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Abstract: This paper is concerned with the following first-order Hamiltonian system

ż =J Hz(t, z),

where the Hamiltonian function H(t, z) = 1
2 Lz · z + A(ϵt)G(|z|) and ϵ > 0 is a small parameter. Under

some natural conditions, we obtain a new existence result for ground state homoclinic orbits by applying
variational methods. Moreover, the concentration behavior and exponential decay of these ground state
homoclinic orbits are also investigated.
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1. Introduction and main result

In this paper, we are interested in the existence and some asymptotic properties of ground state
homoclinic orbits for the following first-order Hamiltonian system

ż =J Hz(t, z), (1.1)

with the Hamiltonian function
H(t, z) =

1
2

Lz · z + A(ϵt)G(|z|). (1.2)

Here, z = (u, v) ∈ RN × RN = R2N , ϵ > 0 is a parameter, L is a symmetric 2N × 2N matrix-valued
function, and

J =

(
0 −I
I 0

)
.
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is the usual symplectic matrix with I being the identity matrix in RN . As usual, we refer to a solution z
of system (1.1) as a homoclinic orbit if z(t) . 0 and z(t)→ 0 as |t| → ∞.

It is widely known that Hamiltonian systems are very important dynamical systems, which have
many applications in several natural science areas such as relativistic mechanics, celestial mechanics,
gas dynamics, chemical kinetics, optimization and control theory and so on. The complicated dynamical
behavior of Hamiltonian systems has the attracted attention of many mathematicians and physicists ever
since Newton wrote down the differential equations describing planetary motions and derived Kepler’s
ellipses as solutions. For more details on applications of Hamiltonian systems, one can refer to [1] and
the monograph [2] of Mawhin and Willem. We also refer the readers to see [3] for the Stokes-Dirac
structures of the port-Hamiltonian systems.

In the past few decades, Hamiltonian systems have attracted a considerable amount of interest due
to many powerful applications in different fields; the literature related to these systems is extensive
and encompasses several interesting lines of research on the topic of nonlinear analysis, including
the existence, nonexistence, multiplicity and finer qualitative properties of homoclinic orbits. Here
we cannot provide a complete and fully detailed list of references, but rather we limit ourselves to
mentioning the works which are closely related to the content of the present paper.

A major breakthrough was the pioneering paper of Rabinowitz [4] from 1978 who, for the first time,
obtained periodic solutions of system (1.1) by using variational methods. After the celebrated work of
Rabinowitz [4], based on the dual action and mountain pass argument, Coti-Zelati et al. [5] obtained the
existence and multiplicity of homoclinic orbits under the condition of strictly convexity. Later on, this
result was further detailed by [6, 7] in which the authors established the existence result for infinitely
many homoclinic orbits. Without the convexity condition, Hofer and Wysocki [8] independently
investigated the existence of homoclinic orbits by combining the Fredholm operator theory and the
linking argument. Tanaka [9] employed a suitable subharmonic approach to obtain one homoclinic
orbit by relaxing the convexity condition. In [10], Rashkovskiy studied the quantization process of
Hamiltonian and non-Hamiltonian systems.

The main unusual feature of the first-order Hamiltonian system is that the associated energy functional is
strongly indefinite. Generally speaking, for the strongly indefinite functionals refined variational methods
like the Nehari manifold method and mountain pass theorem still do not apply. Some general critical point
theories like the generalized linking theorem and other weaker versions for strongly indefinite functionals
were subsequently developed by Kryszewski and Szulkin in [11] and Bartsch and Ding in [12]. Since then,
based on the critical point theorems from [11,12] for strongly indefinite functionals, many scholars have
gradually begun to investigate the existence and multiplicity of homoclinic orbits for non-autonomous
Hamiltonian systems under some different conditions. More precisely, under the conditions that H depends
periodically on t and has super-quadratic growth in z, Arioli and Szulkin [13], Chen and Ma [14], and Ding
and Willem [15] obtained the existence result. Ding [16], Ding and Girardi [17], and Zhang et al. [18]
studied the multiplicity result for homoclinic orbits. Concerning the asymptotic quadratic growth case, we
refer to the work done by Szulkin and Zou [19] and Sun et al. [20]. Here we would like to emphasize that
the periodicity condition is used to resolve the issue stemming from the lack of compactness since system
(1.1) is set on the whole space R.

On the other hand, without the condition of periodicity, the non-periodic problem is quite different due
to the lack of compactness of Sobolev embeddings. In an early paper [21], Ding and Li utilized the coercive
property of L to establish a variational framework with compactness, and they proved the existence of
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homoclinic orbits for the super-quadratic growth case. Also under the framework of compactness, Zhang
and Liu [22] studied the sub-quadratic growth case. Regarding the asymptotically quadratic case, based
on the infinite-dimensional linking argument, Ding and Jeanjean [23] established a multiplicity result for
homoclinic orbits. Moreover, they imposed a control on the size of G with respect to the behavior of L to
recover sufficient compactness. For the existence and exponential decay of homoclinic orbits for system
(1.1) with nonperiodic super-quadratic and lack of compactness, we refer the reader to [24]. We also
mention the recent paper by Zhang et al. [25] in which the existence and decay of ground state homoclinic
orbits for system (1.1) with asymptotic periodicity are explored. For other results related to the Hamiltonian
systems with strongly variational structure, we refer the reader to [26–32] and the references therein.

It is worth pointing out that, in all of the works mentioned above, the authors were concerned mainly
with the study of the existence and multiplicity of homoclinic orbits, and there are no papers considering
the asymptotic properties of homoclinic orbits. Inspired by this fact and the work done by Alves and
Germano [33] in which the authors investigated the existence and concentration of ground state solutions
for the Schrödinger equation; in the present paper we aim to further study the existence and some
asymptotic properties of ground-state homoclinic orbits for system (1.1) with Hamiltonian function
(1.2). This is a very interesting issue that has motivated the present work.

To continue the discussion, we introduce the following notation

S = −
(
J

d
dt
+ L

)
,

then, system (1.1) takes the following form

S z = A(ϵt)g(|z|)z, t ∈ R. (1.3)

Before stating our results, we suppose the following conditions hold for L, A and G.

(L) L is a constant symmetric 2N × 2N matrix such that σ(J L) ∩ iR = ∅, where σ denotes the
spectrum of operator J L.

(A) A ∈ C(R,R) and 0 < inft∈R A(t) ≤ A∞ := lim
|t|→∞

A(t) < A(0) = max
t∈R

A(t);

(g1) Gz(|z|) = g(|z|)z, g ∈ C(R+,R+), and there exist p > 2 and c0 > 0 such that

|g(s)| ≤ c0(1 + |s|p−2) for all s ∈ R+;

(g2) g(s) = o(1) as s→ 0, and G(s)/s2 → +∞ as s→ +∞;
(g3) g(s) is strictly increasing in s on (0,+∞).

Next we state the main result of this paper as follows.

Theorem 1.1. Assume that conditions (L), (A), and (g1)-(g3) hold. Then we have the following results:

(a) there exists ϵ0 > 0 such that system (1.1) has a ground state homoclinic orbit zϵ for each ϵ ∈ (0, ϵ0);
(b) |zϵ | attains its maximum at tϵ , then,

lim
ϵ→0

A(ϵtϵ) = A(0),

moreover, zϵ(t + tϵ)→ z as ϵ → 0, where z is a ground state homoclinic orbit of the limit system

S z = A(0)g(|z|)z, t ∈ R;
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(c) additionally, if A, g ∈ C1, and g′(s)s = o(1) as s→ 0, then there exist constants c,C > 0 such that

|z(t)| ≤ C exp (−c|t − tϵ |) for all t ∈ R.

We would like to emphasize that since our problem is carried out in the whole space, then the strongly
indefiniteness of energy functionals and the lack of compactness are two major difficulties that we
encounter in order to guarantee the existence of homoclinic orbits. More precisely, one reason is that
strongly indefinite functionals are unbounded from below and from above so that the classical methods
from the calculus of variations do not apply. The other reason is that the lack of compactness leads to
the energy functionals not satisfying the necessary compactness property.

Let us now outline the methods involved to prove Theorem 1.1. Indeed, based on the above reasons,
first, we will take advantage of the method of the generalized Nehari manifold developed by Szulkin-
Weth [34] to handle system (1.1), this is because such a strategy helps to overcome the difficulty caused
by strongly indefinite features. Second, we must verify that the energy functional possesses the necessary
compactness property at some energy level. This target will be accomplished by applying the energy
comparison argument to establish some precise comparison relationships for the ground-state energy
value between the original problem and certain auxiliary problems. Finally, combining the compactness
analysis technique, Kato’s inequality, and the sub-solution estimate, we can obtain the concentration
property and decay of homoclinic orbits. Then Theorem 1.1 follows naturally.

This paper is organized as follows. In Section 2, we establish the functional analytic setting associated
with system (1.1). In Section 3, we present some technical results, and obtain the existence result for
ground-state homoclinic orbits for the autonomous system. Section 4 is devoted to proofs of Theorem 1.1.

2. Functional analytic setting

Throughout the present paper, we will use the following notations:
• ∥ · ∥s denotes the norm of the Lebesgue space Ls(R), 1 ≤ s ≤ +∞;
• (·, ·)2 denotes the usual inner product of the space L2(R);
• c, ci, Ci represent various different positive constants.

In what follows, we will establish the variational framework to work for system (1.1).
Recall that S = −(J d

dt + L) is a self-adjoint operator on the space L2 := L2(R,R2N) with the domain
D(S ) = H1(R,R2N); according to the discussion in [13], we can know that, under the condition (L),
there exists a > 0 such that (−a, a) ∩ σ(S ) = ∅ (see also [16, 19]). Therefore, the space L2 has the
following orthogonal decomposition

L2 = L− ⊕ L+, z = z− + z+

corresponding to the spectrum decomposition of S such that S is positive definite (resp. negative
definite) in L+ (resp. L−).

We use |S | to denote the absolute value of S , and |S |1/2 denotes the square root of |S |. Let E =
D(|S |1/2) be the domain of the self-adjoint operator |S |1/2, which is a Hilbert space equipped with the
following inner product

(z,w) = (|S |1/2z, |S |1/2w)2, for z,w ∈ E,
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and the norm ∥z∥2 = (z, z). Evidently, E possesses the following decomposition

E = E− ⊕ E+, where E± = E ∩ L±,

which is orthogonal with respect to the two inner products (·, ·)2 and (·, ·). Moreover, by using the polar
decomposition of S we can obtain that

S z− = −|S |z−, S z+ = |S |z+ for all z = z+ + z− ∈ E.

Furthermore, from [16] we have the embedding theorem, that is, E embeds continuously into Lq for
each q ≥ 2 and compactly into Lq

loc for all q ≥ 1. Hence, there exists a constant γq > 0 such that for all
z ∈ E

∥z∥q ≤ γq∥z∥ for all q ≥ 2. (2.1)

From the assumptions (g1) and (g2), we can deduce that for any ϵ > 0, there exists a positive constant
Cϵ such that

|g(s)| ≤ ϵ +Cϵ |s|p−2 and |G(s)| ≤ ϵ |s|2 +Cϵ |s|p for each s ∈ R+. (2.2)

Next, we define the corresponding energy functional of system (1.3) on E by

Iϵ(z) =
1
2

∫
R

S z · zdt −
∫
R

A(ϵt)G(|z|)dt

Applying the polar decomposition of S , then the energy functional Iϵ has another representation as
follows

Iϵ(z) =
1
2

(∥z+∥2 − ∥z−∥2) −
∫
R

A(ϵt)G(|z|)dt.

Evidently, according to condition (L), we can see that Iϵ is strongly indefinite. Furthermore, from
conditions (g1) and (g2) we can infer that Iϵ ∈ C1(E,R), and we have

⟨I′ϵ(z), ψ⟩ = (z+, ψ+) − (z−, ψ−) −
∫
R

A(ϵt)g(|z|)zψdt, ∀ψ ∈ E.

Making use of a standard argument we can check that critical points of Iϵ are homoclinic orbits of
system (1.1).

3. The autonomous system

We shall make use of the techniques of the limit problem to prove the main results; in this section we
introduce some related results for the autonomous system.

For any constant µ > 0, in what follows we consider the autonomous system given by

S z = µg(|z|)z, t ∈ R. (3.1)

Similarly, following the above comments, we define the energy functional Iµ corresponding to system
(3.1) as follows

Iµ(z) =
1
2

(
∥z+∥2 − ∥z−∥2

)
− µ

∫
R

G(|z|)dt.
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Evidently, we have

⟨I′µ(z), ψ⟩ = (z+, ψ+) − (z−, ψ−) − µ
∫
R

g(|z|)zψdt, ∀ψ ∈ E.

In order to obtain the ground state homoclinic orbits of system (3.1), we will use the method of the
generalized Nehari manifold developed by Szulkin and Weth [34]. To do this, we first introduce the
following generalized Nehari manifold

Nµ = {z ∈ E\E− : ⟨I′µ(z), z⟩ = 0 and ⟨I′µ(z), v⟩ = 0, ∀v ∈ E−},

and we define the ground state energy value cµ of Iµ on Nµ

cµ = inf
z∈Nµ

Iµ(z).

Furthermore, for every z ∈ E\E−, we also need to define the subspace

E(z) = E− ⊕ Rz = E− ⊕ Rz+,

and the convex subset
Ê(z) = E− ⊕ [0,+∞)z = E− ⊕ [0,+∞)z+.

We note that E(z) and Ê(z) do not depend on µ, but depend on the operator S .
The main result in this section is the following theorem:

Theorem 3.1. Assume that condition (L) holds and let (g1)-(g3) be satisfied, then, problem (3.1) has at
least a ground state homoclinic orbit z ∈ Nµ such that Iµ(z) = cµ > 0.

3.1. Technical results

In this subsection, we are going to prove some technical results which will be used in the proof of
Theorem 3.1. The following result involves the translation that will be used frequently in this paper, the
proof can be found in [33, Lemma 2.1].

Lemma 3.1. For all u = u+ + u− ∈ E and y ∈ R, if v(t) := u(t + y), then v ∈ E with v+(t) = u+(t + y) and
v−(t) = u−(t + y).

We give an important estimate, which plays a crucial role in the later proof.

Lemma 3.2. Let z ∈ Nµ, then, for each v ∈ H := {sz + w : s ≥ −1,w ∈ E−} and v , 0, we have the
following energy estimate

Iµ(z + v) < Iµ(z).

Hence z is a unique global maximum of Iµ|Ê(z).

Proof. We follow the similar ideas explored in [34, Proposition 2.3.] to prove this lemma. Observe that,
for any z ∈ Nµ, we directly obtain

0 = ⟨I′µ(z), φ⟩ = (Az, φ)2 − µ

∫
R

g(|z|)zφdt for all φ ∈ E(z).
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Let v = sz + w ∈ H , then, z + v = (1 + s)z + w ∈ Ê(z). By an elemental computation, we can get

Iµ(z + v) − Iµ(z)

=
1
2

[(
A(z + v), (z + v)

)
2 −

(
Az, z

)
2

]
+ µ

∫
R

[
G(|z|) −G(|z + v|)

]
dt

=
1
2

[(
A((1 + s)z + w), (1 + s)z + w

)
2 −

(
Az, z

)
2

]
+ µ

∫
R

[
G(|z|) −G(|z + v|)

]
dt

= −
∥w∥2

2
+

(
Az, s(

s
2
+ 1)z + (1 + s)w

)
2 + µ

∫
R

[
G(|z|) −G(|z + v|)

]
dt

= −
∥w∥2

2
+ µ

∫
R

[
g(|z|)z ·

(
s(

s
2
+ 1)z(t) + (1 + s)w(t)

)
+G(|z|) −G(|z + v|)

]
dt

= −
∥w∥2

2
+ µ

∫
R

g̃(s, z, v)dt,

where
g̃(s, z, v) = g(|z|)z ·

(
s(

s
2
+ 1)z(t) + (1 + s)w(t)

)
+G(|z|) −G(|z + v|).

Using (g2) and (g3) and combining the arguments used in [35] (see also [36]), we can conclude that
g̃(s, z, v) < 0. Therefore, we have

Iµ(z + v) < Iµ(z).

Evidently, we know that z is a unique global maximum of Iµ|Ê(z).

Lemma 3.3. Assume that (g1) and (g2) are satisfied, then, we have the following two conclusions:

(i) there exists ρ > 0 such that cµ = infNµ
Iµ ≥ infS ρ

Iµ > 0, where

S ρ := {z ∈ E+ : ∥z∥ = ρ};

(ii) for any z ∈ Nµ, then ∥z+∥2 ≥ max{∥z−∥2, 2cµ} > 0.

Proof. (i) Let z ∈ E+, we can deduce from (2.1) and (2.2) that

Iµ(z) =
1
2
∥z∥2 − µ

∫
R

G(|z|)dt ≥
(
1
2
− ϵµγ2

2

)
∥z∥2 − µγp

pCϵ∥z∥p.

Evidently, we can see that there is ρ > 0, for ∥z∥ = ρ small enough such that infS ρ
Iµ > 0.

On the other hand, for each z ∈ Nµ, there exists a positive constant s such that s∥z∥ = ρ, then
sz ∈ Ê(z) ∩ S ρ. From Lemma 3.2, one can derive that

Iµ(z) = max
v∈Ê(z)

Iµ(v) ≥ Iµ(sz).

Therefore, we have
inf
Nµ

Iµ ≥ inf
S ρ

Iµ > 0,

which shows that the conclusion (i) holds.
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(ii) First we note that, from (g3), it follows that

1
2

g(s)s2 ≥ G(s) > 0 for all s ∈ R+.

For each z ∈ Nµ, combining this with the definition of cµ, we have

0 < cµ ≤
1
2
∥z+∥2 −

1
2
∥z−∥2 − µ

∫
R

G(|z|)dt ≤
1
2
∥z+∥2 −

1
2
∥z−∥2.

Hence, we can derive that ∥z+∥2 ≥ max{∥z−∥2, 2cµ} > 0. The proof is finished.

Lemma 3.4. Assume that Ω ⊂ E+ \ {0} is a compact subset, thus, there exists R > 0 such that Iµ < 0 on
E(z) \ BR(0) for all z ∈ Ω.

Proof. The proof follows as in [34, Lemma 2.5], here, we omit the details.

Following the result in [34] (see [34, Lemma 2.6]), we can establish the uniqueness of maximum
point of Iµ on the set Ê(z).

Lemma 3.5. For any z ∈ E\E−, then the set Nµ ∩ Ê(z) consists of precisely one point m̃µ(z) , 0, which
is the unique global maximum of Iµ|Ê(z).

Proof. On account of Lemma 3.2, it is sufficient to prove that Nµ∩Ê(z) , ∅. Since Ê(z) = Ê(z+), without
loss of generality, we can suppose that z ∈ E+ and ∥z∥ = 1. By Lemma 3.3-(i), we obtain that Iµ(sz) > 0
for s ∈ (0,+∞) small enough. Lemma 3.4 yields that Iµ(sz) < 0 for sz ∈ Ê(z)\BR(0). Consequently, we
can deduce that 0 < sup Iµ(Ê(z)) < ∞. Because Ê(z) is convex and the functional Iµ is weakly supper
semi-continuous on Ê(z), we conclude that there exists ẑ ∈ Ê(z) such that Iµ(̂z) = sup Iµ(Ê(z)). This
shows that ẑ is a critical point of Iµ|Ê(z); therefore,

⟨I′µ(̂z), ẑ⟩ = ⟨I′µ(̂z), φ⟩ = 0 for all φ ∈ Ê(z),

hence, ẑ ∈ Nµ. So, ẑ ∈ Nµ ∩ Ê(z). The proof is finished.

Combining Lemma 3.2 with Lemma 3.5, we obtain the following conclusion.

Lemma 3.6. For each z ∈ E\E−, then, there is a unique pair (s∗, φ∗) with s∗ ∈ (0,+∞) and φ∗ ∈ E−

such that s∗z + φ∗ ∈ Nµ ∩ Ê(z) and

Iµ(s∗z + φ∗) = max
w∈Ê(z)

Iµ(w).

Moreover, if z ∈ Nµ, then we have that s∗ = 1 and φ∗ = z−.

Lemma 3.7. Iµ is coercive on Nµ, that is, Iµ(z)→ +∞ as ∥z∥ → +∞, z ∈ Nµ.

Proof. Seeking for a contradiction, assume that there exists {zn} ⊂ Nµ such that

Iµ(zn) ≤ ĉ for some ĉ ∈ [cµ,+∞) as ∥zn∥ → +∞.
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Setting wn := zn/∥zn∥, we obtain that ∥z+n ∥ ≥ ∥z
−
n ∥ from Lemma 3.3(ii), then, for every n ∈ N, we get that

∥w+n ∥
2 ≥ ∥w−n ∥

2 and ∥w+n ∥
2 ≥ 1

2 . There exist {yn} ⊂ Z, r > 0 and δ > 0 such that∫
Br(yn)
|w+n |

2dt ≥ δ, ∀n ∈ N. (3.2)

If this is not true, then according to Lions’ concentration-compactness principle, we can conclude that
w+n → 0 in Lq(R) for q > 2. Combining (2.1) and (2.2), we know that, for every s > 0,

µ

∫
R

G(|sw+n |)dt ≤ ϵµγ2
2 s2∥w+n ∥

2 + µCϵγ
p
p sp∥w+n ∥

p → 0,

then we get

ĉ ≥ Iµ(sw+n ) =
1
2

s2∥w+n ∥
2 − µ

∫
R

G(|sw+n |)dt

≥
s2

4
− µ

∫
R

G(|sw+n |)dt →
s2

4
.

This yields a contradiction if s >
√

4̂c; hence we prove that (3.2) holds.

Let us define z̃n(t) := zn(t + yn), and w̃n(t) := wn(t + yn), then, w̃+n ⇀ w̃+, and (3.2) yields that w̃+ , 0.
Since z̃n(t) = w̃n(t)∥z̃n∥, it follows that z̃n(t) → +∞ almost everywhere in R as ∥z̃n∥ = ∥zn∥ → +∞.
Applying the Fatou’s lemma, we can derive that∫

R

G(|zn|)
∥zn∥

2 dt =
∫
R

G(|z̃n|)
∥z̃n∥

2 dt =
∫
R

G(|z̃n|)
|z̃n|

2 |w̃n|
2dt ≥

∫
[z̃n,0]

G(|z̃n|)
|z̃n|

2 |w̃n|
2dt → +∞,

where [z̃n , 0] is the Lebesgue measure of the set {t ∈ R : z̃n(t) , 0}. Therefore

0 ≤
Iµ(zn)
∥zn∥

2 =
1
2
∥w+n ∥

2 −
1
2
∥w−n ∥

2 − µ

∫
R

G(|zn|)
∥zn∥

2 dt

≤
1
2
− µ

∫
R

G(|z̃n|)
|z̃n|

2 |w̃n|
2dt → −∞,

we get a contradiction. The proof is finished.

We want to utilize the method of the generalized Nehari manifold to prove the main result. To do
this, we set S + := {z ∈ E+ : ∥z∥ = 1} in E+, and we define the following mapping

m̃µ : E+\{0} → Nµ and mµ = m̃µ|S + ,

and the inverse of mµ is
m−1
µ : Nµ → S +, m−1

µ (z) = z+/∥z+∥.

Following from the proof of [34, Lemma 2.8], we can see that m̃µ is continuous and mµ is a
homeomorphism.

We now consider the reduced functionals

Φ̃µ(z) = Iµ(m̃µ(z)) and Φµ = Φ̃µ|S + .

which is continuous since m̃µ is continuous.
The following results establish some crucial properties involving the reduced functionals Φ̃µ and Φµ,

which play important roles in our arguments. And their proofs follow the proofs of [34, Proposition 2.9,
Corollary 2.10].
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Lemma 3.8. The following conclusions are true:

(a) Φ̃µ ∈ C1(E+\{0},R) and for z, v ∈ E+ and z , 0,

⟨Φ̃′µ(z), v⟩ =
∥m̃µ(z)+∥
∥z∥

⟨I′µ(m̃µ(z)), v⟩.

(b) Φµ ∈ C1(S +,R) and for each z ∈ S + and v ∈ Tz(S +) = {u ∈ E+ : (z, u) = 0},

⟨Φ′µ(z), v⟩ = ∥m̃µ(z)+∥⟨I′µ(m̃µ(z)), v⟩.

(c) {zn} is a (PS)-sequence for Φµ if and only if {m̃µ(zn)} is a (PS)-sequence for Iµ.
(d) We have

inf
S +
Φµ = inf

Nµ

Iµ = cµ.

Moreover, z ∈ S + is a critical point of Φµ if and only if m̃µ(z) ∈ Nµ is a critical point of Iµ and the
corresponding critical values coincide.

3.2. Proof of Theorem 3.1

Based on the above preliminaries, in this subsection we give the complete proof of Theorem 3.1, and
further study the monotonicity and continuity of the ground-state energy cµ.

Proof of Theorem 3.1: According to Lemma 3.3, it is easy to see that cµ > 0. We note that, if
z ∈ Nµ with Iµ(z) = cµ, then m−1

µ (z) ∈ S + is a minimizer of Φµ; hence, it is a critical point of Φµ.
Consequently, Lemma 3.8 yields that z is a critical point of Iµ. We have to prove that there exists
a minimizer z̃ ∈ Nµ such that Iµ(z̃) = cµ. Actually, Ekeland’s variational principle yields that there
exists a sequence {vn} ⊂ S + such that Φµ(vn) → cµ and Φ′µ(vn) → 0 as n → ∞. For all n ∈ N, setting
zn = m̃µ(vn) ∈ Nµ, then Iµ(zn)→ cµ and I′µ(zn)→ 0 by Lemma 3.8. By virtue of Lemma 3.7, we can see
that {zn} is bounded in E. Moreover, it satisfies

lim
n→∞

sup
y∈R

∫
B1(y)
|zn|

2dt > 0.

If this is not true, then Lions’ concentration-compactness principle implies that zn → 0 in Lq(R) for any
q > 2. Therefore, from (2.1) and (2.2), we can derive that∫

R

[
1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt = on(1).

Then, we get

cµ + on(1) = Iµ(zn) −
1
2
⟨I′µ(zn), zn⟩

= µ

∫
R

[1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt = on(1).

Since cµ > 0, obviously we get a contradiction. Thus, there exist {yn} ⊂ Z and δ > 0 such that∫
B2(yn)
|zn|

2dt ≥ δ.
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Let us define z̃n(t) = zn(t + yn), then, we have∫
B2(0)
|z̃n|

2dt ≥ δ. (3.3)

Observe that Iµ is the invariant under translation since (3.1) is autonomous, then, we have ∥z̃n∥ = ∥zn∥

and
Iµ(z̃n)→ cµ and I′µ(z̃n)→ 0. (3.4)

Passing to a subsequence, we may suppose that z̃n ⇀ z̃ in E, z̃n → z̃ in Lq
loc(R) for q > 2, and z̃n(t)→ z̃(t)

almost everywhere on R. According to (3.3) and (3.4), then we can derive that z̃ , 0 and I′µ(z̃) = 0. This
implies that z̃ ∈ Nµ and Iµ(z̃) ≥ cµ. On the other hand, applying Fatou’s lemma we can obtain

cµ = lim
n→∞

(
Iµ(z̃n) −

1
2
⟨I′µ(z̃n), z̃n⟩

)
= lim

n→∞
µ

∫
R

(1
2

g(|zn|)|zn|
2 −G(|zn|)

)
dt

≥ µ

∫
R

lim
n→∞

(1
2

g(|zn|)|zn|
2 −G(|zn|)

)
dt

= Iµ(z̃) −
1
2
⟨I′µ(z̃), z̃⟩ = Iµ(z̃),

that is, Iµ(z̃) ≤ cµ. Consequently, Iµ(z̃) = cµ and z̃ is a critical point of Iµ, which implies that z̃ is a
ground-state homoclinic orbit of problem (3.1). So, we have completed the proof of Theorem 3.1.

As a byproduct of the Theorem 3.1, we show the monotonicity and continuity of cµ.

Lemma 3.9. The function µ 7→ cµ is decreasing and continuous on (0,+∞).

Proof. In what follows, let zµ1 and zµ2 be as ground state homoclinic orbits of Iµ1 and Iµ2 , respectively.
Assume that µ1 > µ2. First of all, we want to verify that the function µ 7→ cµ is decreasing. On account
of Lemma 3.6 we can find that there exist s1 > 0 and φ1 ∈ E− such that

Iµ1(s1zµ2 + φ1) = max
z∈Ê(zµ2 )

Iµ1(z),

then we have
cµ1 ≤ Iµ1(s1zµ2 + φ1)

= Iµ2(s1zµ2 + φ1) + (µ2 − µ1)
∫
R

G(|s1zµ2 + φ1|)dt

≤ Iµ2(zµ2) + (µ2 − µ1)
∫
R

G(|s1zµ2 + φ1|)dt

= cµ2 + (µ2 − µ1)
∫
R

G(|s1zµ2 + φ1|)dt.

Combining the fact that ∫
R

G(|s1zµ2 + φ1|)dt ≥ 0,
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with the inequality µ2 − µ1 < 0, we can infer that

cµ1 ≤ cµ2 .

We finish the proof by demonstrating that the function µ 7→ cµ is decreasing on (0,+∞).
In order to claim the continuity of cµ, we divide the proof into two steps:
Step 1: Let {µn} be a sequence such that µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · ≤ µ and µn → µ.
Claim 1: cµn → cµ as n→ ∞.
Indeed, let zµ be the ground state homoclinic orbit of system (3.1). On account of Lemma 3.6, we

can see that there exist sn > 0 and φn ∈ E− such that

Iµn(snzµ + φn) = max
z∈Ê(zµ)

Iµn(z) for all n ∈ N.

Note that, using (g3) and computing directly, we get

Iµ1(z) − Iµn(z) = (µn − µ1)
∫
R

G(|z|)dt ≥ 0,

so, for all n ∈ N and z ∈ E, we have that Iµ1(z) ≥ Iµn(z). Then by Lemma 3.4, it holds that there exists
R > 0 such that

Iµn(z) ≤ Iµ1(z) ≤ 0, ∀z ∈ Ê(zµ)\BR(0). (3.5)

According to Lemma 3.3 and the monotonicity of cµ, we can obtain

Iµn(snzµ + φn) = max
z∈Ê(zµ)

Iµn(z) ≥ cµn ≥ cµ > 0,

consequently, it follows that
Iµn(snzµ + φn) > 0. (3.6)

From (3.5) and (3.6), one can check that ∥snzµ + φn∥ ≤ R; this shows that the sequence {snzµ + φn} is
bounded in E. Hence, it is easy to see that∫

R

G(|snzµ + φn|)dt is also bounded,

then we get
cµn ≤ Iµn(snzµ + φn)

= Iµ(snzµ + φn) + (µ − µn)
∫
R

G(|snzµ + φn|)dt

≤ Iµ(zµ) + (µ − µn)
∫
R

G(|snzµ + φn|)dt

= cµ + on(1).

On the other hand, since cµ ≤ cµn for all n ∈ N, we can infer that

cµn → cµ as n→ ∞.

Step 2: Let {µn} be a sequence such that µ1 ≥ µ2 ≥ · · · ≥ µn ≥ · · · ≥ µ and µn → µ.
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Claim 2: cµn → cµ as n→ ∞.
In fact, let zn be the ground state homoclinic orbit of the system (3.1) with µ = µn, then, there exist

sn > 0 and φn ∈ E− such that
Iµ(snzn + φn) = max

z∈Ê(zn)
Iµ(z).

We can easily obtain that the sequence {zn} is bounded by Lemma 3.7. Moreover, we can find that there
exist δ > 0, r > 0 and {yn} ⊂ Z such that for each n ∈ N, we have∫

Br(yn)
|z+n |

2dt ≥ δ. (3.7)

Otherwise, using Lions’ concentration-compactness principle we can deduce that z+n → 0 in Lq(R) for
all q > 2. Combining (2.1) with (2.2), it holds that∫

R

g(|zn|)znz+n dt → 0.

Therefore, we have

0 = ⟨I′µn
(zn), z+n ⟩ = ∥z

+
n ∥

2 − µn

∫
R

g(|zn|)znz+n dt

= ∥z+n ∥
2 + on(1),

this shows that ∥z+n ∥
2 → 0, which is a contradiction to the inequality ∥z+n ∥

2 ≥ 2cµn > 0 from Lemma 3.3.
So, (3.7) holds.

Setting z̃n(t) := zn(t + yn), one can check that {z̃n} is bounded in E; passing to a subsequence,
z̃+n ⇀ z̃+ , 0 in E. Set V := {z̃+n } ⊂ E+\{0}; hence, V is bounded and the sequence does not weakly
converge to zero in E. Then by Lemma 3.4, there exists R > 0 such that for every z ∈ V, we obtain

Iµ(w) < 0, for w ∈ E(z)\BR(0). (3.8)

Define φ̃n(t) := φn(t + yn), we have

Iµ(snz̃n + φ̃n) = Iµ(snzn + φn) = max
z∈Ê(zn)

Iµ(z) ≥ cµ > 0, ∀n ∈ N. (3.9)

In view of (3.8) and (3.9), we can conclude that ∥snz̃n + φ̃n∥ ≤ R for all n ∈ N, then, ∥snzn + φn∥ ≤ R,
which implies that the sequence {snzn + φn} is bounded in E, and

∫
R

G(|snzn + φn|)dt is also bounded.
Thus, we obtain

cµ ≤ Iµ(snzn + φn)

= Iµn(snzn + φn) + (µn − µ)
∫
R

G(|snzn + φn|)dt

≤ Iµn(zn) + (µn − µ)
∫
R

G(|snzn + φn|)dt

= cµn + on(1).

Combining this with the fact that cµ ≥ cµn for all n ∈ N, then we have

cµn → cµ as n→ ∞.

We have finished the proof of the lemma.
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4. The proof of Theorem 1.1

4.1. Existence of ground state homoclinic orbits

In this subsection we will give the proof involving the existence result for ground state homoclinic
orbits for system (1.1). As before, we define the associated generalized Nehari manifold

Nϵ := {z ∈ E\E− : ⟨I′ϵ(z), z⟩ = 0 and ⟨I′ϵ(z), φ⟩ = 0,∀φ ∈ E−}

and the ground state energy value
cϵ = inf

Nϵ

Iϵ .

Applying the same arguments explored in the Section 3, we can show that for every z ∈ E\E− the set
Nϵ ∩ Ê(z) is a singleton set, and the element of this set is the unique global maximum of Iϵ |Ê(z), that is,
there exists a unique pair t > 0 and φ ∈ E− such that

Iϵ(tz + φ) = max
w∈Ê(z)

Iϵ(w).

Therefore, the following mapping is well-defined:

m̃ϵ : E+\{0} → Nϵ and mϵ = m̃ϵ |S + ,

and the inverse of mϵ is
m−1
ϵ : Nϵ → S +, m−1

ϵ (z) = z+/∥z+∥.

Accordingly, the reduced functional Φ̃ϵ : E+\{0} → R and the restriction Φϵ : S + → R can respectively
be defined by

Φ̃ϵ(z) = Iϵ(m̃ϵ(z)) and Φϵ = Φ̃ϵ |S + .

Moreover, from the above discussions in Section 3, we can check that all related conclusions in
Section 3 hold for Iϵ , cϵ , Nϵ , m̃ϵ , mϵ , Φ̃ϵ and Φϵ , respectively.

Meanwhile, concerning the limit problem given by

S z = A(0)g(|z|)z, t ∈ R, (4.1)

for the sake of simplicity, we will use the notations I0, c0 and N0 to denote IA(0), cA(0) and NA(0),
respectively.

Next, we will state the relationship of the ground state energy value between system (1.3) and limit
system (4.1), and this is very significant in our following arguments.

Lemma 4.1. The limit lim
ϵ→0

cϵ = c0 holds.

Proof. Let be ϵn → 0 as n→ ∞. Evidently, using Lemma 3.9 we obtain that c0 ≤ cϵn for all n ∈ N; thus,
c0 ≤ lim infn→∞ cϵn .

On the other hand, Theorem 3.1 shows that the limit system (4.1) has a ground state homoclinic
orbit z0. Then, according to Lemma 3.6, we can find that there are sn ∈ (0,+∞) and φn ∈ E− such that
snz+0 + φn ∈ Nϵn , and

Iϵn(snz+0 + φn) ≥ cϵn ≥ c0 > 0, ∀n ∈ N.
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As in the previous section, we can see that {snz+0 + φn} is bounded in E. Thus, without loss of generality,
we assume that sn → s0 and φn ⇀ φ in E−. Therefore, we can deduce from the weakly lower
semi-continuity of the norm and Fatou’s Lemma that

c0 = lim inf
n→∞

cϵn ≤ lim sup
n→∞

cϵn ≤ lim sup
n→∞

Iϵn(snz+0 + φn)

≤ lim sup
n→∞

[1
2

s2
n∥z
+
0 ∥

2 −
1
2
∥φn∥

2 −

∫
R

A(ϵnt)G(|snz+0 + φn|)dt
]

≤
1
2

s2
0∥z
+
0 ∥

2 −
1
2
∥φ∥2 − A(0)

∫
R

G(|s0z+0 + φ|)dt

=I0(s0z+0 + φ) ≤ I0(z0) = c0.

Obviously, we can get
lim
n→∞

cϵn = c0,

finishing the proof.

In view of the above discussion, we obtain that I0(s0z+0 + φ) = I0(z0) = c0; then, both s0z+0 + φ and z0

are the elements of N0 ∩ Ê(z0). But, according to Lemma 3.6, there is only one element in N0 ∩ Ê(z0),
so we can conclude that s0z+0 + φ = z0 and sn → s0 = 1, where φn ⇀ φ = z−0 .

As a byproduct of the Lemma 4.1, we can directly obtain the following result.

Lemma 4.2. Assume that condition (A) holds, then, there is ϵ0 > 0 such that cϵ < cA∞ for ϵ ∈ (0, ϵ0).

Proof. From condition (A) we can see that A(0) > A∞. Then from Lemma 3.9 we have that c0 < cA∞ .
Observe that, Lemma 4.1 yields that there exists ϵ0 > 0 small enough such that cϵ < cA∞ for all ϵ ∈ (0, ϵ0).
Therefore, we get that cϵ < cA∞ for ϵ ∈ (0, ϵ0).

Using similar arguments as for the proof of Lemma 3.7, one can easily check the following lemma.

Lemma 4.3. The energy functional Iϵ is coercive on Nϵ for each ϵ ≥ 0.

Next we give the proof involving the existence result for ground state homoclinic orbits for system
(1.1).

Lemma 4.4. Assume that conditions (L), (A) and (g1)-(g3) are satisfied, then, system (1.1) has a
ground-state homoclinic orbit for each ϵ ∈ (0, ϵ0).

Proof. Following the proof of Theorem 3.1 and using Lemma 3.8, we must prove that there exists
z ∈ Nϵ such that Iϵ(z) = cϵ . Indeed, applying Ekeland’s variational principle, there exists {un} ⊂ S + such
that Φϵ(un)→ cϵ and Φ′ϵ(un)→ 0. Put zn = m̃ϵ(un) ∈ Nϵ for all n ∈ N. Then from Lemma 3.8 we have
that Iϵ(zn)→ cϵ and I′ϵ(zn)→ 0. Furthermore, in view of Lemma 4.3, we can prove that {zn} is bounded.
Then, up to a subsequence, we can suppose that zn ⇀ z in E. Evidently, I′ϵ(z) = 0.

In what follows we need to show that z , 0 and Iϵ(z) = cϵ . Combining the fact that zn ∈ Nϵ with
Lemma 3.3, we have

on(1) = ⟨I′ϵ(zn), z+n ⟩ = ∥z
+
n ∥

2 −

∫
R

A(ϵt)g(|zn|)znz+n dt

≥ 2cϵ −
∫
R

A(ϵt)g(|zn|)znz+n dt,
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which yields that ∫
R

A(ϵt)g(|zn|)znz+n dt ≥ 2cϵ > 0.

As in the previous section, we can check that there exists a sequence {yn} ⊂ Z, r > 0 and δ > 0 such that∫
Br(yn)
|z+n |

2dt ≥ δ, ∀n ∈ N. (4.2)

Now, we need to prove that the sequence {yn} is bounded in R. Arguing by contradiction we can
suppose that {yn} is unbounded and |yn| → +∞ as n→ ∞. Setting wn(t) := zn(t + yn), then, wn ⇀ w in
E; we can obtain w , 0 from (4.2). By choosing the test function ψ ∈ C∞0 (R), we get

on(1) =⟨I′ϵ(zn), ψ(t − yn)⟩

=
(
z+n , ψ

+(t − yn)
)
−

(
z−n , ψ

−(t − yn)
)
−

∫
R

A(ϵt)g(|zn|)znψ(t − yn)dt

=
(
w+n , ψ

+) − (
w−n , ψ

−) − ∫
R

A(ϵt + ϵyn)g(|wn|)wnψ(t)dt.

(4.3)

Letting n→ +∞, then we obtain(
w+, ψ+

)
−

(
w−, ψ−

)
−

∫
R

A∞g(|w|)wψ(t)dt = ⟨I′∞(w), ψ⟩ = 0. (4.4)

This shows that w is a nontrivial solution of system (3.1) with µ = A∞ and w ∈ NA∞ .
Employing the Fatou’s lemma we can derive that

cA∞ ≤ IA∞(w) = IA∞(w) −
1
2
⟨I′A∞(w),w⟩

=

∫
R

A∞

[
1
2

g(|w|)|w|2 −G(|w|)
]

dt

≤ lim inf
n→∞

∫
R

A(ϵt + ϵyn)
[
1
2

g(|wn|)|wn|
2 −G(|wn|)

]
dt

= lim inf
n→∞

∫
R

A(ϵt)
[
1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt

= lim inf
n→∞

[
Iϵ(zn) −

1
2
⟨I′ϵ(zn), zn⟩

]
= cϵ .

Therefore, it follows that
cA∞ ≤ cϵ , ∀ϵ > 0.

However, Lemma 4.2 yields that cϵ < cA∞ when ϵ < ϵ0, which leads to a contradiction. So, we can
conclude that {yn} is bounded. Then for all n ∈ N, there exists r0 > 0 such that Br(yn) ⊂ Br0(0), it holds
that ∫

Br0 (0)
|zn|

2dt ≥
∫

Br(yn)
|zn|

2dt ≥ δ.

Therefore, we obtain that zn ⇀ z in E with z , 0. By repeating the steps in (4.3) and (4.4), we know
that z ∈ Nϵ is a nontrivial solution for system (1.1), thus, cϵ ≤ Iϵ(z).
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On the other hand, according to Fatou’s lemma, we infer that

cϵ = lim inf
n→∞

[
Iϵ(zn) −

1
2
⟨I′ϵ(zn), zn⟩

]
= lim inf

n→∞

∫
R

A(ϵt)
[
1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt

≥

∫
R

A(ϵt)
[
1
2

g(|z|)|z|2 −G(|z|)
]

dt

= Iϵ(z) −
1
2
⟨I′ϵ(z), z⟩ = Iϵ(z).

Thus, cϵ = Iϵ(z). Evidently, it is easy to see that z is a ground state homoclinic orbit of system (1.1). We
complete the proof.

Let
Kϵ :=

{
z ∈ E\{0} : I′ϵ(z) = 0

}
be the set of all nontrivial critical points of Iϵ . In order to describe some important properties of ground
state homoclinic orbits, next, we get the following regularity result by taking advantage of the bootstrap
argument (see [37] for the iterative steps), this result can also be found in [24, Lemma 2.3].

Lemma 4.5. If z ∈ Kϵ with |Iϵ(z)| ≤ C1 and ∥z∥2 ≤ C2; then, z ∈ W1,q(R,R2N) for any q > 2, and
∥z∥W1,q ≤ Cq, where Cq depends only on C1,C2 and q.

Below, we use L to denote the set of all ground state homoclinic orbits of system (1.1). Let z ∈ L ,
then, Iϵ(z) = cµ; applying a standard argument we can show that L is bounded in E; therefore, ∥z∥2 ≤ ĉ
for all z ∈ L and some ĉ > 0. Hence, making use of Lemma 4.5, we see that, for each q > 2, there
exists Cq such that

∥z∥W1,q ≤ Cq, ∀z ∈ L . (4.5)

Moreover, combining the Sobolev embedding theorem, we can show that there exists C∞ > 0 such that

∥z∥∞ ≤ C∞, ∀z ∈ L . (4.6)

4.2. Concentration of ground state homoclinic orbits

We now shall prove the concentration behavior of the maximum points of the ground state homoclinic
orbit. Let zϵ be a ground state homoclinic orbit of system (1.1), which can be obtained by Lemma 4.4.
Our aim is to show that if tϵ is a maximum point of |zϵ |, then,

lim
ϵ→0

A(ϵtϵ) = A(0).

In other words, we must show that if ϵn → 0, up to a subsequence, ϵntϵn → t0 for some t0 ∈ A , where

A = {t ∈ R : A(t) = A(0)}

denotes the set of the maximum points of A(t).
Let {ϵn} ⊂ (0, ϵ0) with ϵn → 0 as n→ ∞ and zϵn ∈ L ; we write zn := zϵn . Then, we have

Iϵn(zn) = cϵn and I′ϵn
(zn) = 0

Evidently, in view of Lemma 4.3, we can easily check that {zn} is bounded in E.
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Lemma 4.6. There exist a sequence {yn} ⊂ Z and two constants r > 0, δ > 0 such that∫
Br(yn)
|zn|

2dt ≥ δ.

Proof. Arguing by contradiction, we suppose that for any r1 > 0,

lim
n→∞

sup
y∈R

∫
Br1 (y)
|zn|

2dt = 0.

Then, according to Lions’ concentration-compactness principle, we conclude that zn → 0 in Lq(R) for
all q > 2. Furthermore, by (2.1) and (2.2), we obtain∫

R

A(ϵnt)
[
1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt → 0.

Therefore, it follows that

cϵn = Iϵn(zn) −
1
2
⟨I′ϵn

(zn), zn⟩ =

∫
R

A(ϵnt)
[
1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt → 0.

Evidently, this is impossible because cϵn > 0 (see Lemma 3.3). We complete the proof.

Lemma 4.7. The sequence {ϵnyn} is bounded, and lim
n→∞

ϵnyn = x0 ∈ A .

Proof. Setting vn(t) := zn(t + yn), up to a subsequence, it is easy to see that vn ⇀ v in E with v , 0 from
Lemma 4.6. In what follows, we want to prove that the sequence {ϵnyn} is bounded. If this is not true,
we can suppose that there is a subsequence {ϵnyn} such that |ϵnyn| → +∞ as n → +∞. Since zn is the
ground state homoclinic orbit of system (1.1), vn solves the following system

S vn = A(ϵnt + ϵnyn)g(|vn|)vn, (4.7)

and the energy

Îϵn(vn) =
1
2

(
∥v+n ∥

2 − ∥v−n ∥
2
)
−

∫
R

A(ϵnt + ϵnyn)G(|vn|)dt

=
1
2

(
∥z+n ∥

2 − ∥z−n ∥
2
)
−

∫
R

A(ϵnt)G(|zn|)dt

=

∫
R

A(ϵnt)
[
1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt

= Iϵn(zn) = cϵn .

Furthermore, for every ϕ ∈ E, we have

(v+n , ϕ
+) − (v−n , ϕ

−) −
∫
R

A(ϵnt + ϵnyn)g(|vn|)vnϕdt = 0.

Since A(ϵnt + ϵnyn)→ A∞, given that vn ⇀ v and ϕ ∈ C∞0 (R), we get

(v+, ϕ+) − (v−, ϕ−) −
∫
R

A∞g(|v|)vϕdt = 0.
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Thereby, v is a nontrivial homoclinic orbit of system (3.1) with µ = A∞ and v ∈ NA∞ . In view of Lemma
4.1 and Fatou’s lemma, we can conclude that

cA∞ ≤ IA∞(v) = IA∞(v) −
1
2
⟨I′A∞(v), v⟩

= A∞

∫
R

[
1
2

g(|v|)|v|2 −G(|v|)
]

dt

≤ lim inf
n→∞

∫
R

A(ϵnt + ϵnyn)
[
1
2

g(|vn|)|vn|
2 −G(|vn|)

]
dt

= lim inf
n→∞

∫
R

A(ϵt)
[
1
2

g(|zn|)|zn|
2 −G(|zn|)

]
dt

= lim inf
n→∞

[
Iϵn(zn) −

1
2
⟨I′ϵn

(zn), zn⟩

]
= lim inf

n→∞
Iϵn(zn) = lim

n→∞
cϵn = c0.

(4.8)

However, according to Lemma 4.2 we know that c0 < cA∞ . Evidently, this is a contradiction. Therefore,
{ϵnyn} is bounded in R, and passing to a subsequence, we can assume that ϵnyn → x0. According to the
above argument, for ∀ψ ∈ E, we get

(v+, ψ+) − (v−, ψ−) −
∫
R

A(x0)g(|v|)vψdt = 0,

Obviously, we can see that v is a ground state homoclinic orbit of the following system

S v = A(x0)g(|v|)v, t ∈ R, (4.9)

and v ∈ NA(x0). Following to the proof of (4.8), we can get tht cA(x0) ≤ c0, then, using Lemma 3.9, it
follows that A(x0) ≥ A(0); together with condition (A), we can obtain that A(x0) = A(0). Hence, we
show that lim

n→∞
ϵnyn = x0 and x0 ∈ A . The proof is completed.

According to Lemma 4.7, we see that v is a ground state homoclinic orbit of system (4.9), then,
I0(v) = c0 and I′0(v) = 0. Using Lemma 4.1 and Fatou’s lemma, we directly obtain

c0 ≤

∫
R

A(0)
[
1
2

g(|v|)|v|2 −G(|v|)
]

dt

≤ lim inf
n→∞

∫
R

A(ϵnt + ϵnyn)
[
1
2

g(|vn|)|vn|
2 −G(|vn|)

]
dt

= lim inf
n→∞

Îϵn(vn) ≤ lim sup
n→∞

Iϵn(zn) ≤ c0.

Hence, we have
lim
n→∞

Îϵn(vn) = lim
n→∞

cϵn = c0 = I0(v). (4.10)

Lemma 4.8. We have the convergence conclusion: vn → v in E as n→ ∞.
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Proof. Let η : [0,+∞)→ [0, 1] be a smooth function satisfying that η(s) = 1 if s ≤ 1, and η(s) = 0 if
s ≥ 2. Define ṽn(t) = η(2|t|/n)v(t), then, for q ∈ [2,+∞), one has

∥v − ṽn∥ → 0 and ∥v − ṽn∥q → 0 as n→ ∞. (4.11)

Setting θn = vn − ṽn, it is not difficult to verify that along a subsequence

lim
n→∞

∣∣∣∣∣∫
R

A(ϵnt + ϵnyn) [G(|vn|) −G(|θn|) −G(|ṽn|)] dt
∣∣∣∣∣ = 0 (4.12)

and

lim
n→∞

∣∣∣∣∣∫
R

A(ϵnt + ϵnyn)
[
g(|vn|)vn − g(|θn|)θn − g(|ṽn|)ṽn

]
φdt

∣∣∣∣∣ = 0 (4.13)

uniformly in φ ∈ E with ∥φ∥ ≤ 1. Using the fact that A(ϵnt + ϵnyn) → A0 as n → ∞ uniformly on any
bounded set of t, and combining the decay of v and (4.11) we can easily check the following result∫

R

A(ϵnt + ϵnyn)G(|ṽn|)dt →
∫
R

A0G(|v|)dt. (4.14)

Consequently, using (4.10), (4.11), (4.12) and (4.14) we infer that

Îϵn(θn) = Îϵn(vn) − I0(v)

+

∫
R

A(ϵnt + ϵnyn) [G(|vn|) −G(|θn|) −G(|ṽn|)] dt + on(1)

= on(1) as n→ ∞,

which implies that Îϵn(θn)→ 0. Similarly, we also obtain

⟨Î′ϵn
(θn), φ⟩ =

∫
R

A(ϵnt + ϵnyn)
[
g(|vn|)vn − g(|θn|)θn − g(|ṽn|)ṽn

]
φdt + on(1)

= on(1) uniformly in ∥φ∥ ≤ 1 as n→ ∞,

which implies that Î′ϵn
(θn)→ 0. Therefore

on(1) = Î′ϵn
(θn) −

1
2
⟨Î′ϵn

(θn), θn⟩ =

∫
R

A(ϵnt + ϵnyn)
[
1
2

g(|θn|)|θn|
2 −G(|θn|)

]
dt,

from which together with (g3), we can infer that∫
R

A(ϵnt + ϵnyn)g(|θn|)|θn|
2dt → 0.

Notice that {∥vn∥∞} is bounded, thus,∫
R

A(ϵnt + ϵnyn)g(|θn|)|θ+n − θ
−
n |

2dt ≤ C.
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As a consequence, we obtain

∥θn∥
2 = ⟨Î′ϵn

(θn), θ+n − θ
−
n ⟩ +

∫
R

A(ϵnt + ϵnyn)g(|θn|)θn(θ+n − θ
−
n )dt

=on(1) +
∫
R

A
1
2 (ϵnt + ϵnyn)g

1
2 (|θn|)|θn|A

1
2 (ϵnt + ϵnyn)g

1
2 (|θn|)|θ+n − θ

−
n |dt

≤on(1) +
(∫
R

A(ϵnt + ϵnyn)g(|θn|)|θn|
2dt

) 1
2

(∫
R

A(ϵnt + ϵnyn)g(|θn|)|θ+n − θ
−
n |

2dt
) 1

2

≤on(1) +C
(∫
R

A(ϵnt + ϵnyn)g(|θn|)|θn|
2dt

) 1
2

=on(1),

that is, ∥θn∥ → 0, which together with (4.11) leads to vn → v in E as n→ ∞.

Lemma 4.9. We have that vn(t)→ 0 uniformly in n ∈ N as t → ∞. Moreover, there exist c,C > 0 such
that for all t ∈ R, it holds that

|vn(t)| ≤ C exp(−c|t|).

Proof. Firstly, we observe that if z is a homoclinic orbit of system (1.1), then it satisfies the following
relation

d
dt

z =J
(
Lz + A(ϵt)g(|z|)z

)
.

Computing directly, we obtain
d2

dt2 z = (J L)2z + Q(t, z)

with
Q(t, z) =J

[(
ϵA′(ϵt) + LJ A(ϵt)

)
g(|z|)z +

(
g′z(|z|)|z| + g(|z|)

)
A(ϵt)J Lz

+

(
g′z(|z|)|z| + g(|z|)

)
A2(ϵt)Lg(|z|)z

]
.

(4.15)

Setting

sgnz
{ z
|z| if z , 0,
0, if z = 0.

Applying Kato’s inequality and (4.15), and using the real positivity of (J L)2, we can find some ρ > 0
such that

d2

dt2 |z| ≥
d2

dt2 z(sgnz) = (J L)2z
z
|z|
+ Q(t, z)

z
|z|
≥ ρ|z| − |Q(t, z)|. (4.16)

Hence, using (2.1), (4.6), (4.15) and (4.16) we conclude that there exists κ > 0 such that

d2

dt2 |z| ≥ −κ|z| for all t ∈ R.
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Then by the sub-solution estimate [38], there is a ĉ0 independent of t; we have the following estimate

|z(t)| ≤ ĉ0

∫
B1(t)
|z(s)|ds. (4.17)

Now we claim that vn(t)→ 0 uniformly in n ∈ N as t → ∞. Indeed, if it is not true, then using (4.17)
we can find that there exist c0 > 0 and tn ∈ R with |tn| → ∞ such that

c0 ≤ |vn(tn)| ≤ ĉ0

∫
B1(tn)
|vn(t)|dt,

this is because vn satisfies Î′ϵn
(vn) = 0, then, the above processes still hold for vn. From Lemma 4.8, it

follows that vn → v in E. Therefore, we get

c0 ≤ |vn(tn)| ≤ ĉ0

∫
B1(tn)
|vn(t)|dt ≤ ĉ0

∫
B1(tn)
|vn − v|dt + ĉ0

∫
B1(tn)
|v|dt

≤ c
( ∫
R

|vn − v|2dt
) 1

2

+ ĉ0

∫
B1(tn)
|v|dt → 0,

which yields a contradiction. So, the claim holds.
Note that g(s) = o(1) and g′s(s)s = o(1) as s→ 0; then, we can find suitable constants 0 < δ < ρ

2 and
R > 0 such that

|Q(t, vn)| ≤
ρ

2
|vn|, ∀|t| ≥ R.

Combining the above relation and (4.16), we get

d2

dt2 |vn| ≥ δ|vn|, ∀|t| ≥ R.

Let Λ(t) be a fundamental solution of the following equation

−
d2

dt2Λ + δΛ = 0.

From the uniform boundedness, we may choose Λ(t) such that |vn(t)| ≤ δΛ(t) holds on |t| = R for all
n ∈ N. Let un = |vn| − δΛ; thus, we obtain

d2

dt2 un =
d2

dt2 |vn| − δ
d2

dt2Λ ≥ δ(|vn| − δΛ) = δun, for all |t| ≥ R.

The maximum principle yields that un(t) ≤ 0 for |t| ≥ R, i.e., |vn(t)| ≤ δΛ(t) for |t| ≥ R. As we know that
there exists c1 > 0 such that

Λ(t) ≤ c1 exp(−
√
δ|t|) for all |t| ≥ 1.

Therefore, there are constants C, c > 0; we obtain

|vn(t)| ≤ C exp(−c|t|) for all t ∈ R.

We complete the proof.
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Lemma 4.10. There exists ν > 0 such that ∥vn∥∞ ≥ ν for all n ∈ N.

Proof. According to Lemma 4.6, we can see that there exist r > 0 and δ > 0 such that∫
Br(0)
|vn|

2dt ≥ δ.

Suppose by contradiction that ∥vn∥∞ → 0 as n→ ∞, then, it holds that

0 < δ ≤
∫

Br(0)
|vn|

2dt ≤ |Br|∥vn∥
2
∞ → 0 as n→ ∞,

which is absurd. This ends the proof.

Finally, based on the above facts, next we give the completed proof of Theorem 1.1.

Proof of Theorem 1.1 (completed). Suppose that qn is a global maximum point of |vn(t)| for each
n ∈ N, then,

|vn(qn)| = max
t∈R
|vn(t)|.

Since vn(t) = zn(t + yn), we can see that pn = qn + yn is a maximum point of |zn(t)|. Lemma 4.10 shows
that there exists ν > 0 such that

|vn(qn)| ≥ ν for all n ∈ N,

then we know that {qn} is bounded. So, we conclude from Lemma 4.7 that

ϵn pn = ϵnqn + ϵnyn → x0 ∈ A .

Consequently, it follows that
lim
n→∞

A(ϵn pn) = A(x0) = A(0).

Furthermore, from Lemma 4.7 and Lemma 4.8, it is easy to see that zn(t + pn) converges to a ground
state homoclinic orbit v of the following limit system

S z = A(0)g(|z|)z, t ∈ R.

From Lemma 4.9 and the boundedness of {qn}, we derive that

|zn(t)| =|vn(t − yn)| ≤ C exp (−c|t − yn|) = C exp (−c|t − pn + qn|)

≤C exp (−c|t − pn| + c|qn|) ≤ C̃ exp (−c̃|t − pn|)

for some c̃, C̃ > 0 and all t ∈ R.
Finally, we observe that Lemma 4.2 shows that, there is ϵ0 > 0; system (1.1) has a ground state

homoclinic orbit zϵ for each ϵ ∈ (0, ϵ0). So, the conclusion (a) of Theorem 1.1 holds. Moreover,
according to the above discussions, we directly obtain the following conclusions:

(b) let tϵ be the maximum point of |zϵ(t)|, then,

lim
ϵ→0

A(ϵtϵ) = A(0);

and zϵ(t + tϵ)→ v in E, where v is a ground state homoclinic orbit of the limit system

S z = A(0)g(|z|)z, t ∈ R;

(c) there are two positive constants c̃, C̃ such that

|zϵ(t)| ≤ C̃ exp (−c̃|t − tϵ |) .

We have finished the proof of all conclusions of Theorem 1.1.
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