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Abstract: In this paper, we consider the following Schrödinger-Poisson system
−∆u + V(x)u + ϕu = |u|p−2u + λK(x)|u|q−2u in R3,

−∆ϕ = u2 in R3.

Under the weakly coercive assumption on V and an appropriate condition on K, we investigate the cases
when the nonlinearities are of concave-convex type, that is, 1 < q < 2 and 4 < p < 6. By constructing
a nonempty closed subset of the sign-changing Nehari manifold, we establish the existence of least
energy sign-changing solutions provided that λ ∈ (−∞, λ∗), where λ∗ > 0 is a constant.
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1. Introduction

In the past decades, the following Schrödinger-Poisson system
−∆u + V(x)u + ϕu = f (x, u) in R3,

−∆ϕ = u2 in R3 (1.1)

has been studied extensively by many authors, where V : R3 → R and f ∈ C(R3 × R,R). This system
can be used to describe the interaction of a charged particle with the electrostatic field in quantum
mechanics. In this context, the unknown u and ϕ represent the wave functions related to the particle
and electric potentials, respectively. Moreover, the local nonlinearity f (x, u) models the interaction
among particles. We refer the reader to [6, 20] for more details on its physical background.
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It is worth noting that system (1.1) is a nonlocal problem due to the appearance of the term ϕu,
where ϕ = ϕu is presented in (1.4) below. This fact states that problem (1.1) is no longer a pointwise
identity and brings some essential difficulties. For example, the term

∫
R3 ϕuu2dx in the corresponding

energy functional is homogeneous of degree four, then, compared with the local Schrödinger equation,
it seems difficult to obtain the boundedness and compactness for any Palais-Smale sequence. In light
of the previous observations, the existence of solutions for problem (1.1) have been widely studied and
some open problems have been proposed [3, 11, 15, 16, 19, 25, 28, 30, 35].

In what follows, we are particularly interested in the existence of sign-changing solutions (also
known as nodal solutions) for problem (1.1). From this perspective, Wang and Zhou [29] were
concerned with the existence and energy property of sign-changing solutions for problem (1.1) with
f (x, u) = |u|p−2u. By introducing appropriate compactness conditions on V , they used methods
different from [5] to prove that the so-called sign-changing Nehari manifold is nonempty provided
that 4 < p < 6. Then, combining some analytical techniques and the Brouwer degree theory, the
existence of least energy sign-changing solutions was established. After that, the authors in [21]
investigated sign-changing solutions of problem (1.1) when f ∈ C1(R,R) satisfied super-cubic and
subcritical growth at infinity, superlinear growth at origin, and a well-known Nehari-type
monotonicity condition. In particular, they established the energy doubling [31]. Moreover, the
authors in [10, 38] obtained the similar existence results if the nonlinearity f satisfied asymptotically
cubic and three-linear growth, respectively. On the other hand, when f satisfies three-sublinear
growth, the existence and multiplicity of sign-changing solutions can be obtained by invariant sets of
descending flow [13, 18]. For more interesting results, such as the Sobolev critical exponent or
bounded domains, we refer to [1, 24, 27, 34, 36, 37] and the references therein.

According to the previous statements, we observe that the nonlinearities always satisfy superlinear
growth or convexity (i.e. f (x, u) = |u|p−2u, 2 < p < 6) provided that the sign-changing solution
of Schrödinger-Poisson systems in the whole space R3 is considered. Once the nonlinearity is not
constrained by the above forms, the methods mentioned previously cannot be directly used. Therefore,
in present paper, we focus on a special type of nonlinearities; that is, the concave-convex type, such
as f (x, u) = |u|p−2u + |u|q−2u with 4 < p < 6 and 1 < q < 2. The concave-convex nonlinearities were
introduced in [2], where the authors proved the existence of infinitely many solutions with negative
energy for local elliptic problems in bounded domains. After this work, a great attention has been paid
to the existence of solutions to elliptic problems with concave-convex nonlinearities. For example,
see [7, 8, 17, 32] for local Schrodinger equations, and [9, 14, 22, 23, 26, 33] for Schrodinger-Poisson
systems.

Note that only [7, 8, 17, 33] involve the sign-changing solutions. More precisely, Bobkov [7]
considered the following Schrödinger equation{

−∆u = λ|u|q−2u + |u|γ−2u in Ω,
u = 0 in ∂Ω,

where Ω ⊂ RN is a bounded connected domain with a smooth boundary, N ≥ 1, 1 < q < 2 < γ < 2∗

and 2∗ is the well-known Sobolev critical exponent. They proved the existence of a sign-changing
solution on the nonlocal interval λ ∈ (−∞, λ∗0), where λ∗0 is determined by the variational principle of
nonlinear spectral analysis through the fibering method. Moreover, the author in [8] obtained similar
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existence results and some interesting properties for the nodal solutions of the elliptic equation{
−∆u = λk(x)|u|q−2u + h(x)|u|γ−2u in Ω,
u = 0 in ∂Ω,

where 1 < q < 2 < γ < 2∗, λ ∈ R and the weight functions k, h ∈ L∞(Ω) satisfy the conditions
ess inf

x∈Ω
k(x) > 0 and ess inf

x∈Ω
h(x) > 0. Note that the methods in [7, 8] cannot be applied to the nonlocal

elliptic problem (1.1). To this end, based on the setting of bounded domains, Yang and Ou [33] studied
the following Schrödinger-Poisson system

−∆u + ϕu = λ|u|p−2u + |u|q−2u in Ω,
−∆ϕ = u2 in Ω,
u = 0 in ∂Ω,

(1.2)

whereΩ is a bounded domain with smooth boundary ∂Ω inR3 and 1 < p < 2, 4 < q < 6, λ is a constant.
By constrained variational method and quantitative deformation lemma, they obtained that the problem
(1.2) has a nodal solution uλ with positive energy when λ < λ∗, λ∗ is a constant. Here, we point out that
if the bounded domain is involved, the embedding H1

0(Ω) ↪→ Lp(Ω) is compact for 1 ≤ p < 2∗, which
not only avoids the verification of compactness but also ensures the boundedness of the concave term.
However, once the whole space is considered, these points cannot be directly determined. Therefore,
motivated by the works described above, in this paper we focus on the following Schrödinger-Poisson
system in the whole space R3 with concave-convex nonlinearities

−∆u + V(x)u + ϕu = |u|p−2u + λK(x)|u|q−2u in R3,

−∆ϕ = u2 in R3,
(1.3)

where 1 < q < 2, 4 < p < 6, λ > 0 and V , K satisfy the assumptions:

(V) V ∈ C(R3,R) satisfies inf
x∈R3

V(x) ≥ a > 0 for each A > 0, meas{x ∈ R3 : V(x) ≤ A} < ∞, where a

is a constant and meas denotes the Lebesgue measure in R3;
(K) K is positive and K ∈ L

6
6−q (R3).

Here the condition (V) is similar to [17]. This condition also ensures the compactness of embedding
H ↪→ Lp(R3), 2 ≤ p < 2∗, where H is the Hilbert space

H =
{

u ∈ H1(R3) :
∫
R3

V(x)u2dx < +∞
}

endowed with the norm

∥u∥ =
(∫
R3

(|∇u|2 + V(x)u2)dx
) 1

2
[4, 39, Lemma 3.4].

Meanwhile, we point out that the authors in [17] considered the local Schrödinger type equation in RN

−∆u + V(x)u = λ|u|q−2u + µu + ν|u|p−2u,
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where 1 < q < 2 < p < 2∗, N ≥ 2 and λ, µ, ν are parameters. The above equation involves a
combination of concave and convex terms. They obtained infinitely many nodal solutions by using the
method of invariant sets. However, it seems that this method cannot be applied to problem (1.3). In
order to overcome the previous difficulties, we introduce the condition (K), which guarantees a weak
continuity result (see Lemma 2.2 below). Moreover, conditions (V) and (K) allow us to construct a
suitable nonempty closed subset of sign-changing Nehari manifold similar to [33], and then a least
energy sign-changing solution can be obtained.

Before proceeding, we discuss the basic framework for dealing with our problem. The usual norm

in the Lebesgue space Lr(R3) is denoted by |u|r =
( ∫
R3 |u|rdx

) 1
r , r ∈ [1,+∞). It is well known that,

by the Lax-Milgram theorem, when u ∈ H, there exists a unique ϕu ∈ D
1,2(R3) such that −∆ϕu = u2,

where

ϕu(x) =
1

4π

∫
R3

u2(y)
|x − y|

dy. (1.4)

Substituting (1.4) into (1.3), we can rewrite system (1.3) as the following equivalent form

−∆u + V(x)u + ϕuu = |u|p−2u + λK(x)|u|q−2u in R3. (1.5)

Therefore, the energy functional associated with system (1.3) is defined by

Iλ(u)=
1
2

∫
R3

(|∇u|2+ V(x)u2)dx+
1
4

∫
R3
ϕuu2dx−

1
p

∫
R3
|u|pdx−

λ

q

∫
R3

K(x)|u|qdx, ∀u ∈ H.

The functional Iλ(u) is well-defined for every u ∈ H and belongs to C1(H,R). Furthermore, for any
v ∈ H,〈

I′λ(u), v
〉
=

∫
R3

(∇u · ∇v+ V(x)uv)dx+
∫
R3
ϕuuvdx−

∫
R3
|u|p−2uvdx− λ

∫
R3

K(x)|u|q−2uvdx.

As is well known, the solution of problem (1.5) is the critical point of the functional Iλ(u). Moreover,
if u ∈ H is a solution of problem (1.5) and u± , 0, then u is a sign-changing solution of system (1.3),
where

u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.

Naturally, we introduce the Nehari manifold of Iλ as

Nλ =
{
u ∈ H\{0} : ⟨I′λ(u), u⟩ = 0

}
,

which is related to the behavior of the map φu : r → Iλ(ru) (r > 0) (see [12] for the introduction of this
map). For u ∈ H, we have

φu(r) =
1
2

r2||u||2 +
1
4

r4
∫
R3
ϕuu2dx −

1
p

rp|u|pp −
λ

q
rq

∫
R3

K(x)|u|qdx.

It is well known that, for any u ∈ H\{0}, φ′u(r) = 0 if and only if ru ∈ Nλ, which also implies that
φ′u(1) = 0 if and only if u ∈ Nλ. This manifold is always used to find the positive ground state
solution. In order to obtain sign-changing solutions of problem (1.3), it is necessary to consider the
sign-changing Nehari manifold

Mλ =
{
u ∈ H : u± , 0, ⟨I′λ(u), u±⟩ = 0

}
.
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Hoeever, this manifold cannot be directly applied due to appearance of concave term λk(x)|u|q−2u. As
we will see, inspired by [33], we can construct the setM∗λ ⊂ Mλ and prove this set is a nonempty closed
set, whereM∗λ is defined by (2.5) below. We then show that the minimization problem mλ := inf

u∈M∗λ
Iλ(u)

is attained by some uλ ∈ M∗λ with positive energy. Finally, the classical deformation lemma [32,
Lemma 2.3] states that the uλ is a weak solution of problem (1.3). Up to now, the main results can be
stated as follows.

Theorem 1.1. Assume that (V) and (K) hold. Then there exists a constant λ∗ > 0 (determined in
(2.13)) such that for any λ ∈ (−∞, λ∗), problem (1.3) possesses a least energy sign-changing solution
uλ with positive energy.

Remark 1.2. As mentioned previously, our Theorem 1.1 extends the result of [33] to the whole space
R3. Moreover, for nonlinearities that do not involve concave terms, such as f (x, u) = |u|p−2u (4 < p <
6), with the aid of classic techniques in [29], one can obtain that the sign-changing Nehari manifold is
nonempty. However, in our paper, 1 < q < 2 and 4 < p < 6 mean that λK(x)|u|q−2u is concave and
|u|p−2u is convex, which is different from [29]. At this point, it is difficult to directly prove that the set
Mλ is nonempty. To this end, we carefully analyze the behavior of fu(s, t) = Iλ(su+ + tu−) and then
introduce the setM∗λ. In particular, by determining some important lower bound estimates, we verify
thatM∗λ , ∅. On the other hand, we point out that the range of parameter λ can be negative, which is
similar to previous results.

The remainder of this paper is organized as follows. In section 2, we present some preliminary
lemmas that are crucial for proving our main results. Section 3 is devoted to proving Theorem 1.1.

2. Preliminears

In this section, we present some preliminary lemmas that are crucial for proving our main results.
First, we recall some well-known properties of ϕu that are a collection of results in [11, 19].

Lemma 2.1. For any u ∈ H, we get

(i) there exists C > 0 such that
∫
R3 ϕuu2dx ≤ C∥u∥4;

(ii) ϕu ≥ 0, for any u ∈ H;
(iii) ϕtu = t2ϕu, for any t > 0 and u ∈ H;
(iv) if un ⇀ u in H, then ϕun ⇀ ϕu inD1,2(R3) and

lim
n→∞

∫
R3
ϕunu

2
ndx =

∫
R3
ϕuu2dx.

Next, we verify a weak continuity of the concave term. The proof is similar to [32, Lemma 2.13],
but we state the proof here for the readers convenience.

Lemma 2.2. Assume that 1 < q < 2 and (K) hold, then the functional

G : H → R : u 7→
∫
R3

K(x)|u|qdx

is weakly continuous.
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Proof. Undoubtedly, it is sufficient to prove that if un ⇀ u in H, then
∫
R3 K(x)|un|

qdx →
∫
R3 K(x)|u|qdx

as n → ∞. In fact, if un ⇀ u in H, going if necessary to a subsequence, we can assume that un → u
a.e. on R3. Since un ⇀ u in H, we get that {un} is bounded in L6(R3) and

{
uq

n
}

is bounded in L
6
q (R3).

Therefore, uq
n ⇀ uq in L

6
q (R3). Combining with (K) and the definition of weak convergence, we obtain∫

R3
K(x)|un|

qdx→
∫
R3

K(x)|u|qdx as n→ ∞.

Now, for any u ∈ H with u± , 0, we introduce the map fu : [0,+∞)× [0,+∞) → R defined by
fu(s, t) = Iλ(su+ + tu−), i.e.,

fu(s, t)

=
1
2

s2||u+||2+
1
4

s4
∫
R3
ϕu+ (u+)2dx+

1
2

s2t2
∫
R3
ϕu+ (u−)2dx−

1
p

sp|u+|pp−
λ

q
sq

∫
R3

K(x)|u+|qdx

+
1
2

t2||u−||2+
1
4

t4
∫
R3
ϕu− (u−)2dx−

1
p

tp|u−|pp−
λ

q
tq

∫
R3

K(x)|u−|qdx.

(2.1)

Here we have used the fact that ∫
R3
ϕu+ |u−|2dx =

∫
R3
ϕu− |u+|2dx.

Moreover, we have that

∇ fu(s, t) =
(
⟨I′λ(su+ + tu−), u+⟩, ⟨I′λ(su+ + tu−), u−⟩

)
=

(
1
s
⟨I′λ(su+ + tu−), su+⟩,

1
t
⟨I′λ(su+ + tu−), tu−⟩

)
,

which implies that for any u ∈ H with u± , 0, su+ + tu− ∈ Mλ if and only if the pair (s, t) is a critical
point of fu.

Lemma 2.3. Assume that 1 < q < 2, 4 < p < 6 and the assumption (K) hold, then there exists a
constant λ1 > 0 such that for any u ∈ H with u± , 0, there holds that

(i) if λ ∈ (0, λ1), then for any fixed t ≥ 0, fu(s, t) has exactly two critical points, 0 < s1(t) < s2(t);
s1(t) is the minimum point and s2(t) is the maximum point; moreover, if λ ≤ 0, then for any fixed
t ≥ 0, fu(s, t) has exactly one critical point, s3(t) > 0, and it is the maximum point;

(ii) if λ ∈ (0, λ1), then for any fixed s ≥ 0, fu(s, t) has exactly two critical points, 0 < t1(s) < t2(s);
t1(s) is the minimum point and t2(s) is the maximum point; moreover, if λ ≤ 0, then for any fixed
s ≥ 0, fu(s, t) has exactly one critical point, t3(s) > 0, and it is the maximum point.

Proof. We define fµ(s, t) : [0,+∞) × [0,+∞)→ R by

fµ(s, t) =
1
2
||su+ + tu−||2 +

1
4
µ

∫
R3
ϕsu++tu−(su+ + tu−)2dx −

1
p
|su+ + tu−|pp

−
λ

q

∫
R3

K(x)|su+ + tu−|qdx,
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where µ is a nonnegative parameter.
(i) For any fixed t ≥ 0, a direct calculation gives

∂ fµ
∂s

(s, t) = s||u+||2 + µs3
∫
R3
ϕu+(u+)

2dx + µst2
∫
R3
ϕu+(u−)

2dx − sp−1|u+|pp

− λsq−1
∫
R3

K(x)|u+|qdx

= sq−1
(
s2−q||u+||2 + µs4−q

∫
R3
ϕu+(u+)

2dx + µs2−qt2
∫
R3
ϕu+(u−)

2dx

− sp−q|u+|pp − λ
∫
R3

K(x)|u+|qdx
)
.

Then, if s > 0, ∂ fµ
∂s (s, t) = 0 is equivalent to

βµ(s) =s2−q||u+||2 + µs4−q
∫
R3
ϕu+(u+)

2dx + µs2−qt2
∫
R3
ϕu+(u−)

2dx − sp−q|u+|pp

− λ

∫
R3

K(x)|u+|qdx = 0.

For βµ(s), we can obtain that

β′µ(s) =s1−q
(
(2 − q)||u+||2 + µ(4 − q)s2

∫
R3
ϕu+(u+)

2dx + µ(2 − q)t2
∫
R3
ϕu+(u−)

2dx

− (p − q)sp−2|u+|pp
)
.

Clearly, for any fixed t ≥ 0, 1 < q < 2 and 4 < p < 6, we can infer that βµ has exactly one critical point
sµ > 0, where sµ is related to t for any µ ≥ 0. Moreover, βµ is strictly increasing in (0, sµ) and strictly
decreasing in (sµ,+∞).

Noting that if µ = 0, we have

β0(s) = s2−q||u+||2 − sp−q|u+|pp − λ
∫
R3

K(x)|u+|qdx

and
β′0(s) = s1−q((2 − q)||u+||2 − (p − q)sp−2|u+|pp).

Hence,

s0 =

(
(2 − q)||u+||2

(p − q)|u+|pp

) 1
p−2

and

β0(s0) =
p − 2
p − q

(
2 − q
p − q

) 2−q
p−2 ||u+||

2(p−q)
p−2

|u+|
p(2−q)

p−2
p

− λ

∫
R3

K(x)|u+|qdx.

Let
αµ(s) = s2−q||u+||2 + µs4−q

∫
R3
ϕu+(u+)

2dx + µs2−qt2
∫
R3
ϕu+(u−)

2dx − sp−q|u+|pp
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and
λ+1 = inf

u∈H,u±,0

α0(s0)∫
R3 K(x)|u+|qdx

,

then it follows from Sobolev embedding that

λ+1 ≥
p − 2
p − q

(2 − q
p − q

) 2−q
p−2 1

S q
6S

p(2−q)
p−2

p |K| 6
6−q

> 0. (2.2)

Therefore, if λ ∈ (0, λ+1 ), we can deduce βµ(s0) > β0(s0) > 0 for any u ∈ H with u± , 0. For any
fixed t ≥ 0, if λ ∈ (0, λ+1 ), there exist unique s1(t) and s2(t) with 0 < s1(t) < s2(t), such that βµ(s) = 0
and β′µ(s1(t)) > 0, β′µ(s2(t)) < 0. On the other hand, when λ ≤ 0, there is a unique s3(t) > 0 such that
βµ(s) = 0 and β′µ(s3(t)) < 0.

Finally, considering that

∂2 fµ
∂s2 (s, t) = ||u+||2 + 3µs2

∫
R3
ϕu+(u+)

2dx + µt2
∫
R3
ϕu+(u−)

2dx

− (p − 1)sp−2|u+|pp − λ(q − 1)sq−2
∫
R3

K(x)|u+|qdx

= sq−2
(
s2−q||u+||2 + 3µs4−q

∫
R3
ϕu+(u+)

2dx + µs2−qt2
∫
R3
ϕu+(u−)

2dx

− (p − 1)sp−q|u+|pp − λ(q − 1)
∫
R3

K(x)|u+|qdx
)
,

we can find that
∂2 fµ
∂s2 (s, t) = (q − 1)sq−2βµ(s) + sq−1β′µ(s).

Note that ∂ fµ
∂s (s, t) = 0 is equivalent to βµ(s) = 0, then we have

∂2 fµ
∂s2 (s, t) = sq−1β′µ(s) if

∂ fµ
∂s

(s, t) = 0.

Thus, the facts that β′µ(s1(t)) > 0, β′µ(s2(t)) < 0 and β′µ(s3(t)) < 0 signify that

∂2 fµ
∂s2 (s1(t), t) > 0,

∂2 fµ
∂s2 (s2(t), t) < 0 and

∂2 fµ
∂s2 (s3(t), t) < 0.

In particular, when µ = 1, the results still hold.
(ii) For any fixed s ≥ 0, let

λ−1 = inf
u∈H,u±,0

α0(s0)∫
R3 K(x)|u−|qdx

= inf
u∈H,u±,0

p − 2
p − q

(2 − q
p − q

) 2−q
p−2 ||u−||

2(p−q)
p−2

|u−|
p(2−q)

p−2
p

∫
R3 K(x)|u−|qdx

.

(2.3)

Analogously with the proof (i), we can derive the conclusion.
At last, it is easy to see that λ+1 = λ

−
1 . Indeed, u± , 0 indicates that (−u)± , 0, which yields that

λ+1 = λ
−
1 . Let λ1 = λ

+
1 = λ

−
1 , from (i) and (ii), then the proof is completed.
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Let

λ2 = inf
u∈H\{0}

p − 2
p − q

(2 − q
p − q

) 2−q
p−2 ||u||

2(p−q)
p−2

|u|
p(2−q)

p−2
p

∫
R3 K(x)|u|qdx

.

Undoubtedly,

λ1 ≥ λ2 ≥
p − 2
p − q

(2 − q
p − q

) 2−q
p−2 1

S q
6S

p(2−q)
p−2

p |K| 6
6−q

> 0. (2.4)

Here, the notation S p represents the embedding constant of H ↪→ Lp(R3), which has a value depending
on p ∈ [2, 6]. According to Lemma 2.3, the following corollary is a direct result.

Corollary 2.4. Assume that 1 < q < 2, 4 < p < 6, the assumption (K) and 0 < λ < λ2 hold, then for
any u ∈ H\{0}, φu(r) has exactly two critical points, 0 < r1(u) < r2(u) and φ′′u (r1(u)) > 0, φ′′u (r2(u)) < 0.
On the other hand, when λ ≤ 0, φu(r) has exactly one critical point, r3(u) > 0, and φ′′u (r3(u)) < 0.

Lemma 2.5. Assume that 1 < q < 2, 4 < p < 6, the assumption (K) and λ < λ1 hold, then for any
u ∈ Mλ, (∂2 fu/∂s2)(1, 1) , 0 and (∂2 fu/∂t2)(1, 1) , 0. Moreover, Iλ(u) → +∞ as ||u|| → +∞, i.e., the
functional Iλ is coercive and bounded from below on Nλ.

Proof. If 0 < λ < λ1, from Lemma 2.3, it follows that fu(s, 1) has exactly two critical points s1(1),
s2(1) and ∂2 fu

∂s2 (s1(1), 1) > 0, ∂2 fu
∂s2 (s2(1), 1) < 0. Since u ∈ Mλ, we have ∂ fu

∂s (1, 1) = 0, which means that
s1(1) = 1 or s2(1) = 1. Hence, ∂2 fu

∂s2 (1, 1) , 0. Analogously, we can conclude that ∂2 fu
∂t2 (1, 1) , 0.

If λ ≤ 0, it follows from Lemma 2.3 that fu(s, 1) has exactly one critical point s3(1) and
∂2 fu
∂s2 (s3(1), 1) < 0. Combining with u ∈ Mλ, we have ∂ fu

∂s (1, 1) = 0, which shows that s3(1) = 1.
Therefore, we get ∂2 fu

∂s2 (1, 1) , 0. Similarly, we can deduce that t3(1) = 1, ∂2 fu
∂t2 (1, t3(1)) < 0 and the

claim is clearly true.
Note that u ∈ Mλ ⊂ Nλ, then the Sobolev embedding indicates that

Iλ(u) = Iλ(u) −
1
4
⟨I′λ(u), u⟩

=
1
4
||u||2 +

(1
4
−

1
p

) ∫
R3
|u|pdx + λ

(1
4
−

1
q

) ∫
R3

K(x)|u|qdx

≥
1
4
||u||2 + λ

(1
4
−

1
q

)
|K| 6

6−q
|u|q6

≥
1
4
||u||2 + λ1

(1
4
−

1
q

)
|K| 6

6−q
S q

6||u||
q.

Hence, combining 1 < q < 2 and 4 < p < 6, we derive Iλ(u) → +∞ as ||u|| → +∞. That is, the
functional Iλ(u) is coercive and bounded from below on Nλ. The proof is completed.

Similarly, we obtain the following result.

Corollary 2.6. Assume that 1 < q < 2, 4 < p < 6, the assumption (K) and λ < λ2 hold, then for any
u ∈ Nλ, φ′′u (1) , 0.
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In what follows, we construct the following sets

M−λ =

{
u ∈ Mλ :

∂2 fu

∂s2 (1, 1) < 0,
∂2 fu

∂t2 (1, 1) < 0
}

and

M∗λ =

{
u ∈ Mλ :

∂2 fu

∂s2 (1, 1) < 0,
∂2 fu

∂t2 (1, 1) < 0, φ′′u (1) < 0
}
. (2.5)

Unquestionably,M∗λ ⊂ M
−
λ . According to the properties of fu mentioned above, we can verify that the

setM∗λ is nonempty andM∗λ =M
−
λ (see Lemma 2.9). To this end, we first get the following fact.

Lemma 2.7. Assume that 1 < q < 2, 4 < p < 6 and the assumption (K) hold, there exists σ > 0, which
is independent of u and λ, such that

||u±|| > σ > 0

for any u ∈ M−λ .

Proof. For any u ∈ M−λ , from ∂2 fu
∂s2 (1, 1) < 0, ∂2 fu

∂t2 (1, 1) < 0 and Sobolev embedding, it follows that

(2 − q)||u±||2 < (2 − q)||u±||2 + (4 − q)
∫
R3
ϕu±(u±)2dx + (2 − q)

∫
R3
ϕu+(u−)2dx

< (p − q)|u±|pp ≤ (p − q)S p
p||u
±||p,

which implies

||u±|| >
( 2 − q
(p − q)S p

p

) 1
p−2 := σ > 0. (2.6)

Hence, the proof is finished.

In order to prove thatM∗λ , ∅, let us define

λ3= inf
u∈M−λ

 (p − 2)||u+||2 + (p − 4)
∫
R3 ϕu+(u+)2dx

(p − q)
∫
R3 K(x)|u+|qdx

,
(p − 2)||u−||2 + (p − 4)

∫
R3 ϕu−(u−)2dx

(p − q)
∫
R3 K(x)|u−|qdx

 .
From Sobolev embedding and Lemma 2.7, it follows that

(p − 2)||u±||2 + (p − 4)
∫
R3 ϕu±(u±)2dx

(p − q)
∫
R3 K(x)|u±|qdx

≥
(p − 2)||u±||2−q

(p − q)S q
6|K| 6

6−q

>
(p − 2)σ2−q

(p − q)S q
6|K| 6

6−q

> 0,

where σ is given by (2.6). Therefore, we have

λ3 ≥
(p − 2)σ2−q

(p − q)S q
6|K| 6

6−q

> 0. (2.7)

Furthermore, we compute that

∂2 fu

∂s2 (s, t) =||u+||2 + 3s2
∫
R3
ϕu+(u+)

2dx + t2
∫
R3
ϕu+(u−)

2dx

− (p − 1)sp−2|u+|pp − λ(q − 1)sq−2
∫
R3

K(x)|u+|qdx,
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∂2 fu

∂t2 (s, t) =||u−||2 + 3t2
∫
R3
ϕu−(u−)

2dx + s2
∫
R3
ϕu+(u−)

2dx

− (p − 1)tp−2|u−|pp − λ(q − 1)tq−2
∫
R3

K(x)|u−|qdx

and

∂2 fu

∂s∂t
(s, t) = 2st

∫
R3
ϕu+(u−)2dx,

∂2 fu

∂t∂s
(s, t) = 2st

∫
R3
ϕu+(u−)2dx.

For any u ∈ Mλ, we obtain

∂2 fu

∂s2 (1, 1)

= ||u+||2 + 3
∫
R3
ϕu+(u+)

2dx +
∫
R3
ϕu+(u−)

2dx − (p − 1)|u+|pp − λ(q − 1)
∫
R3

K(x)|u+|qdx

= (2 − q)||u+||2 + (4 − q)
∫
R3
ϕu+(u+)

2dx + (2 − q)
∫
R3
ϕu+(u−)

2dx − (p − q)|u+|pp

= (2 − p)||u+||2 + (4 − p)
∫
R3
ϕu+(u+)

2dx + (2 − p)
∫
R3
ϕu+(u−)

2dx

− λ(q − p)
∫
R3

K(x)|u+|qdx

and

∂2 fu

∂t2 (1, 1)

= ||u−||2 + 3
∫
R3
ϕu−(u−)

2dx +
∫
R3
ϕu+(u−)

2dx − (p − 1)|u−|pp

− λ(q − 1)
∫
R3

K(x)|u−|qdx

= (2 − q)||u−||2 + (4 − q)
∫
R3
ϕu−(u−)

2dx + (2 − q)
∫
R3
ϕu+(u−)

2dx − (p − q)|u−|pp

= (2 − p)||u−||2 + (4 − p)
∫
R3
ϕu−(u−)

2dx + (2 − p)
∫
R3
ϕu+(u−)

2dx

− λ(q − p)
∫
R3

K(x)|u−|qdx.

Lemma 2.8. Assume that 1 < q < 2, 4 < p < 6, the assumption (K) and λ < λ1 hold, then for any
u ∈ H with u± , 0, there exists a unique pair (su, tu) ∈ R+ ×R+ such that suu+ + tuu− ∈ M−λ . Moreover,
if λ < λ3, then Iλ(suu+ + tuu−) = max

s,t>0
Iλ(su+ + tu−).

Proof. First, we only prove the case of 0 < λ < λ1 since the proof of λ ≤ 0 is very similar. Let u ∈ H
with u± , 0, from the proof of Lemma 2.3, then we have that ∂ fu

∂s (s, t) satisfies the conditions:

(i) ∂ fu
∂t (s, t2(s)) = 0 for all s ≥ 0;

(ii) ∂ fu
∂t (s, t) is continuous and has continuous partial derivatives in [0,+∞) × [0,+∞);
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(iii) ∂2 fu
∂t2 (s, t2(s)) < 0 for all s ≥ 0.

Hence, we can obtain that if 0 < λ < λ1, ∂ fu
∂t (s, t) = 0 determines an implicit function t2(s) with

continuous derivative on [0,+∞) by using the implicit function theorem. Analogously, if 0 < λ < λ1,
∂ fu
∂s (s, t) = 0 determines an implicit function s2(t) with continuous derivative on [0,+∞).

On the other hand, for every s ≥ 0, from ∂ fu
∂t (s, t2(s)) = 0 and ∂ fu

∂t (s, t) ≤ 0 for sufficiently large t > 0,
we can show that

t2(s) < s for large enough s. (2.8)

Otherwise, if t2(s) ≥ s, where s is large enough, it follows from the definition of ∂ fu
∂t (s, t) that

∂ fu
∂t (s, t2(s)) < 0, which contradicts ∂ fu

∂t (s, t2(s)) = 0. Similarly, we get

s2(t) < t for sufficiently large t. (2.9)

Therefore, by (2.8), (2.9), t2(0) > 0, s2(0) > 0, the continuity of t2(s) and s2(t), we conclude that the
curves of t2(s) and s2(t) must intersect at some point (su, tu) ∈ R+×R+. That is, ∂ fu

∂t (su, tu) = ∂ fu
∂s (su, tu) =

0. Additionally, noting that

t′2(s) = −
(
∂2 fu

∂t∂s

/
∂2 fu

∂t2

)
(s, t2(s)) > 0

for any s > 0, we obtain that the function t2(s) is strictly increasing in (0,+∞). Similarly, the function
s2(t) is strictly increasing in (0,+∞). Consequently, there is a unique pair (su, tu) ∈ R+ × R+ such that

∂ fu

∂s
(su, tu) =

∂ fu

∂t
(su, tu) = 0

and
∂2 fu

∂s2 (su, tu) < 0,
∂2 fu

∂t2 (su, tu) < 0;

that is, suu+ + tuu− ∈ M−λ .
Next, we prove that (su, tu) is the unique maximum point of fu(s, t) on [0,+∞) × [0,+∞). In fact,

if u ∈ M−λ , we only show that (su, tu) = (1, 1) is the pair of numbers such that Iλ(suu+ + tuu−) =
max
s,t>0

Iλ(su+ + tu−). Define

H(u) =
(
∂2 fu

∂s2

∂2 fu

∂t2 −
∂2 fu

∂t∂s
∂2 fu

∂s∂t

) ∣∣∣∣∣
(1,1)

.

If we verify that H(u) > 0, then (1, 1) is a local maximum point of fu(s, t). Combining uniqueness of
(su, tu), we have (1, 1) as a global maximum point of fu(s, t). Let u ∈ M−λ , then

H(u)

=

(
∂2 fu

∂s2

∂2 fu

∂t2 −
∂2 fu

∂t∂s
∂2 fu

∂s∂t

) ∣∣∣∣∣
(1,1)

=
(
(2 − p)||u+||2+ (4 − p)

∫
R3
ϕu+(u+)

2dx+ (2 − p)
∫
R3
ϕu+(u−)

2dx− λ(q − p)
∫
R3

K(x)|u+|qdx
)

×
(
(2 − p)||u−||2+ (4 − p)

∫
R3
ϕu−(u−)

2dx+ (2 − p)
∫
R3
ϕu+(u−)

2dx− λ(q − p)
∫
R3

K(x)|u−|qdx
)

− 4
(∫
R3
ϕu+(u−)

2dx
)2

.
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From ∂2 fu
∂s2 (1, 1) < 0, ∂2 fu

∂t2 (1, 1) < 0, if λ < λ3, we derive

−
∂2 fu

∂s2 (1, 1) − 2
∫
R3
ϕu+(u−)

2dx

= (p − 2)||u+||2 + (p − 4)
∫
R3
ϕu+(u+)

2dx + (p − 4)
∫
R3
ϕu+(u−)

2dx

− λ(p − q)
∫
R3

K(x)|u+|qdx

> (p − 2)||u+||2 + (p − 4)
∫
R3
ϕu+(u+)

2dx − λ3(p − q)
∫
R3

K(x)|u+|qdx

> 0

and

−
∂2 fu

∂t2 (1, 1) − 2
∫
R3
ϕu+(u−)

2dx

> (p − 2)||u−||2 + (p − 4)
∫
R3
ϕu−(u−)

2dx − λ3(p − q)
∫
R3

K(x)|u−|qdx

> 0,

which show that H(u) > 0.
If u < M−λ , then there exists a unique pair (s′u, t

′
u) of positive numbers such that s′uu+ + t′uu− ∈ M−λ .

Let v = s′uu+ + t′uu−, i.e., v ∈ M−λ . Repeat the above steps and we will get H(v) > 0. Hence, the proof
is completed.

Lemma 2.9. If 1 < q < 2, 4 < p < 6, the assumption (K) and λ < min {λ1, λ2, λ3} hold, thenM∗λ , ∅.
Moreover, we getM∗λ =M

−
λ .

Proof. By the definitions ofM−λ andM∗λ, M
∗
λ ⊂ M

−
λ is obvious. Hence, we only need to prove that

if λ < min {λ1, λ2, λ3}, then M−λ ⊂ M
∗
λ. That is, for any u ∈ M−λ , φu reaches its maximum at point

r = 1. It follows from λ < λ1 and Lemma 2.8 thatM−λ , ∅, and from Lemma 2.8, for any u ∈ M−λ , we
obtain H(u) > 0 when λ < λ3. Combining fu(r, r) = φu(r), it follows that r = 1 is a maximum of φu.
Therefore,M−λ ⊂ M

∗
λ. This completes the proof of Lemma 2.9.

Corollary 2.10. If 1 < q < 2, 4 < p < 6, the assumption (K) and λ < min {λ1, λ2, λ3} hold, for
u ∈ H and u± , 0, then there exists a unique pair (su, tu) ∈ R+ × R+ such that suu+ + tuu− ∈ M∗λ and
Iλ(suu+ + tuu−) = max

s,t>0
Iλ(su+ + tu−).

Lemma 2.11. If 1 < q < 2, 4 < p < 6, the assumption (K) and λ < λ4 hold, for all u ∈ H\{0}, then
there exists ru > 0 such that φu(ru) > 0, where λ4 > 0.

Proof. Fixed u ∈ H\{0}, let

Eu(r) =
1
2

r2||u||2 −
1
p

rp|u|pp
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for any r ≥ 0, then we have

φu(r) =
1
2

r2||u||2 +
1
4

r4
∫
R3
ϕuu2dx −

1
p

rp|u|pp −
λ

q
rq

∫
R3

K(x)|u|qdx

≥
1
2

r2||u||2 −
1
p

rp|u|pp −
λ

q
rq

∫
R3

K(x)|u|qdx

= Eu(r) −
λ

q
rq

∫
R3

K(x)|u|qdx.

(2.10)

Considering Eu(r), we obtain that there is a unique r1(u) =
(
||u||2

|u|pp

) 1
p−2

> 0 such that Eu(r) achieves

its maximum at r1(u) and the maximum value is Eu(r1(u)) = p−2
2p

(
||u||
|u|p

) 2p
p−2 . Moreover, from Sobolev

embedding and (2.10), it is clear to calculate that

φu(r1(u)) ≥ Eu(r1(u)) −
λ

q
(r1(u))q

∫
R3

K(x)|u|qdx

≥ Eu(r1(u)) −
λ

q
(r1(u))q|K| 6

6−q
S q

6||u||
q

= Eu(r1(u)) −
λ

q
S q

6|K| 6
6−q

( 2p
p − 2

) q
2 (Eu(r1(u)))

q
2

= (Eu(r1(u)))
q
2
(
(Eu(r1(u)))

2−q
2 −

λ

q
S q

6|K| 6
6−q

( 2p
p − 2

) q
2
)
.

(2.11)

Consequently, by taking

λ4 =
(p − 2)q

2p|K| 6
6−q

S q
6

inf
u∈H\{0}

(
||u||
|u|p

) p(2−q)
p−2

≥
(p − 2)q

2p|K| 6
6−q

S q
6S

p(2−q)
p−2

p

> 0,
(2.12)

we conclude that if λ < λ4, it holds

λ

q
S q

6|K| 6
6−q

(
2p

p − 2

) q
2

<
λ4

q
S q

6|K| 6
6−q

(
2p

p − 2

) q
2

≤
1
q

S q
6|K| 6

6−q

(
2p

p − 2

) q
2 (p − 2)q

2pS q
6|K| 6

6−q

(
||u||
|u|p

) p(2−q)
p−2

= (Eu(r1(u)))
2−q

2

for any u ∈ H\{0}. This together with (2.11) yields that φu(r1(u)) > 0 for any λ < λ4.

Let
λ∗ = min {λ1, λ2, λ3, λ4}, (2.13)

then it follows from (2.2), (2.4), (2.7) and (2.12) that λ∗ > 0. Now, we consider the properties of the
setM∗λ.
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Lemma 2.12. If 1 < q < 2, 4 < p < 6, λ < λ∗ and the assumptions (V) and (K) hold, thenM∗λ is a
closed set.

Proof. Letting {un} ⊂ M
∗
λ satisfy un → u0 as n → ∞ in H, we now prove that u0 ∈ M

∗
λ. From

{un} ⊂ M
∗
λ, we obtain

⟨I′λ(u0), u±0 ⟩ = lim
n→∞
⟨I′λ(un), u±n ⟩ = 0, (2.14)

∂2 fu0

∂s2 (1, 1) = lim
n→∞

∂2 fun

∂s2 (1, 1) ≤ 0, (2.15)

∂2 fu0

∂t2 (1, 1) = lim
n→∞

∂2 fun

∂t2 (1, 1) ≤ 0, (2.16)

φ′′u0
(1) = lim

n→∞
φ′′un

(1) ≤ 0. (2.17)

From Lemma 2.7, it follows that ||u±n || > σ > 0 for any un ∈ M
−
λ and hence ||u±0 || = lim

n→∞
||u±n || > σ > 0,

which indicates u±0 , 0. Using this and (2.14), we obtain u0 ∈ Mλ and r = 1 is a critical point of φu0 .
Consequently, by (2.15)-(2.17), Lemma 2.5 and Corollary 2.6, we derive that

∂2 fu0

∂s2 (1, 1) < 0,
∂2 fu0

∂t2 (1, 1) < 0, φ′′u0
(1) < 0.

Hence, u0 ∈ M
∗
λ andM∗λ is a closed set.

Lemma 2.13. If 1 < q < 2, 4 < p < 6, λ < λ∗ and assumptions (V) and (K) hold, then the infimum
mλ := inf

u∈M∗λ
Iλ(u) can be achieved by some uλ ∈ M∗λ and mλ > 0.

Proof. According to Lemma 2.5, mλ > −∞ when λ < λ∗. Let {un} ⊂ M
∗
λ be a minimizing sequence for

the functional Iλ, namely Iλ(un) → mλ as n → ∞. Since the functional Iλ is coercive onM∗λ, then {un}

is bounded in H. Going if necessary to a subsequence, we may assume that

un ⇀ uλ in H, un → uλ in Lp(R3).

Now, we first claim that u±λ , 0. In fact, from Lemma 2.2, Lemma 2.7 and the convergence of {un}

in Lp(R3), for any λ < λ∗, we conclude that

|u±λ |
p
p + λ

∫
R3

K(x)|u±λ |
qdx = lim

n→∞

(
|u±n |

p
p + λ

∫
R3

K(x)|u±n |
qdx

)
= lim

n→∞

(
||u±n ||

2 +

∫
R3
ϕu±n (u±n )2dx +

∫
R3
ϕu+n (u−n )2dx

)
≥ lim

n→∞
||u±n ||

2 > σ2 > 0.

This means that u±λ , 0 for any λ < λ∗.
Next, we proof that un → uλ in H. Arguing by contradiction, suppose that

||u+λ || < lim
n→∞

inf ||u+n || or ||u−λ || < lim
n→∞

inf ||u−n ||.
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From Corollary 2.10, there exists a unique pair (suλ , tuλ) such that ũλ = suλu
+
λ + tuλu

−
λ ∈ M

∗
λ and

Iλ(u+n + u−n ) = max
s,t>0

Iλ(suλu
+
n + tuλu

−
n ). Consequently,

mλ ≤ Iλ(ũλ) < lim
n→∞

inf Iλ(suλu
+
n + tuλu

−
n ) ≤ lim

n→∞
inf Iλ(u+n + u−n ) = mλ.

That is, we get a contradiction. Therefore, un → uλ in H and mλ is achieved by uλ. Combining the fact
thatM∗λ is closed, so uλ ∈ M∗λ.

Finally, it follows from uλ ∈ M∗λ that φuλ(r) reached its global maximum at r = 1. By this and
Lemma 2.11, we can deduce that φuλ(1) > 0, i.e., mλ > 0. This finishes the proof of Lemma 2.13.

3. Existence of sign-changing solutions

The main aim of this section is to prove our results. Thanks to Lemma 2.13, it suffices to check that
the minimizer uλ for mλ is a sign-changing of problem (1.3).

Proof of Theorem 1.1. Since uλ ∈ M∗λ, according to Corollary 2.10, we obtain that

Iλ(su+λ + tu−λ ) < Iλ(u+λ + u−λ ) = mλ, for (s, t) ∈ (R+ × R+)\(1, 1).

Moreover, we get Iλ(uλ) > 0, φ′′uλ(1, 1) < 0, (∂2 fuλ/∂s2)(1, 1) < 0 and (∂2 fuλ/∂t2)(1, 1) < 0.
Let D = (1 − δ, 1 + δ) × (1 − δ, 1 + δ) and h : D→ H by h(s, t) = su+λ + tu−λ for any (s, t) ∈ D. Then

there is a constant 0 < δ < 1 such that

0 < m := max
∂D

Iλ(h(s, t)) < mλ, max
(s,t)∈D

∂2 fh(s,t)

∂s2 (1, 1) < 0, (3.1)

max
(s,t)∈D

∂2 fh(s,t)

∂t2 (1, 1) < 0, max
(s,t)∈D

φ′′h(s,t)(1) < 0. (3.2)

By the quantitative deformation lemma, we prove that I′λ(uλ) = 0. Suppose by contradiction that
I′λ(uλ) , 0, then there exist λ1 > 0 and ξ > 0 such that

||I′λ(v)|| ≥ λ1 for all v ∈ H, ||v − uλ|| ≤ 3ξ.

Let ε = min{mλ−m
3 , λ1ξ

8 } and sξ = {u ∈ H : ||u− uλ|| ≤ ξ}, then the deformation lemma (see [32], Lemma
2.3) shows that there is a deformation η ∈ C([0, 1] × H,H) such that

(i) η(d, u) = u if u < I−λ ([mλ − 2ε,mλ + 2ε]) ∩ s2ξ, d ∈ [0, 1];
(ii) Iλ(η(d, u)) ≤ Iλ(u) for all u ∈ H, d ∈ [0, 1];
(iii) Iλ(η(d, u)) < mλ, ∀u ∈ Imλ

λ ∩ sξ, ∀d ∈ (0, 1].
First, we need to prove that

max
(s,t)∈D

Iλ(η(d, h(s, t))) < mλ for all d ∈ (0, 1]. (3.3)

In fact, for any d ∈ (0, 1], it follows from Corollary 2.10 and (ii) that

max
{(s,t)∈D: h(s,t)<sξ}

Iλ(η(d, h(s, t))) ≤ max
{(s,t)∈D: h(s,t)<sξ}

Iλ(h(s, t)) < mλ.
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Moreover, Corollary 2.10 and (iii) imply that

max
{(s,t)∈D: h(s,t)∈sξ}

Iλ(η(d, h(s, t))) < mλ for all d ∈ (0, 1].

Hence, (3.3) holds. From the continuity of η and (3.1)-(3.2), there exists a constant d0 ∈ (0, 1] such
that

max
(s,t)∈D

∂2 fη(d0,h(s,t))

∂s2 (1, 1) < 0,

max
(s,t)∈D

∂2 fη(d0,h(s,t))

∂t2 (1, 1) < 0,

max
(s,t)∈D

φ′′η(d0 ,h(s,t))
(1) < 0.

(3.4)

In the following, we prove that η(d0, h(D)) ∩ M∗λ , ∅, which contradicts the definition of mλ. In
fact, let g(s, t) = η(d0, h(s, t)) and

ψ1(s, t) =
(
⟨I′λ(h(s, t)), u+λ ⟩, ⟨I

′
λ(h(s, t)), u−λ ⟩

)
,

ψ2(s, t) =
(
1
s
⟨I′λ(g(s, t)), g+(s, t)⟩,

1
t
⟨I′λ(g(s, t)), g−(s, t)⟩

)
.

Then Corollary 2.10 and the degree theory yield deg(ψ1,D, 0) = 1. On the other hand, we know
ε < mλ−m

3 , m < mλ − 2ε. Hence, from (i) we have η(d, h(s, t)) = h(s, t) for d ∈ (0, 1], (s, t) ∈ ∂D, and it
follows that

ψ1(s, t) = ψ2(s, t) for any (s, t) ∈ ∂D.

Combining the homotopy invariance property of the degree, we get deg(ψ2,D, 0)=deg(ψ1,D, 0) = 1.
That is, there exists (s0, t0) ∈ D such that ψ2(s0, t0) = 0. Therefore, using (3.4) and ψ2(s0, t0) = 0,
we have η(d0, h(s0, t0)) ∈ M∗λ, i.e., η(d0, h(D)) ∩ M∗λ , ∅. From this, uλ is a critical point of Iλ, i.e.,
I′λ(uλ) = 0.
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https://doi.org/10.1016/j.anihpc.2004.07.005

6. V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol.
Methods Nonlinear Anal., 11 (1998), 283–293. http://dx.doi.org/10.12775/TMNA.1998.019

7. V. E. Bobkov, On existence of nodal solution to elliptic equations with convex-concave
nonlinearities, Ufa Math. J., 5 (2013), 18–30. http://dx.doi.org/10.13108/2013-5-2-18

8. V. E. Bobkov, On the existence of a continuous branch of nodal solutions of elliptic
equations with convex-concave nonlinearities, Differ. Equ., 50 (2014), 765–776.
https://doi.org/10.1134/S0012266114060056

9. S. Chen, L. Li, Infinitely many large energy solutions for the Schrödinger-Poisson
system with concave and convex nonlinearities, Appl. Math. Lett., 112 (2021), 106789.
https://doi.org/10.1016/j.aml.2020.106789

10. S. Chen, X. Tang, Ground state sign-changing solutions for asymptotically cubic or super-cubic
Schrödinger-Poisson systems without compact condition, Comput. Math. Appl., 74 (2017), 446–
458. https://doi.org/10.1016/j.camwa.2017.04.031

11. T. D’Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and
Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893–906.
https://doi.org/10.1017/S030821050000353X
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