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Abstract: In this paper, we devote to studying the existence of normalized solutions for the following
Schrödinger equation with Sobolev critical nonlinearities.{

−∆u = λu + µ|u|q−2u + |u|p−2u in RN ,∫
RN |u|2dx = a2,

where N > 3, 2 < q < 2 + 4
N , p = 2∗ = 2N

N−2 , a, µ > 0 and λ ∈ R is a Lagrange multiplier. Since the
existence result for 2 + 4

N < p < 2∗ has been proved, using an approximation method, that is let p→ 2∗,
we obtain that there exists a mountain-pass type solution for p = 2∗.
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1. Introduction

In this paper, we consider the existence of solutions for the following Schrödinger equation.

iψt + ∆ψ + µ|ψ|q−2ψ + |ψ|p−2ψ = 0 in R+ × R
N , (1.1)

where N > 3, 2 < q < 2 + 4
N and p = 2∗ = 2N

N−2 . The Schrödinger equation is a famous equation in
Physics and there are numerous papers to study it, we refer the readers to [1–4] and references therein.

For (1.1), we are particularly interested in the stationary waves of the form ψ(x, t) = e−iλtu(x), where
λ ∈ R and u : RN → R. Then u satisfies the equation

− ∆u = λu + µ|u|q−2u + |u|p−2u in RN . (1.2)

If we fix the L2-norm of u, that is, let

u ∈ S a := {v ∈ H1(RN) : ‖v‖22 = a2},
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where a > 0 is a constant. Then the corresponding functional of (1.2) is

Ep(u) =
1
2
‖∇u‖22 −

µ

q
‖u‖qq −

1
p
‖u‖p

p,

and λ appears as a Lagrange multiplier. Solutions of (1.2) with prescribed mass are always called
normalized solutions. It seems that there is profound physical significance to study normalized solutions.
In fact, for the Schrödinger equation, |ψ(x, t)|2 represents the probability density of a single particle
appearing in space x at time t. Naturally, there is∫

RN
|ψ(x, t)|2dx = 1.

Of course, in mathematics, we often consider∫
RN
|ψ(x, t)|2dx = a2.

There are a lot of papers to study the normalized solutions of Schrödinger equations and it is
impossible for us to provide complete references. We refer the readers to [5–11] and references therein.
Moreover, we refer the readers to [12–14] for the normalized solutions of fractional Schrödinger
equations and to [15–17] for the normalized solutions of Schrödinger systems.

When we study the normalized solutions, there will be a L2-critical exponent 2 + 4
N , which comes

from the Gagliardo-Nirenberg inequality [18]: for every 2 < p < 2∗, there exists an optimal constant
CN,p depending on N and p such that

‖u‖p 6 CN,p‖∇u‖γp

2 ‖u‖
1−γp

2 ∀u ∈ H1(RN),

where
γp :=

N(p − 2)
2p

.

By the Gagliardo-Nirenberg inequality, it is not difficult to prove that if the nonlinearities of equation
are L2-subcritical, then the corresponding functional is bounded from below on S a. For example,

J(u) =
1
2
‖∇u‖22 −

1
p
‖u‖p

p

is bounded from below on S a for 2 < p < 2 + 4
N and global minimizers of J|S a can be found, see [8, 19].

However, if the nonlinearities are L2-supercritical, the functional is unbounded from below on S a and it
seems impossible to search for a global minimizer. The first paper to deal with L2-supercritical is [5].
In [5], Jeanjean found the normalized solutions of mountain-pass type.

Compared with pure L2-subcritical or L2-supercritical case, the mixed case is more complicated.
In [9], Soave studied (1.2) for 2 < q < 2 + 4

N < p < 2∗ under L2 constraint. Since q is L2-subcritical
exponent and p is L2-supercritical exponent, we call µ|u|q−2 + |u|p−2u mixed nonlinearities. The first
existence result of normalized solutions in Sobolev critical case was also obtained by Soave [10].

Since the L2 constraint, there are some difficulties to observe the structure of Ep|S a . A possible
method is to consider the function

Ψp
u(s) := Ep(s ? u) =

1
2

e2s‖∇u‖22 −
µ

q
eqγq s‖u‖qq −

1
p

epγp s‖u‖p
p,
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where
s ? u := e

Ns
2 u(es·).

It is not difficult to prove that s ? u ∈ S a for all s ∈ R if u ∈ S a and hence we can study the structure of
Ψ

p
u to speculate the structure of Ep|S a .

If u is a critical point of Ep|S a , then 0 may be a critical point of Ψ
p
u . If 0 is a critical point of Ψ

p
u , then

(Ψp
u)′(0) = 0, that is

‖∇u‖22 = µγq‖u‖qq + γp‖u‖p
p. (1.3)

In fact, by Pohozaev identity, u satisfies (1.3) as long as u is a critical point of Ep. Now, we can define a
manifold

Pa,p := {u ∈ S a : Pp(u) = 0},

where
Pp(u) := ‖∇u‖22 − µγq‖u‖qq − γp‖u‖p

p.

It is clear that all critical points of Ep|S a belong to Pa,p and s ? u ∈ Pa,p if and only if (Ψp
u(s))′ = 0. We

divide Pa,p into three parts.

P+
a,p = {u ∈ Pa,p : (Ψp

u)′′(0) > 0} = {u ∈ Pa,p : 2‖∇u‖22 > µqγ2
q‖u‖

q
q + pγ2

p‖u‖
p
p},

P0
a,p = {u ∈ Pa,p : (Ψp

u)′′(0) = 0} =
{
u ∈ Pa,p : 2‖∇u‖22 = µqγ2

q‖u‖
q
q + pγ2

p‖u‖
p
p
}
,

and

P−a,p = {u ∈ Pa,p : (Ψp
u)′′(0) < 0} =

{
u ∈ Pa,p : 2‖∇u‖22 < µqγ2

q‖u‖
q
q + pγ2

p‖u‖
p
p
}
.

Define
m(a, p) := inf

u∈Pa,p
Ep(u) and m±(a, p) := inf

u∈P±a,p
Ep(u).

For 2 < q < 2 + 4
N < p 6 2∗, since qγq < 2 and pγp > 2, the function Ψ

p
u may have two critical points

on R, one is local minimum point and the other is global maximum point. Moreover, if we assume su is
the local minimum and tu is the global maximum. Then, it is not difficulty to check that su ? u ∈ P+

a,p

and tu ? u ∈ P−a,p (see [9, Lemma 5.3] and [10, Lemma 4.2] for more details). Therefore, it is natural to
speculate that Ep has two critical points on S a under appropriate assumptions, one is a local minimizer
on S a and is also a minimizer on P+

a,p, the other is a mountain-pass type critical point and is also a
minimizer on P−a,p.

In fact, the local minimizer and mountain-pass type solution of Ep|S a for 2 < q < 2 + 4
N < p < 2∗

have been found by Soave, see [9, Theorem 1.3]. For 2 < q < 2 + 4
N < p = 2∗, Soave obtained the

local minimum, but due to H1
rad(RN) ↪→ L2∗(RN) is not compact, there are some difficulties to obtain the

mountain-pass type solution (see Theorem 1.1 and Remark 1.1 in [10]). Therefore, it is natural to ask
the following question:

(Q) Does E2∗ |S a has a second critical point of mountain pass type when 2 < q < 2 + 4
N ?

In [6], Jeanjean and Le proved E2∗ |S a has a mountain-pass type solution and the solution is also a
minimizer on P−a,2∗ when N > 4. They constructed a minimax structure and proved a strict inequality
m−(a, 2∗) < m+(a, 2∗) + 1

N S
N
2 to obtain the compactness of a Palais-smale(PS) sequence. The proof
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of [6] is complicated especially the proof of the strict inequality, see Propositions 1.10, 1.11 and 1.12
for more details. After that, Wei and Wu [11] gave a simpler proof of m−(a, 2∗) < m+(a, 2∗) + 1

N S
N
2

and proved that the answer is also positive for (Q) when N = 3. Different from [6], We and Wu didn’t
construct the minimax structure, but directly proved the convergence of the minimizing sequence for
m−(a, 2∗), see Lemma 3.1 and Proposition 3.1 of [11] for more details.

Our main goal is giving a new proof of (Q) and the method we call the Sobolev subcritical approxi-
mation method. The idea of the Sobolev subcritical approximation method is: by [9, Theorem1.3 (ii)],
we know Ep|S a has a mountain-pass type solution up when 2 + 4

N < p < 2∗. Let p→ 2∗, it is not difficult
to prove that up ⇀ u in H1(RN). Then, we prove that u is the solution of (1.2), up → u in H1(RN), u is a
critical point of E2∗ |S a and is the minimum of E2∗ on P−a,2∗ . Proving strong convergence is a crucial step
in our proof, we also need use the strict inequality m−(a, 2∗) < m+(a, 2∗) + 1

N S
N
2 .

Let

C′ =

(2∗S
2∗
2 (2 − γqq)

2(2∗ − γqq)

) 2−γqq
2∗−2 q(2∗ − 2)

2Cq
N,q(2∗ − γqq)

(1.4)

and

C′′ =
22∗

NγqC
q
N,q(2∗ − γqq)

( γqqS
N
2

2 − γqq

) 2−γqq
2

.

Define α(N, q) := min{C′,C′′}. Our main result can be stated as follows.

Theorem 1.1. Let N > 3, 2 < q < 2 + 4
N , p = 2∗ and a, µ > 0. Moreover, let us suppose that

µaq(1−γq) < α(N, q). Then E2∗ |S a has a critical point of mountain-pass type which is positive, radially
symmetric and solves (1.2) for some λ < 0.

Remark 1.1. The definition of α(N, q) comes from [10, (1.6)] to ensure that Ψ
p
u has two critical points.

Remark 1.2. The Sobolev subcritical approximation method has been used by [20, Remark 1.3] and [7].
In [7], Li considered the normalized solutions of (1.2) with 2 + 4

N < q < p = 2∗ and proved (1.2) has a
normalized ground state for every µ > 0, see [7, Theorem 1.4]. Li solve an open problem

(Q’) Does E2∗ |S a have a ground state if µ > 0 and µa(1−γq)q large?
which is raised by Soave [10, Page 7]. For 2 < q < 2 + 4

N < p = 2∗, if we follow the step of Li, the last
inequality is invalid since qγq < 2 (see [7, Page 13]) and we can not prove u ∈ S a. In fact, we refer
some ideas of [10, 11] to obtain strong convergence in H1(RN).

2. Preliminaries

In this section, we collect some results which will be used in the rest of the paper. First, let us recall
the Sobolev inequality.

Lemma 2.1. For every N > 3, there is an optimal constant S > 0 depending only on N such that

S ‖u‖22∗ 6 ‖∇u‖22 ∀u ∈ D1,2(RN),

where D1,2(RN) denotes the completion of C∞c (RN) with respect to the norm ‖u‖D1,2 := ‖∇u‖2.
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It is well known [21] that S is achieved by

Uε,y(x) = [N(N − 2)]
N−2

4
( ε

ε2 + |x − y|2
) N−2

2 for ∀ε > 0 and y ∈ RN ,

and Uε,y satisfies the equation

−∆u = u2∗−1, u > 0 in RN .

Moreover,
‖∇Uε,y‖

2
2= ‖Uε,y‖

2∗
2∗ = S

N
2 .

Let CN,p be the optimal constant of Gagliardo-Nirenberg inequality. Then, we have

Lemma 2.2. Let 2 < p < 2∗, then limp→2∗ CN,p = S −
1
2 .

Proof. Denoting by uε := ϕUε,0 ∈ H1(RN), where ϕ ∈ C∞c (RN) be a radial cut-off function with

0 6 ϕ 6 1, ϕ = 1 in B1 and ϕ = 0 in Bc
2.

By the classical results [20], we have

‖∇uε‖22 = ‖uε‖2
∗

2∗ = S
N
2 + oε(1).

Since
|uε(x)|p 6 |uε(x)|2 + |uε(x)|2

∗

∀x ∈ RN ,

the Lebesgue dominated convergence theorem implies limp→2∗‖uε‖
p
p = ‖uε‖2

∗

2∗ . Using the Gagliardo-
Nirenberg inequality, we have

‖uε‖p 6 CN,p‖∇uε‖
γp

2 ‖uε‖
1−γp

2 .

Taking p→ 2∗, we obtain
‖uε‖2∗ 6 lim inf

p→2∗
CN,p‖∇uε‖2,

which implies S −
1
2 6 lim infp→2∗ CN,p.

For every u ∈ H1(RN)\{0}, using the Hölder inequality and the Sobolev inequality, we have

‖u‖p 6 ‖u‖
γp

2∗ ‖u‖
1−γp

2 6 S −
γp
2 ‖∇u‖γp

2 ‖u‖
1−γp

2

By the definition of CN,p, we obtain S −
γp
2 > CN,p. Therefore, S −

1
2 > lim supp→2∗ CN,p.

3. Proof of Theorem 1.1

For every 0 < µ < aq(γq−1)α(N, q). In order to use the existence result of Sobolev subcritical
case [9, Theorem 1.3], µ should satisfy

0 < µ < aq(γq−1)+
(1−γp)p(2−γqq)

γp p−2
( p(2 − γqq)
2Cp

N,p(γp p − γqq)

) 2−γqq
γp p−2 q(γp p − 2)

2Cq
N,q(γp p − γqq)

:= µp. (3.1)

By Lemma 2.2, is it not difficult to prove that

µp → aq(γq−1)C′ > aq(γq−1)α(N, q)

as p→ 2∗, where C′ is defined by (1.4). Therefore, µ satisfies (3.1) as long as p is close enough to 2∗.

Communications in Analysis and Mechanics Volume 15, Issue 3, 575–585.
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Lemma 3.1. We have
lim sup

p→2∗
m−(a, p) 6 m−(a, 2∗).

Proof. For every u ∈ S a, by [9, Lemma 5.3], there exists a unique tp,u ∈ R such that tp,u ? u ∈ P−a,p, that
is

e2tp,u‖∇u‖22 = µγqeqγqtp,u‖u‖qq + γpepγptp,u‖u‖p
p, (3.2)

and
2e2tp,u‖∇u‖22 < µqγ2

qeqγqtp,u‖u‖qq + pγ2
pepγptp,u‖u‖p

p. (3.3)

Since qγq < 2 and pγp > 2, by (3.2), we have(
µγq‖u‖

q
q

‖∇u‖22

) 1
2−qγq

< etp,u <

(
‖∇u‖22
γp‖u‖

p
p

) 1
pγp−2

.

We know
|u(x)|p 6 |u(x)|2 + |u(x)|2

∗

∀x ∈ RN ,

the Lebesgue dominated convergence theorem implies limp→2∗‖u‖
p
p = ‖u‖2

∗

2∗ . Therefore, there exists
two constants t2 > t1 independent of p such that tp,u ∈ [t1, t2] when p close enough to 2∗. Up to a
subsequence, we assume that tp,u → tu as p→ 2∗.

Let p→ 2∗, by (3.2) and (3.3), we obtain

e2tu‖∇u‖22 = µγqeqγqtu‖u‖qq + e2∗tu‖u‖2
∗

2∗ ,

and
2e2tu‖∇u‖22 6 µqγ2

qeqγqtu‖u‖qq + 2∗e2∗tu‖u‖2
∗

2∗ ,

which implies tu ? u ∈ P−a,2∗ ∪ P
0
a,2∗ . From [10, Page 20], we know P0

a,2∗ = ∅ and hence tu ? u ∈ P−a,2∗ .
By the definition of m−(a, p), we have

m−(a, p) 6 Ep(tp,u ? u) =
1
2

e2tp,u‖∇u‖22 −
µ

q
eqγqtp,u‖u‖qq −

1
p

epγptp,u‖u‖p
p,

which implies
lim sup

p→2∗
m−(a, p) 6 lim sup

p→2∗
Ep(tp,u ? u) = E2∗(tu ? u).

By the definition of m−(a, 2∗) and the arbitrary of u, we know the conclusion holds.

The proof of the following two lemmas can be found in [11, Lemmas 3.1, 3.2].

Lemma 3.2. 0 < m−(a, 2∗) < m+(a, 2∗) + 1
N S

N
2 .

Lemma 3.3. m±(a, 2∗) is non-increasing for 0 < a < (µ−1α(N, q))
1

q(1−γq) .

Let 2+ 4
N < pn < 2∗ and pn → 2∗ as n→ ∞. By [9, Theorem 1.3 (ii)], there exists mountain-pass type

solutions {un} ∈ P
−
a,pn

for Epn |S a which are positive, radially symmetric such that Epn(un) = m−(a, pn).

Lemma 3.4. {un} is bounded in H1(RN).
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Proof. By Lemma 3.1, we have

m−(a, 2∗) + 1 > Epn(un) =
(1
2
−

1
pnγpn

)
‖∇un‖

2
2 − µγq

( 1
qγq
−

1
pnγpn

)
‖un‖

q
q

>
(1
2
−

1
pnγpn

)
‖∇un‖

2
2 − µγq

( 1
qγq
−

1
pnγpn

)
Cq

N,qaq(1−γq)‖∇un‖
qγq

2

for n sufficiently large. Since qγq < 2, we know {un} is bounded in H1(RN).

Up to a subsequence, there exists u ∈ H1(RN) such that un ⇀ u in H1(RN), un → u in Lr(RN) with
r ∈ (2, 2∗) and un → u a.e. in RN . Our main goal is to prove that u is the mountain-pass type solution of
E2∗ |S a . Next, we prove u satisfies (1.2).

Lemma 3.5. There exists λ 6 0 such that

− ∆u = λu + µuq−1 + u2∗−1, (3.4)

and λ = 0 if and only if u ≡ 0.

Proof. By [9, Theorem 1.3], there exists λn < 0 such that

− ∆un = λnun + µuq−1
n + upn−1

n , (3.5)

which together with un ∈ P
−
a,pn

, implies

λna2 = µ(γq − 1)‖un‖
q
q + (γpn − 1)‖un‖

pn
pn
. (3.6)

Let n→ ∞, by (3.6), we have that there exists a λ 6 0 such that λn → λ and

λa2 = µ(γq − 1)‖u‖qq.

Therefore, λ = 0 if and only if u ≡ 0.
For every ψ ∈ H1(RN), since {u2∗−1

n } is bounded in L
2∗

2∗−1 (RN) and {uq−1
n } is bounded in L

q
q−1 (RN), by

weak convergence, we have∫
RN

u2∗−1
n ψdx→

∫
RN

u2∗−1ψdx and
∫
RN

uq−1
n ψdx→

∫
RN

uq−1ψdx

as n→ ∞. We know that

|un(x)|pn−1|ψ(x)| 6 |un(x)|q−1|ψ(x)| + |un(x)|2
∗−1|ψ(x)| ∀x ∈ RN .

Therefore, the Lebesgue dominated convergence theorem implies∫
RN

upn−1
n ψdx→

∫
RN

u2∗−1ψdx as n→ ∞.

By (3.5), we have

0 =

∫
RN

(∇un · ∇ψ − λnunψ − µuq−1
n ψ − upn−1

n ψ)dx

→

∫
RN

(∇u · ∇ψ − λuψ − µuq−1ψ − u2∗−1ψ)dx,

as n→ ∞, which implies u satisfies (3.4).
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Set ‖u‖2 = c 6 a. By Pohozaev identity, we know u ∈ Pc,2∗ . Thus, by [10, (4.2)],

E2∗(u) > m(c, 2∗) = m+(c, 2∗)

Lemma 3.6. We have un → u in D1,2(RN) as n→ ∞.

Proof. Let vn = un − u ⇀ 0 in H1(RN) as n→ ∞. The Brézis-Lieb Lemma [22] implies

‖∇un‖
2
2 = ‖∇u‖22 + ‖∇vn‖

2
2 + on(1), ‖un‖

2∗
2∗ = ‖u‖2

∗

2∗ + ‖vn‖
2∗
2∗ + on(1),

and
‖un‖

q
q = ‖u‖qq + ‖vn‖

q
q + on(1) = ‖u‖qq + on(1).

Since un ∈ P
−
a,pn

, by the Young inequality, we know

‖∇un‖
2
2 = µγq‖un‖

q
q + γpn‖un‖

pn
pn

6 µγq‖un‖
q
q + γpn

(2∗ − pn

2∗ − q
‖un‖

q
q +

pn − q
2∗ − q

‖un‖
2∗
2∗
)

= µγq‖un‖
q
q + ‖un‖

2∗
2∗ + on(1).

Therefore,
‖∇vn‖

2
2 6 ‖vn‖

2∗
2∗ + o(1) 6 S −

2∗
2 ‖∇vn‖

2∗
2 + on(1). (3.7)

We assume that ‖∇vn‖
2
2 → l as n→ ∞. By (3.7), we know l = 0 or l > S

N
2 . If l > S

N
2 , by Lemmas 3.1

and 3.3, we have

m−(a, 2∗) > lim sup
n→∞

m−(a, pn) = lim sup
n→∞

Epn(un)

= lim sup
n→∞

[(1
2
−

1
pnγpn

)
‖∇un‖

2
2 − µγq

( 1
qγq
−

1
pnγpn

)
‖un‖

q
q

]
= lim sup

n→∞

[(1
2
−

1
2∗

)
‖∇un‖

2
2 − µγq

( 1
qγq
−

1
2∗

)
‖un‖

q
q

]
= lim sup

n→∞

(1
2
−

1
2∗

)
‖∇vn‖

2
2 +

[(1
2
−

1
2∗

)
‖∇u‖22 − µγq

( 1
qγq
−

1
2∗

)
‖u‖qq

]
= lim sup

n→∞

(1
2
−

1
2∗

)
‖∇vn‖

2
2 + E2∗(u)

> lim sup
n→∞

(1
2
−

1
2∗

)
‖∇vn‖

2
2 + m+(c, 2∗)

>
1
N

S
N
2 + m+(a, 2∗),

which contradicts with Lemma 3.2. Thus, we obtain l = 0 which implies un → u in D1,2(RN).

Lemma 3.7. We have u . 0.

Proof. Since un ∈ P
−
a,pn

, we have

‖∇un‖
2
2 = µγq‖un‖

q
q + γpn‖un‖

pn
pn
, (3.8)
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and
2‖∇un‖

2
2 < µqγ2

q‖un‖
q
q + pnγ

2
pn
‖un‖

pn
pn
. (3.9)

Combining (3.8) and (3.9), there is(
2 − qγq

)
‖∇un‖

2
2 < γpn

(
pnγpn − qγq

)
‖un‖

pn
pn

6 γpn

(
pnγpn − qγq

)
Cpn

N,pn
apn(1−γpn )‖∇un‖

pnγpn
2 .

That is
2 − qγq 6 γpn

(
pnγpn − qγq

)
Cpn

N,pn
apn(1−γpn )‖∇un‖

pnγpn−2
2 .

Let n→ ∞, by Lemma 2.2, we obtain

2 − qγq 6
(
2∗ − qγq

)
S −

2∗
2 ‖∇u‖2

∗−2
2 ,

which implies u . 0.

Remark 3.1. By Lemma 3.5, we have λ < 0.

Lemma 3.8. un → u in L2(RN) as n→ ∞ and hence u ∈ S a.

Proof. The idea of this proof comes from the proof of [10, Proposition 3.1]. Multiplying un − u on both
sides of (3.4) and (3.5), integrating and then subtract, we obtain∫

RN
|∇(un − u)|2dx −

∫
RN

(λnun − λu)(un − u)dx =∫
RN
µ(|un|

q−2undx − |u|q−2u)(un − u)dx +

∫
RN

(|un|
pn−2un − |u|2

∗−2u)(un − u)dx.
(3.10)

By Lemma 3.6, since un → u in D1,2(RN), the first, third and fourth integrals of (3.10) tend to 0 as
n→ ∞. Therefore,

0 = lim
n→∞

∫
RN

(λnun − λu)(un − u)dx = λ lim
n→∞

∫
RN

(un − u)2dx,

which implies un → u in L2(RN).

Remark 3.2. From Lemma 3.6, we get that un → u in H1(RN) as n→ ∞.

Proof of Theorem 1.1. By Lemma 3.5 and Remark 3.2, we just need to prove that E2∗(u) = m−(a, 2∗)
and u ∈ P−a,2∗ . Since un → u in D1,2(RN), by the Sobolev inequality, un → u in L2∗(RN). Therefore,
combining Lemma 3.1, we have

m−(a, 2∗) 6 E2∗(u) = lim
n→∞

Epn(un) = lim
n→∞

m−(a, pn) 6 m−(a, 2∗), (3.11)

which implies E2∗(u) = m−(a, 2∗). Let n→ ∞, by (3.8) and (3.9), we know that u ∈ P−a,2∗ ∪ P
0
a,2∗ . Since

P0
a,2∗ = ∅ (see [10, Page 20]), there is u ∈ P−a,2∗ .

Remark 3.3. From (3.11), we can get that limp→2∗ m−(a, p) = m−(a, 2∗).
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http://www.numdam.org/item?id=AIHPC 1984 1 4 223 0

9. N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J.
Differential Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016

10. N. Soave, Normalized ground states for the NLS equation with combined non-
linearities: the Sobolev critical case, J. Funct. Anal., 269 (2020), 6941–6987.
https://doi.org/10.1016/j.jfa.2020.108610

Communications in Analysis and Mechanics Volume 15, Issue 3, 575–585.

http://dx.doi.org/https://doi.org/10.1007/s12215-022-00822-y
http://dx.doi.org/https://doi.org/10.1016/0362-546X(90)90023-A
http://dx.doi.org/https://doi.org/10.1515/dema-2022-0169
http://dx.doi.org/https://doi.org/10.1080/03605300701588805
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(96)00021-1
http://dx.doi.org/https://doi.org/10.1007/s00208-021-02228-0
http://dx.doi.org/https://doi.org/10.1007/s00526-021-02020-7
http://dx.doi.org/http://www.numdam.org/item?id=AIHPC_1984__1_4_223_0
http://dx.doi.org/https://doi.org/10.1016/j.jde.2020.05.016
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2020.108610


585

11. J. Wei, Y. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent
and mixed nonlinearities, J. Funct. Anal., 283 (2022). https://doi.org/10.1016/j.jfa.2022.109574

12. H. Luo, Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined
nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020). https://doi.org/10.1007/s00526-
020-01814-5

13. M. Zhen, B. Zhang, V. D. Radulescu, Normalized solutions for nonlinear coupled fractional
systems: low and high perturbations in the attractive case, Discrete Contin. Dyn. Syst., 41 (2021),
2653–2676. https://doi.org/10.3934/dcds.2020379

14. J. Zuo, C. Liu, C. Vetro, Normalized solutions to the fractional Schrödinger equation with potential,
Mediterr. J. Math., 20 (2023). https://doi.org/10.1007/s00009-023-02422-1

15. T. Bartsch, N. Soave, A natural constraint approach to normalized solutions of non-
linear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998–5037.
https://doi.org/10.1016/j.jfa.2017.01.025

16. M. Li, J. He, H. Xu, Yang, M. Yang, Normalized solutions for a coupled fractional Schrödinger sys-
tem in low dimensions, Bound. Value Probl., (2020), 1687–2762. https://doi.org/10.1186/s13661-
020-01463-9

17. M. Liu, W. Zou, Normalized solutions for a system of fractional Schrödinger equations with linear
coupling, Minimax Theory Appl., 7 (2022), 303–320.

18. M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun.
Math. Phys., 87 (1982), 567–576. http://projecteuclid.org/euclid.cmp/1103922134

19. C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc.,
45 (1982), 169–192. https://doi.org/10.1112/plms/s3-45.1.169
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