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Abstract: In this paper we introduce a natural compactification of a left (right) invariant affine control
system on a semi-simple Lie group G in which the control functions belong to the Lie algebra of a
compact Lie subgroup K of G and we investigate conditions under which the time optimal solutions of
this compactified system are “approximately” time optimal for the original system. The basic ideas go
back to the papers of R.W. Brockett and his collaborators in their studies of time optimal transfer in
quantum control ( [1], [2]). We showed that every affine system can be decomposed into two natural
systems that we call horizontal and vertical. The horizontal system admits a convex extension whose
reachable sets are compact and hence posess time-optimal solutions. We then obtained an explicit
formula for the time-optimal solutions of this convexified system defined by the symmetric Riemannian
pair (G,K) under the assumption that the Lie algebra generated by the control vector fields is equal to
the Lie algebra of K.
In the second part of the paper we applied our results to the quantum systems known as Icing n-chains
(introduced in [2]). We showed that the two-spin chains conform to the theory in the first part of the
paper but that the three-spin chains show new phenomena that take it outside of the above theory. In
particular, we showed that the solutions for the symmetric three-spin chains studied by ( [3], [4]) are
solvable in terms of elliptic functions with the solutions completely different from the ones encountered
in the two-spin chains.
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1. Introduction

This study will address time-optimal solutions of affine systems defined by the pairs (G,K) where G
is a semi-simple Lie group and K is a compact subgroup of G with a finite centre. Such pairs of Lie
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groups are reductive in the sense that the Lie algebra g of G admits a decomposition g = p + k with p
the orthogonal complement of the Lie algebra k of K relative to the Killing form in g that satisfies Lie
algebra condition [p, k] ⊆ p. We will then consider time-optimal solutions of affine control systems of
the form

dg
dt

= X0(g(t)) +

m∑
i=1

ui(t)Xi(g(t))) (1.1)

where Xo, . . . , Xem are all left-invariant vector fields on G under the assumption that the drift element
X0 belongs to p at the group identity and that the controlling vector fields Xi, i = 1, . . . ,m belong to k at
the group identity. We will write such systems as

dg
dt

= g(t)(A +

m∑
i=1

ui(t)Bi), (1.2)

where A = X0(e) and Bi = Xi(e),i = 1, . . . ,m.
We will be particularly interested in the pairs (G,K) in which K is the set of fixed points by an

involutive automorphism σ on G. Recall that σ , I is an involutive automorphism on G that satisfies
σ2 = I where I is the identity map in G. Then, the tangent map σ∗ at e of σ is a Lie algebra isomorphism
that satisfies σ2

∗ = I, where now I is the identity map on the Lie algebra g. Therefore (σ∗+ I)(σ∗− I) = 0,
and g = ker(σ∗ + I) ⊕ ker(σ∗ − I), i.e.,

g = {X ∈ g : σ∗X = −X} ⊕ {X ∈ g : σ∗X = X}. (1.3)

It follows that k = {X ∈ g : σ∗(X) = X} is the Lie algebra of K and that p = {X ∈ g : σ∗(X) = −X} is
a vector space in g that coincides with the orthogonal complement of k and satisfies [p, p] ⊆ k. In the
literature of symmetric Riemannian spaces the decomposition g = k ⊕ p subject to

[k, k] ⊆ k, [p, k] ⊆ p, [p, p] ⊆ k (1.4)

is called a Cartan decomposition ( [5], [6]). A symmetric pair is said to be of compact type if the
Killing form is negative definite on p. Compact type implies that G is a compact Lie group (prototypical
example G = S U(n),K = S O(n,R)). The pair (G,K) is said to be of non-compact type if the Killing
form is positive definite on p (prototypical example G = S L(n,R),K = S O(n,R)) ( [5]). We will assume
that the pair (G,K) is one of these two types. In either case Kl(X,Y) will denote the Killing form on g.
Recall that Kl is non-degenerate on g.

This background information shows that in each affine system (1.1) there is a natural energy function

E =
1
2

∫ T

0
〈U(t),U(t)〉 dt,U(t) =

m∑
i=1

ui(t)Bi

where the scalar product 〈 , 〉 is the negative of the Killing form.This energy function induces a natural
variational problem, called affine-quadratic problem, defined as follows: given two boundary conditions
in G and a time interval [0,T ], find a solution g(t) of (1.1) that satisfies g(0) = g0, g(T ) = g1 whose
energy of transfer

∫ T

0
〈U(t),U(t)〉 dt is minimal. Remarkably, every affine system (1.1) is controllable on

G whenever A is regular and the Lie algebra kv generated by B1, . . . , Bm is equal to k and the corresponding
extremal Hamiltonian system obtained by the maximum Principle is completely integrable ( [7]).
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In contrast to the above energy problem, time-optimal problems are more elusive due to the fact that
the reachable sets need not be closed because the control functions are not bounded (it may happen that
certain points in G that can be reached in an arbitrarily short time, but are not reachable in zero time,
as will be shown later). More generally, it is known that any point of the group Kv generated by the
exponentials in the Lie algebra kv generated by B1, . . . , Bm belongs to the topological closure of the set
of reachable pointsA(e,≤ T ) in any positive time T , and yet it is not known (although it is generally
believed) that each point in Kv can be reached in an arbitrarily short time from the group identity e.
This lack of information about the boundary of the reachable sets in the presence of a drift vector still
remains an impediment in the literature dealing with time optimality ( [1, 8–10]).

In this paper we will adopt the definition of R. W. Brockett et al. ( [1], [2]) according to which the
optimal time T that g1 can be approximately reached from g0 is defined as T = in f {t : g1 ∈ Ā(g0,≤ t)},
where Ā(g0,≤ t) denotes the topological closure of the set of points reachable from g0 in t or less units
of time by the trajectories of (1.2). Then T (g) will denote the minimal time that g is approximately
reachable from the group identity e.

It is evident that Brockett’s definition of time optimality is invariant under any enlargement of the
system that keeps the closure of the reachable setA(e,≤ t) the same. In particular, the optimal time is
unchanged if the original system is replaced by

dg
dt

= g(t)(A + U(t)), (1.5)

where now U(t) is an arbitrary curve in kv. Let now Kv denote the Lie subgroup generated by the
exponentials in kv. We shall assume that Kv is a closed subgroup of K, which then implies that Kv is
compact, since K is compact. Recall that every point in Kv belongs to the closure ofA(e,≤ t) for any
t > 0. Therefore T (h) = 0 for any h ∈ Kv.

Each affine system (1.5) defines a distinctive horizontal system

dg
dt

= g(t)Adh(t)A, h(t) ∈ Kv. (1.6)

These two systems are related as follows: every solution g(t) of (1.5) generated by a control U(t) ∈ kv
defines a solution ĝ(t) = g(t)h−1(t) of the horizontal system whenever dh

dt = h(t)U(t). Conversely, every
solution ĝ(t) of the horizontal system gives rise to a solution g(t) = ĝ(t)h(t) of the affine system for h(t)
a solution of dh

dt = h(t)U(t). It follows that T (ĝ) = T (gh−1) = T (g), and that Āh(e,≤ t) ⊆ Ā(e,≤ t),
whereAh(e,≤ t) denotes the reachable set of the horizontal system.

The above horizontal system can be extended to the convexified system without altering the closure
of the reachable setsA(g0,≤ t). The convexified system is given by

dg
dt

= g(t)
k∑

i=1

λi(t)Adhi(t)(A), λi(t) ≥ 0,
k∑

i=1

λi(t) = 1. (1.7)

We will think of this system as a control system with h1(t), . . . hk(t) in Kv and λ1(t), . . . λk(t) as the control
functions, and we will useAconv(e,≤ t) to denote the points in G reachable from e in t or less units of
time by the solutions of (1.7).

The following proposition summarizes the relations between (1.5), (1.6) and (1.7).
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Proposition 1. Aconv(e,≤ T ) is a compact set equal to Āh(e,≤ T ) for each T > 0. Therefore,
Aconv(e,≤ t) = Āh(e,≤ t) ⊆ Ā(e,≤ t).

This proposition is a paraphrase of the well known results in geometric control theory: Theorem 11
in [11], p. 88 implies that

Aconv(e,≤ t) = Āh(e,≤ t) ⊆ Ā(e,≤ t)

and Theorem 11 in [11] on p.119 states thatAconv(e,≤ t) is compact.
Equation (1.7) may be regarded as the compactification of (1.6). The following proposition captures

its essential properties.

Proposition 2. The optimum time T (g) is equal to the minimum time required for a trajectory of the
convexified system to reach the coset gKv from the group identity.

Proof. If g ∈ Ā(e,≤ T ) then there is a sequence of trajectories gn(t) of (1.5) and a sequence of times {tn}

such that lim gn(tn) = g. There is no loss in generality in assuming that {tn} converges to a time t, t ≤ T .
Let g̃n(t) = gn(t)hn(t), hn(t) ∈ Kv denote the corresponding sequence of trajectories in (1.6). Since Kv is
compact there is no loss in generality in assuming that hn(tn) converges to an element h in Kv. Then
lim g̃n(tn) = gh and gh belongs to Āh(e,≤ t). But then gh is reachable by the convexified system (1.7)
sinceAconv(e,≤ T ) = Āh(e,≤ T ).

Conversely if gh ∈ Aconv(e,≤ T ), then the same argument followed in reverse order shows that
g ∈ Ā(e,≤ T ). Therefore, T (g) = Tconv, where Tconv is the first time that a point of gKv is reachable
from e by a trajectory of the convexified system (1.7).

The paper is organized as follows. We begin with the algebraic preliminaries needed to show that
the convex hull of {Adh(A), h ∈ K} contains an open neighbourhood of the origin in p whenever A is
regular and Kv = K (an element X in p is regular if the set {P ∈ p : [P, X] = 0} is an abelian subalgebra
in g contained in p). This result implies two important properties of the system. First, it shows that
the stationary curve g(t) = g(0) is a solution of the convexified system, which it turn implies that any
coset gK can be reached in an arbitrarily short time by a trajectory of the convexified system. Second, it
shows that the positive convex cone spanned by {Adh(A), h ∈ K} is equal to p. Therefore, the convexified
system is controllable whenever [p, p] = k. These facts then imply that any two points in G can be
connected by a time-optimal trajectory of the convexified system, and they also imply that any point g0

in G can be connected to any coset g1K by a time optimal trajectory of the convexified system. We then
follow these findings with the extremal equations obtained by the maximum principle. We show that the
time- optimal solutions on G are either stationary, or are of the form

g(t) = g(0)et(P+Q)e−tQ, (1.8)

for some elements P ∈ p and Q ∈ k.
The non-stationary solutions on G/K are of the form

π(g(0)etP), P ∈ p, (1.9)

where π denotes the natural projection π(g) = gK. Since π(g(0)etP), P ∈ p, ||P|| = 1, coincide with the
geodesics on G/K emanating from π(g(0)) (relative to its natural G-invariant metric) it follows that t is
the length of the geodesic that connects π(g(0)) to π(g(0)etP). Evidently minimal time corresponds to
the length of the shortest geodesic that connects these points.
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Remark 1. The papers of Brockett et al ( [1] and [2]) claim that the time optimal solutions in (1.1) can
be obtained solely from the horizontal system (1.6), but that cannot be true for the following reasons:
every trajectory g(t) of the horizontal system dg

dt = g(t)Adh(t)(A) is generated by a control U(t) = Adh(t)(A)
that satisfies ||U(t)||2 = ||Adh(t)(A)||2 = ||A||2. Hence U(t) cannot be equal to zero, and g(t) cannot be
stationary.

In the second part of the paper we apply our results to quantum systems known as Icing n-chains
(introduced in [2]). We will show that the two-spin chains conform to the above theory and that their
time-optimal solutions are given by equations (1.8). The three-spin systems, however, do not fit the
above formalism due to the fact that the Lie algebra generated by the controlling vector fields does not
meet Cartan’s conditions (1.4). We provide specific details suggesting why the solutions fall outside the
above theory. We end the paper by showing that the symmetric three-spin chain studied by ( [3], [4]) is
solvable in terms of elliptic functions. The solution of the symmetric three-spin system is both new and
instructive, in the sense that it foreshadows the challenges in the more general cases.

2. Convexified horizontal systems

2.1. Algebraic background

We will continue with the symmetric pairs (G,K), with G semisimple and K a compact subgroup of
G subject to Cartan’s conditions (1.4). We recall that the Killing form is positive on p in the non-compact
cases, and is negative on p in the compact cases. In either case g admits a fundamental decomposition

g = g1 ⊕ g2 · · · ⊕ gm, gi = pi ⊕ [pi, pi], p = p1 ⊕ · · · ⊕ pm (2.1)

where each gi is a simple ideal in g and [gi, g j] = 0, i , j ( [11], p.123). It then follows that p⊕ [p, p] = g,
a fact that is important for controllability, as we shall see later on. As before, 〈 , 〉 will denote a suitable
scalar multiple of the Killing form.

We recall that an element X in p is regular if the set h = {P ∈ p : [P, X] = 0} is an abelian subalgebra
in g contained in p. It follows that h is a maximal abelian algebra that contains X. It is easy to verify that
the projection of a regular element on each factor pi is non-zero. The following proposition summarizes
the essential relations between regular elements and maximal abelian sub-algebras in p.

Proposition 3. i. Every maximal abelian algebra in p contains a regular element.
ii.. Any two maximal abelian algebras h and h∗ in p are K conjugate, i.e., Adk(h) = h∗ for some k ∈ K.
iii. p is the union of maximal abelian algebras in p.

The above results, as well as the related theory of Weyl groups and Weyl chambers are well known
in the theory of symmetric Riemannian spaces ( [5], [6]), but their presentation is often directed to a
narrow group of specialists and, as such, is not readily accessible to a wider mathematical community.
For that reason, we will present all these theoretical ingredients in a self contained manner, and in the
process we will show their relevance for the time-optimal problems defined above.

If h is a maximal abelian algebra in p then F = {adX : X ∈ h} is a collection of commuting linear
transformations in g because [adX, adY] = ad[X,Y] = 0 for any X and Y in h. In the non-compact case,
g is a Euclidean space relative to the scalar product 〈X,Y〉σ = −Kl(σ∗X,Y) induced by the automorphism
σ. Relative to this scalar product each adH,H ∈ p is a symmetric linear transformation in gl(g). Then, it
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is well known that F can be simultaneously diagonalized over g. That is, there exist mutually orthogonal
vector spaces g0, gα, with α in some finite set ∆ such that:
1. g0 = ∩H∈hker(adH).
2. g = g0 ⊕

∑
α∈∆ gα,

3. adH = α(H)I on gα for each H ∈ h, and α(H) , 0 for some H ∈ h.
Additionally,

α(H)σ∗gα = σ∗(adH(gα)) = (adσ∗H)(σ∗gα) = −ad(H)(σ∗gα),

which implies that ∆ is symmetric, that is −α ∈ ∆ for each α ∈ ∆. It is not hard to show that each α ∈ ∆

is a linear function on h, i.e., ∆ is a subset of h∗. In the literature on symmetric spaces gα are called root
spaces, and elements α ∈ ∆ are called roots ( [5]).

In the compact case, the Killing form is negative on g. Therefore g is a Euclidean vector space relative
to the scalar product 〈 , 〉 = −Kl. Since Kl(X, [Y,Z]) = Kl([X,Y],Z), 〈ad(H)X,Y〉 = −〈X, ad(H)Y〉.
Hence each ad(H) is a skew-symmetric linear operator on g. It follows that F = {adH : H ∈ h} is a
family of commuting skew-symmetric operators on g for each maximal abelian algebra h; as such, F
can be simultaneously diagonalized, but this time over the complexified algebra gc.

The complexified Lie algebra gc consists of elements Z = X + iY, X,Y ∈ g with the obvious Lie
algebra structure inherited from g. Then gc = pc ⊕ kc with pc = p + ip and kc = k + ik. It is evident that pc

and kc satisfy Cartan’s conditions

[pc, pc] ⊆ kc, [pc, kc] ⊆ pc, [kc, kc] ⊆ kc

whenever p and k satisfy conditions (1.4).
In order to make advantage of the corresponding eigenspace decomposition we will regard gc as a

Hermitian vector space with the Hermitian product

〈〈X + iY,Z + iW〉〉 = 〈X,Z〉 + 〈Y,W〉 + i(〈Y,Z〉 − 〈X,W〉). (2.2)

We recall that Hermitian means that 〈〈 , 〉〉 is bilinear and satisfies

〈〈u, u〉〉 ≥ 0, 〈〈v, u〉〉 = 〈〈u, v〉〉, (2.3)

for any u and v in gc. One can easily show that for each H ∈ h

〈〈adH(X + iY),Z + iW)〉〉 = −〈〈X + iY, adH(Z + iW)〉〉,

therefore each adH is a skew-Hermitian transformation on gc.
It follows that F = {adH,H ∈ h} becomes a family of commuting skew-Hermitian operators on

gc, and consequently can be simultaneously diagonalized. If λ is an eigenvalue of a skew-symmetric
transformation T , then λ is imaginary, because T x = λx means that

λ||x||2 = 〈T x, x〉 = −〈x,T x〉 = −λ̄||x||2.

Hence λ = −λ̄. We will write λ = iα. So, if Xα is the eigenvector corresponding to iα , 0 then
ad(H)(Xα) = iα(H)Xα, H ∈ h. It follows that α ∈ h∗ because

iα(λH1 + µH2)Xα = λad(H1)(Xα) + µad(H2)(Xα) = i(λα(H1) + µα(H2))Xα,
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hence α(λH1 + µH2) = λα(H1) + µα(H2). Then gcα will denote the eigenspace corresponding to iα for
each non-zero eigenvalue iα, that is,

g
c
α = {X ∈ gc : ad(H)X = iα(H)X,H ∈ h}, α(H) , 0, for some H ∈ h.

Since
ad(H)X = ad(H)X = −iα(H)X,H ∈ h,

−iα is a non-zero eigenvalue for each eigenvalue α. We will let i∆ denote the set of non-zero eigenvalues
of {ad(H),H ∈ h}. As in non-compact case, ∆ is a symmetric and a finite set in h∗. It then follows
that the eigenspaces gcα corresponding to different eigenvalues are orthogonal with respect to 〈〈 , 〉〉 and
gc = gc0 +

∑
α∈∆ gc

α, where gc0 is given by ∩H∈hker(adH) and where the sum is direct.
Every Z ∈ gc can be written as Z = Z0 +

∑
α∈∆ Zα in which case

adH(Z) =
∑
α∈∆

iα(H)Zα,Zα ∈ gcα. (2.4)

Then Z ∈ g if and only if Zα + Z̄α = 0 and Z̄0 = Z0. If H is such that α(H) , 0 for all α, then adH(Z) = 0
if and only if Zα = 0 for all α.

Suppose now that Z ∈ g ∩ gc0 that is, suppose that adH(Z) = 0 for all H ∈ h. Then, Z = X + Y for
some X ∈ p, and Y ∈ k. Our assumption that adH(X + Y) = 0 yields [H, X] = 0 and [H,Y] = 0. Hence
X ∈ h and Y ∈ k belongs to the Lie algebra m in k consisting of all elements Y such that [H,Y] = 0 for
all H ∈ h.

Proposition 4. For each α ∈ ∆ there exist non-zero elements Xα ∈ p and Yα ∈ k such that

adH(Xα) = −α(H)Yα, adH(Yα) = α(H)Xα, compact case, (2.5)

and
adH(Xα) = α(H)Yα, adH(Yα) = α(H)Xα, non-compact case. (2.6)

In either case [Xα,Yα] ∈ h.

Proof. Let us begin with the compact case with Zα in gcα a non-zero element such that adH(Zα) =

iα(H)Zα for some element H ∈ h such that α(H) , 0. If Zα = Uα + iVα with Uα ∈ g and Vα ∈ g, then

adH(Uα) = −α(H)Vα, adH(Vα) = α(H)Uα.

These relations imply that neither Uα = 0 nor Vα = 0. Let now

Uα = Upα + U kα,Vα = Vpα + V kα,

with Upα,V
p
α in p and U kα,V

k
α in k. It follows that

adH(Upα + U kα) = −α(H)(Vpα + V kα), adH(Vpα + V kα) = α(H)(Upα + U kα).

Cartan relations (1.4) imply

adH(Upα) = −α(H)V kα, adH(V kα) = α(H)Upα,
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adH(U kα) = −α(H)Vpα, adH(Vpα) = α(H)U kα

which, in turn, imply that both Upα and V kα are non-zero, and also imply that U kα and Vpα are non-zero.
Then Xα = Upα and Yα = V kα satisfy

adH(Xα) = −α(H)Yα, adH(Yα) = α(H)Xα.

In the non-compact case, Zα = Xα + Yα, Xα ∈ p and Yα ∈ k. Then adH(Zα) = α(H)Zα, together with the
Cartan conditions yield

adH(Xα) = α(H)Yα, adH(Yα) = α(H)Xα. (2.7)

In either case,

adH([Xα,Yα]) = −[Yα, adH(Xα)] + [Xα, adH(Yα)]
= ±α(H)[Yα,Yα] + α(H)[Xα, Xα] = 0.

Hence [Xα,Yα] ∈ h.

There are many properties that both the compact and the non-compact spaces symmetric spaces
share. In particular in both cases each root α defines a hyperplane {X ∈ h : α(X) = 0}. The set
∪α∈∆{X ∈ h : α(X) = 0} is closed and nowhere dense in h. Therefore its complement R(h), given by
R(h) = ∩α∈∆{X ∈ h : α(X) , 0}, is open and dense in h. It is a union of finitely many connected
components called Weyl chambers. Each Weyl chamber is defined as an equivalence class under the
equivalence relation in R(h) defined by X ∼ Y if and only if α(X)α(Y) > 0 for all roots α ∈ ∆. It is
evident that each Weyl chamber is an open and convex subset in h.

Proposition 5. An element X ∈ p is regular in a maximal abelian algebra h in p if and only if X ∈ R(h).
That is, X is regular if and only if α(X) , 0 for every root α ∈ ∆.

Proof. The proof is almost identical in both the compact and the non-compact case. Suppose that X is
regular in h and suppose that α(X) = 0 for some α ∈ ∆. Let Xα ∈ p and Yα ∈ k be as in Proposition 4,
that is

adH(Xα) = −α(H)Yα, adH(Yα) = α(H)Xα,H ∈ h,

in the compact case, and

adH(Xα) = α(H)Yα, adH(Yα) = α(H)Xα,H ∈ h,

in the non-compact case. If α(X) = 0, then adX(Xα) = 0 and therefore Xα ∈ h. Hence 0 = adH(Xα) =

±α(H)Yα which yields Yα = 0 since α , 0, which contradicts our assumption that neither Xα nor Yα are
non-zero.

Conversely, assume that X is an element in h such that α(X) , 0 for any α ∈ ∆. Let Y ∈ p be such
that [X,Y] = 0. Then 0 = adX(Y) =

∑
α∈∆ α(X)Yα, where Y = Y0 +

∑
Yα. This relation implies that

Yα = 0 for any α , 0. Hence Y = Y0, Y0 ∈ g0 ∩ h. This shows that Y ∈ h, therefore X is regular.

Corollary 1. The set of regular elements in p is open and dense in p.

The following proposition is of central importance.
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Proposition 6. Let X and X∗ be regular elements in the maximal abelian algebras h and h∗ in p. Consider
now functions F(h) = Kl(X∗, Adh(X)), h ∈ K, in the non-compact case and F(h) = −Kl(X∗, Adh(X) in
the compact case. If k ∈ K yields a critical point for the function F(h), then Adk(X) ∈ h∗ and Adk(h) = h∗.
When k yields the maximum for F then Adk(X) ∈ C(X∗), and Adk(C(X)) = C(X∗), where C(X) and C(X∗)
denote the Weyl chambers that contain X and X∗.

Proof. Let 〈X,Y〉 = ±Kl(X,Y). If U ∈ k then

F(ketU) = 〈X∗, Adk(X) + tadU(X) +
t2

2
ad2U(X) + · · · 〉.

When k is a critical point of F, then d
dt F(ketU)|t=0 = 0, and when k is a maximal point then in addition

d2

dt2 F(ketU)|t=0 ≤ 0. In the first case,

0 = dF(k)(U) = 〈X∗, Adk[U, X]〉 = −〈[X∗, Adk(X)], AdkU〉 = 0,

for any U ∈ k. It follows that [X∗, Adk(X)] = 0 because U is arbitrary and Adk is an isomorphism on k.
Hence Adk(X) belongs to the Cartan algebra that contains X∗, which is equal to h∗ since X∗ is regular in
h∗. If Y ∈ h then [Adk(Y), Adk(X)] = Adk([X,Y]) = 0, therefore Adk(Y) ∈ h∗. Hence, Adk(h) = h∗.

Assume now that F(k) is a maximal point for F. It follows that

d2

dt2 F(ketU)|t=0 = 〈X∗, Adk(ad2U(X)〉 ≤ 0.

If we let Adk(X) = X′ and Adk(U) = U′ then the above can be written as

〈adX∗adX′(U′),U′〉 ≤ 0,U′ ∈ K.

If T = adX∗adX′ then T is negative semi-definite on k.
In the compact case T is a composition of two commuting skew-symmetric operators, hence is

symmetric (relative to 〈 , 〉 which is positive on k). In the non-compact case, T is a composition of two
commuting symmetric operators, hence is symmetric again, but this time relative to a negative definite
metric- since the Killing form is negative on k. Hence T is negative semi-definite on k in the compact
case, and positive semi-definite in the non-compact case. Therefore, the non-zero eigenvalues of T are
positive in the non-compact case and negative in the compact case.

We will show now that α(X∗)α(X′) > 0 for each α ∈ ∆(h∗). In the compact case there are elements
Xα ∈ p and Yα ∈ k such that

ad(H)(Xα) = −α(H)Yα, adH(Yα) = α(H)Xα,H ∈ h∗,

for each α ∈ ∆(h∗). Then,

adX∗(Xα) = −α(X∗)Yα, adX∗(Yα) = α(X∗)Xα,

adX′(Xα) = −α(X′)Yα, adX′(Yα) = α(X′)Xα.

Since X∗ and X′ are regular α(X∗) and α(X′) are non-zero. We then have

T (Yα) = adX∗adX′(Yα) = adX∗α(X′)Xα = −α(X∗)α(X′)Yα.
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It follows that Yα is an eigenvector for T with −α(X∗)α(X′) the corresponding eigenvalue. Since the
non-zero eigenvalues of T are negative we get α(X∗)α(X′) > 0.

In the non-compact case

ad(H)(Xα) = α(H)Yα, adH(Yα) = α(H)Xα,H ∈ h∗,

for each α ∈ ∆(h∗), therefore

T (Yα) = adX∗adX′(Yα) = adX∗α(X′)Xα = α(X∗)α(X′)Yα.

Thus α(X)α(X′ are the eigenvalues of T . Since T is positive semi-definite α(X)α(X′ > 0 (neither α(X)
nor α(X′) can be zero because X and X′ are regular.) Therefore X′ ∈ C(X∗) in both cases.

We now return to Proposition 3 with the proofs.

Proof. The first statement is obvious in view of Proposition 5, If h is any Cartan algebra then take any
X ∈ h such that α(X) , 0 for any α ∈ ∆.

Second statement follows from Proposition 6. To prove the last statement let P be an arbitrary
element in p and let X0 be a regular element in h. There is an element k ∈ K that attains the maximum
for the function F(k) = 〈P, AdkX0〉. Then dF(k) = 0 yields [P, AdkX0] = 0. Therefore P ∈ Adk(h). This
shows that every element P ∈ p is contained in some maximal abelian algebra in p.

We are now ready to introduce another important theoretic ingredient, the Weyl group. If h be any
maximal abelian subalgebra in p let

N(h) = {h ∈ K : Adh(h) ⊆ h},C(h) = {h ∈ K : Adh(X) = X, X ∈ h}.

These groups are respectively called the normalizer of h and the centralizer of h. Each group is a
closed subgroup of K, and consequently, each group a Lie subgroup of K. Moreover, C(h) is normal
in N(h). Any element U in the Lie algebra n(h) of N(h) satisfies adU(X) ∈ h for any X ∈ h. But
then 〈[U, X], h〉 = 〈U, [X, h]〉 = 0. Hence [U, X] = 0. Therefore, U belongs to the Lie algebra of the
centralizer C(h). It follows that N(h) and C(h) have the same Lie algebra, which then implies that N(h)
is an open cover of C(h), that is, the quotient group N(h)/C(h) is finite. This quotient group is called the
Weyl group.

We will follow S. Helgason and represent the elements of the Weyl group by the mappings Adk|h

with k ∈ N(h) ( [6]) in which case {Adk|h : k ∈ N(h)} is denoted by W(G,K). An interested reader can
easily show that if Wh(G,K) is the Weyl group associated with a Cartan algebra h and Wh∗(G,K) is the
Weyl group associated with another Cartan algebra h∗ then

kWh(G,K)k−1 = Wh∗(G,K), Adk(h) = h∗.

In that sense the Weyl group is determined by the pair (G,K) rather than a particular choice of a Cartan
algebra.

Proposition 7. If Adk(C(h)) = C(h) for some k ∈ K, and some Weyl chamber C(h) in h, then Adk|h = Id.

The following lemma is useful for the proof of the proposition.
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Lemma 1. Let H be a regular element in a maximal abelian algebra h in p. Then

{Z ∈ g : [Z,H] = 0} = h + {Q ∈ k : [Q,H] = 0} = h + {U ∈ k : [U, h] = 0}.

Proof. If Z = P + Q, P ∈ p,Q ∈ k, then [Z,H] = 0 if and only if [P,H] = 0 and [Q,H] = 0. Therefore,
P ∈ h because H is regular. It follows that {Z ∈ g : [Z,H] = 0} = h + {Q ∈ k : [Q,H] = 0]}.

Now let V be an arbitrary point in h. Then for any Q ∈ k such that [Q,H] = 0, [[Q,V],H] =

−[[H,Q],V] − [[V,H],Q] = 0. Therefore [Q,V] ∈ h since [Q,V] ∈ p and H is regular. But
then〈[Q,V], h〉 = 〈Q, [V, h]〉 = 0 and hence [Q,V] = 0.

We now return to the proof of Proposition 7.

Proof. Since C(h) is open in h and the set of regular elements is dense, there is a regular element X in
C(h). Then Adk(X) = X∗ belongs to C(h). If Z ∈ h then [X∗, AdkZ] = [AdkX, AdkZ] = Adk[X,Z] = 0 and
therefore AdkZ ∈ h. This shows that k ∈ N(h) that is, Adk|h ∈ W(G,K). Since W(G,K) is finite, the orbit
{Adn

k (X∗), k = 0, 1, . . . } is finite, and therefore there is a positive integer N such that AdN
k (X∗) = X∗. If N

is the smallest such integer then let H = 1
N−1 (X∗ + AdkX∗ + · · · + AdN−1

k X∗). It follows that Adk(H) = H.
Since Adk(C(h)) = C(h), Adn

k X∗ ∈ C(h), and since C(h) is convex, H ∈ C(h).
The above implies that k belongs to the centralizer of H. The Lie algebra of the centralizer in K is

given by {U ∈ k : [U,H] = 0}. But this Lie algebra coincides with {U ∈ k : [U,V] = 0,V ∈ h} as shown
in the Lemma above. Since Adk(H) = H, ketHk−1 = etH. Therefore k belongs to the centralizer of the
one parameter group {etH, t ∈ R}. Let T be the closure of {etH, t ∈ R}. Then, T is a connected abelian
subgroup in G, i.e., T is a torus. Its centralizer in G is the maximal torus that contains T . Every maximal
torus is connected, and consequently is generated by the exponentials in its Lie algebra. The Lie algebra
of this centralizer is given by L = {Z ∈ g : [Z,H] = 0}, which is equal to h + {U ∈ k : [U, h] = 0} by the
lemma above.

We now have AdetU X = X for each U ∈ L and each X ∈ h. Since k =
∏m

i=1 eUi for some choice of
U1, . . . ,Um in L, Adk|h = Id, and therefore X∗ = X.

Propositions 6 and 7 can be summarized as follows:

Proposition 8. Let C(h) be a Weyl chamber in h. Then {Adk(C(h)) : k ∈ W(G,K)} acts simply and
transitively on the set of Weyl chambers in h. Here acting simply means that if some k ∈ W(G,K) takes
a Weyl chamber C(h) onto itself, then k = e.

Corollary 2. If X0 is any regular element in p and if C(h) is a Weyl chamber associated with any
maximal abelian subalgebra in p then there is a unique k ∈ K such that Adk(X0) ∈ C(h).

The Weyl group could be also defined in terms of the orthogonal reflections in h around the hyperplane
{X ∈ p : α(X) = 0}, α ∈ ∆. The reader can readily verify that this reflection is given by sα(H) =

H − 2α(H)
α(A) A where A ∈ h is the unit vector such that α(H) = 〈A,H〉,H ∈ h. The following proposition is

basic.

Proposition 9. There exists k ∈ N(h) such that Adk|h = sα.
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Proof. Let Xα and Yα be non-zero vectors in g as in Proposition 4 such that

adH(Xα) = −α(H)Yα, adH(Yα) = α(H)(Xα)

in the compact case, and
adH(Xα) = α(H)Yα, adH(Yα) = α(H)(Xα)

in the non-compact case. We have already shown [Xα,Yα] ∈ h. Since

〈H, [Yα, Xα]〉 = 〈[H,Yα], Xα〉 = α(H)〈Xα, Xα〉,

Xα could be rescaled so that 〈H, [Yα, Xα]〉 = α(H).
Let Aα ∈ h be such that α(H) = 〈Aα,H〉,H ∈ h. Then [Yα, Xα] = Aα. We now have

adAα(Xα) = −α(Aα)Yα, adAα(Yα) = α(Aα)Xα.

Therefore
adYα(Aα) = −α(Aα)Xα, and ad2Yα(Aα) = −α(Aα)Aα. (2.8)

Hence,

AdetYα (Aα) = etadYαAα =∑∞
n=0

1
2n! t

2nad2nYα(Aα) +
∑∞

n=0
1

2n+1! t
2n+1ad2n+1Yα(Aα) =∑∞

n=0
t2n

2n! (−α(Aα)nAα +
∑∞

n=0
t2n+1

2n+1 (−α(Aα)2n−1Xα =∑∞
n=0(−1)n θ2n

2n! Aα +
∑∞

n=0(−1)n θ2n+1

2n+1! Xα =

cos tθAα + sin tθXα,

where θ =
√
α(Aα). When tθ = π then AdetY (Aα) = −Aα.

Moreover, if H ∈ h is perpendicular to Aα then α(H) = 0 and therefore, adY(H) = α(H)X = 0.
Hence AdetY (H) = H, and AdetY |h = sα.

Proposition 10. The Weyl group W(G,K) is equal to the group generated by the reflections Adk|h =

sα, α ∈ ∆.

Proof. Let Ws be the group generated by sα, α ∈ ∆. Then Ws is a subgroup of W(G,K). We will show
that for any Adk in W(G,K) there exists an element Adh in Ws such that Adk(X) = Adh(X) for any X ∈ h.
It suffices to show the equality on regular elements in h.

If X is a regular element in h, then let C∗ be the Weyl chamber in h∗ = Adk(h) that contains
X∗ = Adk(X). Let Adh∗ be the element of Ws that minimizes ||X∗ − Adh(X)|| over Ws. Then the line
segment from Adh∗(X) to X∗ cannot cross any hypersurface α = 0. Hence α(X∗) and α(Y) have the same
signature at any point Y on the line segment from X∗ to Adh∗(X). It then follows that Adh∗(X) and X∗

belong to the same Weyl chamber. Then Adk(X) = Adh∗(X) by the previous proposition.
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2.2. Weyl group and controllability

Let h be any maximal abelian algebra in g contained in p, and let α1, . . . , αn be any basis in ∆.
Then let A1, . . . , An be the corresponding vectors in h defined by 〈X, Ai〉 = αi(X), X ∈ h. If X is a an
element in h that is orthogonal to each Ai, then αi(X) = 0 for each αi ∈ ∆. That means that ad(X) = 0.
Therefore X = 0, since the centre in g consists of 0 alone. Hence A1, . . . , An form a basis in h. With
these observations at our disposal we now return to the convexified horizontal control system

dg
dt

=

k∑
i=1

λi(t)g(t)Adhi(t)(X0), λi(t) ≥ 0,
k∑

i=1

λi(t) = 1, (2.9)

with X0 ∈ p regular, controlled by the coefficients λ1, . . . , λk and the curves h1(t), i = 1, . . . , k in K.
There will be no loss in generality if the curves hi(t) are restricted to the solutions of dh

dt = U(t)h(t) with
U(t) transversal to the Lie algebra {V ∈ k : [V, X0] = 0}.

Proposition 11. The convex hull of {Adh(X0), h ∈ N(h)} contains an open neighbourhood of the origin
in h.

Proof. Let O(X0) = {Adhi X0, i = 0, 1, . . . ,m} denote the orbit of W((G,K) through X0. Assume that
Adh0(X0) = X0 and that Adhi(X0) = sαi , i = 1, . . . , n. We know that O acts simply and transitively on the
Weyl chambers in h. Let

X =
1
m

m∑
i=0

Adhi X0.

It follows that X is in the convex hull of the orbit {AdhX0, h ∈ N(h)}. Since Adh j Adhi X0 = Adh jhi Xo =

Adhk X0, where k ∈ K, each Adh j permutes the elements in O(X0), which in turn implies that Adh j X = X
for each j = 1, . . . ,m. Therefore, X = 0. Let now

σ(t) =

n∑
i=0

(
1
m

+ tεi)sαi(X0) +
1
m

m∑
i=n+1

Adhi(X0),

where ε0, ε1, . . . , εn are arbitrary numbers such that
∑n

i=0 εi = 0. Let

λi(t) =
1
m

+ tεi, i = 0, . . . , n, λi =
1
m
, i = n + 1, . . . ,m.

Then,
∑m

i=0 λi(t) = 1, and for sufficiently small t, λi > 0, i = 0, . . . ,m. It follows that σ(t) is contained
in the convex hull of the Weyl orbit through X0 for small t and satisfies σ(0) = 0. Then dσ

dt (0) =

−
∑n

i=1 εi
αi(X0)
α(Ai)

Ai and therefore the mapping F(λ0(t), . . . , λm(t)) =
∑m

i=1 λi(t)Adhi X0 is open at λ1 = λ2 =

· · · = λm = 1
m .

Corollary 3. The convexified horizontal system (2.9) admits a stationary solution g(t) = g0.

Proposition 12. The convexified horizontal system is controllable.
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Proof. We will first show that the Lie algebra L generated by {AdhX0 : h ∈ K} is equal to g. Let V
denote the vector space spanned by {Adh(X0), h ∈ K} and let L be the Lie algebra generated by V . If
U1, . . . ,U j are arbitrary elements in k then Adh1(t1)···h j(t j)(X0) is in V where hi(ti) = etiUi . Since V is a
vector space, ∂

∂ti
Adh1(t1)···h j(t j)(X0) is in V . Therefore,

∂

∂t j
Adh1(t1)···h j(t j)(X0)t j=0 = Adh1(t1)···h j−1(t j−1)(ad(U j)(X0)) ∈ V.

Further differentiations yield ad(U1◦ad(U2)◦· · · ad(U j)(X0) ∈ V . This can be also written as ad jk(X0) ⊂
V .

Let now V̂ be the vector space spanned by
⋃∞

j=0 ad jk(X0). It follows that V̂ ⊆ V . Let now V̂⊥ denote
its orthogonal complement in p. Both V̂ and V̂⊥ are ad(k) invariant. If Z ∈ V̂ , W ∈ V̂⊥ and Y ∈ k, then

〈Y, [Z,W]〉 = 〈[Y,Z],W〉 = 0.

Since Y is arbitrary [Z,W] = 0. Therefore [V̂ , V̂⊥] = 0, and hence V̂ + [V̂ , V̂] is an ideal in g. Let us
now use the fundamental decomposition

g = g1 ⊕ g2 · · · gm, gi = pi + [pi, pi], p = p1 ⊕ · · · ⊕ pm

defined in (2.1). It follows that the projection of V̂ + [V̂ , V̂] on each simple factor is equal to gi
(since X0 ∈ V̂ , and the projection of X0 on each factor gi is non-zero). So V̂ + [V̂ , V̂] = g. But then
V̂ + [V̂ , V̂] ⊆ L yields L = g. Since V̂ + [V̂ , V̂] ⊆ V + [V,V] = g, V = V̂ and V = p.

To prove controllability it would suffice to show that the affine cone {
∑k

i=1 λiAdhi(X0), λi ≥ 0, hi ∈

K, i = 1, . . . , k} is equal to V which by the above is equal to p. Let P be an arbitrary point in p.
Then, P belongs to some maximal abelian algebra h. By the preceding proposition the convex hull
of {AdhX0 : h ∈ K} covers a neigborhood of the origin in h. If ε > 0 is any scalar such that εP is in
this neighborhood, then −εP is also in this neghborhood, and hence is reachable by the convex hull of
{AdhX0 : h ∈ K}. But then −P = 1

ε
(−εP) is in the above affine cone.

The preceding results show that the convex cone spanned by Adh(X0) is a neighbourhood of the
origin in p. It then follows that the positive cone

∑
λiAdhi(X0), λi ≥ 0, is equal to p. This implies that

any time optimal trajectory of the compactified horizontal system is generated by a control on the
boundary of the convex cone defined by {Adh(X0), h ∈ K}. For if g(t) is a trajectory generated by a
control U(t) =

∑k
i=1 λi(t)Adhi(t)(X0) in the interior of the convex set spanned by Adh(X0), then ρU(t) is in

the same interior for some ρ > 1. But then g(t) reparametrized by s = ρt steers e to g(T ) in s = T
ρ

units
of time violating the time optimality of g(t).

The time-optimal problem for the convexified system is related to the sub-Riemannian problem
of finding the shortest length of a horizontal curve that connects two given points in G. In fact any
horizontal curve g(t) is a solution of dg

dt = g(t)U(t) with U(t) = Adh(t)X0 and inherits the notion of length
from G given by

∫ T

0

√
〈U(t),U(t)〉dt, where 〈 , 〉 denotes a suitable scalar multiple of the Killing form.

Since U(t) = Adh(t)(X0) satisfies 〈U(t),U(t)〉 = ||X0||
2 = 1 when X0 is a unit vector, the length of g(t) in

the interval [0,T ] is equal to the time it takes to reach g(T ) from g(0). Therefore, the shortest time to
reach a point g1 from g0 is equal to the minimum length of the horizontal curve to reach g1 from g0. As
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we showed above, the horizontal system is controllable, therefore any two points in G can be connected
by a horizontal curve. But then any two points in G can be connected by a horizontal curve of minimal
length by a suitable compactness argument.

3. Necessary conditions of optimality

3.1. Generalities-left-invariant Hamiltonians

We will now use the maximum principle to obtain the necessary conditions of optimality on the
cotangent bundle T ∗G. We recall that each optimal solution is the projection of an integral curve in T ∗G
of the Hamiltonian vector generated by a suitable Hamiltonian obtained from the maximum principle.
To preserve the left-invariant symmetries, we will regard the cotangent bundle T ∗G as the product
G × g∗ via the left-translations. In this formalism tangent vectors v ∈ TgG are identified with pairs
(g, X) ∈ G × g via the relation v = Lg∗X, where Lg∗ denotes the tangent map associated with the left
translation Lg(h) = gh. Similarly, points ξ ∈ T ∗gG are identified with pairs (g, `) ∈ G × g∗ via ξ = ` · Lg

−1
∗

.
If the optimal problem was defined over a right-invariant system, then the tangent bundle would be
trivialized by the right translations, in which case the ensuing formalism would remain the same as in
the left-invariant setting.

Then, T (T ∗G), the tangent bundle of the cotangent bundle T ∗G, is naturally identified with (G ×
g∗) × (g × g∗), with the understanding that an element ((g, `), (A, a)) ∈ (G × g∗) × (g × g∗) stands for the
tangent vector (A, a) at the base point (g, `).

We will make use of the fact that G × g∗ is a Lie group in its own right since g∗, as a vector space,
is an abelian Lie group. Then left-invariant vector fields in G × g∗ are the left-translations of the pairs
(A, a) by the elements (g, `) in G × g∗. The corresponding one-parameter groups of diffeomorphisms are
given by (g exp(tA), ` + ta), t ∈ R. In terms of these vector fields the canonical symplectic form on T ∗G
is given by

ω(g,`)(V1,V2) = a2(A1) − a1(A2) − `([A1, A2]) (3.1)

for any V1 = (gA1, a1) and V2 = (gA2, a2). ( [7]).
The above differential form is invariant under the left-translations in G × g∗, and is particularly

revealing for Hamiltonian vector fields generated by the left-invariant functions on G × g∗. A function
H on G × g∗ is said to be left-invariant if H(gh, `) = H(g, `) for all g, h ∈ G and all ` ∈ g∗. It follows
that the left-invariant functions are in exact correspondence with functions on g∗. Each left-invariant
vector field X(g) = (Lg)∗A, A ∈ g, lifts to a linear function ` → `(A) on g∗ because

hX(ξ) = ξ(X(g)) = ` ◦ Lg
−1
∗
◦ (Lg)∗(A) = `(A), ξ ∈ T ∗gG.

Any function H on g∗ generates a Hamiltonian vector field ~H on G × g∗ whose integral curves are
the solutions of

dg
dt

(t) = g(t)dH`(t),
d`
dt

(t) = −ad∗dH`(t)(`(t)). (3.2)

For when H is a function on g∗, then its differential at a point ` is a linear function on g∗, hence is an
element of g because g∗ is a finite dimensional vector space. If ~H(g,`) = (A(g, `), a(g, `)) for some vectors
A(g, `) ∈ g and a(g, `) ∈ g∗, then

b(dH`) = b(A) − a(B) − `[A, B],
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must hold for any tangent vector (B, b) at (g, `). This implies that A(g, `) = dH`, and a = −ad∗dH`(`),
where (ad∗A)(`)(B) = `[A, B] for all B ∈ g. This argument validates equations (3.2).

The dual space g∗ is a Poisson space with its Poisson structure { f , h}(`) = `([dh, d f ]) inherited from
the symplectic form (3.1). Recall that a manifold M together with a bilinear, skew-symmetric form

{ , } : C∞(M) ×C∞(M)→ C∞(M)

that satisfies

{ f g, h} = f {g, h} + g{ f , h}, (Leibniz’s rule), and
{ f , {g, h}} + {h, { f , g}} + {g, {h, f }} = 0, (Jacobi’s identity),

for all functions f , g, h on M, is called a Poisson manifold.
Every symplectic manifold is a Poisson manifold with the Poisson bracket defined by { f , g}(p) =

ωp( ~f (p), ~g(p)), p ∈ M. However, a Poisson manifold need not be symplectic, because it may happen
that the Poisson bracket is degenerate at some points of M. Nevertheless, each function f on M induces
a Poisson vector field ~f through the formula ~f (g) = { f , g}. It is known that every Poisson manifold is
foliated by the orbits of its family of Poisson vector fields, and that each orbit is a symplectic submanifold
of M with its symplectic form ωp( ~f ,~h) = { f , h}(p) (this foliation is known as a the symplectic foliation
of M ( [7])).

It follows that each function H on g∗ defines a Poisson vector field ~H on g∗ through the formula
~H( f )(`) = {H, f }(`) = `([dH, d f ]). The integral curves of ~H are the solutions of

d`
dt

(t) = −ad∗dH`(t)(`(t)) (3.3)

That is, each function H on g∗ may be considered both as a Hamiltonian on T ∗G, as well as a function
on the Poisson space g∗; the Poisson equations of the associated Poisson field are the projections of the
Hamiltonian equations (3.2) on g∗ .

Solutions of equation (3.3) are intimately linked with the coadjoint orbits of G. We recall that the
coadjoint orbit of G through a point ` ∈ g∗ is given by Ad∗g(`) = {` ◦ Adg−1 , g ∈ G}.

The following proposition is a paraphrase of A.A. Kirillov’s fundamental contributions to the Poisson
structure of g∗ ( [12]).

Proposition 13. Let F denote the family of Poisson vector fields on g∗ and let M = OF (`0) denote the
orbit of F through a point `0 ∈ g

∗. Then M is equal to the connected component of the coadjoint orbit
of G that contains `0. Consequently, each coadjoint orbit is a symplectic submanifold of g∗.

The fact that the Poisson equations evolve on coadjoint orbits implies useful reductions in the theory
of Hamiltonian systems with symmetries. Our main results will make use of this fact.

On semi-simple Lie groups the Killing form, or any scalar multiple of it 〈 , 〉 is non-degenerate, and
can be used to identify linear functions ` on g with points L ∈ g via the formula 〈L, X〉 = `(X), X ∈ g.
Then, Poisson equation (3.3) can be expressed dually on g as

dL
dt

= [dH, L]. (3.4)
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The argument is simple:

〈
dL
dt
, X〉 =

d`
dt

(X) = −`([dH, X]) = 〈L, [X, dH]〉 = 〈[dH, L], X〉.

Since X is arbitrary, equation (3.4) follows.
With the aid of Cartan’s conditions (1.4) equation (3.4) can be written as

dLk
dt

= [dHk, Lk] + [A, Lp],
dLp
dt

= [dHk, Lp] + [A, Lk] (3.5)

where dHp, dHk, Lp and Lk denote the projections of dH and L on the factors p and k.
Under the above identification coadjoint orbits are identified with the adjoint orbits O(L0) = {gL0g−1 :

g ∈ G}, and the Poisson vector fields ~fX(`) = −ad∗X(`) are identified with vector fields ~X(L) = [X, L].
Each vector field [X, L] is tangent to O(L0) at L, and ωL([X, L], [Y, L]) = 〈L, [Y, X]〉, X,Y in g is the
symplectic form on each orbit O(L0).

3.2. Time-optimal extremals

Let us now turn to the extremal equations associated with the time-optimal problem for the convexi-
fied horizontal system (1.7). The Hamiltonian lift is given by

H0(λ0, `) = −λ0 +

m∑
i=1

λi(t)`(Adhi(t)X0), ` ∈ g∗, λ0 = 0, 1.

Suppose now that g(t) is a time-optimal curve generated by the controls λi(t), hi(t), i = 1, . . . , k. Accord-
ing to the maximum principle g(t) is the projection of an extremal curve (λ0, `(t)) ∈ R × g∗, `(t) , 0
when λ0 = 0, that satisfies H0(`(t)) = 0 and is further subject to:

− λ0 +

m∑
i=1

λi(t)`(t)(Adhi(t)(X0)) ≥ −λ0 +

m∑
i=1

µi(t)`(t)(Adhi(t)(X0)) (3.6)

for any µi(t) ≥ 0,
∑k

i=1 µi(t) = 1, and any hi(t) ∈ K.
The extremal curve `(t) is called abnormal when λ0 = 0. In such a case, H(`(t)) =∑m

i=1 λi(t)`(Adhi(t)X0) = 0. In the remaining case, λ0 = 1, H(`(t)) = 1, and `(t) is called a normal
extremal. In either case,

d`
dt

= −ad∗(
k∑

i=1

λi(t)Adhi(t)X0)(`(t), (3.7)

or, dually,
dL
dt

= [
k∑

i=1

λi(t)Adhi(t)X0, L(t)]. (3.8)

When the terminal point is replaced by a terminal manifold S then a time-optimal trajectory must
additionally satisfy the transversality condition `(T )(V) = 0 for all tangent vectors V in Tg(T )S . In
particular, when S = gK, and when the tangent space TgK is represented by TgK = g × k, then the
transversality condition becomes `(T )V = 0 for all V ∈ k.

We will find it more convenient to work in g rather than g∗. So, if L in g corresponds to ` in g∗, then
L = Lp + Lk where Lp ∈ p and Lk ∈ k.
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Proposition 14. Suppose that a time optimal control X(t) =
∑k

i=1 λi(t)Adhi(t)X0 is the projection of an
extremal curve L(t). If L(t) is abnormal, then Lp(t) = 0 and Lk(t) is constant. In particular, the stationary
solution X(t) = 0 is the projection of an abnormal extremal curve.

If L(t) is a normal extremal curve then X(t) = Adh(t)X0 for some curve h(t) in K.

Proof. If L(t) is abnormal then

0 = 〈Lp(t), X(t)〉 ≥ 〈Lp(t),
k∑

i=1

µi(t)Adhi(t)X0〉

for arbitrary controls
∑k

i=1 µi(t) = 1, and h1(t), . . . , hk(t) in K. This can hold only when Lp(t) = 0 ( due
to Proposition 11). But then equations (3.7) become

0 = [X(t), Lk],
dLk
dt

= [X(t), Lp(t)] = 0.

Evidently these equations hold when X(t) = 0. So the stationary solution is the projection of an abnormal
extremal.

In the normal case

H(L(t)) = 〈Lp(t),
k∑

i=1

λi(t)Adhi(t)(X0)〉 =

k∑
i=1

λi(t)〈Lp(t)Adhi(t)(X0)〉 = 1.

So Lp(t) , 0. Let h(t) ∈ {h1(t), . . . , hk(t)} corresponds to the maximal value of 〈Lp(t), Adhi(t)(X0)〉,
i = 1, . . . , k. Then,

〈Lp(t), Adh(t)(X0)〉 ≥ 〈Lp(t),
k∑

i=1

λi(t)Adhi(t)((X0)〉 ≥ 〈Lp(t), Adh(t)(X0)〉

can hold only if X(t) = Adh(t)(X0).

It follows that the normal extremals are the solutions of the following system of equations:

dg
dt

= g(t)Adh(t)(X0),
dLp
dt

= [Adh(t)(X0)〉, Lk(t)],
dLk
dt

= [Adh(t)(X0), Lp(t)]. (3.9)

subject to the inequality

1 = 〈Lp(t), Adh(t)(X0)〉 ≥ 〈Lp(t), Adh(t)(X0)〉, h(t) ∈ K.

3.3. Time-optimal solutions

Let us first note that there is no loss in generality in assuming that ||Lp(t)|| = 1 for the following
reasons: since h(t) is a critical point of H, [Adh(t)(X0), Lp(t)] = 0. Then,

2 d
dt ||Lp(t)|| = 2〈Lp(t),

dLp
dt 〉 =

2〈Lp(t), [Adh(t)(X0)], Lk]〉 = −〈[Adh(t)(X0), Lp(t)], Lk〉 = 0.

Therefore ||Lp(t)|| is constant. Hence the extremal equations are unaltered if Lp is replaced by 1
||Lp ||

Lp and
Lk is replaced by 1

||Lp ||
Lk.
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Proposition 15. Suppose that (Lp(t), Lk(t)) is a normal extremal curve generated by h(t) with ||Lp(t)|| = 1.
Then, Lp(t) = Adh(t)X0 and Lk(t) is constant.

Proof. According to the Cauchy-Schwarz inequality, 〈X,Y〉 ≤ 1 for any unit vectors X and Y in a finite
dimensional Euclidean vector space, with 〈X,Y〉 = 1 only when X = Y . In our case, ||AdhX0|| = 1 and
||Lp|| = 1, hence 〈Lp, Adhh(X0)〉 = 1 occurs only when Lp = Adh(X0). But then dLk

dt = [Adh(t)(X0), Lp(t)] =

0, and Lk is constant.

Proposition 16. The normal extremal curves project onto

g(t) = g0et(Lp(0)+Lk)e−tLk , ||Lp|| = 1. (3.10)

The solutions that satisfy the transversality condition Lk = 0 are given by g(t) = g0etP for some P ∈ p
such that ||P|| = 1.

Proof. Since Adh(t)X0 = Lp(t), Lp(t) is a solution of dLp
dt = [Lp(t), Lk]. Since Lk is constant, Lp(t) =

AdetLkLp(0). Then g̃(t) = g(t)etLk satisfies dg̃
dt = g̃(t)(Lp(0) + Lk), from which (3.10) easily follows.

Since Lk is constant, it is zero whenever it is zero at the terminal point. So the solution satisfies the
transversality condition Lk(T ) = 0 whenever Lk = 0 in the above formula.

Remark 2. Formula (3.10) is not new. As far as I know, it appeared first in 1990 in ( [13]) and it has also
appeared in various contexts in my earlier writings ( [11], [7] ). But it has never before been obtained
directly from the affine system (1.1) with controls in the affine hull

∑k
i=1 λiAdhi A, hi ∈ K,

∑k
i=1 λi = 1.

Corollary 4. Let π denote the natural projection from G onto G/K. Then π(g0etP) is a geodesic in G/K
that connects π(g0) to π(g(t), g(t) = g0etP. Therefore T (g) is equal to the shortest length of a geodesic
that connects π(I) to π(g).

3.4. Fundamental example (S U(2), S O(2))

This example is not only typical of the general situation, but is also a natural starting point for

problems in quantum control. Recall that S U(2) consists of matrices
(

a b
−b̄ ā

)
with a and b complex

numbers such that |a|2 + |b|2 = 1. It follows that g ∈ G whenever g−1 = g∗, where g∗ is the matrix
transpose of the complex conjugate of g. Hence the Lie algebra su(2) of G consists of matrices
1
2

(
ix3 x1 + ix2

−x1 + ix2 −ix3

)
. We will assume that su(2) is endowed with the trace metric 〈X,Y〉 = −2Tr(XY),

in which case the skew-Hermitian matrices

Ax =
1
2

(
0 1
−1 0

)
, Ay =

1
2

(
0 i
i 0

)
, Az =

1
2

(
i 0
0 −i

)
(3.11)

form an orthonormal basis in su(2). If X = 1
2

(
iz x + iy

−x + iy −iz

)
is represented by the coordinates


x
y
z

 ∈ R3

then the adjoint representation X → Adg(X) is identified with rotations in R3. If Gx,Gy,GZ denote the
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rotations around the axes


1
0
0

 ,

0
1
0

 ,

0
0
1

, then Ax, Ay, Az are the infinitesimal generators of Gx,Gy,Gz

which explains the motivation behind the terminology. Relative to the Lie bracket [A, B] = BA − AB,
Ax, Ay, Az conform to the following Lie bracket table:

[Ax, Ay] = −Az, [Az, Ax] = −Ay, [Ay, Az] = −Ax.

The automorphism σ(g) = (gT )−1 identifies S O(2) as the group of fixed points by σ, and induces a
Cartan decomposition g = p + k with p the linear span of Ay and Az, and k the linear span of Ax. Relative
to the above decomposition,

dg
dt

= g(t)(Az + u(t)Ax) = g(t)
1
2

(
i u(t)
−u(t) −i

)
, g(t) ∈ S U2, (3.12)

is a prototypical affine system in G.
Since [Az, Ax]] = −Ay, G = A(e,≤ T ) for some T > 0, and since S U(2) is simple, A(e,T ) = G

for some T > 0 ( [14]). However, not all points of G can be reached from the identity in short time

as noticed in [14]. For instance, points g =

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
in S U(2) with x2

1 + x2
3 > 0 cannot be

reached from the identity in time less than 2(x2
1 + x2

3). The argument is simple:

dx0
dt = −1

2 (x1 + ux2), dx1
dt = 1

2 (x0 − ux3)
dx2
dt = 1

2 (ux0 + x3), dx3
dt = 1

2 (ux1 − x2).

Therefore,

x1
dx1

dt
+ x3

dx3

dt
=

1
2

(x0x1 − x2x3),

and hence

x2
1(t) + x2

3(t) =

∫ t

0
(x0(s)x1(s) − x2(s)x3(s)) ds ≤

t
2

because (x0 − x1)2 + (x2 + x3)2 = 1 − 2(x0x1 − x2x3) ≥ 0 implies that 2(x0x1 − x2x3) ≤ 1. So if a point g
can be reached in time T , then T ≥ 2(x2

1 + x2
3).

However, not all points of S U(2) can be reached in the shortest time. Below we will show that −I
can be reached in any positive time, but is not reachable at T = 0. To demonstrate, note that for any
X ∈ su(2), X2 = −1

4 ||X||
2I, and therefore,

etX = I cos
||X||
2

t +
2
||X||

X sin
||X||
2

t.

In particular when X = Az + uAx, u ∈ R, then ||X|| =
√

1 + u2, and

etX = I cos

√
1 + u2

2
t +

1
√

1 + u2

(
i u
−u −i

)
sin

√
1 + u2

2
t.

For any t > 0 there exists u ∈ R such that t
√

1 + u2 = 2π, and therefore, etX = −I. Therefore, −I can be
reached in any positive time t but is not reachable at T = 0.
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The preceding formula can be used to show that any element of S O(2) lies in the closure ofA(e,≤ t)
for any t > 0. To do so, let θ be any number, and then let un = 2nθ, Then, e

1
n X(un) ∈ A(e,≤ T ) for any

T > 0, provided that n is sufficiently large. An easy calculation shows that

lim
n→∞

e
1
n X(un) =

(
cos θ sin θ
− sin θ cos θ

)
.

Hence g =

(
cos θ sin θ
−sinθ cos θ

)
belongs to Ā(e,≤ T ). It seems likely that g ∈ A(e,≤ T ), but that has not

been verified, as far as I know.
Let us now return to the horizontal system given by

dg
dt

= g(t)Adh(t)X0,
dh
dt

= h(t)
(

o u(t)
−u(t) 0

)
. (3.13)

It follows that

h(t) =

(
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)
, θ(t) =

∫ t

0
u(s) ds,

and therefore
dg
dt

= g(t)(u1(t)Az + u2(t)Ay), u1(t) = cos 2θ(t), u2(t) = − sin 2θ(t). (3.14)

To pass to the convexified horizontal system we need to enlarge the controls to the sphere u2
1 + u2

2 ≤ 1.
It then follows that the time-optimal extremals are given by equation (3.10) except for the stationary
extremal g(t) = g0.

Let us interpret the above results in slightly different terms with an eye on the connections with
quantum control. If X = x1Ax+x2Ay+x3Az and Y = y1Ax+y2Ay+y3Az, then Z = [X,Y] = z1Ax+z2Ay+z3Az

is given by the vector product z = y × x, where x = (x1, x2, x3), y = (y1, y2, y3), and z = (z1, z2, z3).
Hence [X,Y] = 0 if and only if x and y are co-linear. Therefore, maximal abelian algebras in p are one
dimensional, and every non-zero element in p is regular. It follows that the Weyl group consists of ±I.

The equation AdhX0 = Lp is solvable for each Lp ∈ p such that ||Lp|| = 1. Then the line segment that
connects −Lp and Lp is in the convex hull defined by AdhX0. This shows that {AdhX0 : h ∈ K} is the unit
circle in p and the corresponding convex hull is the unit ball {Lp ∈ p : ||Lp|| ≤ 1}. The coset extremals
are given by

etP = I cos ||P||t +
1
||P||

P sin ||P||t, P ∈ p, ||P|| = 1. (3.15)

These extremals reside on a two dimensional sphere S 2 because

eiP = I cos t
√

a2 + b2 + i
√

a2+b2
P sin t

√
a2 + b2 =cos t

√
a2 + b2 + ia

√
a2+b2

sin t
√

a2 + b2 ib
√

a2+b2
sin t
√

a2 + b2

ib
√

a2+b2
sin t
√

a2 + b2 cos t
√

a2 + b2 − ia
√

a2+b2
sin t
√

a2 + b2

 ,
for any matrix iP =

(
ia ib
ib −ia

)
with a and b real. If x = cos t

√
a2 + b2, y = a

√
a2+b2

sin t
√

a2 + b2, and z =

b
√

a2+b2
sin t
√

a2 + b2, then x2 + y2 + z2 = 1. The decomposition g = eiPR corresponds to the Hopf
fibration S 3 → S 2 → S 1.
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Hopf fibration has remarkable applications in quantum technology due to the fact that a two level
quantum system, called qubit, can be modelled by points in S U(2), whereby all possible states of a
particle are represented by complex linear combinations α(|0 >) + β(|1 > 0), where |0 > and |1 > denote
the basic levels (states) and where α and β are complex numbers such that |α|2 + |β|2 = 1. In this context,
the particle can be either in state |0 > with probability |α|2, or in state |1 > with probability |β|2. For
this to make mathematical sense, the basic states are represented by two orthonormal vectors in some

complex Hilbert space. Then, the states α|0 > +β|1 > 0 are identified with matrices
(
α β

−β̄ ᾱ

)
in S U(2).

In this setting, the quotient space G/K is called the Bloch sphere ( see for instance [15]). In quantum
mechanics points in G/K represent the observable states. It follows that each point g in a given coset is
reached time-optimally according to the formula g = eT (Q+P)e−QT , ||P|| = 1 for some T > 0, but the coset
itself is reached time-optimally in the time equal to the length of a geodesic that connects π(I) to π(g)
where π stands for the natural projection from G to G/K.

For instance, if g f = −I, then g f K = K. Therefore, g(t) = I, generated by u(t) = 0, is the only
trajectory of the convexified horizontal system that reaches the coset K in zero time. Any other optimal
trajectory is of the form g(t) = et(Q+P)e−Qt, and such trajectories cannot reach points in zero time.

4. Notable Riemannian symmetric pairs

4.1. (S L(n), S O(n)) and (S U(n), S O(n))

Each of these pairs of Lie groups is symmetric relative to the automorphism σ(g) = (gT )−1 where
gT denotes the matrix transpose. It follows that K = S O(n) is the group of points in G fixed by σ.
Then, g is equal to sl(n) when G = S L(n) and is equal to su(n) when G = S U(n). In the first case the
Lie algebra is equal to the space of n × n matrices with zero trace, while in the second case the Lie
algebra consists of n × n complex skew-symmetric matrices with zero trace. Then, g = p ⊕ k, where p is
equal to the space of symmetric matrices in sl(n) and the space of symmetric matrices with imaginary
entries in su(n). These two Lie algebras are dual in the sense that the Cartan decomposition p+ k in sl(n)
corresponds to the Cartan decomposition k + ip in su(n) (see [6] for further details). In each case, the
Killing form is equal to 2nTr(XY). It follows that it is positive on p in sl(n) and negative on p in su(n).
Therefore, the pair (S L(n), S O(n)) is non-compact, while the pair (S U(n), S O(n)) is compact.

In sl(n), each matrix X in p can be diagonalized by some Adh, h ∈ K, and the set of all diagonal
matricesD in p forms an n − 1 dimensional abelian algebra, which is also maximal since [D, X] = 0
can only hold only if X is diagonal. It follows that n − 1 is the rank of the underlying symmetric space.
If X is a diagonal matrix with its diagonal entries x1, . . . , xn then ad(X)Y =

∑n
i, j(xi − x j)Yi jei ⊗ e j for any

matrix Y =
∑n

i, j Yi jei ⊗ e j. Hence

adX(ei ⊗ e j) = (xi − x j)ei ⊗ e j, i , j, adX(D) = 0, (4.1)

that is, α(X) = xi − x j are the non-zero roots in D. This implies that X is regular if and only if the
diagonal entries of X are all distinct.

Weyl chambers inD are in one to one correspondence with the elements of the permutation group
on n letters. For if X = diag(x1, . . . , xn) and Y = diag(y1, . . . , yn) are any regular elements in D
then there exist unique permutations α and β on n letters such that xα(1) > xα(2) > · · · > xα(n) and
yβ(1) > yβ(2) > · · · > yβ(n). If X and Y are in the same Weyl chamber, then (xi − x j)(yi − y j) > 0 for all i
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and j. It then follows by an easy argument that α = β. The reasoning on su(n) with diagonal matrices
having imaginary entries is similar and will be omitted.

It follows that the Weyl orbit Adh(X0) inD consists of the diagonal matrices with diagonal entries a
permutation of the diagonal entries of X0. The convex hull spanned by these matrices coincides with the
controls of the convexified system that reside inD.

4.2. Self-adjoint subgroups of S L(n)

A subgroup G of S L(n) is called self-adjoint if the matrix transpose gT is in G for any g in G. Any
self-adjoint group G admits an involutive automorphism σ(g) = gT−1

, g ∈ G, with K = S O(n)∩G equal
to the group of its fixed points.

It follows that the Lie algebra g of G admits a Cartan decomposition g = k + p where k = g ∩ so(n) and
p = S ym(n) ∩ g with S ym(n) the space of symmetric matrices in sl(n). Since 〈X,Y〉 = 2nTr(XY) inherited
from sl(n) is positive on p the pair (G,K) is a symmetric Riemannian pair of non-compact type.

One can show that S O(p, q), p + q = n, the group that preserves the scalar product (x, y)p,q =∑p
i=1 xiyi −

∑n
i=p+1 xiyi is self-adjoint, as well as S p(n), the group that leaves the symplectic form∑n

i=1 xiyn+i − yixi+n, x, y ∈ Rn invariant.

When G = S O(p, q) the Lie algebra g consists of block matrices M =

(
A B
BT C

)
with A and C

skew-symmetric p× p and q× q matrices and B an arbitrary p× q matrix.Then M ∈ p if A = C = 0, and
M ∈ k if B = 0. The quotient space S O(p, q)/K can be identified with an open subset of Grassmannians
consisting of all q-dimensional subspaces in R(p+q) on which (x, x)p,q > 0, while the quotient spaces
S p(n)/K can be identified with the generalized Poincaré plane Pn = {X + iY, XT = X,YT = Y,Y > 0}
( [7], pages 126, 127).

4.3. Rank one symmetric spaces

In rank-one symmetric spaces the Weyl group is minimal (it consists of two elements ±I)), which
accounts for an easier visualization of the general theory. We will use (S O(1, n),K) together with its
compact companion (S O(n + 1),K), K = {1} × S O(n) to illustrate the relevance of the rank for the
general theory. Both of the above cases can be treated simultaneously in terms of the parameter ε = ±1
and the scalar product (x, y)ε = x0y0 + ε

∑n
i=1 xiyi. In that spirit, S Oε(n + 1) will denote S O(1, n) when

ε = −1, and S O(n + 1) when ε = 1.
Each group S Oε(n + 1) acts on points of Rn+1 by the matrix multiplication and this action can be

used to identify the quotient space S Oε(n + 1)/K with the orbit O(e0) = {ge0 : g ∈ S Oε(n + 1)} where
e0 = (1, 0, . . . , 0)T . Since S Oε(n + 1) preserves ( , )ε , O(e0) is the Euclidean sphere S n when ε = 1 and
the hyperboloid Hn when ε = −1.

Let now gε = soε(n + 1) denote the Lie algebra of S Oε(n + 1) equipped with its natural scalar
product 〈X,Y〉 = 1

2Tr(XY), and let k denote the Lie algebra of K. It is easy to check that the orthogonal
complement pε of k is given by = {e0 ∧ε u, u ∈ Rn+1, (u, e0)ε = 0}, and that k itself is given by
k = {(u ∧ε v) : (u, e0)ε = (v, e0)ε = 0}, where

(u ∧ε v) = u ⊗ε v − v ⊗ε u ∈ Rn+1, v ∈ Rn+1,

with u ⊗ε v the rank-one matrix defined by (u ⊗ε v)x = (v, x)εu, x ∈ Rn+1.
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It follows that Cartan’s relations

[pε, pε] = kε, [pε, kε] = pε, [kε, kε] ⊆ kε,

hold, as can be readily verified through the following general formula

[a ∧ε b, c ∧ε d] = (a, c)ε(b ∧ε d) + (b, d)ε(a ∧ε c) − (b, c)ε(a ∧ε d) − (a, d)ε(b ∧ε c).

Since 〈e0 ∧ε u, e0 ∧ε v〉 = −ε
∑n

i=1 uivi, the bilinear form 〈 , 〉 is positive on pε when ε = −1 and is
negative when ε = 1. It follows that the pair (Gε,K) is a compact type when ε = 1 and a non-compact
type when ε = −1.

We now return to time optimality. The space pε = {u ∧ε e0 : 〈u, e0〉ε = 0} is n-dimensional. If
U = u ∧ε e0 and V = v ∧ε e0 are arbitrary elements in pε then [U,V] = u ∧ε v. Hence [U,V] = 0 if and
only if u and v are parallel. Thus each maximal abelian algebra is one-dimensional and each non-zero
element U in pε is regular. The Weyl group consists of two elements I1 and I2 such that AdI1U = U and
AdI2U = −U.

If h = {1} × R for some R ∈ S O(n), then AdhX0 = Rx0 ∧ε e0. Since S O(n) acts transitively on the
spheres S n, AdKX0 = S n ∧ε e0. If Lp = l ∧ε e0 then Rx0 = l yields AdhX0 = Lp. The above shows that
{AdhX0, h ∈ K} = {x ∧ε e0, ||x|| = ||x0||} and the convex hull is equal to {x ∧ε e0 : ||x|| ≤ ||x0||}.

4.4. Compact Lie groups

Each semi-simple compact Lie group K is a symmetric space realized as the quotient G/K̃, with
G = K × K and K̃ = {(g, g) : g ∈ K} under the automorphism σ(g1, g2) = (g2, g1).

If k denotes the Lie algebra of K then g = k × k is the Lie algebra of G, and k̃ = {(X, X), X ∈ k} is the
Lie algebra of K̃. Then, p = {(X,−X) : X ∈ k} is the orthogonal complement of k̃ in g relative to the
natural bi-invariant metric inherited from K. It then follows that k̃ and p satisfy Cartan’s decomposition
(1.4). To pass to the quotient space G/K̃, note that G acts on K by the natural action

τ((g1, g2), h) = g1hg−1
2 .

Since h2h1h−1
1 = h2 the action is transitive. In particular the orbit through the group identity is identified

with K.
Maximal abelian algebras in p are in exact correspondence with maximal abelian algebras in k.

Any X̃0 ∈ p is of the form X̃0 = (X0,−X0) for some X0 ∈ k. If h ∈ K̃ is of the form h = (g, g), then
AdhX̃0 = (Adg(X0),−AdgX0). Therefore, time-optimal solutions associated with

dg̃
dt

= g̃(t)(Adh(X̃0)), g̃ = (g1(t), g2(t)) ∈ G

are given by
g1(t) = g1(0)et(P+Q)e−tQ, g2(t) = g2(0)et(−P+Q)e−tQ, (4.2)

for some elements P ∈ k and Q ∈ k, with h(t) = g1(0)et(P+Q)et(−P+Q)g−1
2 (0) the projection on K in

accordance with equation (3.10).
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5. Applications to quantum control-n chains

5.1. Finite dimensional Schrödinger equation and the associated control systems

In non-relativistic quantum mechanics, time evolution of a finite dimensional quantum system is
governed by a time dependent Schrödinger equation

dz
dt

= −iH(t)z(t), (5.1)

in an n-dimensional complex Hilbert space Hn, where H(t) is a fixed time varying Hermitian operator in
Hn ( [1]). Recall that H(t) is Hermitian if 〈H(t)z,w〉 = 〈z,H(t)w〉 for z,w in Hn where 〈 , 〉 denotes the
Hermitian quadratic form on Hn.

In what follows, points in Hn will be represented by the coordinates z1, . . . , zn relative to an orthonor-
mal basis in Hn, and Hn will be identified with Cn with the Hermitian scalar product 〈z,w〉 =

∑
ziw̄i

for any z and w in Cn, with w̄i the complex conjugate of wi. Then, a matrix H is Hermitian if H∗ = H,
where H∗ is equal to the complex conjugate of the matrix transpose of H.

Equation (5.1) is subordinate to the master equation

dg
dt

= −iH(t)g(t), g(0) = I, (5.2)

in the unitary group U(n), in the sense that every solution z(t) of (5.1) that satisfies z(0) = z0 is given by
z(t) = g(t)z0. Recall that iH is skew-Hermitian for each Hermitian matrix H, hence every solution g(t)
of equation (5.2) that originates in U(n) evolves in U(n). It follows that ||z(t)|| = ||z0||, i.e., the reachable
sets of (5.1) evolve on the spheres S 2n−1.

To be consistent with the first part of the paper, we will focus on the left-invariant form of the master
equation

dg
dt

= g(t)(iH(t)). (5.3)

Of course, it is easy to go from one form to the other; if g(t) is a solution of (5.2), then g−1(t) is a
solution of (5.3) and vice versa.

As a way of bridging the language gap between quantum control literature and mainstream control
theory, we will make a slight detour into the Kronecker products of matrices and the associated
operations. For our purposes it suffices to work with square matrices. Then the Kronecker product
U ⊗ V of any n × n matrix U and any m ×m matrix V is equal to the nm × nm matrix with block entries
(ui jV), i, j ≤ n. The Kronecker product enjoys the following properties:

(U ⊗ V)(W ⊗ Z) = UW ⊗ VZ, (U ⊗ V)∗ = U∗ ⊗ V∗

Tr(U ⊗ V) = Tr(U)Tr(V),Det(U ⊗ V) = (DetU)m(DetV)n.
(5.4)

It follows that (U ⊗ V) ∈ U(nm) for any U ∈ U(n) and V ∈ U(m): similarly, U ⊗ V is in S U(mn)
whenever U ∈ S U(n) and V ∈ S U(m) and n and m are of the same parity. It can be easily shown that

[U1 ⊗ V1,U2 ⊗ V2] = [U1,U2] ⊗ V2V1 + U1U2 ⊗ [V1,V2], (5.5)

for any matrices U1,U2 of the same size, and any matrices V1,V2 also of the same size (recall our
convention [X,Y] = YX − XY).

The following proposition assembles some facts that are relevant for the n-spin chains.
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Proposition 17. If U ∈ u(n) (resp. U ∈ su(n) ) and Ik is the k-dimensional identity matrix. then both
Ik ⊗ U and U ⊗ Ik belong to u(nk) (resp. su(nk)).

However, if U ∈ u(n) and V ∈ u(m), then i(U⊗V) ∈ u(nm). Similarly, i(U⊗V) is in su(nm) whenever
U ∈ su(n) and V ∈ su(m).

Proof. (Ik ⊗ U)∗ = I∗k ⊗ U∗ = Ik ⊗ (−U) = −(Ik ⊗ U). Hence Ik ⊗ U ∈ u(n). If Tr(U) = 0 then
Tr(Ik ⊗ U) = 0. In addition,

(i(U ⊗ V))∗ = −i(U∗ ⊗ V∗) = −i(−U) ⊗ (−V) = −i(U ⊗ V).

We will now direct our attention to the n-spin chains introduced in [1] and [2]. These chains are
defined in terms of the Kronecker products of Pauli matrices

Ix =
1
2

(
0 1
1 0

)
, Iy =

1
2

(
0 −i
i 0

)
, Iz =

1
2

(
1 0
0 −1

)
. (5.6)

The n-spin chains oriented in the z-direction are defined by the Hamiltonians

H =

n∑
j=2

J( j−1) jI( j−1)zI jz +

m∑
i=1

vi(t)Iix + ui(t)Iiy), n ≥ 2,m ≤ n, (5.7)

where Ji j are the coupling constants, and where Iix, Iiy, Iiz denotes the matrix X1 ⊗ X2 ⊗ · · · ⊗ Xn where
Xi = Ix (resp. Xi = Iy, Xi = Iz) in the i-th position and where all the remaining elements X j are equal to
the identity I2. This kind of spin-chains are known as the Ising spin chains ( [16], [17]). We will now
address time optimality of the associated left-invariant master system (5.3). Each chain defines a pair of
Lie algebras (L, kv) where kv, the vertical algebra, is the Lie algebra generated by the controlling vector
fields Iix and Iiy, i = 1, . . .m, and where L is the controllability algebra generated by the drift element∑n

j=2 J( j−1) jI( j−1)zI jz and kv.
We will now consider two and three spin chains with a particular interest on the cases where

L = su(n) for some integer n and where kv is a subalgebra of L such that the Cartan conditions (1.4)
hold for the pair (p, kv) with p equal to the orthogonal complement of kv in L. For the sake of uniformity
with the first part of the paper, we will work with the matrices Ax, Ay, Az introduced in equations (3.11)
rather than with the Pauli matrices Ix, Iy, Iz. Recall that

Ax = iIy, Ay = iIx, Az = iIz. (5.8)

In this notation then

H = −(
n∑

j=2

J( j−1) jA( j−1)zA jz + i
m∑

i=1

(vi(t)Aiy + ui(t)Aix)), n ≥ 2,m ≤ n, (5.9)

As a preliminary first step, let us single out the symmetric (irreducible) Riemannian pairs (G,K) in
which G = S U(n) for some n. It is known that there are only three such Riemannian spaces

S U(n)/S O(n), S U(2n)/S p(n) and S U(p + q)/S (U(p) × U(q)), (5.10)
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where S (U(p) × U(q)) = S U(p + q) ∩ (U(p) × U(q)) ( [6], p. 518).
The first symmetric space (S U(n), S O(n)), known as Type AI, has already been discussed in the

preceding section. The second symmetric space, Type AII, occurs on S U(2n) and is induced by the
automorphism

σ(g) = Jn(g−1)T J−1
n , Jn =

(
0 In

−In 0

)
.

Then σ(g) = g if and only if g−1T Jn = Jng, or Jn = gT Jng, which in turn means that g ∈ S p(n), where
S p(n) = S U(2n) ∩ S p(2n,C). Then

σ∗(X) =
d
dt

Jn(e−tX)T J−1
n |t=0 =

d
dt

JnetX̄ J−1
n |t=0 = JnX̄J−1

n .

It follows that k = {X ∈ su(2n) : JnX̄J−1
n = X} and p = {X ∈ su(2n) : JnX̄J−1

n = −X}. If X =

(
X11 X12

−X̄T
12 X22

)
is the decomposition of X into the n × n blocks, then

JnX̄J−1
n =

(
X̄22 XT

12
−X̄12 X̄11

)
.

Therefore, X ∈ k if and only if

X11 = X̄22 and X12 = XT
12,

and X ∈ p if and only if

X11 = −X̄22,Tr(X11) = 0, and XT
12 = −X12.

The remaining symmetric space, Type AIII, is associated with the automorphism

σ(g) = Ip,qgI−1
p,q, g ∈ S U(p + q), where Ip,q =

(
−Ip 0
0 Iq

)
.

The induced automorphism on su(p + q) is given by σ∗(X) = Ip,qXI−1
p,q. Then

k = {X ∈ su(p + q) : X =

(
A 0
0 B

)
}, p = {X ∈ su(p + q) : X =

(
0 C
−C̄T 0

)
where A is a p × p matrix and B is a q × q matrix such that Tr(A + B) = 0, and where C is an arbitrary
p × q matrix with complex entries. Then S (U(p) ×U(q)) denotes the subgroup of S U(p + q) whose Lie

algebra consists of matrices X =

(
A 0
0 B

)
, with A ∈ u(p), B ∈ u(q) such that Tr(A + B) = 0.

In all these cases the metric on p coincides with the restriction of the canonical metric on su(n) given
by 〈X,Y〉 = −1

2Tr(XY) = 1
2Tr(XȲT ).

The relevance of these classical classifications for the problems of quantum control has already been
noticed in the existing literature ( [1] and [2] in regard to Type AI, and [18] in regard to Type AIII).
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5.2. Two-spin chains

The two-spin chains given by

H = −(
2∑

j=2

J( j−1) jA( j−1)zA jz + i
m∑

i=1

(ui(t)Aix + vi(t)Aiy)),m ≤ 2,

give rise to the rescaled left-invariant master equation (J( j−1) j = 1)

dg
dt

= g(t)i(−Az ⊗ Az) +

m∑
i=1

ui(t)Aix + vi(t)Aiy, (5.11)

where now Aix and Aiy are the chains with Ax and Ay in the i-th position.
Let now kv denote the vertical subalgebra generated by the controlling vector fields Aiy, Aix, i =

1, . . . ,m. For m = 1 there are two controls u and v associated with the controlling matrices Ax ⊗ I2 and
Ay ⊗ I2, and for m = 2 there are four controls u1, u2, v1, v2 associated with matrices Ax ⊗ I2, I2 ⊗ Ax, Ay ⊗

I2, I2 ⊗ Ay.
It is easy to verify that kv = {X ⊗ I2 : X ∈ su(2)} for m = 1, and kv = {X ⊗ I2 + I2 ⊗ Y : X ∈ su(2),Y ∈

su(2)} for m = 2. In the first case kv is a three-dimensional algebra isomorphic to su(2), and in the
second case it is a six dimensional Lie algebra isomorphic to su(2) × su(2).

Lemma 2. If A and B are any matrices in su(2), then

AB = −〈A, B〉I2 +
1
2

[B, A], where 〈A, B〉 = −
1
2

Tr(AB). (5.12)

The mapping φ defined by φ(iX ⊗ Y) = iY ⊗ X,
φ(X ⊗ I2) = I2 ⊗ X, φ(I2 ⊗ X) = X ⊗ I2, X,Y in su(2) is a Lie algebra isomorphism on su(4).

Proof. If A =

(
ia3 a
−ā −ia3

)
and B =

(
ib3 b
−b̄ −ib3

)
then

AB + BA = −2(a1b1 + a2b2 + a3b3)I2 = −2〈A, B〉I2.

Hence 2AB = −2〈A, B〉I2 + [B, A]. This proves the first part of the lemma.
Then

[φ(iA ⊗ B), φ(iC ⊗ D)] = [iB ⊗ A, iD ⊗C] =

−[B,D] ⊗ AC − DB ⊗ [A,C] = 〈A,C〉[B,D] ⊗ I2 + 〈D, B〉I2 ⊗ [A,C]
= φ(〈A,C〉I2 ⊗ [B,D] + 〈D, B〉 ⊗ [A,C] ⊗ I2) = φ([iA ⊗ B], iC ⊗ D]),

and
[φ(A ⊗ I2), φ(i(B ⊗C))] = i(C ⊗ [A, B]) = φ([A ⊗ I2, i(B ⊗C)]).

Hence φ is an isomorphism.
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Proposition 18. Let L denote the Lie algebra generated by i(Az ⊗ Az) and kv. When m = 1, L = p ⊕ k,
p = i(su(2) ⊗ Az) and k = su(2) ⊗ I2. If φ is the isomorphism from the previous lemma then φ(L) =(
su(2) 0

0 su(2)

)
and

φ(p) = {

(
X 0
0 −X

)
, X ∈ su(2)}, φ(kv) = {

(
X 0
0 X

)
, X ∈ su(2)}. (5.13)

Proof. Evidently, k = kv. Secondly, [i(Az ⊗ Az), X ⊗ I2] = i([Az, X] ⊗ Az) for any X in su(2). This implies
that both i(Ay⊗Az) and i(Ax⊗Az) are inL. Therefore p ⊂ L. Since 〈X⊗I2,Y⊗Az〉 = −1

2Tr(XY)Tr(Iz) = 0,
kv and p are orthogonal. Also, [i(X ⊗ Az), i(Y ⊗ Az)] = −[X,Y] ⊗ A2

z = 1
4 [X,Y] ⊗ I2. Therefore [p, p] ⊆ kv

L = p ⊕ k. Hence p and k satisfy Cartan’s conditions (1.4) and consequently L = p ⊕ kv.

If φ is the isomorphism from the preceding lemma, then φ(−2iX ⊗ Az)) = −2iAz ⊗ X =

(
X 0
0 −X

)
for

any −2iX ⊗ Az in p, and φ(X ⊗ I2) = I2 ⊗ X =

(
X 0
0 X

)
for X ⊗ I2 ∈ k. The linear span of these matrices is

equal to
(
X 0
0 Y

)
, X,Y in su(2).

The above shows that the m = 1 chain can be represented on G = S U(2) × S U(2) as

dg1

dt
= g1(t)(

1
2

Az + u1(t)Ax + v1(t)Ay),
dg2

dt
= g2(t)(−

1
2

Az + u1(t)Ax + v1(t)Ay).

The time-optimal solutions are of the form

g1(t) = g1(0)et(P+Q)e−tQ, g2(t) = g2(0)et(−P+Q)e−tQ, (5.14)

P ∈ su(2),Q ∈ su(2), with h(t) = g1(0)et(P+Q)et(−P+Q)g−1
2 (0) the projection on S U(2) (in accordance with

(4.2)).

Proposition 19. For m = 2, L = su(4). If

kv = {X ⊗ I2 + I2 ⊗ Y, {X,Y} ⊂ su(2)}, p = {i(X ⊗ Y) : {X,Y} ⊂ su(2)},

then L = p + kv and
[p, kv] ⊆ p, [p, p] ⊆ kv.

Proof. Let p = {i(X ⊗ Y) : X ∈ su(2),Y ∈ su(2)}. It then follows that su(4) = p ⊕ kv by an easy
dimensionality argument. Straightforward calculations shows that p and kv satisfy Cartan’s conditions

[p, kv] ⊆ p, [p, p] ⊆ kv, [kv, kv] ⊆ kv.

So it suffices to show that p ⊂ L.
Since i(Az ⊗ Az) is in p,

[i(Az ⊗ Az), X ⊗ I2 + I2 ⊗ Y] = i[Az, X] ⊗ Az + Az ⊗ i[Az,Y]

is in L for any X and Y in su(2). Therefore both i[Az, X] ⊗ Az and i(Az ⊗ i[Az,Y]) are in L, which then
implies that i(X ⊗ Az) and i(Az ⊗ Y) are in L for any X,Y in su(2) ( because i(Az ⊗ Az) is in L).

But then [i(X ⊗ Az), I2 ⊗ Y] = X ⊗ i[Az,Y] and [i(X ⊗ Az),Y ⊗ I2] = i([X,Y] ⊗ Az yields that i(X ⊗ Y)
is in L for any X and Y in su(2).
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Corollary 5. The reachable set from the identity is equal to S U(4).

The following lemma reveals the connection to the appropriate symmetric Riemannian space.

Lemma 3. Let h =
√

2
(
−Az Ay

Ax −1
2 I2

)
. Since h∗ = h̄T =

√
2
(

Az −Ax

−Ay −
1
2 I2

)
= h−1, and Det(h) = 1, h

belongs to S U(4). Then

Adh(A ⊗ I2) = 1
2


0 −a1 −a2 −a3

a1 0 −a3 a2

a2 a3 0 −a1

a3 −a2 a1 0

 , Adh(I2 ⊗ B) = 1
2


0 −b1 b2 −b3

b1 0 b3 b2

−b2 −b3 0 b1

b3 −b2 −b1 0

 .

Also, Adh(i(A ⊗ B)) = 1
4 i

(
C1 C2

CT
2 C3

)
, C1 =

(
−a1b1 + a2b2 − a3b3 a3b2 + a2b3

a3b2 + a2b3 −a1b1 − a2b2 + a3b3

)
,

C2 =

(
a3b1 − a1b3 −a1b2 − a2b1

a1b2 − a2b1 −a1b3 − a3b1

)
,C3 =

(
a1b1 + a2b2 + a3b3 a3b2 − a2b3

a3b2 − a2b3 a1b1 − a2b2 − a3b3

)

for any matrices A = 1
2

(
ia3 a
−ā −ia3

)
and B = 1

2

(
ib3 b
−b̄ −ib3

)
, a = a1 + ia2 and b = b1 + ib2. We leave these

verifications to the reader.

It then follows that

Adh(kv) = so(4), Adh(p) = {iS : S ∈ sl(4), S T = S } (5.15)

which then yields that the quotient space S U(4)/Kv is isomorphic to the symmetric space S U(4)/S O(4).
The above formulas also show that the two-spin system with m = 2 is conjugate to

dg
dt

=
1
4

g(t)


i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i

 +
1
2

g(t)


0 −U1 −V2 0

U1 0 0 V1

V2 0 0 −U2

0 −V1 U2 0


where

U1 = u1 + u2,U2 = u1 − u2,V1 = v1 + v2,V2 = v1 − v2.

For m = 1 the controls are reduced to U = U1 = U2 and V = V1 = V2.

Corollary 6. The time optimal solutions for the two-spin chains are given by the same formulas as in
Proposition 16.

5.3. The three-spin chains

Let us now consider the three-spin systems

dg
dt

= g(t)(−i
3∑

j=2

J( j−1) jA( j−1)zA jz +

m∑
i=1

(ui(t)Aix + vi(t)Aiy), m ≤ 3 (5.16)
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in G = S U(8).
It follows that A1zA2z = (Az ⊗ I2 ⊗ I2)(I2 ⊗ Az ⊗ I2) = (Az ⊗ Az)⊗ I2. Similarly, A2zA3z = I2 ⊗ (Az ⊗ Az).

So the drift Hamiltonian Hd is of the form

Hd = ai(Az ⊗ Iz) ⊗ I2 + bI2 ⊗ i(Az ⊗ Iz),

where a and b are arbitrary non-zero constants. In the case that m = 3, the controlled Hamiltonians are
given by

H1 = Ax ⊗ I2 ⊗ I2,H2 = Ay ⊗ I2 ⊗ I2,H3 = I2 ⊗ Ax ⊗ I2,

H4 = I2 ⊗ Ay ⊗ I2,H5 = I2 ⊗ I2 ⊗ Ax,H6 = I2 ⊗ I2 ⊗ Ay.

It is easy to verify that the vertical algebra kv generated by the controlled Hamiltonians is equal to

su(2) ⊗ I2 ⊗ I2,m = 1,
su(2) ⊗ I2 ⊗ I2 + I2 ⊗ su(2) ⊗ I2,m = 2,

su(2) ⊗ I2 ⊗ I2 + I2 ⊗ su(2) ⊗ I2 + I2 ⊗ I2 ⊗ su(2),m = 3.

Case m = 1 is similar to its two spin analogue and will be omitted. The remaining cases m = 2 and
m = 3, however, show new phenomena that take their solutions outside the general framework described
earlier in the paper.

The following lemma highlights some of the calculations in m = 2.

Lemma 4. Let k = kv + kh where kv = su(2) ⊗ I2 ⊗ I2 + I2 ⊗ su(2) ⊗ I2 and kh = su(2) ⊗ su(2) ⊗ Az. Then k
is a Lie subalgebra in su(8), 〈kv, kh〉 = 0 and

[kh, kv] ⊆ kh, [kh, kh] ⊂ kv.

The proof follows by simple calculations which we leave to the reader..

Proposition 20. For m = 2, the Lie algebra L generated by Hd and the controlled Hamiltonians
H1,H2,H3,H4 contains the Lie algebra k in the preceding lemma. If p denotes the orthogonal comple-
ment of k in L then L = k + p and [p, k] ⊆ p, [p, p] ⊆ k, [k, k] ⊆ k.

Proof. For m = 2, kv = su(2)⊗ I2⊗ I2 + I2⊗ su(2)⊗ I2 is a subalgebra in L. If X1 and X2 are any elements
in su(2) let X̃1 = X1 ⊗ I2 ⊗ I2 and X̃2 = X2 ⊗ I2 ⊗ I2. Then,

adX̃1(Hd) = a([X1, Az] ⊗ Az ⊗ iI2),
adX̃2adX̃1(Hd) = a[X2, [X1, Az]] ⊗ Az ⊗ iI2.

Therefore su(2)⊗Az⊗ iI2 is inL since X1, X2 are arbitrary and a , 0. In particular, −a(Az⊗Az⊗ iI2) ⊆ L,
and consequently b(iI2 ⊗ Az ⊗ Az) ⊆ L.

Let now Ỹ1 = I2 ⊗ Y1 ⊗ I2 and Ỹ2 = I2 ⊗ Y2 ⊗ I2 with Y1 and Y2 arbitrary elements in su(2). Then

adỸ1(Az ⊗ Az ⊗ iI2) = Az ⊗ [Y1, Az] ⊗ iI2,

adỸ2adỸ1(Az ⊗ Az ⊗ iI2) = Az ⊗ [Y2, [Y1, Az]] ⊗ iI2

show that Az ⊗ su(2) ⊗ iI2 is in L. Similar calculation with iI2 ⊗ Az ⊗ Az in place of Az ⊗ Az ⊗ iI2 shows
that iI2 ⊗ su(2) ⊗ Az is also in L. But then

[iI2 ⊗ X ⊗ Az, Az ⊗ Y ⊗ iI2] = Az ⊗ [X,Y] ⊗ Az.
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Hence Az ⊗ su(2) ⊗ Az is in L. Finally,

adX̃2adX̃1(Az ⊗ X ⊗ Az) = [X2, [X1, Az]] ⊗ X ⊗ Az, X ∈ su(2),

shows that su(2) ⊗ su(2) ⊗ Az is in L. Therefore k of the preceding lemma in L.
Let now p = su(2)⊗su(2)⊗iI2 +iI2⊗su(2)⊗Az +su(2)⊗iI2⊗iAz.We showed above that iI2⊗su(2)⊗Az

is in L. Since [iI2 ⊗ su(2) ⊗ Az, kh] is in L, [iI2 ⊗ Z ⊗ Az, X ⊗ Y ⊗ Az] = −1
4 X ⊗ [Z,Y]] ⊗ iI2 is in L for

any X,Y , and Z in su(2). That is, su(2) ⊗ su(2) ⊗ iI2 is in L.
An easy calculation with [su(2) ⊗ su(2) ⊗ iI2, kh] shows that su(2) ⊗ iI2 ⊗ Az belongs to L. Therefore

p ⊂ L.
It follows from above that both p and k are in L. Since p and k are orthogonal, p ∩ k = {0}, and

[p, k] ⊆ p. The reader can readily show that [p, p] ⊆ k. Therefore k and p satisfy Cartan’s conditions
(1.4), and consequently k + p is a Lie algebra. Since L ⊆ (k + p) ⊆ L, L = k + p.

Proposition 21. L is isomorphic to su(4) × su(4), and k is isomorphic to su(4).

Proof. First, let us note that k and su(4) are isomorphic under the isomorphism

F(X ⊗ Y ⊗ Az + Z ⊗ I2 ⊗ I2 + I2 ⊗W ⊗ I2) = i(X ⊗ Y) + Z ⊗ I2 + I2 ⊗W.

Indeed F([U,V]) = [F(U), F(V)] for any U and V in kv by a straightforward calculation. If U and V are in
kh then U = X1⊗X2⊗Az and V = Y1⊗Y2⊗Az. It follows that [U,V] = 1

4 (〈X2,Y2〉[X1, X2]⊗I2+〈X1,Y1〉I2⊗

[X2,Y2])⊗)I2, and hence F([U,V]) = 1
4(〈X2,Y2〉[X1, X2] ⊗ I2 + 〈X1,Y1〉I2 ⊗ [X2,Y2]) = [F(U), F(V)].

The remaining case U ∈ kv, V ∈ kh also yields F([U,V]) = [F(U), F(V)] which shows that F is an
isomorphism whose range is su(4). Thus k is isomorphic to su(4).

Then p can be identified with the Hermitian matrices in sl(4,C) via the identification

X ⊗ Y ⊗ iI2 + Z ⊗ iI2 ⊗ Az + iI2 ⊗W ⊗ Az � X ⊗ Y + i(Z ⊗ I2 + I2 ⊗W),

Now su(4) is a compact real form for sl(4,C) (sl(4,C) = su(4) + isu(4)). It follows that L and the
real Lie algebra generated by sl(4,C) are isomorphic, (since sl(4,C) is the complexification of su(4)).

The above calculations show that the horizontal systems associated with three-spin systems starting
with m = 2 exhibit notable differences from the horizontal systems associated with two-spin systems
that considerably complicate the time-optimal solutions. As demonstrated above, the reachable set G
is isomorphic to S U(4) × S U(4) and K is isomorphic to S U(4), hence M = S U(4) × S U(4)/S U(4)
is the associated symmetric Riemannian space. However, the Lie algebra generated by the controlled
vector fields is a proper subalgebra of the isotropy algebra k (kv = su(2) × su(2) and k = su(4)), and
therefore the associated homogeneous manifold G/Kv does not admit a natural metric compatible with
the decomposition k⊥v + kv. As a consequence, the time optimal solutions of the horizontal system

dg
dt

= g(t)Adh(t)(a(Az ⊗ Az ⊗ iI2) + b(iI2 ⊗ Az ⊗ Az)), h(t) ∈ Kv

are no longer given by the exponentials of matrices in p mainly because K is no longer the symmetry
group for the horizontal system.
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The same phenomena occur in the three-spin chains with m = 3. For then

kv = su(2) ⊗ I2 ⊗ I2 + I2 ⊗ su(2) ⊗ I2 + I2 ⊗ I2 ⊗ su(2)

is contained in the Lie algebra k equal to the linear span of kv and matrices of the form X ⊗ Y ⊗ Z where
each of X,Y,Z range over the matrices in su(2). A simple count shows that dim(k) = 36. Then p, the
linear span of matrices X ⊗ Y ⊗ Z, where one of the matrices X,Y,Z is equal to iI2 and the remaining two
are in su(2), is orthogonal to k. Since dim(p)) = 27, dim(p + k) = 63 = dim(su(8)). Hence su(8) = p ⊕ k.

Proposition 22. The preceding decomposition p ⊕ k is a Cartan decomposition of Type AII associated
with the symmetric space S U(8)/S p(4).

Proof. Let us recall h =
√

2
(
−Az Ay

Ax −1
2 I2

)
from Proposition 3. Since h is a point in S U(4), Ψ =

(
h 0
0 h

)
is a point in S U(8) and hence AdΨ is an isomorphism on su(8).

Let AdΨ(X⊗Y⊗Z) = M =

(
M11 M12

−M∗
12 M22

)
where Mi j are 4×4 matrices. To show that AdΨ(k) and AdΨ(p)

correspond to a Cartan pair of type AII we need to show that AdΨ(k) satisfies M11 = M̄22 and M12 = MT
12,

and AdΨ(p) satisfies M11 = −M̄22,Tr(M11) = 0, and MT
12 = −M12.

When X = 1
2

(
ix3 x
−x̄ −ix3

)
, Y = 1

2

(
iy3 y
−ȳ −iy3

)
, Z = 1

2

(
iz3 z
−z̄ −iz3

)
, X ⊗ Y ⊗ Z belongs to k and

AdΨ(X ⊗ Y ⊗ Z) =

(
ix3Adh(Y ⊗ Z) xAdh(Y ⊗ Z)
−x̄Adh(Y ⊗ Z) −ix3Adh(Y ⊗ Z)

)
The formulas in Lemma 3 show that Adh(Y ⊗ Z) is a symmetric matrix with real entries. Hence
M̄22 = M11 and MT

12 = M12.
If one of X,Y,Z is equal to iI2 then X ⊗ Y ⊗ Z belongs to p. When X = iI2 then

AdΨ(iI2 ⊗ Y ⊗ Z) =

(
iAdh(Y ⊗ Z) 0

0 iAdh(Y ⊗ Z)

)
=

(
M11 0
0 M22

)
.

Evidently, M̄22 = −M11.

In the complementary case when Y or Z is iI2 and X = 1
2

(
ix3 x
−x̄ −ix3

)
, M11 = ix3Adh(Y ⊗ Z),

M22 = −ix3Adh(Y ⊗ Z), and M12 = xAdh(Y ⊗ Z). It follows that Adhi(Y ⊗ Z) is a skew-symmetric matrix
and therefore, M̄22 = −M11 and MT

12 = −M12.
In the remaining cases two elements in X ⊗ Y ⊗ Z are equal to I2 and X ⊗ Y ⊗ Z belongs to k. If

Y = Z = I2 then M11 = ix3I4,M22 = −ix3I4 and M12 = xI4. Evidently M11 = M22 and MT
12 = M12

When X = I2 then either Y or Z is equal to I2. But then Adh(Y ⊗ Z) is a skew-symmetric matrix,
and therefore M11 = iAdh(Y ⊗ Z) = M22 = −iAdh(Y ⊗ Z), and M12 = 0. Hence AdΨ(k) and AdΨ(p)
correspond to the Cartan factors of Type AII.

Proposition 23. For m = 3 the three spin system (56) is controllable in S U(8).

Proof. Let L denote the Lie algebra generated by Hd and kv. Then, [Hd, su2 ⊗ I2⊗2] = a(A⊥z ⊗ Az ⊗ iI2),
and [A⊥z ⊗ Az ⊗ iI2, I2 ⊗ su(2) ⊗ I2] = A⊥z ⊗ A⊥z ⊗ I2, where A⊥z denotes the orthogonal complement of Az

in su(2).
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Similarly, [Hd, I2 ⊗ I2 ⊗ su(2)] = b(iI2 ⊗ Az ⊗ A⊥z ), and [iI2 ⊗ Az ⊗ A⊥z , I2 ⊗ su(2)⊗ I2] = iI2 ⊗ A⊥z ⊗ A⊥z .
Therefore, both iI2 ⊗ A⊥z ⊗ A⊥z and A⊥z ⊗ A⊥z ⊗ iI2 belong to L. In particular Ax ⊗ Ax ⊗ iI2, Ay ⊗ Ay ⊗ iI2,
iI2 ⊗ Ax ⊗ Ax, and iI2 ⊗ Ay ⊗ Ay all belong to L.

Analogous calculations with Ax ⊗ Ax ⊗ iI2, iI2 ⊗ Ax ⊗ Ax, Ay ⊗ Ay ⊗ iI2, and iI2 ⊗ Ay ⊗ Ay show that
A⊥x ⊗ A⊥x ⊗ iI2, iI2 ⊗ A⊥x ⊗ A⊥x belong to L, as well as A⊥y ⊗ A⊥y ⊗ iI2 and iI2 ⊗ A⊥y ⊗ A⊥y .

Therefore, su(2) ⊗ su(2) ⊗ iI2 and iI2 ⊗ su(2) ⊗ su(2) belong to L. But then [su(2) ⊗ su(2) ⊗ iI2, iI2 ⊗

su(2) ⊗ su(2)] = su(2) ⊗ su(2) ⊗ su(2). Hence k ⊂ L. But then, su(2) ⊗ iI2 ⊗ su(2) is contained in

[su(2) ⊗ su(2) ⊗ iI2 + iI2 ⊗ su(2) ⊗ su(2), su(2) ⊗ su(2) ⊗ su(2)],

and therefore, p ⊂ L.

The above suggests that one cannot expect time optimal solutions of three-spin chains to have a
simple and computable form. However, there are some solvable cases that shed light on the general
situation. One such case is a three-spin chain defined by the drift Hd = 2(J12(Iz⊗ Iz⊗ I2)+ J21(I2⊗ Iz⊗ Iz))
controlled by a single Hamiltonian Hc = I2y = I2 ⊗ Iy ⊗ I2. This system first appeared in studies on
nuclear magnetic resonance spectroscopy ( [3]), ( [19]), ( [4]).

Let us first make some introductory remarks on the results presented in ( [3], [4]). The aforementioned
studies begin with the density equation

dρ
dt

= −i[Hd + uHc, ρ] (5.17)

associated with a right-invariant affine system

dg
dt

= −i(Hd + u(t)Hc)g(t), (5.18)

with Hd = 2(J12Iz ⊗ Iz ⊗ I2 + J21I2 ⊗ Iz ⊗ Iz) and Hc = I2 ⊗ Ix ⊗ I2.
The density equation is assumed to evolve in the Hilbert spaceH of Hermitian matrices in isu(8)

endowed with its natural scalar product 〈X,Y〉 = 1
2Tr(XY). Recall that iX is Hermitian for each

X ∈ su(n).
Rather than studying the density equation directly, the above papers consider instead the time-optimal

evolution of the expectation values of certain elements inH , where the expectation value of an element
X along a solution ρ(t) is defined by 〈X, ρ(t)〉. It then follows that the expectation value of X evolves in
time according to

d
dt
〈X, ρ(t)〉 = −〈X, i[Hd + u(t)Hc), ρ]〉 = −〈[X, i(Hd + u(t)Hc)], ρ(t)〉.

In particular when X = X1 = (Ix ⊗ I2 ⊗ I2), then 〈[X1, i(Hd + u(t)Hc)], ρ(t)〉 = −J12〈2(Ix ⊗ Iz ⊗ I2), ρ〉.
Hence the expected value x1 = 〈X1, ρ〉 evolves according to

dx1

dt
= −J12〈2(Iy ⊗ Iz ⊗ I2), ρ〉 = −J12x2(t)

where x2(t) is the expected value of X2 = 2(Iy⊗ Iz⊗ I2). Continuing this way one obtains new elements X3

and X4 whose expectation values x3(t) and x4(t) together with x1(t) and x2(t) satisfy a closed differential
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system

dx
dt

=


0 −1 0 0
1 0 −u 0
0 u 0 −k
0 0 k 0

 x(t), k =
J23

J12
, (5.19)

with the time rescaled by a factor J12, where x(t) is the column vector in R4 with the coordinates
x1, x2, x3, x4. In fact, x3 = −〈2Ix ⊗ Iy ⊗ I2, ρ〉, and x4 = 〈4iIx ⊗ Ix ⊗ Iz, ρ〉 ( [4]). The above authors then
pose the time-optimal problem of reaching (0, 0, 0, 1)T from (1, 0, 0, 0)T in the least amount of time. We
will refer to this problem as the Yuan’s optimal problem since it was originated in ( [3]).

Rather than tackling this problem directly, the papers ( [3]), ( [19]), ( [4]) concentrate on certain
lower dimensional approximations and then show that these approximations are integrable in terms of
elliptic functions. As far as I know, the original problem remained open.

We will show that Yuan’s problem and the time optimal problem associated with the affine system
(5.18) are essentially the same and both can be integrated in terms of elliptic functions.

5.4. Symmetric three-spin systems

For the sake of consistency with the rest of the paper we will formulate (5.18) in the left-invariant
way as

dg
dt

= g(t)(i(Hd + u(t)Hc)), (5.20)

with iHd = 2(J12(Iz ⊗ Iz ⊗ iI2) + J21(iI2 ⊗ Iz ⊗ Iz)) and Hc = I2y, which we will write as iHd =

2a(Az ⊗ Az ⊗ iI2) + 2b(iI2 ⊗ Az ⊗ Az), a = −J12, b = −J23, and iHc = iI2y = I2 ⊗ Ax ⊗ I2. We will refer to
the above system as a symmetric three-spin system.

Proposition 24. If L denotes the Lie algebra generated by iHd and iHc then L is the vector space
spanned by

U1 = I2 ⊗ Ax ⊗ I2,U2 = 2(Az ⊗ Ay ⊗ iI2),U3 = 2(Az ⊗ Az ⊗ iI2),
V1 = −4(Az ⊗ Ax ⊗ Az),V2 = 2(iI2 ⊗ Ay ⊗ Az),V3 = 2(iI2 ⊗ Az ⊗ Az).

Proof.

[iHd, iHc] = [2a(Az ⊗ Az ⊗ iI2) + 2b(iI2 ⊗ Az ⊗ Az), I2 ⊗ Ax ⊗ I2)] =

−2a(Az ⊗ Ay ⊗ iI2) − 2b(iI2 ⊗ Ay ⊗ Az).

Therefore H2 = a(Az ⊗ Ay ⊗ iI2) + b(iI2 ⊗ Ay ⊗ Az) is in L. Then

[
1
2

Hd,H2] =
1
4

(a2 + b2)(I2 ⊗ Ax ⊗ I2 + 2ab(Az ⊗ Ax ⊗ Az),

hence H3 = Az ⊗ Ax ⊗ Az belongs to L. Continuing,

H4 = [H2,H3] = −
1
4

(a(iI2 ⊗ Az ⊗ Az) + b(Az ⊗ Az ⊗ iI2),
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is in L. But then

4aH4 +
b
2

iHd = (b2 − a2)(iI2 ⊗ Az ⊗ Az), and 4bH4 +
a
2

iHd = (a2 − b2)(Az ⊗ Az ⊗ iI2),

and hence, H5 = Az ⊗ Az ⊗ iI2, and H6 = iI2 ⊗ Az ⊗ Az are in L.
Finally, [H5,Hc] = [Az ⊗ Az ⊗ iI2, I2 ⊗ Ax ⊗ I2] = Az ⊗ Ay ⊗ iI2, which it turn implies that iI2 ⊗ Ay ⊗ Az

is in L. We have now shown that

Az ⊗ Az ⊗ iI2, iI2 ⊗ Az ⊗ Az, I2 ⊗ Ax ⊗ I2, Az ⊗ Ay ⊗ iI2, iI2 ⊗ Ay ⊗ Az, Az ⊗ Ax ⊗ Az

are contained in L.
Let now

U1 = I2 ⊗ Ax ⊗ I2,U2 = 2(Az ⊗ Ay ⊗ iI2),U3 = 2(Az ⊗ Az ⊗ iI2),
V1 = −4(Az ⊗ Ax ⊗ Az),V2 = 2(iI2 ⊗ Ay ⊗ Az),V3 = 2(iI2 ⊗ Az ⊗ Az).

It is now easy to verify that the above matrices satisfy the following Lie bracket table

Table 1

[ , ] U1 U2 U3 V1 V2 V3

U1 0 −U3 U2 0 −V3 V2

U2 U3 0 −U1 V3 0 −V1

U3 −U2 U1 0 −V2 V1 0
V1 0 −V3 V2 0 −U3 U2

V2 V3 0 −V1 U3 0 −U1

V3 −V2 V1 0 −U2 U1 0

Let L0 denote the linear span of matrices Ui,Vi, i = 1, 2, 3. It follows from the above table that
L0 is a Lie subalgebra of su(8). Since iHd and iHc belong to L0, L ⊆ L0. But then L0 ⊆ L by our
construction. Therefore L0 = L.

Corollary 7. L is isomorphic to so(4).

Proof. Let Û1 = e4 ∧ e3, Û2 = e2 ∧ e4, Û3 = e2 ∧ e3, V̂1 = e2 ∧ e1, V̂2 = e3 ∧ e1, V̂3 = e4 ∧ e1. Then
Ûi, V̂i, i = 1, 2, 3 is a standard basis in so(4) that conforms to the same Lie bracket table as displayed in
Table 1.

Proposition 25. The set of points reachable from the identity by the trajectories of

dg
dt

= g(t)i((Hd + u(t)Hc)), g(0) = I8,

is a six dimensional subgroup G of S U(8) isomorphic to S O(4).

Proof. L is a Lie algebra isomorphic to so(4), which is also isomorphic to su(2) × su(2). In fact if g1 is
the linear span of 1

2(U1 + V1), 1
2(U2 + V2), 1

2(U3 + V3), and g2 is the linear span of 1
2(U1 − V1), 1

2(U2 −

V2), 1
2 (U3 − V3), then L = g1 ⊕ g2, [g1, g2] = 0 and each factor gi is isomorphic to su(2).
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Since L is isomorphic to su(2) × su(2) there is a subgroup G̃ in S U(8) which is isomorphic to
S U(2) × S U(2) (Lie algebras are in one to one correspondence with simply connected Lie groups
( [6])). But then S U(2) × S U(2) is a double cover of S O(4) and S O(4) is the connected component of
S U(2) × S U(2) that contains the group identity (see for instance [11]). Therefore the reachable set of
(5.20) is a subgroup G of G̃ isomorphic to S O(4).

In terms of the notations introduced above (5.20) can be rewritten as

dg
dt

= g(t)((aU3 + bV3) + u(t)U1), g(0) = I, (5.21)

or as
dg
dt

= g(t)((kU3 + V3) + u(t)U1), k =
a
b
, g(0) = I, (5.22)

after suitable reparametrizations (t → t
b , u→

u
b ).

We will now reformulate Yuan’s problem as a variational problem on the sphere S 4 realized as the
quotient S O(4)/K,K = {1} × S O(3) under the right action (g, x)→ g−1x. Then equation (5.19) can be
recast as

dg
dt

= −g(t)


0 −1 0 0
1 0 −u 0
0 u 0 −k
0 0 k 0

 , g(0) = I, x(t) = g−1(t)e1

or as
dg
dt

= −g(t)(Ṽ1 + kŨ1 + uŨ3), x(t) = g−1(t)e1 (5.23)

in terms of the basis Û1 = e4 ∧ e3, Û2 = e2 ∧ e4, Û3 = e2 ∧ e3, V̂1 = e2 ∧ e1, V̂2 = e3 ∧ e1, V̂3 = e4 ∧ e1

introduced in the preceding corollary.

Proposition 26. Yuan’s differential system (5.23) is isomorphic to the affine-symmetric system (5.22).

Proof. Let R =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

. Then R ∈ S O(4) and hence, R−1 = RT . If g̃(t) = Rg(t)R−1 then g̃(t) is a

solution curve of
dg̃
dt

= g̃(t)(V̂3 + kÛ3 + u(t)Û1) (5.24)

for any solution g(t) of equation (5.23). The correspondence Ui → Ũi,Vi → Ṽi is a Lie algebra
isomorphism from L onto so(4,R). So (5.23) and (5.24) are isomorphic and (5.24) and (5.22) are
isomorphic.

It follows that the time optimal solutions of (5.23) and (5.22) are qualitatively the same, apart from
the fact that in Yuan’s problem time optimality is relative to the cosets gK. We will come back to this
point later on in the text. Let us now come to the horizontal three-spin symmetric system

dg
dt

= g(t)Adh(t)(kU3 + V3), (5.25)
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where h(t) is a solution of dh
dt = u(t)h(t)U1). Since (2U1)2 = −I8 where I8 is the identity in S U(8),

e2U1t = I8(1 −
t2

2
+

t4

4!
− · · · ) + 2U1(t −

t3

3!
+

t5

5!
− · · · ) = I8 cos t + 2U1 sin t,

or eU1t = I8 cos t
2 + 2U1 sin t

2 . Let now θ(t) =
∫ t

0
u(s) ds + θ0. Then

h(t) = eθ(t)U1 = I cos
1
2
θ(t) + 2U1 sin

1
2
θ(t).

Easy calculations show that

U1U3U1 =
1
4

U3,U1V3U1 =
1
4

V3, and [U1, (kU3 + V3)] = −(kU2 + V2).

Therefore,
h(t)(kU3 + V3)h−1(t) = (kU3 + V3) cos θ − (kU2 + V2) sin θ.

It follows that (5.25) is of the form

dg
ds

= g(t)(V3 + kU3)u1(s) + (V2 + kU2)u2(s)), g(0) = I, (5.26)

where u1(s) = cos θ(s), u2(s) = − sin θ(s). To pass to its convex extension it is sufficient to enlarge the
controls to the ball u2

1 + u2
2 ≤ 1.

We will now consider the time optimal problem in the reachable group G in S U(8) associated with
the above convex system.

We remind the reader that 〈 , 〉 is the scalar product on su(8) given by 〈A, B〉 = −1
2Tr(AB). This scalar

product is a multiple of the Killing form and hence satisfies 〈[A, B],C〉 = 〈A, [B,C]〉 for any matrices
A, B,C in su(8). Relative to 〈 , 〉 matrices U1,U2,U3,V1,V2,V3 constitute an orthonormal basis. Then
G with the left-invariant metric induced by the above scalar product becomes a Riemannian manifold as
well as a sub-Riemannian manifold with the sub-Riemannian length defined over the horizontal curves
by ∫ T

0
||u1(t)(V3 + kU3) + u2(t)(V2 + kU2)|| dt =

√
1 + k2

∫ T

0

√
u2

1(t) + u2
2(t) dt.

Thus a horizontal curve g(t) that connects g0 = I to a point g1 ∈ G in T units of time is a curve of

minimal length if and only if
∫ T

0

√
u2

1(t) + u2
2(t) dt is minimal. As expected the non-stationary time

optimal horizontal curves coincide with the sub-Riemannian geodesics of shortest length.
The sub-Riemannian metric induces a Riemannian metric on the quotient space M = G/Kv with the

geodescs on M equal the projections of the sub-Riemannian geodescs in G that connect the initial coset
Kv to the terminal coset g1Kv. It is important to note that the above sub-Riemannian metric is not of
contact type, that is, [Γ,Γ] , L where Γ denotes the vector space spanned by V2 + kU2 and V3 + kU3.
Instead,

Γ + [Γ,Γ + [Γ, [Γ,Γ]] = L, k , 1.

Secondly, it may be important to note that the induced metric on G/Kv is not symmetric.
Let us now use the maximum principle to get the extremal curves associated with the above time

optimal problem.
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5.5. The extremal curves

We will follow the formalism outlined in Section 3, in which the cotangent bundle T ∗G is trivialized
by the left-translations and represented as G × g∗, where g∗ denotes the dual of g., Then g∗ will be
identified with g via 〈 , 〉 with ` ∈ g∗ identified with L ∈ g through the formula 〈L, X〉 = `(X) for any
X ∈ g. Every L ∈ g admits a representation L =

∑3
i=1 PiBi + MiAi where Pi = `(Bi) and Mi = `(Ai).

Then the Hamiltonian lift of the horizontal system (5.26) is given by

H(`) = `((V3 + kU3)u1 + (V2 + kU2)u2) = 〈L, (V3 + kU3)u1 + (V2 + kU2)u2〉 =

(P3 + kM3)u1 + (P2 + kM2)u2,

where Pi = 〈L,Vi〉, and Mi = 〈L,Ui〉, i = 1, 2, 3.
We recall that the Hamiltonian equations associated with H are given by the equations

dg
dt

= g(t)dH`(t),
d`
dt

(t) = −ad∗(dH`(t))(`(t)
)

where dH = (V3 + kU3)u1(t) + (V2 + kU2)u2(t), or, dually by dL
dt = [dH, L]. In the coordinates, Pi,Mi the

preceding equations take on the following form

Ṁ1 = (P2 + kM2)u1 − (P3 + kM3)u2,

Ṁ2 = −(P1 + kM1)u1,

Ṁ3 = (P1 + kM1)u2,

Ṗ1 = (M2 + kP2)u1 − (M3 + kP3)u2,

Ṗ2 = −(M1 + kP1)u1,

Ṗ3 = (M1 + kP1)u2.

(5.27)

According to the maximum principle time optimal trajectories are the projections of the extremal
curves which can be abnormal and normal. In the abnormal case the maximum principle results in the
constraints

P2(t) + kM2(t) = 0, P3(t) + kM3(t) = 0, (5.28)

while in the normal case the maximum principle singles out the Hamiltonian

H =
1
2

(P3 + kM3)2 + (P2 + kM2)2,

generated by the extremal controls u1 = P3 + kM3, u2 = P2 + kM2, whose integral curves on energy
level H = 1

2 coincide with the normal extremal curves. Let us begin with the abnormal extremals.

Proposition 27. Abnormal extremal curves associated with the time optimal curves g(t) are generated
by the controls

u1(t) = c1 cosωt + c2 sinωt, u2(t) = c1 sinωt − c2 cosωt, c2
1 + c2

2 = 1

and are confined to the manifold

P2(t) + kM2(t) = P3 + kM3(t) = M1(t) + kP1(t) + k(P1(t) + kM1(t)) = 0.

In addition, M1(t) and P1(t) are constant. On M1 = 0, both u1 and u2 are constant, hence g(t) is a
Riemannian geodesic in G.
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Proof. As stated above, abnormal extremal curves satisfy

P2(t) + kM2(t) = 0, P3(t) + kM3(t) = 0,

and when they correspond to a time optimal curve, then they satisfy another constraint, known as the
Goh condition, namely

{P2 + kM2, P3 + kM3} = 0,

which yields
M1 + kP1 + k(P1 + kM1) = 0. (5.29)

Since Ṁ1 = {H,M1} = (P2 + kM2)u1 − (P3 + kM3)u2 = 0, M1 is constant, and hence P1 must be constant
also.

Upon differentiating (5.29) along the extremal curve we get

2k(−(M2 + kP2)u1 + (M3 + kP3)u2) = 0,

which implies that
u1(t) = M3(t) + kP3(t), u2(t) = M2(t) + kP2(t),

since time optimality demands that u2
1 + u2

2 = 1 whenever u , 0. Then

u̇1(t) = Ṁ3(t) + kṖ3(t) = −(P1 + kM1 + k(M1 + kP1))u2(t)) = −ω u2(t),
u̇2(t) = Ṁ2(t) + kṖ2(t) = (P1 + kM1 + k(M1 + kP1))u1(t)) = ω u1(t),

hence
u1(t) = c1 cosωt + c2 sinωt, u2(t) = c1 sinωt − c2 cosωt.

On M1 = 0, P1 = 0, and ω = 0.

We now come to the normal extremals. Let us first note that the Poisson equation dL
dt = [dH, L] that

governs the normal extremals is completely integrable on each coadjoint orbit in so(4) for the following
reasons: so(4) is of rank two, and hence admits two universal conservation laws (Casimirs)

I1 = ||M||2 + ||P||2, I2 = M1P1 + M2P2 + M3P3.

Therefore, generic coadjoint orbits are four dimensional, and since coadjoint orbits are symplectic, they
admit at most two independent integrals of motion functionally independent from the Casimirs. In the
present case, I3 = M1 and H = 1

2 (P2 + kM2)2 + (P3 + kM3)2) are the required integrals. The fact that M1

is constant was clear from the very beginning since Kv = {eεU1 , ε ∈ R} is a symmetry for (5.26).
We will now show that the normal extremals can be integrated by quadrature in terms of elliptic

functions on the manifold

c1 = 2(H − 2kI2), c2 = M1, c3 = I1 − M2
1 , c4 = I2

Then,

c1 = 2(H − kI2) = (P2 + kM2)2 + (P3 + kM3)2 − 2k(P1M1 + P2M2 + P3M3) =

P2
2 + P2

3 + k2(M2
2 + M2

3) − 2kP1M1, and
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P2
2 + P2

3 + M2
2 + M2

3 = I1 − P2
1 − M2

1 = c3 − P2
1.

It follows that

(1 − k2)(P2
2 + P2

3) = c1 + 2kP1c2 − k2(c3 − P2
1) = c1 − k2c3 − 2kc2P1 + k2P2

1,

(1 − k2)(M2
2 + M2

3) = c3 − P2
1 − (c1 + 2kP1c2) = c3 − c1 − 2kc2P1 − P2

1.

We now have

1
(1−k2)2 (dP1

dt )2 = (P2M3 − P3M2)2 = P2
2M2

3 + P2
3M2

2 − 2P2P3M2M3 =

P2
2M2

3 + P2
3M2

2 − (P2M2 + P3M3)2 + P2
2M2

2 + P2
3M2

3 =

(P2
2 + P2

3)(M2
2 + M2

3) − (I2 − P1M1)2 =
1

(1−k2)2 (c1 − k2c3 + 2kc2P1M1 + k2P2
1))(c3 − c1 − 2kc2P1 − P2

1) − (I2 − P1M1)2.

Hence,

(dP1
dt )2 = (c1 − k2c3 + 2kc2P1 + k2P2

1))(c3 − c1 − 2kc2P1) − P2
1) − (1 − k2)2(I1 − M1P1)2

= −k2P4
1 − 2kM1P3

1(k2 + 1) + αP2
1 + βP1 + γ,

where

α = 2k2c3 − c1(1 + k2) − 4k2M2
1 − (1 − k2)2M2

1 I2
1 ,

β = (2kc2(k2 + 1)c3 − 2c1) + 2(1 − k2)2c4c2, γ = (c1 − k2c3)(c3 − c1) − (1 − k2)2c2
4.

It is well known that the solutions of dz
dt =

√
P(z) with P a fourth degree polynomial can be solved in

terms of elliptic integrals (for instance, see ( [20])).
The remaining variables can be integrated by quadrature through the representation

u1(t) = cos θ(t), u2(t) = sin θ(t). (5.30)

Then
−u2(t)θ̇(t) = u̇1(t) = Ṗ3 + kṀ3 = −(M1 + kP1) + k(P1 + kM1))u2(t)

yields

θ(t) = θ(0) −
∫ t

0
(c2(1 + k2) + 2kP1(s)) ds. (5.31)

Hence the extremal controls are now specified and the projected curve g(t) is obtained as a solution of a
fixed ordinary differential equation.

In the presence of the transversality conditions, M1 = 0, and the above equation simplifies. For when
M1 = 0,

(
dP1

dt
)2 = −k2P4

1 + αP2
1 + γ

Then ξ = P2
1 is a solution of

(
1
2

dξ
dt

)2 = P2
1(

dP1

dt
)2 = −k2ξ3 + αξ2 + γξ. (5.32)
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The preceding equation can be put in its canonical form dξ
dt =

√
4ξ3 − g2ξ − g1 and then can be solved

in terms of the Weierstrass’ ℘ function ( [7]), page 113).
The solutions of Yuan’s optimal problem satisfy additional transversality conditions, namely, the

extremal curve L(t) is orthogonal to k at the initial and the terminal time, where k is the Lie algebra
spanned by U1,U2,U3. That means that Mi(0) = 0 and Mi(T ) = 0 for i = 1, 2, 3. Such extremal curves
reside on I2 = 0.
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