑

l,l′
N+1≤l≤2N

(eiθl−l′ − 1)m
|eiθl−l′ − 1|3

. (3.36)

Employing Lemma 2.3, (3.35), and (3.36), we conclude that if there exists a constant λ ∈ R such that
(3.32) holds, then by Definition 1.1, the 2N+1 masses form a central configuration.

Step 2. We prove the existence of the spatial twisted central configuration, i.e., we prove the
existence of λ of Step 1.

Define the function g as follows:

g(h) = −
1
2

∑
1≤ j≤N

(1 + ei(θ j+θ))m

[|ei(θ j+θ) − 1|2 + h2]
3
2

+
1
2

∑
1≤ j≤N−1

(1 − eiθ j)m
|eiθ j − 1|3

, (3.37)

where h > 0 and θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}. Thanks to Lemmas 2.3, 2.5, and (3.37), we see
that g(h) ∈ R, which implies that

g(h) = −
1
2

∑
1≤ j≤N

(1 + cos(θ j + θ))m

[2 + h2 − 2 cos(θ j + θ)]
3
2

+
1
2

∑
1≤ j≤N−1

(1 − cos θ j)m

|2 − 2 cos θ j|
3
2

. (3.38)

In what follows, we prove that there exists h = h̄(N) such that g(h̄(N)) = 0. Note that θ = sπ/N
with s ∈ {0, 1, . . . , 2N − 1} is equivalent to θ = 2s̃π/N or θ = 2s̃π/N + π/N with s̃ ∈ {0, 1, . . . ,N − 1}.
We divide the following proof into two cases.
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Case 1. θ = 2s̃π/N with s̃ ∈ {0, 1, . . . ,N − 1}.
On the one hand, since m > 0, θ = 2s̃π/N, and 1 + cos θ j ≥ 0 with j ∈ Z, we have

−
1
2

∑
1≤ j≤N

(1 + cos(θ j + θ))m

[2 + h2 − 2 cos(θ j + θ)]
3
2

= −
1
2

∑
1+s̃≤ j+s̃≤N+s

(1 + cos θ j+s̃)m

[2 + h2 − 2 cos θ j+s̃]
3
2

= −
1
2

∑
1≤ j≤N

(1 + cos θ j)m

[2 + h2 − 2 cos θ j]
3
2

< 0. (3.39)

Moreover, if h→ 0+, then

−
1
2

∑
1≤ j≤N

(1 + cos θ j)m

[2 + h2 − 2 cos θ j]
3
2

→ −∞,

which implies that when the twist angle is θ = 2s̃π/N with s̃ ∈ {0, 1, . . . ,N − 1}, there exists h = h1(N)
such that g(h1(N)) < 0.

On the other hand, notice that if h→ +∞, then

−
1
2

∑
1≤ j≤N

(1 + cos θ j)m

[2 + h2 − 2 cos θ j]
3
2

→ 0.

Then, by (3.38)–(3.39), we see that when the twist angle is θ = 2s̃π/N with s̃ ∈ {0, 1, . . . ,N − 1}, there
exists h = h2(N) such that g(h2(N)) > 0.

Hence for the case of θ = 2s̃π/N with s̃ ∈ {0, 1, . . . ,N −1}, employing the fact that g is a continuous
function, there exists h = h̄(N) such that g(h̄(N)) = 0.

Case 2. θ = 2s̃π/N + π/N with s̃ ∈ {0, 1, . . . ,N − 1}.
In this case, by (3.38), s̃ ∈ {0, 1, . . . ,N − 1}, and θd = 2πd/N with d ∈ Z, we have

g(h) =
m
2

[
−

∑
1≤ j+s̃≤N+s̃

1 + cos(θ j+s̃ +
π
N )

[2 + h2 − 2 cos(θ j+s̃ +
π
N )]

3
2

+
∑

1≤ j≤N−1

1 − cos θ j

|2 − 2 cos θ j|
3
2

]

=
m
2

[
−

∑
1≤ j≤N

1 + cos(θ j +
π
N )

[2 + h2 − 2 cos(θ j +
π
N )]

3
2

+
∑

1≤ j≤N−1

1 − cos θ j

|2 − 2 cos θ j|
3
2

]
. (3.40)

Then, it follows from (3.40) and Lemma 2.5 that

g(h) =
m
2

[
−

∑
1≤ j≤N

1 + cos(θ j +
π
N )

[2 + h2 − 2 cos(θ j +
π
N )]

3
2

+
∑

1≤ j≤N−1

1 − eiθ j

|1 − eiθ j |
3
2

]
. (3.41)

If h→ 0, then with the help of (3.41) and Lemma 2.6, limh→0 g(h) < 0, which implies that when the
twist angle is θ = 2s̃π/N+π/N with s̃ ∈ {0, 1, . . . ,N−1}, there exists h = h3(N) such that g(h3(N)) < 0.

On the other hand, if h→ +∞, then

−
∑
1≤ j≤N

1 + cos(θ j +
π
N )

[2 + h2 − 2 cos(θ j +
π
N )]

3
2

→ 0,
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which implies that when the twist angle is θ = 2s̃π/N + π/N with s̃ ∈ {0, 1, . . . ,N − 1}, there exists
h = h4(N) such that g(h4(N)) > 0.

Therefore, for the case of θ = 2s̃π/N+π/N with s̃ ∈ {0, 1, . . . ,N−1}, combining with the continuity
of function g, there exists h = h̄(N) such that g(h̄(N)) = 0.

By now, Cases 1–2 show us that when θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1}, there exists h = h̄(N)
such that g(h̄(N)) = 0, which implies that

1
2

∑
1≤ j≤N

(1 − ei(θ j+θ))m

[|ei(θ j+θ) − 1|2 + (h̄(N))2]
3
2

+
1
2

∑
1≤ j≤N−1

(1 − eiθ j)m
|eiθ j − 1|3

=
∑
1≤ j≤N

m

[|ei(θ j+θ) − 1|2 + (h̄(N))2]
3
2

.

Moreover, note that ∑
1≤ j≤N

m

[|ei(θ j+θ) − 1|2 + (h̄(N))2]
3
2

∈ R.

Then, there is a constant λ ∈ R such that

1
2

∑
1≤ j≤N

(1 − ei(θ j+θ))m

[|ei(θ j+θ) − 1|2 + (h̄(N))2]
3
2

+
1
2

∑
1≤ j≤N

(1 − eiθ j)m
|eiθ j − 1|3

=
1
2
λ −

1
2

m2N+1

[1 + (h̄(N))2

4 ]
3
2

=
∑
1≤ j≤N

m

[|ei(θ j+θ) − 1|2 + (h̄(N))2]
3
2

> 0,

i.e., 
1
2

m2N+1

[1+ (h̄(N))2
4 ]

3
2
+ 1

2

∑
1≤ j≤N

(1−ei(θ j+θ))m

[|ei(θ j+θ)−1|2+(h̄(N))2]
3
2
+ 1

2

∑
1≤ j≤N

(1−eiθ j )m
|eiθ j−1|3

= 1
2λ,

1
2

m2N+1

[1+ (h̄(N))2
4 ]

3
2
+

∑
1≤ j≤N

m

[|ei(θ j+θ)−1|2+(h̄(N))2]
3
2
= 1

2λ,

which implies that there exists a constant λ ∈ R such that (3.32) holds. Then, by Step 1, the 2N+1
masses form a central configuration. □

4. Proof of Theorem 1.2

For the spatial twisted central configuration, (3.2) holds. Moreover, note that m1 = m2 = . . . = mN =

m and a = 1. Then, all the assumptions of Theorem 1.1 are satisfied, so we have a1 = 0, h2N+1 = h/2,
and m1 = m2 = . . . = mN = mN+1 = . . . = m2N = m. Thus, c0 = 0, h0 = h/2, and q2N+1 = (0 + 0i, h/2).
Thus, in the following, it suffices to prove the uniqueness of h.

In fact, by (3.36) and the first equation of (3.2), for any k′ ∈ {1, 2, . . . ,N} and any l′ ∈ {N + 1,N +
2, . . . , 2N}, one computes that

m2N+1

[1+ h2
4 ]

3
2

h
2 +

∑
N+1≤l≤2N

[(1−ei(θl−k′+θ))m]

[|1−ei(θl−k′+θ) |2+h2]
3
2

h
2 +

∑
1≤ j≤N−1

[(1−eiθ j )m]
|1−eiθ j |3

h
2 = λ

h
2 ,

h
2 m2N+1

[1+ h2
4 ]

3
2
+

∑
1≤ j≤N

mh

[|1−ei(θ j+θ) |2+h2]
3
2
= λh0 = λ

h
2 ,
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where h > 0 and θ ∈ [0, 2π). Hence, it follows from Lemma 2.3 that
m2N+1

h
2

[1+ h2
4 ]

3
2
+

∑
1≤ j≤N

(1−ei(θ j+θ))m h
2

[|1−ei(θ j+θ) |2+h2]
3
2
+

∑
1≤ j≤N−1

(1−eiθ j )m h
2

|1−eiθ j |3
= λ h

2 ,

h
2 m2N+1

[1+ h2
4 ]

3
2
+

∑
1≤ j≤N

mh

[|1−ei(θ j+θ) |2+h2]
3
2
= λ h

2 .
(4.1)

Let 

x̄ =
∑

1≤ j≤N−1

1 − eiθ j

|1 − eiθ j |3
,

ȳ(h) =
∑

1≤ j≤N

cos(θ j + θ)

[2 − 2 cos(θ j + θ) + h2]
3
2

,

z̄(h) =
∑

1≤ j≤N

1

[2 − 2 cos(θ j + θ) + h2]
3
2

.

(4.2)

Combining λ ∈ R, h ∈ R, (4.1), and (4.2), we have
h
2 m2N+1

[1+ h2
4 ]

3
2
+ mh

2 [z̄(h) − ȳ(h)] + mh
2 x̄ = λ h

2 ,

h
2 m2N+1

[1+ h2
4 ]

3
2
+ mhz̄(h) = λ h

2 ,

which implies that

m
h
2

[z̄(h) − ȳ(h)] − mhz̄(h) + m
h
2

x̄ = −λ
h
2
,

and then we obtain x̄ = ȳ(h) + z̄(h). Hence, if the 2N+1 masses form a central configuration, then the
distance h must satisfy that x̄ = ȳ(h) + z̄(h). Next, we prove the uniqueness of the distance h.

We take G(h) = ȳ(h) + z̄(h) − x̄ for h > 0, and by (4.2), it is easy to verify that G′(h) < 0. Moreover,
note that m1 = m2 = . . . = mN = m and a = 1. Then, employing Theorem 1.1, we obtain that the
existence of the central configuration implies that θ = sπ/N with s ∈ {0, 1, . . . , 2N − 1} holds. Then,
due to the rotational symmetry of the central configuration, in order to prove Theorem 1.2, it suffices
to consider the following two cases: θ = 0 and θ = π/N.

Case 1. θ = 0.
Lemma 2.5 shows that

x̄ =
∑

1≤ j≤N−1

1 − eiθ j

|1 − eiθ j |3
∈ R,

and then by (4.2),

G(h) = ȳ(h) + z̄(h) − x̄ =
∑

1≤ j≤N

1 + cos θ j

[2 − 2 cos θ j + h2]
3
2

−
∑

1≤ j≤N−1

1 − cos θ j

[2 − 2 cos θ j]
3
2

=
∑

1≤ j≤N−1

1 + cos θ j

[2 − 2 cos θ j + h2]
3
2

+
2
h3 −

∑
1≤ j≤N−1

1 − cos θ j

[2 − 2 cos θ j]
3
2

. (4.3)
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Employing (4.3), one verifies that there exist a small enough constant h = h̄ > 0 and a big enough
constant h = h̃ > 0 such that G(h̄) > 0 and G(h̃) < 0. Then, combining the continuity and monotonicity
of function G, for the case of θ = 0, there is a unique h = ĥ > 0, such that G(ĥ) = 0, i.e., x̄ = ȳ(ĥ)+ z̄(ĥ).

Case 2. θ = π/N.
Employing (4.2), we have

ȳ(h) + z̄(h) =
∑

1≤ j≤N

1 + cos(θ j + θ)

[2 − 2 cos(θ j + θ) + h2]
3
2

=
∑

1≤ j≤N

1 + cos(θ j +
π
N )

[2 − 2 cos(θ j +
π
N ) + h2]

3
2

=
∑

1≤ j≤N

1 + cos(θ j +
π
N )

[2 − 2 cos(θ j +
π
N ) + h2]

3
2

.

By Lemma 2.6, limh→0 G(h) > 0. Furthermore, by Lemma 2.5, we see that limh→+∞G(h) < 0.
Thus, for the case of θ = π/N, due to the continuity and monotonicity of function G, there is a unique
h = h̆ > 0, such that G(h̆) = 0, i.e., x̄ = ȳ(h̆) + z̄(h̆).

Based upon Cases 1–2, there exists only one h > 0 such that x̄ = ȳ(h) + z̄(h), i.e., there is only one
h > 0 such that the 2N+1 masses form a central configuration. Moreover, combining the other two
conclusions that a1 = 0 and h2N+1 = h/2, we obtain that q2N+1 = (a1eiα, h2N+1) is unique, i.e., there
are only one positive distance h between the two paralleled regular N-polygons and only one position
q2N+1 of the (2N+1)-th mass such that the 2N+1 masses form a central configuration. □
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