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Abstract: In this paper, we study a partially synchronizable system for a coupled system of wave
equations with different wave speeds in the framework of classical solutions in one dimensional. A
partially synchronizable system is defined as a system with at least one partial synchronized solutions.
In fact, we cannot consider partial synchronization as the case that the system has the same wave
speeds, because the influence of different wave speeds cause only some of the function in a given
space being in a partially synchronized state, rather than all functions. Therefore, we can only consider
under what conditions the coupled system can have partially synchronized solutions. We will consider
it in two ways. On the one hand, under the necessary conditions, we obtain an unclosed characteristic
equation associated with the partially synchronizable state. We add conditions to the wave speed matrix
and coupling matrix to make the equation closed. From this, the characteristic function can be obtained,
and all partially synchronized solutions are obtained; then we obtain the conditions under which the
initial value should be satisfied. On the other hand, we consider a system of three variables first, where
there are only two synchronized variables. By subtracting them to obtain a new variable, the problem
can be transformed into the problem wherein the system that satisfies the new variable should have
only zero solutions. Then solving this problem can lead to obtaining the conditions required for a
partially synchronized solution. After extending it to the case of N variables, similar conclusions can
be obtained.
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1. Introduction

The research on the exact boundary synchronization of coupled system of wave equations mainly
focuses on the case of the same wave speed [1,3—8]. One of the important issues is that the system can
still maintain synchronization after removal of all of the boundary controls. However, it is clear that
not all systems can have this property, and only the systems that satisfy the compatibility conditions
have such properties.

In [2], Lei et al. put forward the concept of a synchronizable system, that is, if a system has a
synchronized solution, then it is called a synchronizable system. They studied the coupled system of
wave equations with different wave speeds and obtained all of the synchronized initial values which
can make the system have synchronized solutions.

Previous studies on the synchronizable system focused on the framework of weak solutions in N-
dimensions. Here, we consider the synchronizable system and the partially synchronizable system in
the framework of classical solutions in one dimension. We mainly study the coupled system of wave
equations with different wave speeds.

We consider the following coupled system with different wave speeds:

U:— AU, +AU =0, (1.1)
where U = (uy,--- ,uy)" is the state variable and A = diag(c7,- - ,c3,) is the wave speed matrix with
¢i>0(@=1,---,N), which are not all equal. A = (a;;) is an N X N coupling matrix with constant

elements. U, represents the partial derivative with respect to time #, and U, represents the partial
derivative with respect to the spatial variable x.
The system (1.1) satisfies the following homogeneous Dirichlet boundary conditions

x=0:U=0, x=L:U=0, (1.2)
and it has the following initial data
t=0:(UU,) = Uyx), U(x)). (1.3)
For any given m(0 < m < N,m € N), we give the following definition

Definition 1.1. The system given by (1.1)—(1.2) is called a partially synchronizable system if there is
an initial value (Uy, Uy) such that the solution U = U(t, x) to the problem given by (1.1)—(1.3) satisfies
the following partial synchronization property:

s = =uy L& (14)
where ii is called the partially synchronizable state.

The initial value (Uy, U,) of a partially synchronized solution also satisfy the following partial
synchronization properties:

Um+1,0(0,X) = -+ = uno(0,x),  Ups11(0,x) = -+ - = un(0, x). (1.5)

If (Uy, Uy) = (0,0), then the system admits a solution U = 0, which is, of course, a partially synchro-
nized solution. Thus, in the following discussion, it is natural to exclude some trivial situations.

In Section 2, we consider the case in which both A and A satisfy the compatibility conditions. In
Section 3, we study the partially synchronizable system without the compatibility conditions for some
cases.
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2. The case with compatibility

In this section, we consider the partially synchronizable system, that is the system possesses par-
tially synchronized solutions, for a coupled system of wave equations with different wave speeds.

Let
0 01 -1 0 O 0 O
0 00 1 -10 0 O
Cm+1 = . . . . . . . .
o - 00 O O 0 --- 1 -1

that is, consider an (N — m — 1) X N full-row rank matrix. Let {e,---

column vectors defined as follows: for 1 < s < m,

1, j=s,
(es)j :{ J=9

0, otherwise,

andfors=m+ 1,
m+1<j<N,

1L,
(em+l)j :{

0, otherwise.

It is obvious that
Ker(C,.41) = Spaniey, - - -

s €ms em+1}-
Letu= (u, -, u,, Mm+1)T

U=ue+ - +upey,+tpiep = (e,

The component forms of the system given by(1.1)—(1.2) are as follows

82ul~ 82ul

ol 'ax2+2a””’_0 (i=1,-
x=0:uyy=---=uy =0,
x=L:u=---=uy=0.

, €m» €m+1} be N-dimensional

; then, the partial synchronization condition is equivalent to

s €ms em+l)u'

-, N)

(2.1

Assume that there exists the initial value (U, U, ) such that the system (1.1) has a partially synchronized

solution U = U(t,X) : U4y = -+ = uy. From (2.1), we get

(?2ui 32 . .
Fr c; W +anuy + -+ Qi + ity = 0, =1, ,m)
azunﬁl 82”
2 m+1 ~ _ _
> Y% B + apuy + 0 Qb Qi 1 U1 —0,(k—m+1,--- aN) (22)
ot ox
x=0: Uy == Uy = Upy _0’
X=L:u ==ty =ty =0,
where
N N
i1 = Z aij,(i=1,---,m), Qgme1 = Z agj,(k=m+1,---,N). (2.3)

Jj=m+1 Jj=m+1
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We denote
a0 A Aim+d
r . 2 N
Api1 = dlag(Cl, G Ck)’ Ay = ~
Am1 *° Aum Amn+l
2 B ¢ S 7 |

where A,,,, and A,,,, are related to k. Then the system (2.2) can be written as

0? -9 -
T Rueis + Ay = 0,
or? 0x?
x=0:u=0, (24)
x=L:u=0.
By (2.2), we have that
0’u,,
—Ci% + Ay + -+ Al + Qg = 0,(k =m+1,--- | N)
X

is indepndent of &, even though Apsr and A, may be related to k.
From (2.1), forVie {1,--- ,m}and Vk,l € {m + 1,--- , N}, we get

0%u; zazui -
a2 Cigpa Tantt et ittt Gty = 0,
2 2 62”m+1 ~ ~
(c; — ¢ pye + (@ — an)ur + -+ + (Qon — @)ty + (it = Aipr ) imer = 0, (2.5)
x=0:uyy=-=u,=upq1 =0,
x=L:uy=-=u, =ty =0,
When ¢,,,1 = - -+ = cy, we have

(a1 — auy + -+ + (Qun — )t + (Qrms1 — s ) msr = 0.
If uy, -+, uy, uye are linearly independent, we get
Arl = Apts 5 Qgan = iy et = Qe - (2.6)

Therefore, we have the following conclusions

Theorem 2.1. If the system given by (1.1)—(1.2) is a partially synchronizable system with u,. .,
where uy, - - , Uy, Uy, are linearly independent, then matrices A and A satisfy the C,,.-compatibility
conditions ¢; = ¢, Vl,k € {m + 1,--- ,N}) and (2.6), respectively. Conversely, if the system given by
(1.1)—(1.2) satisfies the conditions ¢; = ¢, Vl,k € {m + 1,--- ,N}) and (2.6), then for any initial value
(Up, Uy) € (C*[0, LDV x (C'[0, LN with the partial synchronization properties

1=0: tpy1000,x) =+ = upno(0, %), 4110, %) = -+ =upi(0, x), (2.7)
there is a corresponding partially synchronized solution U = (U1, -+ , Uy, Ups1s* "+ > Ups1)! -
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Then consider the corresponding coupled system of wave equations with Dirichlet boundary condi-

tions:
U,—- AU, + AU =0,
x=0:U=H( (2.8)
x=L:U=0.

in which H(¢) is a boundary condition.

The system is a partially synchronizable system if there exists 7 > 0 such that, for any given
initial value (U, U,) € (C*[0, L])N x (C'[0, L])", there exists a boundary conditions H(t) € (C*[0, T])¥
such that the solution to the problem (2.8) is U = U(t, x) and (1.3) satisfies the following partial
synchronization property:

12T Uy (t,x)=--- =uy(t, x) (2.9)

From Theorem 2.1, we have the following:

Corollary 2.2. If matrices A and A satisfy the conditions ¢; = ¢, VLk e {m+1,--- ,N}) and (2.6),
then the partial exact boundary synchronization (2.9) of system (2.8) is equivalent to that for any given
initial value (Uy, U,) € (C*[0, LN x (C'[0, L)"; also, there exists a boundary condition H such that
the corresponding solution U = U(t, x) attains a partially synchronized state at time t = T':

Ups1(T,x) = - = un(T,x), Uy (T,x) = = uy(T, x). (2.10)

3. The case without compatibility

When
c*c, YLkefm+1,---,N}, (3.1
from (2.5), we get
Ppsr  an —an Ak — Ay A1 — Alms
T2 2t 2 _ 2 Umb
ox ;= ¢ c; — ¢ c; — ¢ 32
x=0:uy = =uy=tp.1 =0, 32)
x=L:u=--=u, =ty =0.
Denote - o
aigy —ap Akm — Aim A+l — Alm+1
1=~ 5 U= =55 Uml = ——5 5 (3.3)
=% % €~ %
62”m+1 . .
In (3.2), — e is uniquely expressed by uy, - -+ , Uy, Uy+1; then, we know that ay, - -+ , @y, @41 are
X
constants that are independent of k, [ (k,l € {m+1,---, N}). This gives the relationship of the matrices

Aand A: Vk,le{m+1,--- N}
an + CL’]CIZ =a + alci,
(3.4)

2 _ 2
Qi + A C; = Qg + ApCy,

~ 2 _ ~ 2
Ams1 + Up1C) = Qa1 + A1 €,
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and (3.2) becomes

a2um+l_
- 0)62 =+t Ul + A1 U1
. 3.5
x=0:u ==ty =ty =0, 3-5)
x=L:u =--=uy, =ty =0.

Obviously, (3.5) is a necessary condition for the system given by (1.1)—(1.2) to have a partially
synchronized solution. However, (3.5) is not a closed system, and it is not easy to obtain information
about the partially synchrinizable state from it.

3.1. A special case

An important special case is that (3.5) is a closed system. At this moment, oy = 0,--- ,a,, = 0, that
is,Yk,le{m+1,--- ,NYand ay; = a1, - , G = djy, Which means that
Am+1,1 = = = AN
(3.6)
An+im = *°° = ANm-

Thus, (3.2) is reduced to a closed system

02Mm+1
—T a5 = Tm+1lUm+1,
0x?
x=0:u,1 =0, (3.7)
x=1L: Up+1 = 0.
Hence, if (3.7) is ture, it must follow that
Ayl = A (38)
2
where A is the eigenvalue of L We take
X
Uit = D(D)ua(x), (3.9)

2
where u,(x) is the eigenfunction of 12 corresponding to the eigenvalue A and u,(x) # 0. u,(x) and 4
X

satisfy the following:

d%u, (%)
- djcz = Auy(x),
x=0:u;(x) =0,
x=L:ux)=0.
2.2

. . . nem . .
From the previous discussion, we have that 1 = Tz (n € N, ). We also have the eigenfunction

uy(x) = Cosin( VA x) (3.10)
where C, is a non-zero constant. Here, (3.3) becomes

Qi1 + ACT = Gyt + Act, (VLk€{m+1,--- N} (3.11)
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Substituting (3.10) into (2.2), we get that b(¢) satisfies

[dzdbtgt) + @i + AP U (X) + @iy + - -+ + Aty = 0. (3.12)
If uy, -, uy, uy(x) are linearly independent, we get
ar =0, ,ap =0, YVke{m+1,--- N} (3.13)
Additionally, ,
ddﬁ? @ + A0 = 0, (3.14)
where Gy 41 + /lci is a constant that is independent of k; it is denoted by
d = Gy sy + Acy. (3.15)

Therefore, for any given initial conditions
t:(): b(o):b()’ bl‘(o):bl7

b(t) satisfies the following:

b
bocosh( V=d t) + 1dsinh( v=dt), d<0,
b(t) = { by + byt, d=0 (3.16)
bocos(Va 1) + Lsin( Va 1), d>0.
Vd
For any given k (k =m + 1,--- ,N), u,,1 satisfies
azum+l 2 azum+l

o2 ~ Ix2 + ak,m+lum+l =0,
x=0:uy;1=0, x=L:uy; =0, (3.17)
=0ty = bouy(x), tni1,(0) = bruy(x).

Conversely, if (3.8) and (3.13) holds, then the system is a partially synchoronizable system and it
has at least one partially synchronized solution.

In fact, consider (3.17); its solution u,,, is given by (3.10) and (3.16).

Let U = (uy, -+ s Up, U1, -+ s Upms1); WE get

U,- AU, +AU =0,
x=0:U=0, x=L:U=0,
t=0:Up(x) = ; ui0(0, x)e; + bou(x)eys1, Ui(x) = ; u;1(0, x)e; + biuy(x)ey. .

Then, U is a required partially synchronized solution.

If the system given by (1.1)—(1.2) satisfies the condition ¢; # ¢ (Vl,k € {m + 1,---,N}), and
(3.13), then not all of the initial values with the partial synchronization property can have partially
synchronized solutions. Therefore, when ¢; # ¢, (V,k € {m+1,--- ,N}), even if (1.1)—(1.2) represents
a partially synchronizable system, it does not mean that all of the partially synchronized initial values
of the system can have a partial synchronization solutions.

From the above, we can get the following theorem.

Communications in Analysis and Mechanics Volume 15, Issue 3, 470-493.
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Theorem 3.1. If the system given by (1.1)—~(1.2) is a partially synchronizable system with ¢, #
ce Vlke{m+1,--- ,N}) and (3.13), then the matrices A and A satisfy (3.11). And, for the following
initial conditions with the partial synchronization property

t=0:U= Z uin(0, )e; + bouyepsy, U =

1

u;1(0, x)e; + biuqep. 1, (3.18)
- i=1

where u, is given by (3.10) and (by, by) # 0, the system given by (1.1)—(1.2) has a solution with the
partial synchronization property

U= Z wie; + b€, (3.19)
=1

where b(t) is given by the following equation

2
{ 2D | by = o,

dr
t=0:b=by b; =b.

Proof. By (3.6), (3.2) reduces to (3.7), then condition (3.3) becomes

o A1 = Al
m+l — B B
G

d2
If (3.7) is ture, «,,,1 can only take the eigenvalue A of - then, A and A satisfy (3.11). Moreover,

x
by (3.7), u,,+1 has the form of (3.9). Substituting (3.9) into (2.2), we get

d’b(1)
dr?
Then, since (3.13) holds and u,(x) # 0, we get (3.14).
Conversely, if the system given by (1.1)—(1.2) has the partially synchronized initial condition (3.18),

it is easy to verify that the solution (3.19) satisfies the conditions of the system given by (1.1)—(1.2)
and the initial condition (3.18); thus, it is the partially synchronized solution.

+ @i + AP U (X) + @iy + - -+ + Ayl = 0.

[

3.2. A model

We consider a sample system when N = 3, m = 1, as follows:

2 —
Uiy — Clulxx = 0,
2 —
Uy — Collp e + azguy = 0, (3.20)

U3y — C3Uz . + a3ty = 0,
with the boundary conditions
x=0:uy=ur=u3=0, x=L:u =u =u3=0, (3.21)
as well as the partial synchronization initial conditions

t=0:u0,x) =u3(0,x), u(0,x)=us3/(0,x). (3.22)
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Since u, = u3, we get
2 _
Uiy — Clulxx = Oa
2 _
Uz — Collp e + azguy = 0,

2 _
Uz — CiUa e + aziug = 0.

The system is equivalent to

2 —
Uiy — Clulxx - O’
2 —
Upy — CUay, + anity = 0, (3.23)

—(¢3 = Dz + (@21 — az)uy = 0.

If ¢c; = c¢3, we suppose that u; and u, are linearly indepedent; then, there exist a;; = az; and
ar + ay3 = azy + azz. We have discussed this situation in Theorem 2.1.
If c; # c3, we get

g+ BB 20, (3.24)
GG
Substituting this formula into (3.23), we have
c2as — clay,
uh,+(£—3——§——)u1:0. (3.25)
6~
From (3.24) and (3.25), we can get
ar) — asg
Waxxtt = =55 Uln
6~

and

2 2
_ C3dp1 — C,As3)
Wuex =\ 73 5 | Wlxx:

6G~G
Hence, from (3.23),
_ 2
Uy = ClU L xx-

Then, we get

2
_ay—ay _ cilay —az)
Uayx = — S Uiy = B P U xx-
GG GG

Assume that u, is smooth enough; then, u; ., = ;. Thus, we have

2 2 2 2
cidy — C{as; _ C3dy1 — C5As3)
2 _ 2 - 2 _ 2 >
6G~4 6G~G
that is,
as asj
pomp it vt (3.26)
2 1 3

This means that matrices A and A satisfy the compatibility condition (3.26). Obviously, this is a
necessary condition.
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Conversely, we consider whether the system (3.20) is a partially synchronizable system when con-
dition (3.26) holds. Let w = u, — u3; from (3.20), we get

Wy — c%wxx + (c% - c%)uzxx + (a1 —az)u; = 0. (3.27)
From the boundary condition (3.21) and initial condition (3.22), we have
x=0:w=0, x=L:w=0,
and
t=0:w=0, w,=0.

If
(C§ - C%)szx + (a1 —azu; =0,

1.e., if (3.24) holds, we get that w = 0; then, the system (3.20) is a partially synchronizable system.
Therefore, (3.24) is a necessary and sufficient condition for system (3.20) to realize partial synchro-
nization.

Let W = wy, — c3wy,; from (3.27), we have

2 2
Wi + (C3 — C)Ud sy + (21 — a3, = 0,

and
2 2
Wxx + (C3 - cz)”Zxxxx + ((121 - a31)ulxx = 0

Then, we get
W — W 2 2 ) _ ) 2 2 —0
it — CoWyx + (C3 ) Uy — Colny)xx + (A21 — a31) U1y — CU i + (€] — U1 y,) = 0.

From (3.20), we have
2 _ 2 _n.
Uy — Clloyy = —A21U1, Uy — ClUixx = 0;

then

2 —
(u2tt - C2u2xx)xx = —A21 U] xx-

Hence,
W. — W 22 _ 2 2 —0
it — CoWyx + [ (C3 Cz)azl + (ax a31)(C1 Cz)]ulxx =V

According to the condition (3.26), it is easy to see that
—(c3 — Qaz1 + (a2 — az)(c] — 3) = (¢] — 3)ay — (¢] — 3)az = 0.

Hence,
W, —c3W,, = 0. (3.28)

If the initial and boundary conditions of W satisfy
t=0:W(0,x)=0, W,(0,x)=0,

and
x=0:W(t0) =0, x=L:W(@L)=0,
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then W = 0; we immediately get w = 0. Hence, (3.20) is a partially synchronizable system.
From (3.27), W = —[(c5 — ¢))uz,, — (21 — az))uy]; then, W, = —[(c3 — )z — (@21 — azp)uy,]; we
need the following:
W(0, x) = —[(c5 — Dz, — (a21 — az)u11(0,x) = 0

and
Wi(0, x) = —[(c3 — €3ty — (@21 — az)uy1(0, x) = 0.

Then, we have

ar —a
12,0, x) = ———+14; (0, x), (3.29)

-G

and b —a
t2.0(0, X) = —5——11(0, ). (3.30)

6~ G

Regarding the boundary conditions

x=0:W(t,0) = —(c3 — Duz(£,0) + (@21 — as)uy (¢, 0),
x=L:W(t, L) = —(c5 — ua(t, L) + (a2 — az)uy (2, L).
From (3.20), we have
+ +
2,0 = 200, (1) = 2 ),
2 2

By (3.21), uy,(t,0) = 0 and u,,(t, L) = 0, using (3.21) again, we have
x=0:W(t0) =0, x=L:W(L)=0.
After the above discussion, we have the following conclusions.

Theorem 3.2. If the system given by (3.20)—(3.21) is a partially synchronizable system, then ma-
trices A and A satisfy the compatibility condition (3.26). Conversely, if (3.26) is satisfied for the
initial value (Uy, U,) with the partial synchronization property (3.22) which also satisfies the condi-
tions (3.29)—(3.30), then the system given by (3.20)—(3.21) has a solution U = U(t, x) satisfying the
partial synchronazition condition

Uy = Us.

3.3. A general case of N=3

When N = 3, m = 1, the system (1.1) can be written as

P _
Uiy — ClU g + ayiig + apty + aus = 0,
P _
Upy — Colloyy + Aoilty + Aoty + apziz = 0, (3.31)

2 —
U3y — C3Uz e + Az1Uy + axlly + azsuz = 0,
with the boundary conditions

x=0:u1=ur=u3=0, x=L:u =u =u;3=0, (3.32)
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as well as the initial conditions with the partial synchronization property:
t=0: MZ(()’ -x) = M3(O, X), u2t(09 X) = u3t(0’ x)' (333)
And, m = 1 means that u, = u3; then, the system (3.31) becomes

2 _
Uiy — Cll e + Ayl + (arp + ai3)uy = 0,
2 _
Upy — CoUoyy + aoilty + (ax + ax)u; =0, (3.34)

Upy — CiUla, + azuy + (az + az3)up = 0.
Therefore, we get a system that is equivalent to (3.34), as follows:

2 _
Uiy — Clli e + apity + (@12 + ai3)us = 0,
2 _
Upy — CoUoyy + aojlty + (ax + ax)u; = 0, (3.35)

2_ 2 —
—(c5 = Uz + (a1 — azpuy + (axn + axz —azx — azz)uy = 0.
When ¢, = c3, we require that u; and u, be linearly independent. From system (3.34), we can get
az1 = Az, A +dx; = daz + adss.

We have discussed this situation in Theorem 2.1.
When ¢; # c3, let u, = u3; from the third equation in (3.35), we get
dy1 —d3  dypptdy3— a3 —ds3

Urex = = ! 5 5 u, =0, (3.36)

66 € — G5

and, substituting (3.36) into the second equation in (3.35), we obtain

2 2 2 2
C3a31 — C3Aa1 c5(as + as3) — c3(axn + ax)
Uy + u; + uy = 0. (337)
c2—c? c2—c?
276G 276G

From (3.36) and (3.37), we have

_ Gy —az Q) + dy3 — a3 — ds3
Wyt = ——5 5 Win T S 5 U g
6~ G~G
2 2 2 2
C3a31 — €301 c5(azy + asz) — c5(an + a)
Uppxx = — Ul xx — U -

2_ 2 2_ 2
¢~ G 6~

Assume that u, is smooth enough, then, u, ., = us;..; thus, we get

2 2
ax — az ay + a3 — az — as; N Crd31 — €302
2 _ 2 Uiy 2 _ 2 Uoy 2 _ 2 U xx
274G 276G 274
2 2
c3(az + as3) — c3(axn + ax)
+ > > Uy = 0.
c2—c
274G
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Substituting (3.31), (3.36) and (3.37) into the above equation, we get

) 2 2
ax(cy —¢3) —azi(c] — ¢3) (an —az —asz)ax — (an — axp — ax)laz;
2 2 ulxx - 2 2 ul
€~ G 6~ G
ax —az)ap + a3
- > X > )Mz =0. (3.38)
GG

It can be assumed that u; ,,, u; and u, are linearly independent. Then, we obtain

ar(ct — ¢3) — azi(c] — ¢3) 3

)
€~ G

0,

(an —az —azz)ay — (an — ax — ax)az;

=0
22
5 — 3
and
(a1 —az)ann + ai3) 0
2 2 -
¢~ G

From the above, and under the assumption that c;, ¢, and c3 are not equal to each other, we get

2 2
G764

= , 3.39
asy C% - 02 ( )
a1 _ ax + axs — daj (3.40)
asy  asp t+dasz —dap .
and
ap +ap =0. (341)

Obviously, (3.39)—(3.41) are necessary conditions for the system (3.31) to be a partially synchronizable
system.

Conversely, we consider whether the system (3.31) can realize partial synchronization when condi-
tions (3.39)-(3.41) are satisfied. Denote w = u, — us; then, w(0, x) = 0, w,(0, x) = 0 and w satisfies

Wit — CiWxx — (23 — azs)w + (€5 — ta, + (a1 — az)uy + (az + ars — az — as3)uy = 0,
with the boundary conditions
x=0:w(t,0=0, x=L:w(L)=0.

If
(3 = )ty + (@21 — a3y + (ax + azz — az — as3)up = 0, (3.42)

then we have that w(z, x) = 0; hence, (3.31) is a partially synchronizable system. Therefore, (3.42) is
not only a necessary condition for the system (3.31) to realize partial synchronization, but it is also a
sufficient condition. However, (3.42) is not a self-closed equation, which is difficult to solve. We want
to obtain the algebraic conditions for the coupling matrix A and the wave speed matrix A.
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Denote W = wy, — 3w,y — (@23 — asz3)w; then,
2 2
W + (¢35 — sy, + (a1 — az)uy + (axn + axp — axn — azz)up; = 0.

We can get
2 2
Wi + (€5 — c)Upuy + (a1 — a31)Ut1y + (A + axz — az — azz)uy, = 0

and
)
Wiy + (5 = U ynr + (@21 — A31)U1 4 + (a2 + 23 — a3 — a33)Un, = 0.

From this we have

2 2 2 2 2 2 2
Wi = 3 Wey + (€5 — ¢3)(Uoy — CoUp ) xx + (@21 — a31) (U1 — ClU o + (€] — €U )
2
(a3 + az3 — azxn — az3)(uy, — CyUzy,) = 0.

From (3.31), it follows that

2
Uy — Collpyy = —(ao1Uy + anuy + ax(uy — w))

—ay Uy — (axn + an)uy + anw,

2 _
(U — CoUR ) xx = — 21Uy — (A2 + A23) U2y — A2ZW iy,
and

2
Uy — ClUy e = —(@nuy + anpuy + ap(uy —w))

—apu; — (an +ap)uy +apw.

Substituting the above formulas into (3.44), we get

2 )
th - CQWxx + (C3 - Cz)[_a21u1xx - (a22 + a23)u2xx + a23wxx]
2 2
+ (az1 — az))[—anuy — (a2 + ai3)uy + apzw + (c] — ¢, ]

+ (a3 + as3 — az — ap)[—axuy — (axn + ax)u, + apw] =0,
i.e.,

2 2 2
Wi — s Wiy + (¢5 — ¢3)aswyy + [(a21 — azi)ais + (ax + azz — azy — azs)axslw
2 2 2 2 2 2
+ [—(c3 = ¢3)an1 + (a21 — az1)(c] — ¢3)|u1y, — (€5 — 3)(an + ax3)usy,
— [(a21 — azi)ay + (ax + azz — az — azz)az Ju;

— [(a21 — az)(aiz + apz) + (ax + aszz — az — as)(axs + as3)]us = 0.
By (3.39)—(3.41), the above equation can be simplified as follows:

2 > 2
Wi — ;Wi + (¢35 — ¢3)aoswy, + [(a21 — azp)as + (aos + asz — azp — azz)axslw
2 2
= (c3 — cy)ax + ax)uy ., — [(az — az)(axs + azz)u,

— [(ax3 + a3z — axn — azz)(ax + as3)|u, = 0.

(3.43)

(3.44)

(3.45)
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Then, conditions (3.39)—(3.41) are not sufficient to close the equation (3.45). We want W to satisfy a

self-closed system. For this purpose, we can assume that
ay =0,a13 =0,an +ax; =0.

Combining this with (3.39)—(3.41), we get

2_ 2
a G~ 6 axy —aii

- 2 2 - ’
asy  c3—cy 43 azp tdas—dpn

ap=0,a;3=0,ax» =0, ax =0,

then, W satisfies the conditions for a self-closed system:
W, — 02 = 0.

Obviously, the requirements of (3.47) are stronger than those of (3.39)—(3.41).
If the initial and boundary conditions of W satisfy

t=0:W@0O,x)=0, W, (0,x)=0

and
x=0:W(t0 =0, x=L:WkL)=0

then W = 0; we immediately get w = 0. Hence, (3.31) is a partially synchronizable system.

From (343), we get that W = —(C% - C%)szx - (6121 - a31)u1 + (032 + 033)1/[2; then,
2 2 .
W, = —(c5 — c))uayyy — (@21 — azpuy, + (a3 + as)uo,;
we must have

W, x) = —(c% - C%)szx((), x) — (a2 — az)u1(0, x) + (az + az3)ux(0,x) =0

and
W0, x) = —(c5 = €3)ttax(0, X) = (az1 — az)uy,(0, x) + (az + asz3)uz,(0,x) = 0
Thus,
a
2,,(0, x) = Ly (0, x) + 21950, x),
C3 Cz C3 cz
and a ap +a
20, 2) = = H2—200,,0, %) + 22200500, ),
3 ¢ 3 ;

Regarding the boundary conditions

x=0:W(t,0) = —(c3 — ua(t,0) — (az1 — az)uy(t,0) + (az + as3)ua(t,0),
x=L:W(t, L) = —(c5 — ua(t, L) — (a1 — az))ui(t, L) + (az + as3)ua(t, L).

From (3.31) and (3.46), we have

Uy + ap1ly
Uy (£,0) = ————

u + aru
(1,0),  ur(t,L) = =28, L),
Cz 5

By (3.21), uy,(t,0) = 0 and u,(¢, L) = 0, using (3.21) agian, we have
x=0:Wt0)=0, x=L: Wt L)=0

From the above discussion, we get the following theorem.

(3.46)

(3.47)

(3.48)

(3.49)
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Theorem 3.3. If the system given by (3.31)—(3.32) is a partially synchronizable system in which
Ui, Uy and u, are linearly independent then matrix A and matrix A satisfy the conditions (3.39)—(3.41).
Conversely, if condition (3.47) holds for the initial value (Uy, Uy) with the partial synchronization
property (3.33), which satisfies the conditions (3.48)—(3.49), then the system given by (3.31)—(3.32)
has a solution U = U(t, x) satisfying the partial synchronazition condition

Uy = Us.

Remark 3.4. The status of variables u, and u; in (3.31) are equal. In the previous processing step,
we retained u,, eliminated uz and obtained the condition (3.47). In fact, if we keep u; and eliminate
U, we can obtain the following conditions:

2_ 2
Ay G~ Cp ay _ daxp+daxp—dap

ap=0,a13=0,a3=0,a33=0, — = R (3.50)
az - cy 4z —aipi
Compared with condition (3.47), it can be seen that, with the exception that
22
ay _ G~
ap=0,a;3=0, —=-5——>, (3.51)
asy C3 - C1
remain unchanged, the conditions
a a» +ax —a
ap =0, a3 = 0, 2 il B 1 (3.52)
as| —day
azy —dj
a»=0,a»3=0, —= —M—— (3.53)

- )
as;  asp t+dasz —dap

exhibit a symmetrical state. Therefore, whether the condition (3.51) is combined with the condition
(3.52) or (3.53), the system (3.31) can have partially synchronized solutions.

Remark 3.5. Actually, if we do not have conditions (3.39)—(3.41) and directly require (3.45) to be
a self-closed system, we have

ay; =0

(a1 — az)ags + (ax + axp — azy —asz)axp =0,
—(c5 = &3)an + (az — az)(c] — c3) =0,

anp +ayp =0,

(a1 —az)ay + (axn + ax —az —azz)ay =0,

(a21 — az1)(an + ai3) + (ax + axz — az — asz)(axn +azz) = 0.

Thus, we can directly get (3.47). Therefore, the previous steps provide us a method to realize the partial
synchronization of the system given by (3.31)—(3.32).
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3.4. The general case with N variables

For the case of N variables in which the first m variables do not require synchronization, we rewrite
the equation (1.1) as follows:

N
Uiy — Cizuixx + Zaijuj =0, i=1,---,N (3.54)
=1
with the boundary conditions
x=0:u(,0)=---=uy®,0)=0, x=L:wu(t,L)="---=uyn(L)=0, (3.55)

and the initial conditions with the partial synchronization property

=0 Ups1(0,0) =+ = un(0, x), 1,0, x) = -+ = upn, (0, x). (3.56)
We want to get
Ups1 = " = UpN. (357)
For ¢,,.1 = - - - = ¢y, we have discussed this situation in Theorem 2.1.
When c¢,,1, -+, cy are different from each other, if we require (3.57) to hold from the previous

discussion, we get condition (3.5).
Conversely, we want to find the conditions that make the system (3.57) be a partially synchronizable
system. Here, we use the same method as the case when N = 3,m = 1. Let

Wi = Upyl —UN, W2 = Upyyp —UN, ~ 3 WN_p—1 = UN—1 — UN.
Obviously, (wy, -+, Wy_,—1) = 0 1s equivalent to condition (3.57).
Next, we want to find the condition which can realize (wy,--- ,Wy_n—1) = 0. Let the (m + 1)-th

equation in (3.54) be subtracted from the N-th equation in (3.54), and, consistent with the mark in
(2.3), we denote

N
Qi1 = § aij, @i=1,---,N); (3.58)
j=m+1
we get
2 2 2

Wiy — Cm+1wlxx + (CN - cm+1)uNxx + (am+1,1 - aNl)ul +ee (am+1,m - aNm)um

+ (@it a1 — Anme 1)W1 + -+ + (At N=1 — ANN-1)WN-m—1

+ (@ms1,me1 — ety = 0. (3.59)
The equations of wy, - - - , wy_,,—1 can be obtained in the same way. For example,

2 )
WN-m-11t — CN_IWN-m-1xx T (CN - CN_1)uNxx + (aN—l,l —ayp)uy +---
+ (an-1m = ANp)Um + (AN=1me1 = ANpr1)IW1 + -+ (@N_1 N=1 = ANN-1)WN-m—1

+ (an-1m+1 — Anme))Uy = 0.
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Thus, we get the system of (wy, -+, wy_,—_1) with the following boundary conditions
x=0:wi=--=wy_u1 =0, xX=L:w;=---=wWy_y_1 =0,
and the initial conditions
t=0:wi=--=wn_,.1 =0, wi, = =wy_p_1, =0.
If the conditions

(C]ZV - Cfn_;,])uNxx + (am+],1 - aNl)ul +-t (am+l,m - aNm)um

(@1 m+1 — Anme)Uy = 0,

(3.60)
(¢ — €3 D e + (@n-11 — anDur + -+ + (@n-1m — ANm)Um
+(@n-1ms1 — Gyms))uy = 0,
hold, then the vector (wy,--- ,wy_,_1) satisfies the conditions of a self-closed system. We get that
(wi, -+ ,wn-_m-1) = 0. Hence, the system (3.54) is a partially synchronizable system. Obviously, this

is a sufficient condition. However, (3.60) is not a self-closed equation, so it is different to solve. We

want to get the algebraic conditions of matrices A and A.

Let
N-1
_ 2
Wl Wi = CptWixx + § (am+1,j - aNj)Wj—m’
Jj=m+1
N-1
_ 2 §
W2 =Woy = CpiaWaxx + (am+2,j - aNj)Wj—ma
j=m+1
N-1
— 2
WN-m-1 =WN-m-14 = CN_{WN-m-1xx + § (aN—l,j - aNj)ijm-
Jj=m+1

From (3.59), we get

2 2
Wi+ (cy = Cpo)UN .y + (@msr1 — D)y + <+ + (@t n — Am) Unm

+ (Elm+1,m+1 - aN,m+l)uN =0.
Then, we have

2 2
Wi + (CN - Cm+1)MNxxn + (am+1,l —an )iy + -+ (am+1,m — ANm) Uy

+ (Gt me1 — AN Ny = 0

and

2 2
Wlxx + (CN - cm+1)uNxxxx + (am+1,l - aNl)ulxx +--+ (am+1,m - aNm)umxx

(3.61)
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+ ([@ms1,m41 = ANa 1) UN e = 0.

From the above two equations, we get

2 2 2 2 2
Wi — cyWige + (cy = Cro )Wy — Cyttn ) xx + (@met ) — an) Uiy — Cyltigg) + -

2 ~ ~ 2
+ (am+1,m - aNm)(umtt - CNumxx) + (am+1,m+1 - aN,m+1)(uNtt - CNuNxx) =0. (362)

We want (3.62) be a self-closed system of Wy; thus, we simplify the above formula as follows.
Using system (3.54), we have

m N-1
2 _
UNy — CNUNxxy = — (Z ayjuj + Z anjWij—m + uy) + anyuy)
Jj=1 Jj=m+1
m N-1
=- (Z ayju; + Z aANW jom + AN+ 1UN)
j=1 j=m+1
m N-1
2 _ -
(Uny — CNUN ) xx = —(Z anju; ..+ Z aANWjm ., F ANt 1UN xx)
j=1 j=m+1
and
2 _ 2 2 2
Uiy — CyUlxx =ULy — ClULxx T+ (C1 - CN)ulxx
m N-1
_ 2 2
=- (Z ajju;+ g ayj(Wi—py + uy) + ayyun) + (€] — Cy)Uy
=1 j=m+1
m N-1
_ ~ 2 2
=- (Z ajuj + Z AW jm + A1 Un) + (€T — Cy) U1 gy
j=1 j=m+1
Then, up; — Chlares *** » Uy — Coylimy, can be obtained similarly. For example,

2 _ 2 2 2
Unpt — CnUmxx =Umpr — Cppillmyx + (Cm - CN)umxx

m N-1

_ ~ 2 2

==() apju;+ AmjWjm + Gmme1n) + (Cpy — C ) Uiy
j=1 j=m+1

Substituting the above formula into (3.62), we get

m N-1
2 2 2 ~
Wi — cyWiee — (Cy — C’”“)[(Z ayju; .+ Z ANJW jom . T ANt 1UN )]
j=1

j=m+1

2 2 2 2
+ (am+1,l - aNl)(Cl - CN)ulxx S (am+1,m - aNm)(Cm - CN)umxx

m N-1
— (Amsr1,1 — aNl)[(Z ajuj + Z ay W, + aype1un)]

Jj=1 Jj=m+1
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m N-1
- (am+l,m - aNm)[(Z amjuj + Z aijj—m + am,m+luN)]

j=1 Jj=m+1
m N-1
= (Gmstme1 — 51N,m+1)[(z ayju; + Z aANjWi—m + AN me1UN)].
= jeml

After simplification, we obtain
2 2 2 2_ 2
Win = exWis + [(Cpy — €D)ant + (¢] — cy)ameri U + - -
2 2 2 _ 2 2 2 \»
+ [(Cm+1 - Cm)aNm + (Cm - CN)am+1,m]umxx + (CN - Cm+1)aN,m+1”Nxx

)
—(cy = Copa AN a1 Wigx + *+* + ANN-IWN-m—1xx)

m
- [Z(am+l,j —anj)aji + (et met — Gnmer)ant i
=

m
- [Z(am+l,j - aNj)ajm + (am+l,m+l - ZlN,m+1)aNm]um

J=1
m
- [Z(amﬂ,j - aNj)Elj,mH + ([@ms1,m41 = AN s 1)ANmr1 JUN
j=1
m
- [Z(am+1,j —anj)ajme1 + (@it met = ANme1)JANm+1IW1
J=1
m
- [Z(am+l,j —anj)a;n-1 + (Gue1me1 = AN 1)ANN-1]IWN -1
j=1
=0.
Assume that the matrices A and A satisfy the following conditions:
Am+1 ,1 _ any Am+l ,m _ anm
2 _ 27 2 2 >2 _ 2 2 20
Cni1 —€1 Oy —C€ Cni1 “Cm N T G

ANm+1 = 0,--- s ANN-1 = 0,ayny =0,

(@11 —an)an + -+ (st m — A1 + Gt merant = 0,

(am+],] - aNl)alm +e+ (am+l,m - aNm)amm + am+l,m+laNm = O,

@ms11 —an))aimer + -+ (@petn — Avm)Amme1 = 0,

(@ms1,1 —an)ain-1 + -+ + (@nse1m — Anm)amn-1 = 0,

@ms11 — an1)bimer + -+ (@perm — ANm)Gmme1 = 0.

For short
am+1,1 ani am+1,m aNm
2 2 2 20 > 2 _ 2 2 _ 27
Cne1 —C1 N TG Cne1 “Cn N T Cn

(3.63)
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ANm+1 = 0,--- sANN-1 = 0,ayy =0,
@11 —an))aix + -+ + (@pe1m — ANm) Ak + Amsimriane =0, k=1,--+ ,m,
(@msr,1 — anp)ay + -+ + (@msrm — ) =0, [ =m +1,--- | N. (3.64)

Then, (3.62) becomes Wy, — C,ZVWUX = 0. Using the same method to calculate the equations of

Wy, -+, Wy_m—1, we get the conditions as follows: foralli=m+1,--- ,N -1,
ai . am . Aim _ Onm
A-c2 A - Ay
anme1 =0, ,ayny-1 = 0,ayy =0,

(ain —anan + -+ + (im — Anm)ami + Gimerant = 0,

(ain —an)aym + -+ + (Qim — ANp) A + Aip1Anm = 0,

(ail - aNl)al,m+1 +oeee (aim - aNm)am,m+1 = O,

(ain —any)ain-1 + -+ + (@im — aNm)amn-1 = 0,

(@it — anDaimer + -+ + (@im — Anp)Gmmr1 = 0. (3.65)
This can be abbreviated as follows: foralli=m+1,--- ,N — 1,
ain  _ _4ant Aim  ANm
cl.z—c%_clzv—cy ’cl.z—c,zn_clzv—cfn’
anmi1 =0, ,ayn-1 = 0,ayy =0,
(ain —anDa + - + (@im = ANp) Ak + Gimarane = 0, k=1, m,
(ain —anay + -+ @iy — anp)ayy =0, l=m+1,--- | N. (3.66)

If condition (3.65) holds, then we get the self-closed systems of Wy, -+, Wy_,,_;:

2 —
Wllt - CNWIXX — O,
2
Wzn - CNWQXX = 0,

2 —
WN—m—ltt - CNWN—m—lxx =0.

Assume that the initial and boundary conditions of (Wy,--- , Wy_,,_1) satisfy
x=0:Wi(t,0) =+ =Wy, 1(t,0) =0, x=L:W(,0) == Wy,110) =0,
t=0:Wi(0,x)=--=Wy,, 1(0,x) =0, Wi,(0,x) =---=Wy_,_1,(0,x) = 0.

Then, (W, -+, Wy_p—1) = 0. We immediately get that (wy,--- ,wy_,,—1) = 0. This implies that (3.54)
is a partially synchronizable system.
Now, we consider the initial and boundary conditions of Wy, ---, Wy_,,_;. For Wy, from (3.61), we

get

m

2 2 ~ .

Wi = —[(cy — Cpp DU + Z(amﬂ,j - aNj)uj + st a1
j=1
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then,
m
2 2 ~
Wi, = —[(CN - Cm+1)MNxxz + Z(am+l,j - Cle)Mj, + At me1UN]-
j=1

We must have
Wi(0, %) = =(c = e tna (0, ) = D (@t j = an 0, X) = Gyt ety (0, %) = 0

Jj=1

and

W10, x) = —(ciy = Coy U (0, X) — Z(amH, = anpu;(0, %) = Gyt 1t (0, x) = 0;
=1

thus, we require that

am+1,1 —ani am+1,m — aNm Zlm+1,m+1
I/tNxx(O, X) = ﬁul(O, )C) + -+ ﬁum(o, X) + +ﬁu1\/(0, X) (367)
mel — CN Cn+1 —CN Cn+1 —CN
and
Api1,1 — ANL Ams1,N A1 m+1
UN (0, X) = ———F—u1,(0, x) + - -+ + =—5 (0, x) + ———un,(0, x). (3.68)
m+1 — CN m+1 — CN m+1 — CN

Regarding the boundary conditions of Wi,

x=0: Wilt,0) = = (¢} = e twss(t,0) = D (@it j = anitj(2, 0) = Gt ot (1, 0),
j=1

x=L:W(t,L) =~ (cy — Cos Dunun(t, L) — Z(am+l,j —anjuj(t,L) = Gyt mer1un(t, L).
=

From (3.54), we have
uny(1,0) + ayui(2,0) + - - - + ayyvuy(t,0)

B

uNxx(t’ O) = B
Cn
_ung (8, L) + ayug (¢, L) + -+ - + ayyun(t, L)
uNxx(t’ L) = 62 .
N

From (3.55), we have that uy,(¢,0) = 0 and uy,(¢, L) = 0. Using (3.55) again, we get
x=0:Wt,0)=0, x=L: W@ L)=0.

For W,, - -+, Wy_,,_1, We can get similar conclusions for the initial value: fori =m+1,--- ,N — 1,
a;; — ayy Aim — AN Qi1
uy (0, x) = — u (0, x)+---+ — U (0, X) + TR uy (0, x) (3.69)
€ —Cn ¢ —Cn ¢ —Cn
and
aj; — ani Aim — ANm Qi1
UN (0, X) = ———=~11,4(0, ) + - - - + ———F (0, X) + Uy (0, X). (3.70)
€ —Cn ¢ —Cn ¢ —Cn
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Remark 3.6. By (3.2)—(3.3), we know that conditions (3.69)—(3.70) are equivalent to
Un (0, X) = =111 (0, X) = -+ = Wty (0, X) = W11ty 1,0, %) (3.71)
and
U 122(0, X) = =1114(0, %) = -+ = Ul 124(0, X) = g1 Un (0, X). (3.72)

Hence, (3.69)—(3.70) are not 2(N — m — 1) conditions, but only two conditions.
To sum up, we get the conclusion:

Theorem 3.7. If the system given by (3.54)—(3.55) satisfies the compatibility condition (3.65), the
initial value (Uy, Uy) has the partial synchronization property (3.56), which satisfy conditions (3.71)—
(3.72), then the system given by (3.54)—(3.55) has a corresponding solution U = U(t, x) that satisfies
the partial synchronization condition (3.57).

Remark 3.8. Under the assumption of Theorem 3.7, not all partially synchronized initial val-
ues (Uy, Uy) have corresponding partially synchronized solutions,as only the initial values satisfying
(3.71)—(3.72) can have partially synchronized solutions. Therefore, even if the system with different
wave speeds is a partially synchronizable system, it does not mean that, for any given initial value sat-
isfying the partial synchronization property, there is a corresponding partially synchronized solution.
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