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Abstract: In this paper, we devote to studying the existence of normalized solutions for the following
Schrodinger equation with Sobolev critical nonlinearities.

—Au = Au+ plulu + julP?u inRY,
fRNlulzdx =a°,

where N > 3,2 <g <2+ Jiv’ p=2= %, a,u > 0and A € R is a Lagrange multiplier. Since the

existence result for 2 + % < p < 2* has been proved, using an approximation method, that is let p — 27,

we obtain that there exists a mountain-pass type solution for p = 2*.
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1. Introduction

In this paper, we consider the existence of solutions for the following Schrodinger equation.
i+ A+l Y+ WPy =0 inR, xRY, (1.1)

where N > 3,2 < g <2+ % and p = 2" = % The Schrodinger equation 1s a famous equation in
Physics and there are numerous papers to study it, we refer the readers to [1-4] and references therein.

For (1.1), we are particularly interested in the stationary waves of the form y(x, t) = e”"u(x), where
A€Randu: RY — R. Then u satisfies the equation

—Au=Au+ ,ululq_zu + |ulPu in RV, (1.2)
If we fix the L>-norm of u, that is, let

ueS,:=veHM®): |V} =d,
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where a > 0 is a constant. Then the corresponding functional of (1.2) is
1 u 1
Ey(u) = EIIVullﬁ - 5||u||g - ;IIMII”,

and A appears as a Lagrange multiplier. Solutions of (1.2) with prescribed mass are always called
normalized solutions. It seems that there is profound physical significance to study normalized solutions.
In fact, for the Schrddinger equation, [/(x, £)|* represents the probability density of a single particle
appearing in space x at time ¢. Naturally, there is

f lW(x, H)Pdx = 1.
RN

Of course, in mathematics, we often consider

f lW(x,)dx = a*.
RN

There are a lot of papers to study the normalized solutions of Schrodinger equations and it is
impossible for us to provide complete references. We refer the readers to [5—11] and references therein.
Moreover, we refer the readers to [12-14] for the normalized solutions of fractional Schrodinger
equations and to [15-17] for the normalized solutions of Schrodinger systems.

When we study the normalized solutions, there will be a L-critical exponent 2 + %, which comes
from the Gagliardo-Nirenberg inequality [18]: for every 2 < p < 27, there exists an optimal constant
Cy,p depending on N and p such that

Y 1-y, 1N
lleell, < CwvplI Vel [lull, ™ Yue H (RY),

where
_Np-=-2
T2p
By the Gagliardo-Nirenberg inequality, it is not difficult to prove that if the nonlinearities of equation
are L?-subcritical, then the corresponding functional is bounded from below on S ,. For example,

1 1
Jw) = S1IVull; - Sl

is bounded from below on S, for2 < p <2 + ]% and global minimizers of J|g, can be found, see [8, 19].
However, if the nonlinearities are L>-supercritical, the functional is unbounded from below on S, and it
seems impossible to search for a global minimizer. The first paper to deal with L2-supercritical is [5].
In [5], Jeanjean found the normalized solutions of mountain-pass type.

Compared with pure L2-subcritical or L?-supercritical case, the mixed case is more complicated.
In [9], Soave studied (1.2) for 2 < g < 2+ % < p < 2* under L? constraint. Since g is L*-subcritical
exponent and p is L?-supercritical exponent, we call u|u|*"? + |u|’~>u mixed nonlinearities. The first
existence result of normalized solutions in Sobolev critical case was also obtained by Soave [10].

Since the L? constraint, there are some difficulties to observe the structure of E bls,. A possible
method is to consider the function

1 N /l \) 1 Ay
Wi (s) == Ep(s xu) = 562 IVully = = e |lull? - ;e””" lull,
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where
Ns K
sxu:=ezue).

It is not difficult to prove that s x u € S, for all s € R if u € §, and hence we can study the structure of
P to speculate the structure of E s, .
If u is a critical point of E,|s,, then 0 may be a critical point of /. If 0 is a critical point of ¥}, then
(Y1) (0) = 0, that is
IVully = wygllull] + ¥, llull). (1.3)

In fact, by Pohozaev identity, u satisfies (1.3) as long as u is a critical point of E,. Now, we can define a
manifold
Popi={uecS,: P,(u) =0},

where
P,(u) = ||Vull; — Y llulld = ypllully.

It is clear that all critical points of E,|g, belong to #, , and s x u € P, , if and only if (PP (s)) = 0. We
divide ¥, , into three parts.

Prp = €Pup: (F1)'(0) > 0} = {u € Py : 20IVull; > pgy lulll + py:lullh),

Po, =€ Pup: (P1)'(0) =0} = {u € Puy : 20Vully = ugyllulll + pyllull?),
and
Py = €Pup: (P0)'(0) <O} = {u € Py : 20IVull; < pgyillulll + pyllullh).

Define
m(a, p) := inf E,(u) and m*(a, p) := inf E,(u).
ueP, uePy

For2 <g<2+ % < p < 2%, since gy, < 2 and py, > 2, the function ¥}, may have two critical points
on R, one is local minimum point and the other is global maximum point. Moreover, if we assume s, is
the local minimum and 7, is the global maximum. Then, it is not difficulty to check that s, * u € £, ,
andt, x u € SD;I, (see [9, Lemma 5.3] and [10, Lemma 4.2] for more details). Therefore, it is natural to
speculate that £, has two critical points on S, under appropriate assumptions, one is a local minimizer
on S, and is also a minimizer on ¥, ,, the other is a mountain-pass type critical point and is also a
minimizer on ¥, .

In fact, the local minimizer and mountain-pass type solution of E,|s, for2 < g <2 + % <p<?2
have been found by Soave, see [9, Theorem 1.3]. For2 < g < 2 + % < p = 2%, Soave obtained the
local minimum, but due to H! (RY) < L? (R") is not compact, there are some difficulties to obtain the
mountain-pass type solution (see Theorem 1.1 and Remark 1.1 in [10]). Therefore, it is natural to ask
the following question:

(Q) Does E»-|s, has a second critical point of mountain pass type when2 < g <2 + %?

In [6], Jeanjean and Le proved E,:|s, has a mountain-pass type solution and the solution is also a
minimizer on #_,. when N > 4. They constructed a minimax structure and proved a strict inequality

m(a,2") < m*(a,2*) + %S % to obtain the compactness of a Palais-smale(PS) sequence. The proof
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of [6] is complicated especially the proof of the strict inequality, see Propositions 1.10, 1.11 and 1.12
for more details. After that, Wei and Wu [11] gave a simpler proof of m™(a,2*) < m*(a,2") + %S%
and proved that the answer is also positive for (Q) when N = 3. Different from [6], We and Wu didn’t
construct the minimax structure, but directly proved the convergence of the minimizing sequence for
m~(a,2"), see Lemma 3.1 and Proposition 3.1 of [11] for more details.

Our main goal is giving a new proof of (Q) and the method we call the Sobolev subcritical approxi-
mation method. The idea of the Sobolev subcritical approximation method is: by [9, Theorem1.3 (ii)],
we know E[s, has a mountain-pass type solution u, when 2 + % < p <2 Let p — 2%, it is not difficult
to prove that u, — u in H'(RY). Then, we prove that u is the solution of (1.2), u, — uin H'®RV), uisa
critical point of E»|s, and is the minimum of E>- on #,,.. Proving strong convergence is a crucial step
in our proof, we also need use the strict inequality m~(a,2*) < m*(a,2") + %S 3

Let

, (Z*S T2- qu))w g2 -2)

(1.4)
22" = y49) 232" = v4q)
and
N  2-yqq
cr = 22" (mS z ) 2
Ny CR (2" =YD \2 = veq

Define a(N, g) := min{C’, C"}. Our main result can be stated as follows.

Theorem 1.1. Let N > 3,2 < g < 2+ % p = 2" and a,u > 0. Moreover, let us suppose that
ua?=v) < a(N, q). Then Ey|s, has a critical point of mountain-pass type which is positive, radially
symmetric and solves (1.2) for some A < 0.

Remark 1.1. The definition of a(N, g) comes from [10, (1.6)] to ensure that W/, has two critical points.

Remark 1.2. The Sobolev subcritical approximation method has been used by [20, Remark 1.3] and [7].
In [7], Li considered the normalized solutions of (1.2) with 2 + % < g < p=2"and proved (1.2) has a
normalized ground state for every u > 0, see [7, Theorem 1.4]. Li solve an open problem

(Q’) Does Ey:|s, have a ground state if u > 0 and ua'' ™72 large?
which is raised by Soave [10, Page 7]. For2 < g <2 + % < p = 2%, if we follow the step of Li, the last
inequality is invalid since gy, < 2 (see [7, Page 13]) and we can not prove u € S,. In fact, we refer
some ideas of [10, 11] to obtain strong convergence in H'(R").

2. Preliminaries

In this section, we collect some results which will be used in the rest of the paper. First, let us recall
the Sobolev inequality.

Lemma 2.1. For every N > 3, there is an optimal constant S > 0 depending only on N such that
Sllull3- <|IVul;  Vu € DRY),
where D*(RY) denotes the completion of C>(RYN) with respect to the norm |ul|p12 := ||Vull,.
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It is well known [21] that S is achieved by
N=2 & v N
Uy = INN =21 % (5——) for Ve > 0and y € RV,

and U, satisfies the equation
—Au=u>"", u>0 inRM.
Moreover,
VU 5= U3 = S 2.
Let Cy,, be the optimal constant of Gagliardo-Nirenberg inequality. Then, we have
Lemma 2.2. Let 2 < p < 2°, then lim,_ Cy, = S™2.
Proof. Denoting by u, := U,y € H'(RY), where ¢ € C2(R") be a radial cut-off function with
0<p<l, ¢ =11in B, and ¢ =01in B;.
By the classical results [20], we have

2 2* y
IVugll; = lluglls- = S2 + og(1).

Since
(O < ()] + Jua(x)]* Vx € RV,

the Lebesgue dominated convergence theorem implies limpﬁz*llugllﬁ = |lugl|%.. Using the Gagliardo-

Nirenberg inequality, we have

Y 1-y,
lletell, < Cwvpll Vel lluell, "

Taking p — 2*, we obtain
”u£”2* < lim inf CN,p” V us”Z»
po2*

which implies S 2 < liminf,_2- Cy,.
For every u € H'(RV)\{0}, using the Holder inequality and the Sobolev inequality, we have

Y I-y - Y I-y
lleall, < Mol Meell, ™" < STVl leall, ™"

By the definition of Cy,, we obtain § T>C np- Therefore, § 2 > lim sup,_p- Cn,p-
3. Proof of Theorem 1.1

For every 0 < u < a? Ya(N,q). In order to use the existence result of Sobolev subcritical
case [9, Theorem 1.3], u should satisfy

q(yq—l)+w( P2 —v,9) )5,,;33 qy,p —2)

O<u<a -
2C3,(YpP = Y49)

=y, (3.1)
208 vop =ve) "

By Lemma 2.2, is it not difficult to prove that
TR a0 D’ > aq(y"_l)a'(N, q)

as p — 2%, where C’ is defined by (1.4). Therefore, u satisfies (3.1) as long as p is close enough to 2*.
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Lemma 3.1. We have
limsupm™ (a, p) < m (a,2").

p=2
Proof. For every u € §,, by [9, Lemma 5.3], there exists a unique #,, € R such that¢,, * u € P;,p, that
is
SVl = e ull] + e ull, (3.2)
and
2e2r[Vuly < pyge™lully + py,er |l (3.3)

Since gy, < 2 and py, > 2, by (3.2), we have

1 1

wygldig\=e IVl |\

IVull? ¢ )
2 YollUllp

‘We know
lu(x))” < Ju(x)* + u(x)*  VxeRY,

the Lebesgue dominated convergence theorem implies lim,_-[ull}, = |lul|%.. Therefore, there exists
two constants #, > t; independent of p such that t,, € [t,7,] when p close enough to 2*. Up to a
subsequence, we assume that 7,, — t, as p — 2"

Let p — 2%, by (3.2) and (3.3), we obtain

2%ty |

2 2 2
e |IVully = pyge™ Nullf + e “llully-,

and
262|Vully < pgyze™lull? +2*e* lully.,
which implies #, * u € ,,. UP) .. From [10, Page 20], we know Pgl* =0 and hence 1, x u € P_,..
By the definition of m™(a, p), we have

- 1, 2 _H 1
(@ p) < Epltpu k) = 3¢ IVulfy = 2l = el

which implies

limsupm™(a, p) < limsup E,(t,, *x u) = E»-(t, *x u).
p—2* p—2*

By the definition of m~(a,2") and the arbitrary of u#, we know the conclusion holds.
The proof of the following two lemmas can be found in [11, Lemmas 3.1, 3.2].

Lemma 3.2. 0 < m™(a,2%) < m*(a,2") + 5%,

Lemma 3.3. m*(a,2") is non-increasing for 0 < a < (u~'a(N, q))m.

Let 2+% < p, <2"and p, — 2" asn — oo. By [9, Theorem 1.3 (i1)], there exists mountain-pass type
solutions {u,} € P;,pn for E, |s, which are positive, radially symmetric such that £, (u,) = m™(a, p,).

Lemma 3.4. {u,} is bounded in H'(RM).
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Proof. By Lemma 3.1, we have

| 1
m (@2 + 1> E, (u,) = (5 -

5 J[[A7

1
IVull3 — pyg(— -
nm) 2 q(qvq Pn¥pn

1- qay
)Ch ™ V17

1 1 1
> (5~ pnyp,,)”v”"'@ —m(q—yq o

for n sufficiently large. Since gy, < 2, we know {u,} is bounded in H RM).

Up to a subsequence, there exists u € H'(RY) such that u, — u in H'(RY), u, — u in L"(R") with
r€(2,2*)and u, — u a.e. in RV, Our main goal is to prove that u is the mountain-pass type solution of
E»-|s,. Next, we prove u satisfies (1.2).

Lemma 3.5. There exists A < 0 such that

—Au = Adu+ pud (3.4)
and A = 0 ifand only if u = 0.
Proof. By [9, Theorem 1.3], there exists 4, < 0 such that

- Au,, = Au, + ,uuz_l + uﬁ"‘l, 3.5
which together with u, € £, , , implies
0% = plyg = Dllualld + (p, = Dl (3.6)

Let n — oo, by (3.6), we have that there exists a 4 < 0 such that 4, — 4 and

Aa® = p(yq = Dljully,

Therefore, A = 0 if and only if u = 0. )
For every ¢ € H'(RY), since {2 '} is bounded in L==7(R") and {u!"'} is bounded in LT (RY), by
weak convergence, we have

fui*_lwdx%f u* ydx and fug_lwdxﬁ ul"ydx
RV RN RV RV

as n — oo. We know that

Jn O O] < Lty I WOO] + lan(OF ()] Y € RN

Therefore, the Lebesgue dominated convergence theorem implies

f uYydx — f u? "ydx asn — oo,
RV RV
By (3.5), we have

R T e S
RN
- (Vu -V — uy — ™"y — u* ~"Y)dx,
RN
as n — oo, which implies u satisfies (3.4).
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Set |[u||, = ¢ < a. By Pohozaev identity, we know u € P ,-. Thus, by [10, (4.2)],
Ey»(u) > m(c,2") =m*(c,2%)
Lemma 3.6. We have u, — u in D'"*(RY) as n — oo.
Proof. Letv, = u, —u — 0in H'(R") as n — oo. The Brézis-Lieb Lemma [22] implies
Vi3 = [IVally + 1Vvall3 + 0u(D), Nutallz: = Nl + Vall3: + 04 (D),

and
luallZ = 1lulld + 11vall] + 0,(1) = [lullz + 0,(1).

Since u, € P

a,pn’®

by the Young inequality, we know

2
IVunlly = pygllullg + vp,luall}:

2" = pn Pn=4, o
< ygllunlly + 75, (5= g + S [T
= pygllullg + . + 0, (D).
Therefore,
* 2* *
IVval13 < IValB- + 0(1) < S™ZIIVv, I3 + 0,(1). (3.7)

We assume that ||Vv,,||§ — lasn — oo. By (3.7), we know [ =0or > S2.Ifl > S%, by Lemmas 3.1
and 3.3, we have

m~(a,2") > limsupm™(a, p,) = limsup E,, (u,)

n—o00 n—oo

1 1

= fimsup G- pnvp,l)llvu"”% _Wq(q_vq ) pnm)”u"”Z]

= lim sup [(% - %)nmné —ufyq(qiyq - %)uunug]

= timsup (5 = 2:)I9valB + [(5 - 5219 —wq(qiyq ~ ]
= timsup (5 = 21Vl + B0

> timsup (5~ 52Vl + (e, 2)

1 |
> —87 +m*(a,2"),
N

which contradicts with Lemma 3.2. Thus, we obtain / = 0 which implies u,, — u in D'*(R").

Lemma 3.7. We have u = 0.

apy> WE have

Proof. Since u, € P
IVitall3 = pryglliealld + v, el 2, (3.8)
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and
2Vl < ugy2llulle + puy? a2 (3.9)
Combining (3.8) and (3.9), there is

(2 - cm,)IIVunlli < Vp,,(pnypn - cm)llunIIZ;
DPnYpn )

n n 1- m
<Yy, (Pa¥p, — ag)Cht, a7Vt ]

That is
_ Y pn—2
2 = qvy <Vp(Pu¥p, — 474)Chr,, @ IV |57

Let n — oo, by Lemma 2.2, we obtain

2 - qy, < (2" - qv)S T IVl 2,
which implies u # 0.
Remark 3.1. By Lemma 3.5, we have 4 < 0.
Lemma 3.8. u, — uin L*>(RY) as n — oo and hence u € S,

Proof. The idea of this proof comes from the proof of [10, Proposition 3.1]. Multiplying u,, — u on both
sides of (3.4) and (3.5), integrating and then subtract, we obtain

IV(u, — u)|*dx — f (At — A, — w)dx =
RY RY (3.10)
f wluan| " undx — [l u)(u, — u)dx + f (et 214, — J* ~210)(u, — u)dx.

RN RN

By Lemma 3.6, since u, — u in D"*(R"), the first, third and fourth integrals of (3.10) tend to O as
n — oo. Therefore,

0= lim f (A u, — Auw)(u, — u)dx = A lim f (u, — u)’dx,
RV n—oo

n—oco RN
which implies u,, — u in L>(RV).
Remark 3.2. From Lemma 3.6, we get that u, — u in H'(RV) as n — oo.

Proof of Theorem 1.1. By Lemma 3.5 and Remark 3.2, we just need to prove that E,-(«) = m™(a,2")
and u € P_,.. Since u, — u in D"*(RY), by the Sobolev inequality, u, — u in L* (R"). Therefore,
combining Lemma 3.1, we have

m (a,2") < Ex(u) = lim E,, (u,) = lim m™ (a, p,) < m” (a,2"), (3.11)

which implies E»-(u) = m~(a,2"). Let n — oo, by (3.8) and (3.9), we know that u € SD;’Z* U Pg,z*. Since
Pg,z* = ( (see [10, Page 20]), there is u € P;,z*-

Remark 3.3. From (3.11), we can get that lim,,_,- m™(a, p) = m (a,2").

Communications in Analysis and Mechanics Volume 15, Issue 3, 575-585.



584

Acknowledgments

The second author was supported by Postgraduate Research an Innovation Project of Chongqing
(No. CYS23184).

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.

Conflict of interest

The authors declare there is no conflict of interest.

References

1.

10.

M. B. Benboubker, H. Benkhalou, H. Hjiaj, I. Nyanquini, Entropy solutions for elliptic Schrodinger
type equations under Fourier boundary conditions, Rend. Circ. Mat. Palermo (2), 72 (2023),
2831-2855. https://doi.org/10.1007/s12215-022-00822-y

. T. Cazenave, F. B. Weissler, The Cauchy problem for the critical nonlinear Schrodinger equation in

HS@RY), Nonlinear Anal., 14 (1990), 807-836. https://doi.org/10.1016/0362-546X(90)90023-A

. M. Khiddi, L. Essafi, Infinitely many solutions for quasilinear Schrodinger equations with sign-

changing nonlinearity without the aid of 4-superlinear at infinity, Demonstr. Math., 55 (2022),
831-842. https://doi.org/10.1515/dema-2022-0169

T. Tao, M. Visan, X. Zhang, The nonlinear Schrodinger equation with combined
power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.
https://doi.org/10.1080/03605300701588805

. L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations,

Nonlinear Anal., 28 (1997), 1633-1659. https://doi.org/10.1016/S0362-546X(96)00021-1

L. Jeanjean, T. T. Le, Multiple normalized solutions for a Sobolev critical Schrodinger equation,
Math. Ann., 384 (2022), 101-134. https://doi.org/10.1007/s00208-021-02228-0

. X. Li, Existence of normalized ground states for the Sobolev critical Schrédinger equa-

tion with combined nonlinearities, Calc. Var. Partial Differential Equations, 60 (2021).
https://doi.org/10.1007/s00526-021-02020-7

. P. L. Lions, The concentration-compactness principle in the calculus of variations. The lo-

cally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.
http://www.numdam.org/item?id=AIHPC_1984__1 4 223 0

N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J.
Differential Equations, 269 (2020), 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016

N. Soave, Normalized ground states for the NLS equation with combined non-
linearities: the Sobolev critical case, J. Funct. Anal., 269 (2020), 6941-6987.
https://doi.org/10.1016/j.jfa.2020.108610

Communications in Analysis and Mechanics Volume 15, Issue 3, 575-585.


http://dx.doi.org/https://doi.org/10.1007/s12215-022-00822-y
http://dx.doi.org/https://doi.org/10.1016/0362-546X(90)90023-A
http://dx.doi.org/https://doi.org/10.1515/dema-2022-0169
http://dx.doi.org/https://doi.org/10.1080/03605300701588805
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(96)00021-1
http://dx.doi.org/https://doi.org/10.1007/s00208-021-02228-0
http://dx.doi.org/https://doi.org/10.1007/s00526-021-02020-7
http://dx.doi.org/http://www.numdam.org/item?id=AIHPC_1984__1_4_223_0
http://dx.doi.org/https://doi.org/10.1016/j.jde.2020.05.016
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2020.108610

585

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Wei, Y. Wu, Normalized solutions for Schrodinger equations with critical Sobolev exponent
and mixed nonlinearities, J. Funct. Anal., 283 (2022). https://doi.org/10.1016/j.jfa.2022.109574

H. Luo, Z. Zhang, Normalized solutions to the fractional Schrodinger equations with combined
nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020). https://doi.org/10.1007/s00526-
020-01814-5

M. Zhen, B. Zhang, V. D. Radulescu, Normalized solutions for nonlinear coupled fractional
systems: low and high perturbations in the attractive case, Discrete Contin. Dyn. Syst., 41 (2021),
2653-2676. https://doi.org/10.3934/dcds.2020379

J. Zuo, C. Liu, C. Vetro, Normalized solutions to the fractional Schrodinger equation with potential,
Mediterr. J. Math., 20 (2023). https://doi.org/10.1007/s00009-023-02422-1

T. Bartsch, N. Soave, A natural constraint approach to normalized solutions of non-
linear Schrodinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.
https://doi.org/10.1016/j.jfa.2017.01.025

M. Li, J. He, H. Xu, Yang, M. Yang, Normalized solutions for a coupled fractional Schrodinger sys-
tem in low dimensions, Bound. Value Probl., (2020), 1687-2762. https://doi.org/10.1186/s13661-
020-01463-9

M. Liu, W. Zou, Normalized solutions for a system of fractional Schrédinger equations with linear
coupling, Minimax Theory Appl., 7 (2022), 303-320.

M. I. Weinstein, Nonlinear Schrodinger equations and sharp interpolation estimates, Commun.
Math. Phys., 87 (1982), 567-576. http://projecteuclid.org/euclid.cmp/1103922134

C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc.,
45 (1982), 169-192. https://doi.org/10.1112/plms/s3-45.1.169

H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involv-
ing critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
https://doi.org/10.1002/cpa.3160360405

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353-372.
https://doi.org/10.1007/BF02418013

H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of
functionals, Proc. Amer. Math. Soc., 88 (1983), 486—490. https://doi.org/10.2307/2044999

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

ﬁ AIMS PI’GSS terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

Communications in Analysis and Mechanics Volume 15, Issue 3, 575-585.


http://dx.doi.org/https://doi.org/10.1016/j.jfa.2022.109574
http://dx.doi.org/https://doi.org/10.1007/s00526-020-01814-5
http://dx.doi.org/https://doi.org/10.1007/s00526-020-01814-5
http://dx.doi.org/https://doi.org/10.3934/dcds.2020379
http://dx.doi.org/https://doi.org/10.1007/s00009-023-02422-1
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2017.01.025
http://dx.doi.org/https://doi.org/10.1186/s13661-020-01463-9
http://dx.doi.org/https://doi.org/10.1186/s13661-020-01463-9
http://dx.doi.org/http://projecteuclid.org/euclid.cmp/1103922134
http://dx.doi.org/https://doi.org/10.1112/plms/s3-45.1.169
http://dx.doi.org/https://doi.org/10.1002/cpa.3160360405
http://dx.doi.org/https://doi.org/10.1007/BF02418013
http://dx.doi.org/https://doi.org/10.2307/2044999
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof of Theorem 1.1

