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Abstract: We study the well-posedness and stability for a nonlinear Euler-Bernoulli beam equation
modeling railway track deflections in the framework of input-to-state stability (ISS) theory. More
specifically, in the presence of both distributed in-domain and boundary disturbances, we prove first
the existence and uniqueness of a classical solution by using the technique of lifting and the semigroup
method, and then establish the Lr-integral input-to-state stability estimate for the solution whenever
r ∈ [2,+∞] by constructing a suitable Lyapunov functional with the aid of Sobolev-like inequalities,
which are used to deal with the boundary terms. We provide an extensive extension of relevant work
presented in the existing literature.
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1. Introduction

The notion of input-to-state stability (ISS) was originally introduced by Sontag in 1989 during the
study of nonlinear systems governed by ordinary differential equations (ODEs) [1]. It was mainly used
to quantify the influence of external inputs or disturbances on the stability of control systems, and has
been proved to be a powerful tool for describing the robustness of nonlinear systems in control theory
and applications. In numerous physical and engineering scenarios, external inputs or disturbances often
exhibit unbounded characteristics. To provide a more comprehensive understanding of the stability of
nonlinear systems subjected to such external influences, Sontag introduced a variation of ISS in 1998,
known as the integral input-to-state stability (iISS); see [2]. The iISS offers a description of stability in a
sense weaker than the ISS, specifically permitting unbounded inputs with finite energy. In recent years,
the ISS, iISS, and their variations have been developed as the ISS theory and have found extensive
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applications in various fields; see, e.g., [3] for comprehensive surveys.
In the past decade, ISS theory for ODE systems has been widely extended and applied to systems

described by partial differential equations (PDEs). For instance, ISS-Lyapunov characterizations were
provided for abstract infinite-dimensional systems including PDEs [4–10]; different ISS estimates were
established for PDE systems with various types of disturbances [9, 11–22]; and the ISS was applied to
PDEs arising in engineering, such as multi-agent control [23], the railway track model [24], and bridge
vibrations [25], etc. We refer [9, 14, 22] for summaries on this topic.

For PDE systems, external disturbances typically manifest within the interior of the domain, on
the boundary of the domain, or simultaneously within the interior and on the boundary of the domain.
Regarding PDEs with in-domain disturbances, the Lyapunov method is the most common approach
for establishing the ISS in various norms; see [6, 17, 20, 26–28]. However, studying PDE systems with
boundary disturbances is much more challenging. This is because when a PDE system has boundary
disturbances, it is not easy to handle the boundary terms without involving time derivatives of the
disturbances. To overcome this obstacle, different solutions have been proposed for different PDE
systems. For instance:

(i) In the context of linear PDEs with boundary disturbances, the approach of spectral decomposition
and finite difference schemes can be effectively employed for the ISS analysis of systems governed
by Sturm-Liouville operators [12,13], while the Riesz-spectral approach is suitable for establishing
the ISS of Riesz-spectral systems [15, 16];

(ii) Regarding nonlinear PDEs with boundary disturbances, various approaches have been proposed
for assessing the ISS of PDE systems with Dirichlet type boundary disturbances, such as the
monotonicity method [29], the technique of De Giorgi iteration [30], and the maximum principle-
based approach [21, 31], etc., while the Lyapunov method remains the primary one for the ISS
analysis in the systems with only Robin or Neumann type boundary disturbances [9, 18, 20, 28].

In this paper, we intend to investigate the well-posedness and stability in the framework of ISS theory
for a nonlinear Euler-Bernoulli beam equation with both in-domain and boundary disturbances. It is
worth mentioning that, as one of the representative PDEs, the Euler-Bernoulli beam equation and its
variations have attracted a lot of attention in the past few decades; see, e.g., [32–35]. In particular,
a railway track model governed by a class of nonlinear Euler-Bernoulli beam equations was studied
in [24, 36, 37], and the ISS for the system was established when only in-domain disturbances appeared
(see [24]), whereas the effect of boundary disturbances on the stability of the system has not been
considered. In addition, the iISS corresponding to the integrals of in-domain or boundary disturbances
has not been studied for such a system, while it is worthy of probing. Motivated by these facts and based
on the model considered in [24], we focus on the situation where the nonlinear Euler-Bernoulli beam
equation involves both in-domain and boundary disturbances. Within the framework of ISS theory, we
will prove first the well-posedness for the system and then establish both the ISS and the iISS estimates
for the solution to characterize the influence of the Lr-integral (w.r.t. t) of disturbances on the stability
of the system whenever r ∈ [2,+∞].

It is worth noting that, as previously mentioned, the presence of boundary disturbances in PDE
systems leads to significant complexity in the well-posedness and stability analysis. Consequently, the
problem addressed in this paper represents more of a challenge compared to the one tackled in [24]:
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(i) Regarding the well-posedness analysis, due to the fact that the nonlinear Euler-Bernoulli beam
equation considered in [24] is subject to homogeneous boundary conditions and the nonlinear
term solely depends on the state, classical and mild solutions can be directly obtained by using
the semigroup method after transforming the specific system into an abstract system. However,
in the presence of boundary disturbances, the abstract system involves an unbounded operator,
making it non-trivial to prove the well-posedness. To overcome this difficulty, in this paper, we will
employ the technique of lifting to transform the original system with non-homogeneous boundary
conditions into an equivalent system with homogeneous boundary conditions. Nevertheless,
after applying lifting, more nonlinear terms will arise in the equivalent system and depend
simultaneously on both the time variable and the state, introducing complexity when verifying
properties of these nonlinear terms.

(ii) For the stability analysis, it is worth noting that analyzing the stability of nonlinear systems
is inherently more challenging compared to linear ones. Nevertheless, in [24], owing to the
homogeneous boundary conditions of the considered nonlinear system, the authors were able
to construct a suitable ISS-Lyapunov functional and employ various technical lemmas, such as
Poincaré’s inequality, Young’s inequality, and Gronwall’s inequality, to establish the ISS for the
system with only in-domain disturbances. For the nonlinear equation under consideration in this
paper, the presence of boundary disturbances leads to a challenge. Indeed, after applying the
technique of lifting, if an equivalent system with homogeneous boundary conditions is considered
and stability analysis is performed by using the Lyapunov method as in [24], the resulting stability
estimates must contain the time derivatives of the boundary disturbances, which do not strictly
adhere to the real ISS or iISS property as pointed out in [12, 13, 20]. To address this issue, we
will directly deal with the original system with non-homogeneous boundary conditions for the stability
analysis, but handling the boundary terms is a non-trivial task. Indeed, this requires more techniques
than those presented in [24], thereby amplifying the complexity of the problem under consideration.

The outline of this paper is as follows: Section 2 introduces notations and auxiliary results used in
the paper. Section 3 presents the problem formulation and the main result, which is divided into two
propositions stated in Section 4 and Section 5, respectively. More specifically, the first proposition is
concerned with the well-posedness of the considered system and is presented in Section 4, while the
second one states the result on the ISS and iISS for the considered system and is presented in Section 5.

2. Notations and preliminaries

In this paper, let R := (−∞,+∞), R≥0 := [0,+∞), and R>0 := (0,+∞).
The following sets of comparison functions are defined in the standard way; see, e.g., [3, A.1]:

K :=
{
γ : R≥0 → R≥0

∣∣∣γ is continuous, strictly increasing, and γ(0) = 0
}
,

K∞ :=
{
γ ∈ K

∣∣∣γ is unbounded
}
,

L :=
{
γ : R≥0 → R≥0

∣∣∣γ is continuous, strictly decreasing, and lim
t→∞

γ(t) = 0
}
,

KL :=
{
β : R≥0 × R≥0 → R≥0

∣∣∣β is continuous, β(·, t) ∈ K , β(r, ·) ∈ L,∀t ∈ R≥0,∀r ∈ R>0

}
.
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For a given operatorA, its range and resolvent set are denoted by R(A) and ρ(A), respectively. The
kernel of A is denoted by ker(A). For given subsets C and D in normed linear spaces, the set of all
bounded linear operators from C to D is defined in the standard way as in, e.g., [38, Definition A.3.1],
and is denoted by L (C; D). In particular, let L (C; C) := L (C).

For a given function u : [0, 1] × R≥0 → R, we use the notation u[t] to denote the profile at certain
t ∈ R≥0, i.e., u[t](x) = u(x, t) for all x ∈ [0, 1].

Let AC([0, 1]) denote the set of all absolutely continuous functions defined on [0, 1]. The following
Sobolev-like inequalities, which can be proved as in [20], play an important role in dealing with
boundary terms when establishing the ISS and iISS for PDE systems with boundary disturbances.

Lemma 2.1. Suppose that υ ∈ AC([0, 1]). Then, the following inequalities hold true:

(i) υ2(c) ≤ 2‖υ‖2L2(0,1) + ‖υx‖
2
L2(0,1),∀c ∈ [0, 1];

(ii) ‖υ‖2L2(0,1) ≤ υ
2(c) + 1

2‖υx‖
2
L2(0,1) for c = 0 or c = 1.

We provide the concept of the Fréchet derivative, which can be found in, e.g., [38, Definition A.5.25,
p. 629].

Definition 2.2. Consider the mapping F from the Banach space Y to the Banach space Z. Given y0 ∈ Y,
if a linear bounded operator dF(y0) exists such that

lim
‖h‖Y→0

=
‖F(y0 + h) − F(y0) − dF(y0)h‖Z

‖h‖Y
= 0,

then F is said to be Fréchet differentiable at y0, and dF(y0) is said to be the Fréchet derivative of F at y0.

3. Problem formulation and main result

In this paper, we study the well-posedness and stability of the following nonlinear Euler-Bernoulli
beam equation in the framework of ISS theory:

wtt + (awxx + bwtxx)xx + cwt + kw + lw3 = f (x, t), (x, t) ∈ [0, 1] × R≥0, (3.1a)
w(0, t) =0, t ∈ R≥0, (3.1b)

wx(1, t) =0, t ∈ R≥0, (3.1c)
(awxx + bwtxx) (0, t) =d1(t), t ∈ R≥0, (3.1d)

(awxx + bwtxx)x (1, t) =d2(t), t ∈ R≥0, (3.1e)
w(x, 0) =ϕ1(x), x ∈ [0, 1], (3.1f)
wt(x, 0) =ϕ2(x), x ∈ [0, 1], (3.1g)

where

a, b, c, k ∈ R>0 and k, l ∈ R≥0,

the function f represents the distributed in-domain disturbance, the functions d1, d2 represent the
boundary disturbances, and ϕ1, ϕ2 are given initial data. It is worth mentioning that equation (3.1a)
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with c = k = l = 0 is well-known as the one-dimensional Euler-Bernoulli beam equation [39, 40];
equation (3.1a) with k = l = 0 is a model of flexible aircraft wing with Kelvin-Voigt damping [19, 41];
while equation (3.1a) with l = 0 or the general case of equation (3.1a) can be used to model railway
track deflections [24, 36, 42, 43].

Before defining a solution, and the ISS and iISS for the system (3.1), we would like to reformulate
(3.1) in an abstract form. More specifically, we introduce first the Hilbert space

H2
[0](0, 1) :=

{
w ∈ H2(0, 1)

∣∣∣w(0) = wx(1) = 0
}
,

which is endowed with the inner product

〈w1,w2〉H2
[0](0,1) :=

∫ 1

0
aw1xxw2xxdx,∀w1,w2 ∈ H2

[0](0, 1),

and the norm

‖w‖H2
[0](0,1) :=

∥∥∥√awxx

∥∥∥
L2(0,1)

,∀w ∈ H2
[0](0, 1),

respectively. Define H := H2
[0](0, 1) × L2(0, 1), which is also a Hilbert space endowed with the inner

product

〈(w1, v1) , (w2, v2)〉H := 〈w1,w2〉H2
[0](0,1) + 〈v1, v2〉L2(0,1),∀(w1, v1), (w2, v2) ∈ H,

and the norm

‖(w, v)‖H :=
(∥∥∥√awxx

∥∥∥2

L2(0,1)
+ ‖v‖2L2(0,1)

) 1
2
,∀(w, v) ∈ H,

respectively.
Let the linear operatorA : D(A) ⊂ H→ H be defined by

A(w, v) :=
(
v,− (awxx + bvxx)xx

)
with the domain

D(A) :=
{
(w, v) ∈ H

∣∣∣v ∈ H2
[0](0, 1), awxx + bvxx ∈ H2(0, 1),

awxx + bvxx ∈ AC([0, 1]), (awxx + bvxx)x ∈ AC([0, 1])
}
,

which is dense in H. Let the nonlinear operatorA1 be defined by

A1(w, v) :=
(
0,−cv − kw − lw3

)
,∀(w, v) ∈ D(A1) := H.

Let the boundary operator B be defined by

B(w, v) := ((awxx + bvxx) (0), (awxx + bvxx)x (1)) ,∀(w, v) ∈ D(B) := D(A).

Throughout this paper, for the in-domain disturbance f , the boundary disturbances d1, d2, and the
initial data ϕ1, ϕ2, we always assume that
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(H1) f ∈ C1 ([0, 1] × R≥0) and d1, d2 ∈ C2(R≥0);

(H2) (ϕ1, ϕ2) ∈ D(A) and satisfies the compatibility condition B(ϕ1, ϕ2) = (d1(0), d2(0)).

Now, let X(t) := (w[t],wt[t]) be the state of system (3.1), and X0 := (ϕ1, ϕ2) be the corresponding
initial datum. Let F(t) := (0, f [t]). Then, system (3.1) can be written in the following abstract form:

Ẋ(t) =(A +A1)X(t) + F(t), (3.2a)
BX(t) = (d1(t), d2(t)) , (3.2b)

X(0) =X0 ∈ D(A) with BX0 =
(
d1(0), d2(0)

)
. (3.2c)

Definition 3.1. For any T ∈ R>0, if X ∈ C([0,T ]; D(A)) ∩C1((0,T );H) satisfies equation (3.2a) for all
t ∈ (0,T ), boundary condition (3.2b) for all t ∈ [0,T ], and intitial-value condition (3.2c), then X is said
to be a classical solution to system (3.2).

Definition 3.2. For certain r ∈ [1,+∞], system (3.2) is said to be Lr-integral input-to-state stable
(Lr-iISS) in the norm of H w.r.t. the in-domain disturbance f and the boundary disturbances d1, d2 if
there exist functions µ ∈ KL and γ1, γ2, γ3 ∈ K such that the solution to system (3.2) satisfies

‖X(t)‖H ≤µ (‖X0‖H, t) + γ1
(
‖d1‖Lr(0,t)

)
+ γ2

(
‖d2‖Lr(0,t)

)
+ γ3

(
‖ f ‖Lr((0,t);L2(0,1))

)
,∀t ∈ R≥0. (3.3)

In particular, system (3.2) is said to be input-to-state stable (ISS) in the norm of H w.r.t. the in-domain
disturbance f and the boundary disturbances d1, d2 if inequality (3.3) is fulfilled with r = +∞.

Remark 3.3. The notions of ISS and iISS provide a powerful tool of characterizing the robustness of
nonlinear systems in presence of disturbances. For instance, inequality (3.3) implies that the disturbance-
free system (3.2) is asymptotically stable, while the state remains bounded when bounded external
disturbances are involved. In particular, the state becomes smaller when external disturbances become
smaller in a certain sense.

The main result obtained in this paper is stated as follows:

Theorem 3.4. System (3.2) admits a unique classical solution. Moreover, for any r ∈ [2,+∞], sys-
tem (3.2) is Lr-iISS in the norm of H w.r.t. the in-domain disturbance f and the boundary disturbances
d1, d2.

In the following, we will divide Theorem 3.4 into two propositions and provide their proofs in
Section 4 and Section 5, respectively.

4. Well-posedness analysis

In order to prove the well-posedness of system (3.2), we employ the technique of lifting to transform
the original system into an equivalent one, which has homogeneous boundary conditions. Indeed, letting

g1(x, t) :=
(
x2 − 2x

) (
−

1
b

∫ t

0
d1(s)e−

a
b (t−s)ds

)
,

g2(x, t) :=
(
1
6

x3 −
1
2

x
) (
−

1
b

∫ t

0
d2(s)e−

a
b (t−s)ds

)
,
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and

w̃ := w + g1 + g2,

we transform system (3.1) into

w̃tt + (aw̃xx + bw̃txx)xx + cw̃t + kw̃ = f + g1tt + g2tt +
(
a(g1xx + g2xx) + b(g1txx + g2txx)

)
xx

+ c(g1t + g2t) + k(g1 + g2) − l(w̃ − g1 − g2)3, (4.1a)
w̃(0, t) =0, (4.1b)

w̃x(1, t) =0, (4.1c)
(aw̃xx + bw̃txx) (0, t) =0, (4.1d)

(aw̃xx + bw̃txx)x (1, t) =0, (4.1e)
w̃(x, 0) =ϕ̃1(x), (4.1f)
w̃t(x, 0) =ϕ̃2(x). (4.1g)

DefineA2 ∈ L (H) by

A2(w̃, ṽ) := (0,−c̃v − kw̃),∀(w̃, ṽ) ∈ H,

and Ã : D(Ã) ⊂ H→ H by

Ã := A|D(Ã)

with the domain D(Ã) := D(A) ∩ ker(B), respectively.
For the given functions f , g1, and g2, we define the nonlinear functional F̃ : R≥0 × H→ H by

F̃(t,Z)(x) :=
(
0, f + g1tt + g2tt + (a(g1xx + g2xx) + b(g1txx + g2txx))xx

+ c(g1t + g2t) + k(g1 + g2) − l(w̃ − g1 − g2)3
)
,∀Z := (w̃, ṽ) ∈ H. (4.2)

Let X̃(t) := (w̃[t], w̃t[t]) and X̃0 := (ϕ̃1, ϕ̃2) be the state and the corresponding initial datum of
system (4.1), respectively. Then, system (4.1) can be written in the following abstract form:

˙̃X(t) =(Ã +A2)X̃(t) + F̃(t, X̃(t)), (4.3a)

BX̃(t) = (0, 0) , (4.3b)

X̃(0) =X̃0 ∈ D(Ã). (4.3c)

Definition 4.1. For any T ∈ R>0, if a function X̃ ∈ C(R≥0; D(Ã)) ∩C1(R≥0;H) satisfies equation (4.3a)
for all t ∈ (0,T ), boundary condition (4.3b) for all t ∈ [0,T ], and initial-value condition (4.3c), then X̃
is said to be a classical solution to system (4.3).

In order to prove the well-posedness of system (4.1), it suffices to prove the well-posedness of
system (4.3). Indeed, we have the following result:

Proposition 4.2. System (4.3) admits a unique classical solution, and hence system (3.2) admits a
unique classical solution.
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Before proving Proposition 4.2, we present first some auxiliary results.

Lemma 4.3. The inverse of the linear operator Ã, denoted by Ã−1, exists and is bounded, namely,
Ã−1 ∈ L (H; D(Ã)). Thus, 0 ∈ ρ(Ã) and Ã is a closed operator.

Proof. Let us show first that Ã is surjective, namely, for any (ŵ, v̂) ∈ H, we need to find (w̃, ṽ) ∈ D(Ã)
such that Ã(w̃, ṽ) = (ŵ, v̂). Indeed, for any (ŵ, v̂) ∈ H, we consider the solution to the following
equations

ṽ =ŵ, (4.4a)
−(aw̃xx + b̃vxx)xx =̂v, (4.4b)
(aw̃xx + b̃vxx) (0) =0, (4.4c)

(aw̃xx + b̃vxx)x (1) =0. (4.4d)

For any y ∈ [0, 1], integrating both sides of equation (4.4b) over the interval [y, 1], we obtain

−

∫ 1

y
(aw̃zz(z) + b̃vzz(z))zz dz =

∫ 1

y
v̂(z)dz. (4.5)

By integrating by parts and using boundary condition (4.4c), we obtain

−

∫ 1

y
(aw̃zz(z) + b̃vzz(z))zz dz = − (aw̃zz(z) + b̃vzz(z))z

∣∣∣z=1

z=y
=

(
aw̃yy(y) + b̃vyy(y)

)
y
,

which, along with equality (4.5), yields

(
aw̃yy(y) + b̃vyy(y)

)
y

=

∫ 1

y
v̂(z)dz,∀y ∈ [0, 1]. (4.6)

Analogously, integrating both sides of equation (4.6) and using boundary condition (4.4d), we obtain

aw̃xx(x) + b̃vxx(x) =

∫ x

0

∫ 1

y
v̂(z)dzdy,∀x ∈ [0, 1]. (4.7)

In view of equation (4.4b) and ŵ ∈ H2
[0](0, 1), equation (4.7) is equivalent to

aw̃xx(x) =

∫ x

0

∫ 1

y
v̂(z)dzdy − bŵxx(x) := M(x),∀x ∈ [0, 1],

which implies that

w̃(x) =
1
a

∫ 0

x

∫ 1

q
M(p)dpdq,∀x ∈ [0, 1]. (4.8)

It is clear that (w̃, ṽ) ∈ D(Ã) and Ã(w̃, ṽ) = (ŵ, v̂). This proves that Ã is surjective.
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Next, we show that Ã is injective. Noting that Ã is linear, it suffices to prove the implication

Ã(w̃, ṽ) = 0⇒ (w̃, ṽ) = (0, 0).

Indeed, setting (ŵ, v̂) = (0, 0) in (4.4), and in view of equalities (4.4a) and (4.8), we get (w̃, ṽ) = (0, 0)
immediately.

It has been shown that Ã is bijective. Thus, the inverse of Ã, i.e., Ã−1 : H→ D(Ã) ⊂ H, exists.
Now, we prove that Ã−1 ∈ L (H; D(Ã)). For any (ŵ, v̂) ∈ H, due to the fact that there is (w̃, ṽ) ∈

D(Ã) ⊂ H satisfying Ã−1(ŵ, v̂) = (w̃, ṽ), it follows that (ŵ, v̂) = Ã(w̃, ṽ), or, equivalently,

ṽ =ŵ, (4.9a)
−(aw̃xx + b̃vxx)xx =̂v. (4.9b)

Applying Lemma 2.1(ii) to ŵ and using equality (4.9a), we have

‖̃v‖2L2(0,1) = ‖ŵ‖2L2(0,1) ≤
1
4
‖ŵxx‖

2
L2(0,1) =

1
4
‖̃vxx‖

2
L2(0,1).

Since (w̃, ṽ) ∈ D(Ã), we also have

‖aw̃xx + b̃vxx‖
2
L2(0,1) ≤

1
4
‖(aw̃xx + b̃vxx)xx‖

2
L2(0,1) .

Then, we deduce by equation (4.9b) that∥∥∥Ã−1(ŵ, v̂)
∥∥∥
H

=‖(w̃, ṽ)‖H

=

(∫ 1

0

(
aw̃2

xx + ṽ2
)

dx
) 1

2

≤

(∫ 1

0

(
aw̃2

xx +
1
4

ṽ2
xx

)
dx

) 1
2

≤C1

(∫ 1

0

(
(aw̃xx + b̃vxx)2 + ãv2

xx

)
dx

) 1
2

≤C2

(∫ 1

0

(
ãv2

xx + ((aw̃xx + b̃vxx)xx)
2
)

dx
) 1

2

=C2

(∫ 1

0

(
aŵ2

xx + v̂2
xx

)
dx

) 1
2

=C2

∥∥∥(ŵ, v̂)
∥∥∥
H
,

where C1 and C2 are positive constants depending only on a and b. Therefore, Ã−1 ∈ L (H; D(Ã)), and
hence 0 ∈ ρ(Ã) and Ã is a closed operator (see [38, Theorem A.3.46, p. 596]).

Lemma 4.4. The operator Ã : D(Ã)→ H is dissipative w.r.t. 〈·, ·〉H.
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Proof. Indeed, in view of the definitions of Ã and 〈·, ·〉H, and by integrating by parts, we have

〈Ã(w̃, ṽ), (w̃, ṽ)〉H =

∫ 1

0
(aw̃xx̃vxx − ṽ(aw̃xx + b̃vxx)xx) dx

=

∫ 1

0
aw̃xx̃vxxdx −

∫ 1

0
ṽxx(aw̃xx + b̃vxx)dx

= − b
∫ 1

0
ṽ2

xxdx

≤0,∀(w̃, ṽ) ∈ D(Ã),

which indicates the dissipativity of Ã.

Lemma 4.5. The operator Ã +A2 generates a C0-semigroup of contractions on 〈·, ·〉H.

Proof. We prove first that the linear operator Ã generates a C0-semigroup of contractions on 〈·, ·〉H.
Indeed, we see from Lemma 4.4 that Ã is dissipative. In view of Lemma 4.3, Ã is closed, and thus
the resolvent set ρ(Ã) is open (see [38, Lemma A.4.8, p. 612]). Since 0 ∈ ρ(Ã), there must be a
positive number λ0 such that R(λ0I − Ã) = H, where I denotes the identity operator defined on D(Ã).
According to the Lumer-Philips Theorem (see [44, Theorem 4.3, p. 14]), the linear operator Ã generates
a C0-semigroup of contractions on 〈·, ·〉H.

Next, we prove that A2 is bounded. Indeed, for any (w̃, ṽ) ∈ H, due to the fact that ‖w̃‖2L2(0,1) ≤
1
4‖w̃xx‖

2
L2(0,1), we have

‖A2(w̃, ṽ)‖H =

(∫ 1

0
(c̃v + kw̃)2dx)

) 1
2

≤

(∫ 1

0
2
(
c2ṽ2 + k2w̃2

)
dx

) 1
2

≤

(∫ 1

0
2
(
c2ṽ2 +

1
4

k2w̃2
xx

)
dx

) 1
2

≤C3

(∫ 1

0

(
aw̃2

xx + ṽ2
)

dx
) 1

2

=C3 ‖(w̃, ṽ)‖H ,

where C3 is a positive constant depending only on a, c, k when k > 0, and only on c when k = 0,
respectively. Therefore, the linear operator Ã2 is bounded.

Finally, according to [38, Theorem 3.2.1, p. 110], we conclude that Ã+A2 generates a C0-semigroup
of contractions on 〈·, ·〉H.

Lemma 4.6. For any T ∈ R>0, the nonlinear functional F̃ : [0,T ] × H→ H is Fréchet differentiable.

Proof. Let g(x, t):=g1(x, t) + g2(x, t). Recalling the definition of F̃ (see (4.2)), for any t ∈ [0,T ] and
Z := (w̃, ṽ) ∈ H, we have

F̃(t,Z)(x)=
(
0, f + gtt + (agxx + bgtxx)xx + cgt + kg − l(w̃ − g)3

)
.
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By virtue of the regularity of f and g, it suffices to show that
(
0, (w̃ − g)3

)
is Fréchet differentiable

on Y := [0,T ] × H→ H. Furthermore, due to the fact that(
0, (w̃ − g)3

)
=

(
0, w̃3

)
−

(
0, 3w̃2g

)
+

(
0, 3w̃g2

)
−

(
0, g3

)
,

it suffices to show that
(
0, w̃3

)
,
(
0, w̃2g

)
, and

(
0, w̃g2

)
are Fréchet differentiable on Y. Since the proof

can proceed in a standard way (see, e.g., [24]), we only show that F̃1(t,Z)(x) :=
(
0, w̃2g

)
is Fréchet

differentiable on Y in the following. More specifically, for any y0 := (t0,Z0) ∈ Y with Z0 := (w̃0, ṽ0), we
would like to prove that the Fréchet derivative of F̃1 at y0 is given by

dF̃1(y0)h :=
(
0, 2w̃0g[t0]w̃ + w̃2

0gt[t0]t
)
,

where h := (t,Z) with t ∈ [0,T ] and Z := (w̃, ṽ) ∈ H, namely, we shall prove that

lim
‖h‖Y→0

∥∥∥F̃1(y0 + h) − F̃1(y0) − dF̃1(y0)h
∥∥∥
H

‖h‖Y
= 0,

or, equivalently,

lim
|t|+‖w̃‖H2

[0](0,1)+‖̃v‖L2(0,1)→0

∥∥∥(w̃ + w̃0)2g[t + t0] − w̃2
0g[t0] − w̃2

0gt[t0]t − 2w̃0g[t0]w̃
∥∥∥

L2(0,1)

|t| + ‖w̃‖H2
[0](0,1) + ‖̃v‖L2(0,1)

= 0. (4.10)

Indeed, we deduce that

lim
|t|+‖w̃‖H2

[0](0,1)+‖̃v‖L2(0,1)→0

∥∥∥(w̃ + w̃0)2g[t + t0] − w̃2
0g[t0] − w̃2

0gt[t0]t − 2w̃0g[t0]w̃
∥∥∥

L2(0,1)

|t| + ‖w̃‖H2
[0](0,1) + ‖̃v‖L2(0,1)

≤ lim
t→0,‖w̃‖H2

[0](0,1)→0

∥∥∥(w̃ + w̃0)2g[t + t0] − w̃2
0g[t0] − w̃2

0gt[t0]t − 2w̃0g[t0]w̃
∥∥∥

L2(0,1)

|t| + ‖w̃‖H2
[0](0,1)

≤ lim
t→0,‖w̃‖H2

[0](0,1)→0

∥∥∥w̃2
0(g[t + t0] − g[t0]) − w̃2

0gt[t0]t
∥∥∥

L2(0,1)

|t| + ‖w̃‖H2
[0](0,1)

+ lim
t→0,‖w̃‖H2

[0](0,1)→0

‖w̃2g[t + t0]‖L2(0,1)

|t| + ‖w̃‖H2
[0](0,1)

+ lim
t→0,‖w̃‖H2

[0](0,1)→0

‖2w̃w̃0g[t + t0] − 2w̃0g[t0]w̃‖L2(0,1)

|t| + ‖w̃‖H2
[0](0,1)

≤ lim
t→0

∥∥∥w̃2
0 (g[t + t0] − g[t0]) − w̃2

0gt[t0]t
∥∥∥

L2(0,1)

|t|
+ lim

t→0,‖w̃‖H2
[0](0,1)→0

‖w̃2g[t + t0]‖L2(0,1)

‖w̃‖H2
[0](0,1)

+ lim
t→0,‖w̃‖H2

[0](0,1)→0

‖2w̃w̃0g[t + t0] − 2w̃0g[t0]w̃‖L2(0,1)

|t|
. (4.11)

Now we assess each term on the right-hand side of inequality (4.11). First, we have

lim
t→0

∥∥∥w̃2
0(g[t + t0] − g[t0]) − w̃2

0gt[t0]t
∥∥∥

L2(0,1)

|t|
= lim

t→0

∥∥∥w̃2
0

g[t+t0]−g[t0]
t t − w̃2

0gt[t0]t
∥∥∥

L2(0,1)

|t|
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= lim
t→0

∥∥∥∥∥w̃2
0
g[t + t0] − g[t0]

t
− w̃2

0gt[t0]
∥∥∥∥∥

L2(0,1)

= lim
t→0

∥∥∥w̃2
0gt[t0] − w̃2

0gt[t0]
∥∥∥

L2(0,1)

=0. (4.12)

Second, noting that ‖w̃2‖L2(0,1) = ‖w̃‖2L4(0,1) and applying the Sobolev embedding result H2
[0](0, 1) ↪→

L4(0, 1) with ‖w̃‖L4(0,1) ≤ C4‖w̃‖H2
[0](0,1) and some positive constant C4, we infer that

lim
t→0,‖w̃‖H2

[0](0,1)→0

∥∥∥w̃2g[t + t0]
∥∥∥

L2(0,1)

‖w̃‖H2
[0](0,1)

≤‖g‖L∞((0,1)×(0,T )) lim
‖w̃‖H2

[0](0,1)→0

∥∥∥w̃2
∥∥∥

L2(0,1)

‖w̃‖H2
[0](0,1)

=‖g‖L∞((0,1)×(0,T )) lim
‖w̃‖H2

[0](0,1)→0

‖w̃‖2L4(0,1)

‖w̃‖H2
[0](0,1)

≤C4‖g‖L∞((0,1)×(0,T )) lim
‖w̃‖H2

[0](0,1)→0

‖w̃‖2H2
[0](0,1)

‖w̃‖H2
[0](0,1)

=0. (4.13)

Third, we have

lim
t→0,‖w̃‖H2

[0](0,1)→0

‖2w̃w̃0g[t + t0] − 2w̃0g[t0]w̃‖L2(0,1)

|t|

= lim
t→0,‖w̃‖H2

[0](0,1)→0

∥∥∥∥∥2w̃w̃0
g[t + t0] − g[t0]

t

∥∥∥∥∥
L2(0,1)

= lim
‖w̃‖H2

[0](0,1)→0
‖2w̃w̃0gt[t0]‖L2(0,1)

≤2‖gt‖L∞((0,1)×(0,T )) ‖w̃0‖L2(0,1) lim
‖w̃‖H2

[0](0,1)→0
‖w̃‖L2(0,1)

≤2‖gt‖L∞((0,1)×(0,T )) ‖w̃0‖L2(0,1) lim
‖w̃‖H2

[0](0,1)→0
‖w̃‖H2

[0](0,1)

=0. (4.14)

Finally, combining inequality (4.11), equality (4.12), inequality (4.13), and inequality (4.14), we
obtain equality (4.10).

Proof of Proposition 4.2. For any T ∈ R>0, in view of Lemma 4.5 and Lemma 4.6, it is guaranteed
by [45, Theorem 6.1.4 & 6.1.5, pp. 185-187] that system (4.3) admits a unique local classical solution
X̃ on an interval [0,Tmax] with some Tmax ∈ (0,T ). Moreover, it is guaranteed by [45, Theorem 6.1.4,
pp. 185-186] that the local classical solution can be extended to the whole interval [0,T ] if the solution
satisfies

lim
t→Tmax

‖X̃[t]‖H < +∞,

which is included in Section 5.
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5. Stability assessment

The ISS and iISS results stated in Theorem 3.4 are re-formulated as in the following proposition:

Proposition 5.1. For any r ∈ [2,+∞], system (3.2) is Lr-iISS w.r.t the in-domain disturbance f and the
boundary disturbances d1, d2, having the following estimate for all t ∈ R≥0:

‖X(t)‖H ≤Ce−Λt
(
‖X0‖H + ‖X0‖

2
H

)
+ C

(
‖ f ‖Lr((0,t);L2(0,1)) + ‖d1‖Lr(0,t) + ‖d2‖Lr(0,t)

)
, (5.1)

where C and Λ are positive constants depending only on a, b, c, k, l, and r when r ∈ [2,+∞), and
depending only on a, b, c, k, and l when r = +∞, respectively.

Lemma 5.2. For any positive constant m satisfying m < min {4a, 1}, there are positive constants cl, cu,
and ch depending only on a, k, l, and m such that

cl

(
‖wxx‖

2
L2(0,1) + ‖v‖2L2(0,1)

)
≤

1
2

∫ 1

0

(
aw2

xx + kw2 +
l
2

w4 + v2 + 2mwv
)

dx (5.2)

≤cu

(
‖wxx‖

2
L2(0,1) + ‖v‖2L2(0,1)

)
+ ch

(
‖wxx‖

2
L2(0,1) + ‖v‖2L2(0,1)

)2
,∀(w, v) ∈ H. (5.3)

Proof. For any positive constant m satisfying m < min {4a, 1}, and (w, v) ∈ H, let

E :=
1
2

∫ 1

0

(
aw2

xx + kw2 +
l
2

w4 + v2 + 2mwv
)

dx.

It is clear that ∣∣∣∣∣ ∫ 1

0
2mwvdx

∣∣∣∣∣ ≤ m
∫ 1

0

(
w2 + v2

)
dx. (5.4)

Since w ∈ H2
[0](0, 1), by virtue of Lemma 2.1(ii), we have

‖w‖2L2(0,1) ≤
1
4
‖wxx‖

2
L2(0,1) . (5.5)

Therefore, it holds that

E ≥
1
2

∫ 1

0

(
aw2

xx + (k − m) w2 + (1 − m) v2
)

dx

≥
1
2

∫ 1

0

(
aw2

xx − mw2 + (1 − m) v2
)

dx

≥
1
2

∫ 1

0

((
a −

m
4

)
w2

xx + (1 − m) v2
)

dx,

which implies that inequality (5.2) holds true with cl := 1
2 min

{
a − m

4 , 1 − m
}
.

We deduce by inequalities (5.4) and (5.5) that

E ≤
1
2

∫ 1

0

(
aw2

xx + (k + m)w2 +
l
2

w4 + (1 + m) v2
)

dx
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≤
1
2

∫ 1

0

(
aw2

xx +
1
4

(k + m)w2
xx +

l
2

w4 + (1 + m) v2
)

dx (5.6)

≤cu

(
‖wxx‖

2
L2(0,1) + ‖v‖2L2(0,1)

)
+

l
4

∫ 1

0
w4dx (5.7)

with cu := 1
2 ·max

{
a + 1

4 (k + m), 1 + m
}
.

In view of H2(0, 1) ↪→ L4(0, 1), there is a positive constant Ce such that ‖w‖L4(0,1) ≤ Ce‖w‖H2(0,1). It
follows that

l
4

∫ 1

0
w4dx ≤

l
4

C4
e

(∫ 1

0

(
w2 + w2

x + w2
xx

)
dx

)2

≤
l
4

C4
e

(
7
4

∫ 1

0
w2

xxdx
)2

≤
49l
64

C4
e

(
‖wxx‖

2
L2(0,1) + ‖v‖2L2(0,1)

)2

:=ch

(
‖wxx‖

2
L2(0,1) + ‖v‖2L2(0,1)

)2
. (5.8)

We deduce by inequalities (5.7) and (5.8) that inequality (5.3) holds true.

Proof of Proposition 5.1. Let X(t) := (w[t], v[t]) be the state of system (3.2). We proceed with the proof
in three steps.

Step 1: We prove that there are positive constants m, λ, and C5 depending only on a, b, c, k, and l,
such that

E(t) ≤E(0)e−λt + C5

∫ t

0

(
‖ f [s]‖2L2(0,1) + d2

1(s) + d2
2(s)

)
e−λ(t−s)ds,∀t ∈ [0,Tmax), (5.9)

where

E(t) :=
1
2

∫ 1

0

(
aw2

xx(x, t) + kw2(x, t) +
l
2

w4(x, t) + v2(x, t) + 2mw(x, t)v(x, t)
)

dx,

and Tmax ∈ R>0 is the maximal time for the existence of a solution.
Indeed, in view of inequality (5.6), we deduce first that

E(t) ≤
1
2

∫ 1

0

(
aw2

xx +
1
4

(k + m)w2
xx +

l
2

w4 + (1 + m) v2
)

dx

≤
1
2

max
{

1 +
1

4a
(k + m), 1 + m

}∫ 1

0

(
aw2

xx +
l
2

w4 + v2
)

dx

≤λ0

∫ 1

0

(
aw2

xx + kw2 +
l
2

w4 + v2 + bv2
xx

)
dx, (5.10)

where λ0 := 1
2 max

{
1 + 1

4a (k + m), 1 + m
}
.

By equation (3.1a) and direct computations, we have

d
dt

E(t) =

∫ 1

0

(
awxxvxx + kwv + lw3v + vvt + mvv + mwvt

)
dx
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=

∫ 1

0

(
awxxvxx + kwv + lw3v + mv2

)
dx

−

∫ 1

0
v
(
(awxx + bvxx)xx + cv + kw + lw3 − f

)
dx

−

∫ 1

0
mw

(
(awxx + bvxx)xx + cv + kw + lw3 − f

)
dx

=

∫ 1

0

(
awxxvxx + mv2 − cv2 − cmwv − kmw2 − lmw4

)
dx

−

∫ 1

0
(awxx + bvxx)xx(v + mw)dx +

∫ 1

0
f (v + mw)dx. (5.11)

Note that

−

∫ 1

0
(awxx + bvxx)xx(v + mw)dx

= − (awxx + bvxx)x(v + mw)
∣∣∣x=1

x=0
+ (awxx + bvxx)(vx + mwx)

∣∣∣x=1

x=0

−

∫ 1

0
(awxx + bvxx)(vxx + mwxx)dx

= − (awxx + bvxx)x(1, t)(v + mw)(1, t) + (awxx + bvxx)x(0, t)(v + mw)(0, t)
+ (awxx + bvxx)(1, t)(vx + mwx)(1, t) − (awxx + bvxx)(0, t)(vx + mwx)(0, t)

−

∫ 1

0
(awxx + bvxx)(vxx + mwxx)dx

=−d1(t) (vx(0, t) + mwx(0, t)) − d2(t) (v(1, t) + mw(1, t))

−

∫ 1

0
(awxx + bvxx)(vxx + mwxx)dx.

Thus, equation (5.11) becomes

d
dt

E(t) = − d1(t) (vx(0, t) + mwx(0, t)) − d2(t) (v(1, t) + mw(1, t))

−

∫ 1

0

(
amw2

xx + kmw2 + lmw4 + (c − m)v2 + bv2
xx

)
dx

−

∫ 1

0
(cmwv + bmwxxvxx) dx +

∫ 1

0
f (v + mw)dx. (5.12)

Note that Young’s inequality yields∣∣∣∣∣∣
∫ 1

0
cmwvdx

∣∣∣∣∣∣ ≤cm
∫ 1

0

(
ε0

2
w2 +

1
2ε0

v2
)

dx, (5.13a)∣∣∣∣ ∫ 1

0
bmwxxvxxdx

∣∣∣∣ ≤bm
∫ 1

0

(
ε1

2
w2

xx +
1

2ε1
v2

xx

)
dx, (5.13b)∣∣∣∣∣∣

∫ 1

0
f (v + mw)dx

∣∣∣∣∣∣ ≤
∫ 1

0

(
1

2ε2
f 2 + ε2v2 + ε2m2w2

)
dx, (5.13c)
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where ε0, ε1, ε2 ∈ R>0 will be determined later.
In addition, by using Young’s inequality and Lemma 2.1(i) and (ii), we have

|d1(t) (vx(0, t) + mwx(0, t)) + d2(t) (v(1, t) + mw(1, t))|

≤
1

2ε3
d2

1(t) + ε3v2
x(0, t) + m2ε3w2

x(0, t) +
1

2ε4
d2

2(t) + ε4v2(1, t) + m2ε3w2(1, t)

≤
1

2ε3
d2

1(t) + ε3

(
2‖vx‖

2
L2(0,1) + ‖vxx‖

2
L2(0,1)

)
+ m2ε3

(
2‖wx‖

2
L2(0,1) + ‖wxx‖

2
L2(0,1)

)
+

1
2ε4

d2
2(t) + ε4

(
2‖v‖2L2(0,1) + ‖vx‖

2
L2(0,1)

)
+ m2ε4

(
2‖w‖2L2(0,1) + ‖wx‖

2
L2(0,1)

)
≤

1
2ε3

d2
1(t) + 2ε3‖vxx‖

2
L2(0,1) + 2m2ε3‖wxx‖

2
L2(0,1) +

1
2ε4

d2
2(t) + ε4‖vxx‖

2
L2(0,1)

+ m2ε4‖wxx‖
2
L2(0,1)

=
1

2ε3
d2

1(t) +
1

2ε4
d2

2(t) + m2 (2ε3 + ε4) ‖wxx‖
2
L2(0,1) + (2ε3 + ε4) ‖vxx‖

2
L2(0,1), (5.14)

where ε3, ε4 ∈ R>0 will be determined later.
Now we discuss the two cases.
Case 1: k > 0. Combining equation (5.12), inequality (5.13), and inequality (5.14), we deduce that

d
dt

E(t) ≤
1

2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t) −

∫ 1

0

(
a −

bε1

2
− 2mε3 − mε4

)
mw2

xxdx

−

∫ 1

0

(
k −

cε0

2
− mε2

)
mw2dx −

∫ 1

0
lmw4dx −

∫ 1

0

(
c − m −

cm
2ε0
− ε2

)
v2dx

−

∫ 1

0

(
1 −

m
2ε1
−

2ε3

b
−
ε4

b

)
bv2

xxdx

=
1

2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t) − m

(
1 −

bε1

2a
−

2mε3

a
−

mε4

a

) ∫ 1

0
aw2

xxdx

− m
(
1 −

cε0

2k
−

mε2

k

) ∫ 1

0
kw2dx − m

∫ 1

0
lw4dx − m

(
c
m
− 1 −

c
2ε0
−
ε2

m

) ∫ 1

0
v2dx

− m
(

1
m
−

1
2ε1
−

2ε3

mb
−
ε4

mb

) ∫ 1

0
bv2

xxdx. (5.15)

Define the constant

λ1 := m ·min
{
1 −

bε1

2a
−

2mε3

a
−

mε4

a
, 1 −

cε0

2k
−

mε2

k
,

c
m
− 1 −

c
2ε0
−
ε2

m
,

1
m
−

1
2ε1
−

2ε3

mb
−
ε4

mb

}
.

To ensure that λ1 is positive, we first let ε0, ε1 ∈ R>0 satisfy

1 −
bε1

2a
> 0 and 1 −

cε0

2k
> 0.

Then, we let m ∈ R>0 satisfy m < min {4a, 1} and

1
m
−

1
2ε1

> 0 and
c
m
− 1 −

c
2ε0

> 0.
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In addition, we choose sufficiently small ε2 ∈ R>0 such that

1 −
cε0

2k
−

mε2

2k
> 0 and

c
m
− 1 −

c
2ε0
−
ε2

m
> 0.

Furthermore, we choose sufficiently small ε3, ε4 ∈ R>0 such that

1 −
bε1

2a
−

mε3

2a
−

mε4

a
> 0 and

1
m
−

1
2ε1
−

2ε3

mb
−
ε4

mb
> 0.

It is clear that λ1 > 0 for such choices of ε0, ε1, ε2, ε3, ε4, and m. Therefore, inequality (5.15)
becomes

d
dt

E(t) ≤
1

2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t)

− λ1

∫ 1

0

(
aw2

xx + kw2 +
l
2

w4 + v2 + bv2
xx

)
dx. (5.16)

It follows from inequalities (5.16) and (5.10) that

d
dt

E(t) ≤ −
λ1

λ0
E(t) +

1
2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t). (5.17)

Applying Gronwall’s inequality to equation (5.17), we deduce that inequality (5.9) holds true with
λ := λ1

λ0
and C5 := max

{
1

2ε2
, 1

2ε3
, 1

2ε4

}
.

Case 2: k = 0. It suffices to note that inequality (5.15) becomes

d
dt

E(t) ≤
1

2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t) −

∫ 1

0

(
a −

bε1

2
− 2mε3 − mε4

)
mw2

xxdx

+

∫ 1

0

(cε0

2
+ mε2

)
mw2dx −

∫ 1

0
lmw4dx −

∫ 1

0

(
c − m −

cm
2ε0
− ε2

)
v2dx

−

∫ 1

0

(
1 −

m
2ε1
−

2ε3

b
−
ε4

b

)
bv2

xxdx

≤
1

2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t) −

∫ 1

0

(
a −

bε1

2
− 2mε3 − mε4

)
mw2

xxdx

+

∫ 1

0

1
4

(cε0

2
+ mε2

)
mw2

xxdx −
∫ 1

0
lmw4dx −

∫ 1

0

(
c − m −

cm
2ε0
− ε2

)
v2dx

−

∫ 1

0

(
1 −

m
2ε1
−

2ε3

b
−
ε4

b

)
bv2

xxdx

=
1

2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t)

− m
(
1 −

cε0

8a
−

bε1

2a
−

mε2

4a
−

2mε3

a
−

mε4

a

) ∫ 1

0
aw2

xxdx

−

∫ 1

0
lmw4dx − m

(
c
m
− 1 −

c
2ε0
−
ε2

m

) ∫ 1

0
v2dx
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− m
(

1
m
−

1
2ε1
−

2ε3

mb
−
ε4

mb

) ∫ 1

0
bv2

xxdx

≤
1

2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t) − λ1

∫ 1

0

(
aw2

xx +
l
2

w4 + v2 + bv2
xx

)
dx (5.18)

with a positive constant

λ1 := m ·min
{
1 −

cε0

8a
−

bε1

2a
−

mε2

4a
−

2mε3

a
−

mε4

a
,

c
m
− 1 −

c
2ε0
−
ε2

m
,

1
m
−

1
2ε1
−

2ε3

mb
−
ε4

mb

}
,

which is ensured by selecting sufficiently small ε0, ε1,m, ε2, ε3, ε4 ∈ R>0 in order.
Indeed, we first let ε0, ε1 ∈ R>0 satisfy

1 −
cε0

8a
−

bε1

2a
> 0,

and m ∈ R>0 satisfy m < min{4a, 1} and

1
m
−

1
2ε1

> 0 and
c
m
− 1 −

c
2ε0

> 0,

respectively. Then, we choose sufficiently small ε2 ∈ R>0 such that

1 −
cε0

8a
−

bε1

2a
−

mε2

4a
> 0 and

c
m
− 1 −

c
2ε0
−
ε2

m
> 0.

Finally, we choose sufficiently small ε3, ε4 ∈ R>0 such that

1 −
cε0

8a
−

bε1

2a
−

mε2

4a
−

2mε3

a
−

mε4

a
> 0 and

1
m
−

1
2ε1
−

2ε3

mb
−
ε4

mb
> 0.

It follows from inequalities (5.18) and (5.10) with k = 0 that

d
dt

E(t) ≤ −
λ1

λ0
E(t) +

1
2ε2
‖ f [t]‖2L2(0,1) +

1
2ε3

d2
1(t) +

1
2ε4

d2
2(t),

which implies that inequality (5.9) holds true with λ := λ1
λ0

and C5 := max
{

1
2ε2
, 1

2ε3
, 1

2ε4

}
.

Step 2: We show that estimate (5.1) holds true for all t ∈ [0,Tmax).
Indeed, in view of the choice of m, we infer from Lemma 5.2 and inequality (5.9) that

cl

(
‖wxx[t]‖2L2(0,1) + ‖v[t]‖2L2(0,1)

)
≤E(t)

≤E(0)e−λt + C5

∫ t

0

(
‖ f [s]‖2L2(0,1) + d2

1(s) + d2
2(s)

)
e−λ(t−s)ds

≤cue−λt
(
‖ϕ1xx‖

2
L2(0,1) + ‖ϕ2‖

2
L2(0,1)

)
+ che−λt

(
‖ϕ1xx‖

2
L2(0,1) + ‖ϕ2‖

2
L2(0,1)

)2

+ C5

∫ t

0

(
‖ f [s]‖2L2(0,1) + d2

1(s) + d2
2(s)

)
e−λ(t−s)ds,

where cl, cu, ch are positive constants depending only on a, k, l, and m.
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Therefore, it holds that

‖wxx[t]‖2L2(0,1) + ‖v[t]‖2L2(0,1) ≤
cu

cl
e−λt

(
‖ϕ1xx‖

2
L2(0,1) + ‖ϕ2‖

2
L2(0,1)

)
+

ch

cl
e−λt

(
‖ϕ1xx‖

2
L2(0,1) + ‖ϕ2‖

2
L2(0,1)

)2

+
C5

cl

∫ t

0

(
‖ f [s]‖2L2(0,1) + d2

1(s) + d2
2(s)

)
e−λ(t−s)ds. (5.19)

In the following, we shall estimate

I(t) :=
∫ t

0

(
‖ f [s]‖2L2(0,1) + d2

1(s) + d2
2(s)

)
e−λ(t−s)ds.

For simplicity, let F (s) := ‖ f [s]‖2L2(0,1). For any pi, qi ∈ [1,+∞] satisfying 1
pi

+ 1
qi

= 1, i = 1, 2, 3, we
deduce by Hölder’s inequality that

I1(t) :=
∫ t

0
F (s)e−λ(t−s)ds ≤

∥∥∥e−λ(t−·)
∥∥∥

Lp1 (0,t)
‖F ‖Lq1 (0,t),

I2(t) :=
∫ t

0
e−λ(t−s)d2

1(s)ds ≤
∥∥∥e−λ(t−·)

∥∥∥
Lp2 (0,t)

∥∥∥d2
1

∥∥∥ Lq2 (0,t),

I3(t) :=
∫ t

0
e−λ(t−s)d2

2(s)ds ≤
∥∥∥e−λ(t−·)

∥∥∥
Lp3 (0,t)

∥∥∥d2
2

∥∥∥
Lq3 (0,t)

.

We discuss the three cases.
Case 1: pi, qi ∈ (1,+∞), i = 1, 2, 3. By direct computations, we have

I1(t) ≤
∥∥∥e−λ(t−·)

∥∥∥
Lp1 (0,t)

‖F ‖Lq1 (0,t)

=

(
1
λp1

(
1 − e−λtp1

)) 1
p1

(∫ t

0
‖ f [s]‖2q1

L2(0,1)ds
) 1

q1

≤

(
1
λp1

) 1
p1

(∫ t

0
‖ f [s]‖2q1

L2(0,1)ds
) 1

q1

=

(
1
λp1

) 1
p1

‖ f ‖2Lr1((0,t);L2(0,1)), (5.20)

where r1 := 2q1 ∈ (2,+∞).
Analogously, it holds that

I2(t) + I3(t) ≤
(

1
λp2

) 1
p2

‖d1‖
2
Lr2 (0,t) +

(
1
λp3

) 1
p3

‖d2‖
2
Lr3 (0,t) , (5.21)

where ri := 2qi ∈ (2,+∞), i = 2, 3.

Letting CM := max
{(

1
λp1

) 1
p1 ,

(
1
λp2

) 1
p2 ,

(
1
λp3

) 1
p3

}
, and combining inequalities (5.20) and (5.21), we

have

I(t) = I1(t) + I2(t) + I3(t) ≤CM

(
‖ f ‖2

Lr1((0,t);L2(0,1)) + ‖d1‖
2
Lr2 (0,t) + ‖d2‖

2
Lr3 (0,t)

)
. (5.22)
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Setting q1 = q2 = q3, or, equivalently, r = r1 = r2 = r3, we infer from inequalities (5.19) and (5.22)
that estimate (5.1) holds true for t ∈ [0,Tmax) with r = r1 ∈ (1,+∞), Λ = λ

2 , and some positive constant
C depending only on cl, cu, ch,C5, and CM.

Case 2: pi = 1, qi = +∞, i = 1, 2, 3. Similarly, we have

I1(t) ≤
∥∥∥e−λ(t−·)

∥∥∥
L1(0,t)

‖F ‖L∞(0,t) = ‖ f ‖2L∞((0,t);L2(0,1))

∫ t

0
e−λ(t−s)ds ≤

1
λ
‖ f ‖2L∞((0,t);L2(0,1)), (5.23)

and

I2(t) + I3(t) ≤
1
λ

(
‖d1‖

2
L∞(0,t) + ‖d2‖

2
L∞(0,t)

)
. (5.24)

We infer from inequalities (5.23), (5.24), and (5.19) that estimate (5.1) holds true for t ∈ [0,Tmax)
with r = +∞, Λ = λ

2 , and some positive constant C depending only on cl, cu, ch,C5, and 1
λ
.

Case 3: pi = +∞, qi = 1, i = 1, 2, 3. By direct computations, it holds that

I1(t) ≤
∥∥∥e−λ(t−·)

∥∥∥
L∞(0,t)

‖F ‖L1(0,t) =

∫ t

0
‖ f [s]‖2L2(0,1)ds = ‖ f ‖2L2((0,t);L2(0,1)), (5.25)

and

I2(t) + I3(t) ≤‖d1‖
2
L2(0,t) + ‖d2‖

2
L2(0,t). (5.26)

We infer from inequalities (5.25), (5.26), and (5.19) that estimate (5.1) holds true for t ∈ [0,Tmax)
with r = 2, Λ = λ

2 , and some positive constant C depending only on cl, cu, ch, and C5.
Step 3: Conclusion. In view of the regularity f , d1, d2,X0, and X, if Tmax < +∞, then estimate (5.1)

ensures that

lim
t→Tmax

‖X[t]‖H < +∞.

We conclude that there must be Tmax = +∞. Therefore, estimate (5.1) holds true for all t ∈ R≥0.
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