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Abstract: The dissipative (2 + 1)-dimensional AKNS equation is considered in this paper. First,
the Lie symmetry analysis method is applied to the dissipative (2 + 1)-dimensional AKNS and six
point symmetries are obtained. Symmetry reductions are performed by utilizing these obtained point
symmetries and four differential equations are derived, including a fourth-order ordinary differential
equation and three partial differential equations. Thereafter, the direct integration approach and the
(G′/G2)−expansion method are employed to solve the ordinary differential respectively. As a result, a
periodic solution in terms of the Weierstrass elliptic function is obtained via the the direct integration
approach, while six kinds of including the hyperbolic function types and the hyperbolic function
types are derived via the (G′/G2)−expansion method. The corresponding graphical representation of
the obtained solutions are presented by choosing suitable parametric values. Finally, the multiplier
technique and the classical Noether’s theorem are employed to derive conserved vectors for the
dissipative (2 + 1)-dimensional AKNS respectively. Consequently, eight local conservation laws for
the dissipative (2 + 1)-dimensional AKNS equation are presented by utilizing the multiplier technique
and five local conservation laws are derived by invoking Noether’s theorem.
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1. Introduction

It is well known that nonlinear partial differential equations (NPDEs) have extensive applications
in depicting numerous nonlinear appeared in many fields of sciences, such as applied mathematics,
plasma physics, biology, hydrodynamics, optics, solid state physics and fluid dynamics etc. In order
to truly understand these phenomena described in nature, increased by a large number of scientists to
seek the exact solutions of NPDEs. With further research, lots of effective methods have been
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proposed for exact solutions, including the Lie symmetry analysis method [1–3], the Bäcklund
transformation method [4], the Darboux transformation method [5], the Hirota bilinear method [6],
the (G′/G)−expansion method [7], the (G′/G2)−expansion method [8], the extended homoclinic test
method [9] and the Riemann-Hilbert method [10]. Among these methods, the Lie symmetry analysis
method can reduce the order of NPDEs, thereby simplifying the equations. It has been proved to be
one of the most effective methods for achieving exact solutions of NPDEs. So far, the Lie symmetry
analysis method has been widely used in solving many mathematical and physical nonlinear
models [11, 12]. It is convenient to acquire similarity solutions and some solitary wave solutions of
PDEs [13, 14].

In the study of nonlinear partial differential equation, conservation laws also have played an
important part, especially in terms of the reduction of PDEs and their solving process [15, 16]. First,
conservation laws have been extensively applied to the existence as well as the stability of solutions of
nonlinear PDEs. Conservation laws have been used in the achievements of numerical methods.
Furthermore, exact solutions of some classical partial differential equations have been obtained using
conserved vectors associated with the Lie point symmetries [17, 18]. Recent years, some methods
have been put forward for constructing conservation laws of equations, including Noether’s
theorem [19, 20], the multiplier method [21], the Ibragimov theorem [22, 23] and so on. Generally
speaking, Noether’s theorem is proved to be an effective method to construct conservation laws for
equations with Lagrangian formulation. While the multiplier method and the Ibragimov theorem can
be applied to arbitrary equations whether they have the Lagrangian formulation or not. The multiplier
method has wider applications, it may require a lot of complex calculations to obtain the multiplier.

In this paper, we aim to consider the dissipative (2+1)-dimensional AKNS equation [24], which can
be expressed in the following form

4vt + vxxy + 8vvy + 4vx∂
−1
x vy + αvx = 0, (1.1)

in which ∂−1
x denotes

∫ x

−∞
v(x, y, t)dx and α denotes an arbitrary nonzero constant, revealing that there

is a dissipative effect. If replacing v with ux in (1.1), by taking the integral constant to be zero, then Eq.
(1.1) can be rewritten as

4uxt + uxxxy + 8uxuxy + 4uxxuy + αuxx = 0, (1.2)

which can be used to describe shallow water waves. The term uxt describes the time evolution of
waves, while nonlinear terms such as ux, uy specify the steepening of waves, remaining terms such as
uxx, uxy, uxxxy depict the spreading of waves. When α = 0, the equation (1.2) can be degenerated into
the (2+1)-dimensional AKNS equation,

4uxt + uxxxy + 8uxuxy + 4uxxuy = 0.

which has been investigated by Najafi et al. in Ref. [25].
The dissipative (2+1)-dimensional AKNS equation (1.2) has been investigated by a diverse group

of researchers. Professor Wazwaz [24] achieved the multiple-soliton solutions by employing the
simplified Hirota bilinear method. Liu [26] obtained the travelling wave solutions by utilizing the
theory of planar dynamical systems and the undetermined coefficient method. Liu et al. [27] derived
the bilinear representation, bilinear Bäcklund transformation with the aid of binary Bell polynomials.
Cheng et al. [28] constructed the explicitly periodic wave solutions based on a multi-dimensional
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Riemann theta function. Wang [29] verified the CRE solvability and presented the soliton-cnoidal
wave interaction solutions using the truncated Painlevé expansion and consistent Riccati expansion
method. Professor Ma [30] achieved soliton solutions for all the multi-component AKNS integrable
hierarchies by employing the Riemann-Hilbert approach. Ma et al. [31] investigated the dynamical
analysis of diversity lump solutions to equation (1.2). Furthermore, Ma et al. [32] obtained the full
symmetry group and some exact solutions to equation (1.2) using the Lie symmetry method.

Although partial results have been achieved by Ma [32], their results have certain limitations. We
would like to conduct further research on equation (1.2). We aim to deeply consider the Lie symmetry
analysis, particular solutions as well as conservation laws of equation (1.2). The rest of this paper is
organized as follows: In Section 2, we implement the Lie symmetry analysis method to Eq. (1.2) and
obtain four reduced equations. In Section 3, we present the solutions of one reduced equation obtained
in Section 2 by invoking direct integration method and the (G′/G2)-expansion method, respectively.
In Section 4, we acquire the conservation laws of the equation by utilizing the multiplier method and
Noether’s theorem, respectively. Some conclusions are made in the final section.

2. Lie symmetry analysis of Eq. (1.2)

First, we employ the classical Lie group method to derive the symmetry group of the dissipative
(2 + 1)-dimensional AKNS equation (1.2). We introduce the following one-parameter Lie group of
infinitesimal transformation

U = ω1(x, y, t, u)
∂

∂x
+ ω2(x, y, t, u)

∂

∂y
+ ω3(x, y, t, u)

∂

∂t
+ η(x, y, t, u)

∂

∂u
, (2.1)

in which ω j, j = 1, 2, 3 and η denote the infinitesimal generators.
Symmetries of Eq. (1.2) can be derived from the following symmetry conditions

U [4][4uxt + uxxxy + 8uxuxy + 4uxxuy + αuxx] = 0. (2.2)

Here 4uxt + uxxxy + 8uxuxy + 4uxxuy + αuxx = 0 and U [4] represents the fourth prolongation of U, which
is specified by

U [4] = U + ηx ∂

∂ux
+ ηy ∂

∂uy
+ ηxx ∂

∂uxx
+ ηxy ∂

∂uxy
+ ηxt ∂

∂uxt
+ ηxxxy ∂

∂uxxxy
.

In terms of Eq. (1.2), by expanding the left hand side of equation (2.2) in detail, equating the
coefficients for the terms of 4uxt, uxxxy, 8uxuxy, 4uxxuy, αuxx to be equal, while the coefficients for other
derivatives of u to be zero, we get the following linear partial differential equations:

ηxx = 0, ηxt = 0, ηxu = 0, ηyu = 0, ω1
xx = 0, ω1

y = 0, ω2
x = 0, ω3

x = 0, ω3
y = 0,

ηu − 3ω1
x − ω

2
y = ηu − ω

1
x − ω

3
t = 2ηu − 2ω1

x − ω
2
y = ηu − 2ω1

x −
1
2
ω2

y −
1
2
ω3

t ,

2ηx − ω
2
t = 0, 4ηy − 4ω1

t +
1
2
αω2

y +
1
2
αω3

t = 0, 2ηxy − ω
1
xt + ηtu = 0.
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By solving above PDEs with Maple, we can get six symmetries as follows:

U1 = f (t)
∂

∂x
+
∂

∂t
+ f ′(t)

∂

∂u
,

U2 = g(t)
∂

∂x
+
∂

∂y
+ g′(t)

∂

∂u
,

U3 = 2t
∂

∂y
+ x

∂

∂u
,

U4 =
x
2
∂

∂x
+ t

∂

∂t
+

(
−
αy
8
−

u
2

)
∂

∂u
,

U5 = −
x
2
∂

∂x
+ y

∂

∂y
+

(
−
αy
8
+

u
2

)
∂

∂u
,

U6 =
tx
4
∂

∂x
+

ty
2
∂

∂y
+

t2

2
∂

∂t
+

(
(−3tα + 4x)y

16
−

tu
4

)
∂

∂u
.

(2.3)

Based upon the theory of the infinitesimal transformation, the corresponding single parameter
transformation groups are:

G1 : (x∗, y∗, t∗, u∗)→
(
x +

∫ t+ε

f (a)da, y, t + ε, u + f (t + ε)
)
,

G2 : (x∗, y∗, t∗, u∗)→
(
x +

∫ t+ε

g(a)da, y + ε, t, u + g(t + ε)
)
,

G3 : (x∗, y∗, t∗, u∗)→ (x, y + 2εt, t, u + εx) ,

G4 : (x∗, y∗, t∗, u∗)→ (e
1
2 εx, y, eεt, e−

1
2 εu −

1
8
εαy),

G5 : (x∗, y∗, t∗, u∗)→ (e−
1
2 εx, eεy, t, e

1
2 εu −

1
8
εαy),

G6 : (x∗, y∗, t∗, u∗)→ (
x

1 − 1
4εt

,
y

1 − 1
2εt

,
t

1 − 1
2εt

,
ε(−3tα + 4x)y

16
√

1 − 1
2εt
+ u

√
1 −

1
2
εt).

As a result, if u = σ(x, y, t) denotes a solution of the dissipative (2 + 1)-dimensional AKNS equation
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(1.2), thus so are

u1 = f (t + ε) + σ
(
x −

∫ t+ε

f (a)da, y, t − ε
)
,

u2 = g(y + ε) + σ
(
x −

∫ y+ε

g(a)da, y − ε, t
)
,

u3 = εx + σ (x, y − 2εt, t) ,

u4 = e
1
2 ε(−

1
8
εα + σ(e−

1
2 εx, y, e−εt),

u5 = e−
1
2 ε(−

1
8
εα + σ(e

1
2 εx, e−εy, e−εt),

u6 =
ε(−3tα + 4x)y

16 − 8εt
+

1√
1 − 1

2εt
σ((1 −

1
4
εt)x, (1 −

1
2
εt)y, (1 −

1
2
εt)t).

Next, we would like to perform symmetry reductions by utilizing the point symmetries obtained in
Eq. (2.3).

(i) For symmetry U1 + kU2 by taking f (t) = 0 and g(t) = 1 in Eq. (2.3), it yields three invariants

X = x − kt,Y = y − kt, u = Q(X,Y). (2.4)

By inserting Eq. (2.4) into Eq. (1.2), we obtain

−4kQXX − 4kQXY + QXXXY + 8QXQXY + 4QXXQY + αQXX = 0. (2.5)

Through symbolic computation, Eq. (2.5) admits three symmetries

Λ1 =
∂

∂X
+ F(Y)

∂

∂Y
−

(α − 4k)F(Y)
4

∂

∂Q
,Λ2 = G(Y)

∂

∂Y
+ (−

(α − 4k)G(Y)
4

+ 1)
∂

∂Q
,

Λ3 = x
∂

∂X
+ H(Y)

∂

∂Y
+

(
−

(α − 4k)F(Y)
4

+
(4X + 4Y)k

4
−
αY
4
− Q

)
∂

∂Q
,

(2.6)

Considering the linear combination Λ1 − Λ2 in Eq. (2.6), by choosing F(Y) = − 8
α−4k ,G(Y) = − 4

α−4k ,
two invariants for Eq. (2.5) can be derived

χ =
4X + (α − 4k) Y

α − 4k
,Q = ψ. (2.7)

By inserting Eq. (2.7) into Eq. (2.5), we have

(1 − k)(α − 4k)2ψχχ + 8(α − 4k)ψχψχχ + 4ψχχχχ = 0. (2.8)

(ii) For symmetry U3, it admits three invariants

X = x,T = t, u = Q(X,T ) +
xy
2t
. (2.9)
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By substituting Eq. (2.9) into Eq. (1.2), we can obtain the following equation

4T QXT + 4QX + 2XQXX + αT QXX = 0. (2.10)

(iii) For symmetry U4 − U5, three invariants can be obtained

X = xy,T =
t
x
, u =

Q(X,T )
x

. (2.11)

By substituting Eq. (2.11) into Eq. (1.2), we have

− 16XT QXQXT − 8XT QXXQT − 2αXT QXT − 3X2T QXXXT + 3XT 2QXXTT + 12X2QXQXX

+ 8T 2QXT QT − 8XQQXX + 8T QQXT + 4T 2QXQTT + 16T QXQT + αX2QXX + αT 2QTT

+ 4αT QT − 2αXQX − 8QT − 4T QTT + 4XQXT + X3QXXXX − 6T 2QXTT − T 3QXTTT

+ 8QQX − 8XQ2
X − 6T QXT + 6XT QXXT + 2αQ = 0.

(2.12)

(iv) For symmetry U6, it admits three invariants

X =
y
x2 ,T =

t
x2 , u =

Q(X,T )
x

−
αy
4
+

xy
2t
. (2.13)

By substituting (2.13) into Eq. (1.2), we have

− 24X2T QXXXT − 144XT QXXT − 24XT 2QXXTT + 48X2QXQXX + 88T QXQT

+ 32T 2QXT QT + 16XQQXX + 16T QQXT + 16XT QXQTT − 8X3QXXXX − 72X2QXXX

− 72T 2QXTT − 8T 3QXTTT − 150XQXX − 150T QXT + 88XQ2
X + 32QQX − 60QX

+ 64XT QXQXT + 32XT QXXQT = 0.

(2.14)

3. Particular solutions for the (2+1)-dimensional dissipative AKNS equation

3.1. Solutions of Eq. (2.8) via direct integration approach

First of all, Eq. (2.8) can be rewritten as

aψχχ + 8bψχψχχ + 4ψχχχχ = 0, (3.1)

where a = (1 − k)(α − 4k)2, b = (α − 4k). Integrating Eq. (3.1) once with respect to χ, then we get

aψχ + 4bψ2
χ + 4ψχχχ +C1 = 0,

where C1 is an integration constant. Multiplying Eq. (3.1) with ψχχ and integrating again yields

1
2

aψ2
χ +

4b
3
ψ3
χ + 2ψ2

χχ +C1ψχ +C2 = 0, (3.2)

where C2 is also the integration constant. Denoting ψχ as Φ, Eq. (3.2) can be rewritten as

Φ′2 = −
2b
3
Φ3 −

a
4
Φ2 −

C1

2
Φ −

C2

2
. (3.3)
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By utilizing the following transformation

Φ = −
6
b
φ(χ) −

a
8b
, (3.4)

then Eq. (3.3) can be changed into the well known Weierstrass elliptic function equation

φ′2 = 4φ3 − g2φ − g3,

in which g2 = −
a2

192+
bC1
12 , g3 = −

1
13824a3+ 1

576abC1−
1
72b2C2. Therefore, integrating Eq. (3.4) with respect

to χ and returning to variables t, x, y, we obtain the solution of (2+1)-dimensional AKNS equation (1.2)

u =
6
b
φ(χ; g2, g3) −

a
8b
, (3.5)

in which φ(χ; g2, g3) denotes the Weierstrass zeta function and φ′(χ; g2, g3) = −φ(χ; g2, g3), a = (1 −
k)(α − 4k)2, b = (α − 4k), χ = −kt − 4kt

α−4k +
4x
α−4k + y.

By selecting α = 1, k = 1
2 ,C1 = 2,C2 = 3 in (3.5), we present the evolution process of solution

(3.5) in Figure 1. At t = 1, there are several water waves with large peaks in Figure 1(a). When t = 2,
these water waves exhibit certain periodicity in Figure 1(b). When t = 3, the peaks get shorter and the
troughs gradually deepen in Figure 1(c).

(a) t=1 (b) t=2 (c) t=3

Figure 1. (Color online) The evolution for the Weierstrass zeta function solution (3.5).

3.2. Solutions of Eq. (2.8) by (G′/G2)-expansion method

Next, we would like to investigate the solutions of Eq. (2.8) by employing the (G′/G2)-expansion
method. By balancing the highest order derivative ψχχχχ and the nonlinear term of the highest order
ψχψχχ, we obtain N = 1, which is the order of the solution, so the expression on the solution of Eq.
(2.8) can be written as

ψ = a−1

(
G
′

G2

)−1

+ a0 + a1

(
G
′

G2

)
, (3.6)
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in which G denotes the function of χ and satisfies the following Riccati equation(
G′

G2

)′
= µ + λ

(
G′

G2

)2

. (3.7)

By substituting Eq. (3.6) into Eq. (2.8) together with Eq. (3.7) for simplification, collecting on the
same powers of

(
G′
G2

)−1
and

(
G′
G2

)
, and taking all the resulted coefficients as zero, then six algebraic

equations can be derived:

(
G′

G2

)5

:16a2
1αλ

3 − 64a2
1k λ3 + 96a1λ

4

(
G′

G2

)3

: − 16a-1a1αλ
3 + 64a-1a1k λ3 + 32a2

1αλ
2µ − 128a2

1k λ2µ − 2a1α
2k λ2 + 16a1α k2λ2 − 32a1k3λ2

+ 2a1α
2λ2 − 16a1αk λ2 + 32a1k2λ2 + 160a1λ

3µ = 0,(
G′

G2

)
: − 16a-1a1αλ

2µ + 64a-1a1k λ2µ + 16a2
1αλ µ

2 − 64a2
1kλ µ2 − 2a1α

2kλµ + 16a1α k2λµ

− 32a1k3λµ + 2a1α
2λµ − 16a1αkλµ + 32a1k2λµ + 64a1λ

2µ2 = 0,(
G′

G2

)−1

: − 16a2
-1αλ

2µ + 64a2
-1k λ

2µ + 16a-1a1αλ µ
2 − 64a-1a1kλ µ2 − 2a-1α2kλµ + 16a-1α k2λµ

− 32a-1k3λµ + 2a-1α2λµ − 16a-1αkλµ + 32a-1k2λµ + 64a-1λ2µ2 = 0.

(
G′

G2

)−3

: − 32a2
-1αλ µ

2 + 128a2
-1kλ µ

2 + 16a-1a1αµ
3 − 64a-1a1k µ3 − 2a-1α2k µ2 + 16a-1α k2µ2

− 32a-1k3µ2 + 2a-1α2µ2 − 16a-1αk µ2 + 32a-1k2µ2 + 160a-1λ µ3 = 0,(
G′

G2

)−5

: − 16a2
-1αµ

3 + 64a2
-1k µ

3 + 96a-1µ4 = 0.

By solving the above equations with Maple, three kinds of solution sets can be obtained:
Solution set 1.

a-1 = 0, a0 = a0, a1 = RootOf
(
16µ Z3 + (9αλ − 36λ) Z + 54λ2

)
,

k =
RootOf

(
16µ Z3 + (9αλ − 36λ) Z + 54λ2

)
α + 6λ

4RootOf
(
16µ Z3 + (9αλ − 36λ) Z + 54λ2

) .
(3.8)

Solution set 2.

a-1 = RootOf
(
16λ Z3 + (9αµ − 36µ) Z − 54µ2

)
, a0 = a0, a1 = 0,

k =
αRootOf

(
16λ Z3 + (9αµ − 36µ) Z − 54µ2

)
− 6µ

4RootOf
(
16λ Z3 + (9αµ − 36µ) Z − 54µ2

) .
(3.9)
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Solution set 3.

a-1 = RootOf
(
64λ Z3 + (9αµ − 36µ) Z − 54µ2

)
, a0 = a0, a1 =

9RootOf
(
64λ Z3 + (9αµ − 36µ) Z − 54µ2

)
α − 36RootOf

(
64λ Z3 + (9αµ − 36µ) Z − 54µ2

)
− 54µ

64RootOf
(
64λ Z3 + (9αµ − 36µ) Z − 54µ2

)2 ,

k =
RootOf

(
64λ Z3 + (9αµ − 36µ) Z − 54µ2

)
α − 6µ

4RootOf
(
64λ Z3 + (9αµ − 36µ) Z − 54µ2

) .

(3.10)

For solution set 1, when µλ > 0, we get the following trigonometric function solution

u(x, y, t) = a0 + a1

√
µ

λ

(
C1cos(

√
µλχ) +C2sin(

√
µλχ)

C2cos(
√
µλχ) −C1sin(

√
µλχ)

)
, (3.11)

where C1,C2 are arbitrary nonzero constants and χ = −kt− 4kt
α−4k+

4x
α−4k+y, while a0, a1, k are determined

by (3.8). By choosing α = 2, λ = 1, µ = 3,C1 =
1
2 ,C2 =

1
3 , a0 = 0, we present the profiles of solution

(3.11) in Figure 2. Obviously, Eq. (3.11) is a rational solution in the form trigonometric functions.
Certain periodicity can be seen from Figure 2(a). While according to the changes in Figure 2(b), we
can see that the motion of waves is irregular. The characteristics of the cotangent function are shown
in Figure 2(c).

(a) (b)

K K

K

K

(c)

Figure 2. (Color online) Profiles for the trigonometric function solution (3.11) at t = 0. (a)
3D profile from the perspective view; (b) 2D profile from the overhead view; (c) The wave
of the propagation style along the x axis for y = 1.
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For solution set 1, when µλ < 0, we get the following hyperbolic function solution

u(x, y, t) = a0 −
a1

√
|λµ|

λ

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) +C2

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) −C2

 , (3.12)

where C1,C2 are arbitrary nonzero constants and χ = −kt− 4kt
α−4k+

4x
α−4k+y, while a0, a1, k are determined

by (3.8). By choosing α = 2, λ = 1, µ = −2,C1 = 2,C2 = 3, a0 = 0, the profiles of solution (3.12)
are shown in Figure 3. Clearly, Eq. (3.12) is a hyperbolic functions solution. A wave with different
peaks is shown in Figure 3(a). The wave mark is clearly visible in Figure 3(b). The characteristics of
the hyperbolic cotangent function are shown in Figure 3(c).

(a) (b)

K K

K

K

(c)

Figure 3. (Color online) Profile for the hyperbolic function solution (3.12) at t = 1. (a) 3D
profile from the perspective view; (b) 2D profile from the overhead view; (c) The wave of the
propagation style along the x axis for y = 1.

For solution set 2, when µλ > 0, we get the following trigonometric function solution

u(x, y, t) = a−1

√
λ

µ

(
C2cos(

√
µλχ) −C1sin(

√
µλχ)

C1cos(
√
µλχ) +C2sin(

√
µλχ)

)
+ a0. (3.13)

where C1,C2 are arbitrary nonzero constants and χ = −kt− 4kt
α−4k+

4x
α−4k+y, while a−1, a0, k are determined

by (3.9). By choosing α = 2, λ = 3, µ = 1,C1 =
1
3 ,C2 =

1
4 , a0 = 1, the profiles of solution (3.13) are

shown in Figure 4. Although Eq. (3.13) is also a rational solution in the form trigonometric functions,
it is seeming like the inverse of solution (3.11) from the perspective of representation. Multi peaks and
troughs are exhibited in Figure 4(a). According to the heights of the peaks appeared in Figure 4(a) and
the changes in Figure 4(b), we can see that the period of fluctuations is not fixed. The characteristics
of the cotangent functions with very small period are shown in Figure 4(c).
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(a) (b)

K K

K

K

(c)

Figure 4. (Color online) Profiles for the trigonometric function solution (3.13) at t = 1. (a)
3D profile from the perspective view; (b) 2D profile from the overhead view; (c) The wave
of the propagation style along the x axis with y = 1.

For solution set 2, when µλ < 0, the following hyperbolic function solution can be achieved

u(x, y, t) = −
a−1λ√
|λµ|

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) −C2

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) +C2

 + a0, (3.14)

where C1,C2 are arbitrary nonzero constants and χ = −kt− 4kt
α−4k+

4x
α−4k+y, while a−1, a0, k are determined

by (3.9). Noticeably, solution (3.14) is seeming like the inverse of solution (3.12). By choosing
α = 3, λ = −2, µ = 2,C1 = 1,C2 = 5, a0 = 1, the profiles of solution (3.14) are shown in Figure
5. By observation, Eq. (3.14) is a hyperbolic functions solution. A wave seeming like waterfall is
shown in Figure 5(a). The dividing line is clearly visible in Figure 5(b). While the features of the
hyperbolic tangent function are shown in Figure 5(c).

For solution set 3, when µλ > 0, the following trigonometric function solution can be acquired

u(x, y, t) = a−1

√
λ

µ

(
C2cos(

√
µλχ) −C1sin(

√
µλχ)

C1cos(
√
µλχ) +C2sin(

√
µλχ)

)
+ a0 + a1

√
µ

λ

(
C1cos(

√
µλχ) +C2sin(

√
µλχ)

C2cos(
√
µλχ) −C1sin(

√
µλχ)

)
,

(3.15)
in which C1,C2 represents arbitrary nonzero constants and χ = −kt− 4kt

α−4k +
4x
α−4k + y, while a−1, a0, a1, k

are determined by(3.10). Noticeably, solution (3.15) is seeming like the superposition of solution
(3.11) and (3.13). By choosing α = 1, λ = 1, µ = 2,C1 =

1
2 ,C2 = −

1
3 , a0 = 0, the profiles of solution

(3.15) are presented in Figure 6. By analysis, Eq. (3.15) is an intersection solution between solution
(3.11) and (3.13). Periodicity is no longer appeared in Figure 6(a). Multi peaks with different heights
can be observed in Figure 6(b). Features of the hyperbolic cotangent functions with very small period
are shown in Figure 6(c).
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(a) (b)
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Figure 5. (Color online) Profiles for the hyperbolic function solution (3.14) at t = 0. (a) 3D
profile from the perspective view; (b) 2D profile from the overhead view ;(c) The wave of the
propagation style along the y = 1.

(a) (b)

K K K

K

K
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Figure 6. (Color online) Profiles for the trigonometric function solution (3.15) at t = 0. (a)
3D profile from the perspective view; (b) 2D profile from the overhead view; (c) The wave
of the propagation style along the x axis with y = 1.
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For solution set 3, when µλ < 0, the following hyperbolic function solution can be obtained

u(x, y, t) = −
a−1λ√
|λµ|

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) −C2

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) +C2

 + a0

−
a1

√
|λµ|

λ

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) +C2

C1sinh(2
√
|λµ|χ) +C1cosh(2

√
|λµ|χ) −C2

 ,
(3.16)

where C1,C2 are arbitrary nonzero constants and χ = −kt − 4kt
α−4k +

4x
α−4k + y, while a−1, a0, a1, k are

determined by (3.10). Noticeably, solution (3.16) is seeming like the superposition of solution (3.12)
and (3.14). By choosing α = 2, λ = −2, µ = 3,C1 = 20,C2 = 30, a0 = 0, the profiles of solution (3.16)
in are presented in Figure 7. By analysis, Eq. (3.16) is an intersection solution between solution (3.12)
and (3.14). A wave with a huge peak and a deep trough is presented in Figure 7(a). The wave mark
gradually becomes blurred in Figure 7(b). While the features of the hyperbolic cotangent function are
shown in Figure 7(c).

(a) (b)
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K
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K

(c)

Figure 7. (Color online) Profiles for the hyperbolic function solution (3.16) at t = 2. (a) 3D
profile from the perspective view; (b) 2D profile from the overhead view ;(c) The wave of the
propagation style along the x axis with y = 2.

4. Conservation laws

In what follows, we would like to consider the conservation laws of the (2+1)-dimensional
dissipative AKNS equation (1.2) by invoking the multiplier method and Noether’s theorem
respectively.
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4.1. Conservation laws by the multiplier method

In this part, we aim to utilizing the multiplier method to determine the conserved currents of the
dissipative AKNS equation (1.2). In order to get the first order multipliers P, namely

P = P(x, y, t, u, ux, uy, ut). (4.1)

These corresponding multipliers can be derived by

δ

δu

[
P(4uxt + uxxxy + 8uxuxy + 4uxxuy + αuxx)

]
= 0, (4.2)

where

δ

δu
=

∂

∂u
− Dx

∂

∂ux
− Dy

∂

∂uy
− Dt

∂

∂ut
+ D2

x
∂

∂uxx
+ DxDy

∂

∂uxy
+ DxDt

∂

∂uxt
+ D3

xDy
∂

∂uxxxy

represents the Euler operator and Dx,Dy,Dt represent the total derivative operators. By expanding
(4.2) in detail, collecting on derivatives of u from second order to fourth order and by equating their
coefficients to be zero, we get twenty-one PDEs:

Puu = 0, Puxux = 0, Puyuy = 0, Putut = 0, Puux = 0, Puuy = 0, Puut = 0, Puxuy = 0, Puxut = 0,
Puyut = 0, Pxuy = 0, Pxut = 0, Pyux = 0, Pyut = 0, Pyu = 0, 2Pu + 2Pxux − Ptut = 0,
2Pu − Pyuy = 0, Pxu + Pxxux = 0, 8Px − 8uxPtut + 24uxPu + 3Pxxu + Pxxxux + 4Ptuy = 0,
− 4uyPyuy − 4uyPtut + 12uyPu + 4uyPxux − αPyuy − αPtut + 2αPu + αPxux + 4Ptux + 4Py = 0,
16uxuyPxu + 2αuxPxu + uyPxxxu + 4uyPxx + 4utPxu + 4uxPtu + 8uxPxy + αPxx + 4Pxt + Pxxxy = 0.

By solving above PDEs with the aid of maple, we obtain the following results

P = g(t)+ f ′(t)y − f (t)ux +C1(−
3
8
αt2ux − 2t2ut − xtux − 2ytuy − tu + xy)

+C2(
3
4
αtux + 4tut + u + 2yuy + xux) +C3(x − 2tuy) +C4ux +C5uy +C6ut.

in which C1,C2,C3,C4,C5 represent arbitrary constants , while g, f are functions of t. The conserved
currents of equation (1.2) can be obtained by utilizing the following divergence expression

DxCx + DyCy + DtCt = P(4uxt + uxxxy + 8uxuxy + 4uxxuy + αuxx), (4.3)

where Cx,Cy are spatial fluxes and Ct is the conserved density. As a result, we obtain eight conserved
vectors (Cx,Cy,Ct) according to eight multipliers:

Case 1 Corresponding to P1 = −
3
8αt2ux − 2t2ut − xtux − 2ytuy − tu + xy, we achieve the following
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conserved vector

Cx
1 = −

3
8
αt2uxuxxy −

3
4
αt2u2

xuy −
3

16
α2t2u2

x − 4t2u2
t − t2uxxtuy + t2uxyuxt − t2utuxxy

+
8
3

t2uuxtuy −
8
3

t2uuxyut − 8t2uxuyut − 2αt2uxut − 2αt2uxut − xtuxuxxy − 2xtu2
xuy

−
1
2
αxtu2

x − 4ytuyut − 2ytuxxyuy + ytu2
xy − 4ytuxu2

y − 2αytuxuy − 4tuut + tuuxxy +
4
3

tuuxuy

+ 2tu2
xu − αtuux + 4xyux − xuxx + ux + 4xyuxuy + αxyux − αyu,

Cy
1 =

3
16
αt2u2

xx −
3
4
αt2u3

x + t2uuxxxt +
4
3

t2uuxxut +
16
3

t2uuxuxt +
1
2

xtu2
xx + 2xtu3

x + 4ytuxut

+ αytu2
x −

4
3

tuu2
x + xyuxxx + 2xyu2

x,

Ct
1 =

1
4
αt2u2

x − t2uuxxxy −
16
3

t2uuxuxy −
8
3

t2uuxxuy − 2xtu2
x − 4ytuxuy.

Case 2 Corresponding to P2 =
3
4αtux + 4tut + u + 2yuy + xux, we achieve the following conserved

vector

Cx
2 =

3
4
αtuxuxxy +

3
2
αtu2

xuy +
3
8
α2tu2

x + 8tu2
t + 2tuxxyut + 2tuxxtuy − 2tuxyuxt −

16
3

tuuxtuy

+
16
3

tuuxyut + 16uxuyut + 4αtuxut + 4uut − uuxxy +
2
3

uuxuy + 2u2uxy − uux + 4yuyut

+ 2yuxxyuy − yu2
xy + 8yuxu2

y − 2yuuxy + xuxuxxy + 2xu2
xuy +

1
2
αxu2

x,

Cy
2 = −

3
8
αtu2

xx +
3
2
αtu3

x − 2tuuxxxt −
16
3

tuuxxut −
32
3

tuuxuxt −
8
3

uu2
x − 2u2uxx − 4yuxut

+ 2αyuuxx + yu2
x −

1
2

xu2
xx + 2xu3

x,

Ct
2 = −

1
2
αtu2

x + 2tuuxxxy +
32
3

tuuxuxy +
16
3

tuuxxuy + 4yuxuy + 2xu2
x.

Case 3 Corresponding to P3 = x − 2tuy, we achieve the following conserved vector

Cx
3 = 2xuuxy + 6xuxuy + αxux − αu − 4tuyut − 2tuxxyuy + tu2

xy − 8tuxu2
y − 2αtuxuy,

Cy
3 = xuxxx − 2xuuxx − 2uux + 4tuxut + αtu2

x,

Ct
3 = 4xux − 4tuxuy.

Case 4 Corresponding to P4 = ux, we acquire the following conserved vector

Cx
4 =

1
2
αu2

x + uxuxxy + 2u2
xuy,

Cy
4 = 2u3

x −
1
2

u2
xx,

Ct
4 = 2u2

x.
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Case 5 Corresponding to P5 = uy, we acquire the following conserved vector

Cx
5 = 2uyut + uyuxxy −

1
2

u2
xy + 4uxu2

y + αuxuy,

Cy
5 = −2uxut −

1
2
αu2

x,

Ct
5 = 2uxuy.

Case 6 Corresponding to P6 = ut, we acquire the following conserved vector

Cx
6 =

1
2

uxxyut +
1
2

uxxtuy −
1
2

uxyuxt +
4
3

uuxyut −
4
3

uuxtuy + 4uxuyut + αuxut,

Cy
6 = −

1
2

uuxxxt −
4
3

uuxxut −
8
3

uuxuxt,

Ct
6 = 2u2

x +
1
2

uuxxxy +
8
3

uuxuxy +
4
3

uuxxuy −
1
2
αu2

x.

Case 7 Corresponding to P7 = f ′(t)y − f (t)ux, we acquire the following conserved vector

Cx
7 = 4 f ′(t)yut + f ′(t)yuxxy + 6 f ′(t)yuxuy + 2 f ′(t)yuuxy + 2 f ′(t)uux + α f ′(t)yux − f (t)uxuxxy

− 4 f (t)u2
xuy − 4 f (t)uuxuxy −

1
2
α f (t)u2

x,

Cy
7 = −2 f ′(t)yuuxx +

1
2

f (t)u2
xx + 4 f (t)uuxuxx,

Ct
7 = −2 f (t)u2

x.

Case 8 Corresponding to P8 = g(t), we achieve the following conserved vector

Cx
8 = −4g′(t)u + 4g(t)uxuy + αg(t)ux,

Cy
8 = g(t)uxxx + 4g(t)v2

x − 2g(t)v2
x,

Ct
8 = 4g(t)ux.

4.2. Conservation laws by Noether’s Theorem

In this part, we would like to derive the conservation laws of Eq. (1.2) by using the classical
Noether’s theorem [19]. By calculating, we can obtain the second order Lagrangian of equation (1.2)

L = −2uxut + uxxuxy − 2u2
xuy −

1
2
αu2

x. (4.4)

Consequently, the Noether symmetries

S = ξ(x, y, t, u)
∂

∂x
+ ϕ(x, y, t, u)

∂

∂y
+ τ(x, y, t, u)

∂

∂t
+ η(x, y, t, u)

∂

∂v

of the (2+1)-dimensional dissipative AKNS equation (1.2) are established by applying the Lagrangian
equation (4.4) to the following determining equation

S [2]L +L
(
Dx(ξ) + Dy(ϕ) + Dt(τ)

)
+ Dx(T x) + Dy(T y) + Dt(T t) = 0, (4.5)
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where S [2] is the second prolongation of S , while T x,T y,T t are gauge functions. By expanding
equation (4.5) and solving solutions for the resulted partial differential equations, we get the following
Noether symmetries as well as their corresponding gauge functions

σ1 =
∂

∂x
+
∂

∂t
,T x = 0,T y = 0,T t = 0,

σ2 =
∂

∂x
+
∂

∂y
,T x = 0,T y = 0,T t = 0,

σ3 = t
∂

∂y
+

x
2
∂

∂u
,T x =

1
2
αu,T y = 0,T t = u,

σ4 =
x
2
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
+

(
−

3αy
8
−

u
2

)
∂

∂u
,T x = 0,T y = 0,T t = 0,

σ5 =
tx
4
∂

∂x
+

ty
2
∂

∂y
+

t2

2
∂

∂t
+

(
(−3tα + 4x)y

16
−

tu
4

)
∂

∂u
,T x = −

1
8
αyu −

1
4

ux,T y = 0,T t =
1
2

yu.

By employing the following formula [20] along with above Noether symmetries

Ck = Lξk + (η − ux jξ j)
(
∂L

∂uxk
− Σk

l=1Dxl

(
∂L

∂uxl xk

))
+ Σn

l=k(ζl − uxl x jξ j)
∂L

∂uxk xl
− T k.

we derive the corresponding conserved vectors, which are given by

Ct
1 =uxxuxy − 2u2

xuy −
1
2
αu2

x + 2u2
x,

Cx
1 =2u2

xuy +
1
2
αu2

x + uxuxxy + 2u2
t + 4uxuyut + αuxut + utuxxy − uxyuxt − uxxuxy − uxxuyt,

Cy
1 =2u3

x + uxuxxx + 2u2
xut + uxxxut.

Ct
2 =2u2

x + 2uxuy,

Cx
2 =2u2

xuy +
1
2
αu2

x + uxuxxy + 2uyut + 4uxu2
y + αuxuy + uxxyuy − u2

xy − uxxuxy − uxxuyt,

Cy
2 = − 2uxut + uxxuxy −

1
2
αu2

x + 2u3
x + uxuxxx + uxxxuy.

Ct
3 = − xux + 2tuxuy − u,

Cx
3 = − xut − 2xuxuy −

1
2
αxux −

1
2

xuxxy + 2tuyut + 4tuxu2
y + αtuxuy + tuxxyuy +

1
2

uxy − tu2
xy

− tuxxuyy −
1
2
αu,

Cy
3 = − 2tuxut + tuxxuxy −

1
2
αtu2

x − xu2
x −

1
2

xuxxx + tuxxxuy.
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Ct
4 =2tuxxuxy − 4tu2

xuy − αtu2
x +

3
4
αyux + uux + xu2

x + 2yuxuy,

Cx
4 =xu2

xuy +
1
4
αxu2

x +
3
4
αyut + uut + 2yuyut + 4tu2

t +
5
2
αyuxuy + 2uuxuy + 4yuxu2

y + 8tuxuyut

+
3
8
α2yux +

1
2
αuux + 2αtuxut +

3
8
αyuxxy +

1
2

uuxxy +
1
2

xuxuxxy + yuxxyuy + 2tuxxyut

−
3
2

uxuxy − yu2
xy − 2tuxyuxt −

3
8
αuxx −

3
2

uxxuy −
1
2

xuxxuxy − yuxxuyy − 2tuxxuyt,

Cy
4 = − 2yuxut + yuxxuxy +

1
4
αyu2

x + uu2
x + xu3

x + 4tu2
xut +

3
8
αyuxxx +

1
2

uuxxx +
1
2

xuxuxxx

+ yuxxxuy + 2tuxxxut.

Ct
5 =

1
2

t2uxxuxy − t2u2
xuy −

1
4
αt2u2

x +
3
8
αtyux −

1
2

xyux +
1
2

tuux +
1
2

txu2
x + tyuxuy +

3
16
αtyuxxy

−
1
4

xyuxxy +
1
4

tuuxxy +
1
4

txuxuxxy +
1
2

tyuxxyuy +
1
2

t2uxxyut −
1
2

yu,

Cx
5 = −

1
2

txu2
xuy +

1
8
αtxu2

x +
3
8
αtyut −

1
2

xyut +
1
2

tuut + tyuyut + t2u2
t +

3
4
αtyuxuy − xyuxuy

+ tuuxuy + txu2
xuy + 2tyuxu2

y + 2t2uxuyut +
3
16
α2tyux −

1
4
αxyux +

1
4
αtuux +

1
2
αtyuxuy

+
1
2
αt2uxut +

3
16
αtyuxxxy −

1
4

xyuxxy +
1
4

tuuxxy +
1
4

txuxuxxy +
1
2

tyuxxyuy +
1
2

t2uxxyut

+
1
4

yuxy −
3
4

tuxuxy −
1
2

tyu2
xy −

1
2

t2uxyuxt −
3

16
αtuxx +

1
4

xuxx −
3
2

tuxxuy −
1
4

txuxxuxy

−
1
2

tyuxxuyy −
1
2

t2uxxuyt +
1
8
αyu +

1
4

ux,

Cy
5 = − tyuxut +

1
2

tyuxxuxy +
1
2
αtyu2

x −
1
2

xyu2
x +

1
2

tuu2
x +

1
2

txu3
x + t2u2

xut +
3

16
αtyuxxx

−
1
4

xyuxxx +
1
4

tuuxxx +
1
4

txuxuxxx +
1
2

tyuxxxuy +
1
2

t2uxxxut.

5. Conservation laws

In this paper, we implemented the Lie symmetry analysis method to the dissipative (2 +
1)-dimensional AKNS equation and produced six point symmetries, utilized them to perform
symmetry reductions and derived four differential equations, including the fourth-order ordinary
differential equation (2.8) and three partial differential equations, Eq. (2.10), Eq. (2.12) and Eq.
(2.14). Thereafter, we solved Eq. (2.8) by employing the direct integration approach and the
(G′/G2)−expansion method, respectively. On one hand, we constructed periodic solution of Eq. (2.8)
in terms of the Weierstrass elliptic function. On the other hand, six kinds of including the hyperbolic
function types and the hyperbolic function types were obtained via the (G′/G2)−expansion method.
The corresponding graphical representation of the obtained solutions were also presented by choosing
suitable parametric values. Finally, conserved vectors for (1.2) were derived by invoking the
multiplier technique and the classical Noether’s theorem, respectively. As a result, eight multipliers
were obtained from the multiplier method, thereby eight local conservation laws for the dissipative (2
+ 1)-dimensional AKNS equation (1.2) were given. Moreover, five local conservation laws were
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derived by invoking Noether’s theorem. It is necessary to point out that when taking f (t) = 0, g(t) = 0
in (2.3), then U1,U2 can be reduced to the point symmetries V1,V2 in Ref. [32]. Therefore, the
symmetry reductions are different from the ones in Ref. [32]. Furthermore, we solved the Eq. (2.8)
with the aid of the the (G′/G2)−expansion method. Our results have greater improvements. We
presented two kinds of the conservation laws by employing two methods. The difference and relation
between these conservation laws is still a puzzle. The solutions for Eq. (2.10), Eq. (2.12) and Eq.
(2.14) haven’t been solved yet. We will investigate these problems in our future work.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Province (No.
232300420361).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. C. M. Khalique, A. Biswas, A Lie symmetry approach to nonlinear Schrödinger’s equation with
non-Kerr law nonlinearity, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 4033–4040.
https://doi.org/10.1016/j.cnsns.2009.02.024

2. J. J. Mao, S. F. Tian, T. T. Zhang, X. J. Yan, Lie symmetry analysis, conservation laws and
analytical solutions for chiral nonlinear Schrödinger equation in (2 +1)-dimensions, Nonlinear
Anal. Model Control, 25(2020), 358–377. https://doi.org/10.15388/namc.2020.25.16653

3. N. Benoudina, Y. Zhang, C. M. Khalique, Lie symmetry analysis, optimal system, new solitary
wave solutions and conservation laws of the Pavlov equation, Commun. Nonlinear Sci. Numer.
Simulat.,94 (2021), 105560. https://doi.org/10.1016/j.cnsns.2020.105560

4. C. H. Gu, H. S. Hu, A unified explicit form of Bäcklund transformations for
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