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1. Introduction

In his memoir [21], Lyapunov stated several theorems about analytic families of periodic solutions
of some analytic autonomous vector fields near equilibrium point. Below, we distinguish three of them.

First, consider an analytic planar vector field with a singular point having a pair of pure imaginary
eigenvalues. Thus, we can assume an autonomous differential system of the form

ẋ = −ωy + . . . , ẏ = ωx + . . . . (1.1)

with real analytic right-hand sides.
Here, one looks for a first integral in the form of a formal power series:

F =
ω

2

(
x2 + y2

)
+ . . . . (1.2)

In general, such a formal first integral does not exist; one finds

Ḟ = c2k+1

(
x2 + y2

)k+1
+ . . . , (1.3)
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where c2k+1 , 0 is the so-called Poincaré–Lyapunov focus quantity and we have a weak focus of
order 2k−1 (see Section 2 below). Otherwise, we have the following result attributed to Lyapunov [21,
Section 39] and Poincaré [27, Chapter 11].

Theorem 1. (Lyapunov–Poincaré) If all focus quantities vanish, then the formal integral (1.2) is, in
fact, analytic, and all solutions near x = y = 0 are periodic.

In [21, Section 40] the latter situation is generalized to the following system:

ẋ = Ax + . . . , (1.4)

x ∈ (Rn, 0) , where the matrix A has a pair λ1,2 = ±iω of pure imaginary eigenvalues and all of its other
eigenvalues lie in the half-plane {Reλ < 0} . Again, one looks for a formal first integral of the form

F =
ω

2

(
x2

1 + x2
2

)
+ . . . , (1.5)

where x1,2 are the variables associated with λ1,2, and there are again obstacles to such an integral
occurring.

Theorem 2. (Lyapunov) If all of these obstacles vanish, then the first integral is analytic and system
(1.4) has an analytic 1–parameter family of periodic solutions.

The last situation considered in [21, Section 42]* is the case when the matrix A in system (1.4) has
the pure imaginary eigenvalues

±iω1, . . . ,±iωm, ω j > 0,

and one of the frequencies, say, ω1, is such that none of the other frequencies is an integer multiple of
it; thus,

ω j/ω1 < Z, j ≥ 1. (1.6)

Theorem 3. (Lyapunov) In this case, there exists a family of periodic solutions

x = ϕ (t; c) , c ∈ (R+, 0) ,

of period T (c) ≈ 2π/ω1, depending analytically on c and such that ϕ (t; 0) ≡ 0.

The latter theorem has attracted the attention of specialists in Hamiltonian dynamics.†

Recall that an autonomous analytic Hamiltonian system with m = n
2 degrees of freedom takes the

form
q̇ j =

∂H
∂p j

, ṗ j = −
∂H
∂q j

, j = 1, . . . , n; (1.7)

*In fact, Lyapunov considered a more general situation where, besides ±iω j, there are also eigenvalues in the left half-plane.
†I have somehow overlooked this result and have learned about it only recently on the occasion of reviewing the Ph.D. thesis of D.

Strzelecki in the Nicolas Copernicus University in Toruń.
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the corresponding vector field is usually denoted as

XH =
∑

H′pi
∂/∂qi −

∑
H′pi

∂/∂pi .

Assume that it has equilibrium point q = p = 0 with the eigenvalues ±iω1, . . . ,±iωm, ω j > 0.Assuming
H (0) = 0, the leading part of the Taylor expansion of the Hamiltonian function is

H2 =
∑ 1

2
ϵ jω j

(
q2

j + p2
j

)
, (1.8)

where q j, p j are suitable canonical variables, i.e., with the Poisson brackets
{
pi, q j

}
= δi j, and ϵ j = ±1

are well-defined signs. ‡

Schmidt [28] studied 1–parameter families of periodic solutions for such systems with two degrees
of freedom in the cases of resonant frequencies ω1 and ω2. His analysis was mainly focused on definite
Hamiltonians, i.e., when ϵ1 = ϵ2; but, he also considered the situation near the Lagrangian libration
point in the restricted three-body problem, where the Hamiltonian function is indefinite. He did not
refer to the third Lyapunov theorem. Anyway, his results agree with what is presented below.

Weinstein [35] has applied the Lusternik–Schnirelmann category to prove the following.

Theorem 4. (Weinstein) Assume that H2 is positive definite, i.e., all ϵ j = 1 in Eq. (1.8). Then, system
(1.7) has at least m = n

2 1–parameter families of periodic solutions.

Next, Moser tried in [23, Theorem 4] to specify Weinstein’s result by assuming that H2 is positive
on a linear subspace E associated with one frequency ω, i.e., all solutions in E of the linear system
have the period 2π/ω and these are the only such solutions. He claimed that there exists at least 1

2dimE
of periodic solution of the period ≈ 2π/ω of the full Hamiltonian system. But his own example [23,
Example 2] contradicts his statement; see also Example 4 below. Note also that the change H 7−→ −H
means the reversion of the time, and it does not influence the periodic property of solutions.

We have the following specification of Theorem 4. Again assume an analytic Hamiltonian system
(1.6) with the eigenvalues ±iω j, ω j > 0.

Following [35, Proof of Theorem 2.1] we consider the following equivalence relation on the set
{ω1, . . . , ωm} of frequencies

ωi ∼ ω j iff ωi/ω j ∈ Q. (1.9)

For each equivalence class Cν we have a linear subspace Eν that is invariant for the linear part of the
system.

Choose some equivalence class C1 and let E1 be the corresponding linear subspace. Let us order the
frequencies from C1 as follows:

ω̃1 : = ω1 = . . . = ωk1 > ω̃2 := ωk1+1 = . . . = ωk1+k2 (1.10)
> . . . > ω̃r := ωk1+...+kr−1+1 = . . . = ωk1+...+kr .

‡We have ḟ = { f ,H} in the case of a general Hamiltonian system with the symplectic structure defined by a Poisson bracket.
In particular, for z j = q j+ip j and v j = q j−ip j,we have

{
z j, zk

}
=

{
v j, vk

}
= 0 and

{
z j, vk

}
= 2iδ jk. Thus ż j =

{
z j, vk

}
∂H/∂vk = 2i·∂H/∂vk.

Also, the resonant monomials g = zkvl that form the Birkhoff theorem satisfy {g,H2} = 0.
In the case of (1.8) the corresponding linear system is diagonalizable in the complex variables. The non-diagonalizable case is

somewhat special and we consider it only in Example 7 in Section 5.
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Theorem 5. Let H be analytic and such that H2|E1 is definite (say, positive), i.e., ϵ1 = . . . = ϵk1+...+kr = 1
in Eq. (1.8); then, there exist the following:

— at least k1 1–parameter families of periodic solutions to system (1.7) with periods ≈ 2π/ω̃1,

— at least k1 + k2 1–parameter families of periodic solutions to system (1.7) with periods
≈ 2π/ω̃1 or ≈ 2π/ω̃2, . . .

— at least k1 + . . . + kr 1–parameter families of periodic solutions to system (1.7) with periods
≈ 2π/ω̃1, or ≈ 2π/ω̃2, . . . , or ≈ 2π/ω̃r.

Next, this subject was raised up by specialists in the nonlinear functional analysis, including Szulkin
[32] and several other groups [10, 15, 25, 26]. The principal result here is that we assume the ordering
(1.10) of all frequencies (not only from C1).

Theorem 6. (Szulkin) If, for a given l,
(i) ω̃ j/ω̃l < N for all j , l in Eq. (1.10), and
(ii) ϵk1+...+kl−1+1 + . . . + ϵk1+...+kl , 0 for ϵi’s from Eq. (1.8),

then there exists a sequence {γn (t)} of periodic solutions to the equation ẋ = XH (x) of non-constant
periodic solutions tending to γ (t) ≡ 0 of periods tending to 2π/ω̃l.

We see that the first assumption is like in the third Lyapunov theorem. But, the assumption (ii) is
new; it replaces the definiteness assumption of H2 from Theorems 4 and 5.

Finally, we recall the following non-Hamiltonian version of the third Lyapunov theorem due to
Moser [23, Theorem 2].

Theorem 7. (Moser) Assume that an analytic system (1.4) with only purely imaginary eigenvalues has
an analytic first integral F (x) such that D2F (0) is positive definite. Then, this system has at least one
1–parameter family of periodic solutions.

The aim of this paper is to take a somehow different look at this center problem. Our approach is
rather qualitative and less topological, like in [1] and [18]. It turns out that much can be deduced from
the Poincaré–Dulac normal form and its Hamiltonian version, i.e., the Birkhoff normal form (Schmidt
also used the Birkhoff normal form). Important is the use of some versions of the standard Poincaré
return map combined with the analyticity assumption of the vector fields. We will reprove most of
above theorems and we shall prove a new result.

Assume that the matrix A in system (1.4) has pure imaginary eigenvalues: ±iω1, . . . ,±iωm, ω j > 0.
We can reduce it, via a formal change of variables, to the Poincaré–Dulac normal form (see Theorem
9 in the next section). It may happen that the latter formal system admits a formal 1–parameter family
of periodic solutions with the period ≈ 2π/ωl.

More precisely, one can consider the situation with only one equivalence class for the frequencies,
i.e., ω j/ωk = p j/pk, with relatively prime positive integers pi, and that ω1 ≥ . . . ≥ ωl. Let Z j be
the formal complex variables associated with the Poincaré–Dulac normal form. For the new variables
R ∈ R, W j ∈ C and Θ ∈ S1, defined by Zl = ReiΘ and Z j = W jeip jΘ/pl , one obtains a formal differential
system:

dR
dΘ
= Π

(
R,W, W̄

)
,

dW j

dΘ
= Λ j

(
R,W, W̄

)
Communications in Analysis and Mechanics Volume 15, Issue 2, 300–341.
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(called the return system). The analogue of the center conditions in this case means that the latter
system has a formal curve Γ of non-isolated equilibrium points. All of these notions are made precise
in Section 7 (Eqs. (7.1)–(7.3), Lemma 3 and Definition 4).

The next statement can be regarded as a fourth Lyapunov theorem.

Theorem 8. In this case, there exists a continuous family of periodic solutions to system (1.4) with the
period ≈ 2π/ωl.

The paper is organized as follows. In Section 2, we define the Poincaré–Dulac and Birkhoff normal
forms, with their principal properties. In Section 3, we present and discuss theorems about invariant
manifolds. Section 4 is devoted to various proofs of the three Lyapunov theorems; they are included
in this paper (which is treated as a sort of review) because some of the Lyapunov theorems are not
widely known, and because their proofs are (we hope) illuminating. In Section 5, we present some
examples of Hamiltonian systems with explicit families of periodic solutions. In Section 6,we prove
the existence of some additional invariant submanifolds following from the normal forms. In Section
7, we prove Theorem 8. Section 8 is devoted to the discussion of situations with a first integral;
there, we give proofs of Theorems 4, 5, 7 and an introduction to the functional analytic method. In
Section 9, we present our approach, based only on the Birkhoff normal form, of two examples from the
celestial mechanics: geostationary orbits of satellites and libration points in the restricted four-body
problem. The last section contains appendices about the topology of weighted projective spaces and
the Lusternik–Schnirelmann category.

2. Poincaré–Dulac and Birkhoff normal forms

Consider the analytic system (1.4), but in (Cn, 0) (not in (Rn, 0) . Thus, we can assume that the
matrix A is in the Jordan form with eigenvalues λ1, . . . , λn.

Definition 1. We say that the latter system of eigenvalues satisfies the resonant relation of type ( j; k) ,
j = 1, . . . , n, k = (k1, . . . , kn) ∈ Zn

≥0, if

λ j = (k, λ) = k1λ1 + . . . + knλn. (2.1)

Theorem 9. (Poincaré–Dulac [13, 27]) There exists a change x→ X, defined by formal power series,
which transforms system (1.4) to the following Poincaré–Dulac normal form:

Ẋ j = λ jX j +
∑

k

a j;kXk, j = 1, . . . , n, (2.2)

where the summation runs over multi-indices k such that the resonant relations of type ( j; k) hold and
Xk = Xk1

1 · · · X
kn
n .

The proof can be found in [3, 17, 37].
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Remark 1. In the case when there are multiple eigenvalues λ j and the corresponding Jordan cell is
not diagonal,we have the resonant relations ( j; k), where k = (0, . . . , 0, 1, 0, . . . 0) with 1 in the ( j + 1)th

entry. They imply non-diagonal entries in A.

Remark 2. In the so-called Poincaré domain, i.e., when the convex hull of the set {λ1, . . . , λn} ⊂ C is
separated from 0 ∈ C, the Poincaré–Dulac normal form is polynomial and the normalizing change is
analytic. We refer the reader to [30] for a short proof.

Remark 3. In the general, situation the Poincaré–Dulac normal form is divergent. Indeed, in the
example

ẋ1 = x2
1, ẋ2 = x2 − x2

1, (2.3)

due to Euler (see [37]), the Poincaré–Dulac normal form is

Ẋ1 = X2
1 + a3X3

1 + . . . , Ẋ2 = X2

(
1 + b1X1 + b2X2

1 + . . .
)
.

But, the so-called center manifold Wc, corresponding to the zero eigenvalue and formally defined by
X2 = 0, in the original system (2.3) takes the form

Wc =
{
x2 =

∑
(m − 1)!xm

1

}
.

Consider now an autonomous analytic Hamiltonian system (1.7) with m = n
2 degrees of free-

dom near an equilibrium point q = p = 0 with the eigenvalues ±iω1, . . . ,±iωm, ω j > 0. Assuming
H (0) = 0, the leading part of the Taylor expansion of the Hamiltonian function is like in Eq. (1.8), i.e.,
H2 =

∑ 1
2ϵ jω j

(
q2

j + p2
j

)
, where q j, p j are suitable canonical variables, i.e., with the Poisson brackets{

pi, q j

}
= δi j, and ϵ j = ±1 are well-defined signs.

It is natural to introduce the complex variables

z j = q j + ip j, v j = q j − ip j, (2.4)

with the Poisson brackets
{
z j, vk

}
= 2iδ jk. Then, we have

H2 =
∑ 1

2
ϵ jω jz jv j (2.5)

and
ż j = λ jz j + . . . , v̇ j = −λ jv j + . . . , λ j = −iϵ jω j. (2.6)

Of course, in the real domain (where p j and qk are real), we have v j = z̄ j.

The following result from [8] is a Hamiltonian analogue of the Poincaré–Dulac theorem.

Theorem 10. (Birkhoff) There exists a formal canonical change (z, v) 7−→ (Z,V) which reduces the
Hamiltonian function to the following one:

H2 (Z,V) +
∑

ak;lZkV l,

where summation runs over the pairs (k; l) = (k1, . . . , kn; l1, . . . , ln) ∈ Zn
≥0 × Z

n
≥0 such that the resonant

relations
(k − l, λ) =

∑(
k j − l j

)
λ j = 0

hold and |k| + |l| ≥ 3.
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3. Invariant manifolds

Definition 2. The singular point x = 0 of system (1.4) is hyperbolic if none of the eigenvalues of the
matrix A is imaginary. Thus, the eigenvalues are divided into two groups:{

λ1, . . . , λp

}
with Reλ j < 0 and

{
λp+1, . . . , λn

}
with Reλ j > 0; (3.1)

i.e., separated by the imaginary axis.

The principal result about invariant manifolds is the Hadamard–Perron theorem for hyperbolic sin-
gular points. These manifolds are the local stable manifold (of dimension p)

W s =
{
x : gt (x)→ 0 as t → +∞

}
(3.2)

and the local unstable manifold (of dimension q = n − p)

Wu =
{
x : gt (x)→ 0 as t → −∞

}
, (3.3)

where
{
gt} is the phase flow generated by the vector field (1.4); gt (x0) is the solution x (t) obeying the

initial condition x (0) = x0. In the case of a finitely smooth vector field,the proof of the Hadamard–
Perron theorem is rather involved. But, in the analytic case, it is quite easy.

Theorem 11. (Holomorphic Hadamard–Perron) Assume that the vector field (1.4) is analytic. Assume
also that the set {λ1, . . . , λn} ⊂ C of eigenvalues of the matrix A can be separated by a straight line ℓ
through λ = 0 into two groups:

{
λ1, . . . , λp

}
on one side of ℓ and

{
λp+1, . . . , λn

}
on the other side. Then,

there exist local analytic invariant manifolds for (1.4) tangent to the corresponding linear subspaces
invariant for A.

It follows that, if the singular point x = 0 is hyperbolic, then the invariant manifolds W s and Wu

are real analytic.

Proof. We present a rather novel proof, following a method from [30]. Another proof can be found
in [17]; note also that, in the case n = 2 and p = 1, this result was proved by Briot and Bouquet [9]
(see also [37]).

Let E s ≃ Cp and Eu ≃ Cq be the linear subspaces associated with the division of the eigenvalues
set, and let (x, y) be the coordinates associated with the splitting Cn = E s ⊕ Eu. We can assume that
the matrix A has the form As ⊕ Au, where As = diag

(
µ1, . . . , µp

)
+ As

1 and Au = diag
(
ν1, . . . , νq

)
+ Au

1,

where As,u
1 are off-diagonal with small entries. We have

ẋ = Asx + ϕ (x, y) , ẏ = Auy + ψ (x, y) .

We look for the manifold W s as a graph of a map F : E s 7−→ Eu, W s = {(x, F (x))} ; the case of Wu

is treated analogously. The invariance condition, i.e.,

ẏ − DF · ẋ|y=F(x) ≡ 0,

leads to the equation

AuF (x) − DF (x) · Asx = DF(x) · ϕ (x, F (x)) − ψ (x, F (x)) . (3.4)
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This equation takes the form
LF = T (F) ,

where L and T are operators, linear and nonlinear. We treat these operators as acting on the Banach
space F consisting of power series F =

∑
j,k f j,kxke j with the norm

∥F∥ =
∑∣∣∣ f j;k

∣∣∣ ρ|k|,
where ρ is the ‘radius of convergence’ (suitably chosen). We have L = L0 + L1, where

L0xke j =
[
ν j − (k, µ)

]
xke j

and L1 is small with respect to L0. Because ν j and µi are separated by the line ℓ, the operator L is
invertible.

Moreover, if Fd =
{
F =

∑
j,|k|=d f j;kxke j

}
are the subspaces of homogeneous maps of degree d ≥ 2,

then ∥∥∥L−1|Fd

∥∥∥ < C1/d

for some constant C1. On the other hand, the operators T|Fd : Fd 7−→ F>d have the Lipschitz constants
bounded by C2dρ, where the factor d arises from DF and C2 is some constant. It follows that the
operator

P = L−1T

is Lipschitz-continuous with a small Lipschitz constant. Therefore, the fixed-point problem F = P (F)
has a unique solution. □

Assume now the non-hyperbolic situation. Thus, we have the splittings Rn = E s ⊕ Eu ⊕ Ec and
A = As ⊕ Au ⊕ Ac, where the eigenvalues of As (respectively, Au) lie in the left (respectively, right) half-
plane and the eigenvalues of Ac lie on the imaginary axis. The next theorem is usually cited without
proof (which is quite technical, see [3, 17]).

Theorem 12. (Center Manifold) There exist smooth invariant manifolds W s, Wu and Wc tangent to the
subspaces E s, Eu and Ec, respectively. The manifolds W s and Wu are analytic; Wc is only infinitely
smooth in general, but its Taylor series is defined uniquely.

Remark 4. The Euler example from Remark 3 demonstrates that the center manifold can be non-
analytic. If Wc = {y = F(x)}, then the analogue of Eq. (3.4) is

LF = x2 d
dx

F + x2,

where L = Id. Here L, although invertible, is not dominating in comparison to x2 d
dx ; we have∥∥∥x2 d

dx xk
∥∥∥ / ∥∥∥xk

∥∥∥ = kρ.
In [17] and [37], one can find an explanation of the non-analyticity of Wc in terms of the so-called

Stokes phenomena.
Next, the center manifold can be non-unique. Indeed, the real Euler example is the so-called saddle-

node singularity; on the left from the unstable manifold Wu = {x = 0}, we have two hyperbolic sectors

Communications in Analysis and Mechanics Volume 15, Issue 2, 300–341.
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separated by the left part of Wc (which is unique), but, on the right of Wu, we have a parabolic sector,
and any of its phase curves can serve as the right part of Wc. This non-uniqueness is explained by the
method of the proof of the existence of Wc; there, one extends the vector field to the whole Rn and Wc

(which is a fixed point of some functional operator) depends on this extension.

Below, we present other examples with non-analytic invariant manifolds.

Example 1. Let z = x1 + ix2, v = x1 − ix2 and y be coordinates in C3. The system is as follows:

ż = iz + z2v, v̇ = −iv + zv2, ẏ = −y + zv. (3.5)

One finds that

Wc =

{
y =

1
2

∑
(n − 1)! (2zv)n

}
.

The non-analyticity of the center manifold is explained via the nonlinear Stokes phenomena as
follows. In the variables u = zv and y, we have

u̇ = 2u2, ẏ = −y + u,

i.e., a saddle-node similar to the Euler example. In a sectorial domain around
{(u, y) : Im (u) = 0, Re (u) > 0}, the phase portrait near the saddle, with a unique center mani-
fold and unique stable manifold; but, in a sectorial domain near {(u, y) : Im (u) = 0, Re (u) < 0}, the
phase portrait is like near the node with many center-ype manifolds.

Example 2. Let z1 = x1 + ix2, v1 = x1 − ix2 and z2 = x3 + ix4, v2 = x3 − ix4 be coordinates in C4. The
system is as follows:

ż1 = iω1z1 + z2
1v1, v̇1 = −iω1v1 + z1v2

1, ż2 = iω2z2 + z1v1, v̇2 = −iω2v2 + z1v1. (3.6)

It has two invariant planes:
W1 = {z1 = v1 = 0}

(analytic) and

W2 =

{
z2 = −

1
2

∑
(n − 1)!

(
2z1v1

iω2

)n

, v2 = −
1
2

∑
(n − 1)!

(
2iz1v1

ω2

)n}
,

which is non-analytic.

We finish this section with another theorem about invariant manifolds.

Definition 3. Let f be a smooth diffeomorphism of a manifold M, and let L ⊂ M be a smooth invariant
submanifold for f , f (L) ⊂ L. We say that f is normally hyperbolic at N if there is a splitting

NL = TM/TN ≃ E s ⊕ Eu

Communications in Analysis and Mechanics Volume 15, Issue 2, 300–341.
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of the normal bundle to L into sub-bundles E s and Eu that are invariant with respect to D f and the
following estimates hold:

— the bundle E s is contracted more strongly than the bundle T L, i.e.,

sup
L
∥D f |Es∥ <

{
inf

L

∥∥∥(D f |T L)−1
∥∥∥}−1

;

— the bundle Eu is expanded more strongly than the bundle T L, i.e.,{
inf

L

∥∥∥(D f |Eu)−1
∥∥∥}−1

> sup
L
∥D f |T L∥ .

We refer the reader to [16] for the proof of the following statement.

Theorem 13. (Normal Hyperbolicity) If f is normally hyperbolic on L, then there exists a neighbor-
hoodU of f in the functional space of C1–diffeomorphisms such that any g ∈ U has a unique invariant
submanifold Lg close to L at which it is normally hyperbolic.

4. The Lyapunov theorems

4.1. Poincaré–Lyapunov theorem

Eq. (1.1) with the variables z = x + iy, v = x − iy takes the form

ż = iωz + . . . , v̇ = −iωv + . . . . (4.1)

The Poincaré–Dulac normal form here is as follows:

Ż = Z
{
iω +

∑
(ak + ibk) (ZV)k

}
, V̇ = V

{
−iω +

∑
(ak − ibk) (ZV)k

}
. (4.2)

It is easy to find that the first nonzero coefficient ak is related to the first nonzero Poincaré–Lyapunov
quantity:

c2k+1 = ωak. (4.3)

Next, after passing to the polar coordinates r, θ (in the real domain), i.e., with z = reiθ and v = z̄ =
re−iθ, we get the equation

dr
dθ
= f (r, θ) ,

where f is a convergent series in powers of r with trigonometric polynomials in θ as coefficients. We
define the Poincaré return map

P (r0) = ϕ (2π; r0) , (4.4)

where ϕ (θ; r0) is the solution to the latter equation dr/dθ with the initial condition ϕ (0; r0) = r0. The
Poincaré map is analytic and has a Taylor expansion of the form

P (r) = r + d2k+1r2k+1 + . . . ,
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where
d2k+1 = (2π/ω) ak (4.5)

provided the Poincaré–Lyapunov quantity c2k+1 , 0.
The assumption of Theorem 1 means formally that either

(i) the Poincaré–Dulac normal form equals

Ż = iZ · M (ZV) , V̇ = −iV · M (ZV) , (4.6)

where M = ω +
∑

bk (ZV)k is a formal integrating factor and F = ZV is the formal first integral; or
(equivalently),

(ii) formally,
P = Id. (4.7)

Moreover, the assumptions of the holomorphic Hadamard–Perron theorem for system (4.1) are
satisfied. Therefore, we have two holomorphic invariant lines, W+ and W−, formally defined by {V = 0}
and {W = 0}, respectively.

Below, we present two geometrical proofs of Theorem 1.

First proof. (Note that this proof was not found in the literature). Since the Poincaré map is analytic
and formally obeys Eq. (4.7), it is the identity. Therefore, the real phase portrait is of the center type
and the equilibrium point is surrounded by a family of closed phase curves. Moreover, we have a first
integral G̃ (r, θ) defined via the initial condition G̃ (r, θ) = r2

0 if r = ϕ (θ; r0) .
But, this function is not correct because its value for negative r’s should be compatible with the

‘square root’ of the Poincaré map Q : (R, 0) 7−→ (R, 0) , Q(r0) = −r0 + . . ., such that P = Q ◦ Q on
(R+, 0) . But, we can take a function defined initially on (R+, 0) as G (r0) = 1

2

(
r2

0 + Q
2 (r0)

)
. Thus,

G (r, θ) = G (r0) (4.8)

if r = ϕ (θ, r0) . This first integral is holomorphic near the circle {r = 0, 0 ≤ θ ≤ 2π} ⊂ C × R, where R
is a ring around the circle R/2πZ ⊂ C/2πZ.

In fact, we can extend it to a holomorphic first integral in Z,V. For this, one first defines it as G (x) =
1
2

(
x2 + Q2 (x)

)
on the disc Σ = {(x, 0) : x ∈ C, |x| < ε} ⊂ C2

x,y, or Σ = {(z, z̄) : z ∈ C, |z| < ε} ⊂ C2
z,v,

where Q is the extension of the square root of the return map. Outside of the disc Σ, this function
is defined by the condition of being constant on the complex phase curves (Riemann surfaces). In
particular, it is single-valued (see the second proof) and equals zero on the complex separatrices of the
singular point. □

Second proof (due to Moussu [24]). Using the holomorphic Hadamard–Perron theorem, we can
assume that the coordinate lines are invariant, i.e.,

ż = z (iω + . . .) , v̇ = v (−iω + . . .) .

Then, the phase curves outside of W− = {z = 0} are graphs of functions,

v = φ (z; v0) ,
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which satisfy the initial value problem

dv
dz
=

v (−iω + . . .)
z (iω + . . .)

, φ (z0; v0) = v0,

where z0 , 0 is fixed. The analytic continuation of solutions φ along the circle
{
z = eiαz0 : 0 ≤ α ≤ 2π

}
defines the monodromy mapM : D 7−→ D, D = {z0} × {|v0| < ε} , as

M (v0) = φ
(
e2πiz0; v0

)
. (4.9)

This map is holomorphic and we have

M (v0) = v0 + ekvk+1
0 + O

(
vk+2

0

)
, ek = (4πz0/ω) ak. (4.10)

The center conditions from Theorem 1 mean thatM = Id.
Now, we can define a first integral F (z, v) by putting

F (z0, v0) = z0v0 (4.11)

on D and continuing it analytically as constant on the phase curves. Because the monodromy is trivial,
the function F is single-valued outside of the line {z = 0}. It is also bounded there. Hence, it is
holomorphic.

The function F has a Morsean critical point at z = v = 0. By the Morse lemma [37], there exist
analytic coordinates Z = z + . . . , V = V + . . . such that F = ZV.

The vector field is parallel to the analytic Hamiltonian vector field XF = F′V
∂
∂Z − F′Z

∂
∂V , i.e., it equals

Φ · XF , where Φ = iω + . . . is an analytic function (the orbital factor).
Finally, one can reduce Φ to an analytic function of one variable: Φ (Z,V) = iM (ZV) ; we refer the

reader to [30] for the proof. □

Final remark. The integrating factor M from Eq. (4.6) is also analytic. If it is constant, then the
center is isochronous and the period does not depend on the periodic solution.

4.2. Second Lyapunov theorem

Recall that the spectrum of the linear part consists of λ1,2 = ±iω and of µ1, . . . , µm (m ≥ 1) in the
left half-plane. Therefore, the resonant relations from Definition 1 are as follows:

λ1 = (p + 1) λ1 + pλ2, λ2 = qλ1 + (q + 1) λ2,

µ j = pλ1 + pλ2 + (l, µ) , |l| ≥ 1.

In the Poincaré–Dulac normal form, we have

Ż = Z
{
iω +

∑(
ap + ibp

)
(ZV)p

}
and the corresponding equation for V̇ . Moreover,

Ẏ j =
∑

YrFr (Y,ZV) , j = 1, . . . ,m.
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We see that the variables Z,V are formally separated from Y j and the center condition from Theorem
2 reads as

ap = 0, p = 1, 2, . . . .

Moreover, we have the stable invariant manifold W s = {Z = V = 0} (which is analytic) and a formal
center manifold Wc = {Y = 0} , about its analytic properties we cannot judge at this moment (see
Example 1 above).

But, the eigenvalue λ1 = iω is separated from the remaining eigenvalues µ1, . . . , µm, λ2 by a line in
C through 0, and, analogously, λ2 is separated from the other eigenvalues. By the analytic Hadamard–
Perron theorem, we have analytic invariant hypersurfaces: W+ corresponding to λ2, µ1, . . . , µm and W−

corresponding to λ1, µ1, . . . , µm; of course, W s = W+ ∩W−. We also have two invariant lines L+ and L−

corresponding to the eigenvalues λ1 and λ2, respectively; Wc is ‘spanned’ by L+ and L−.
We are ready to present the following:

Proof of Theorem 2. We would like to follow the second proof of Theorem 1.
Thus, we can assume the following analytic system:

ż = z (iω + . . .) , v̇ = v (−iω + . . .) , ẏ = Y (z, v, y) ;

so, W+ = {z = 0} and W− = {v = 0} . The phase curves outside of W+ are graphs of functions of z.
Let us choose a hypersurface of initial conditions with the form

Σ = {z0} × {|v| < ε} × {|y| < ε}

(point×disc×ball) of complex dimension 1 + m ≥ 2. The solutions to the equations for dv
dz and for dy

dz
with the initial conditions v (z0) = v0 and y (z0) = y0 are of the form

v = φ (z; v0, y0) = z0v0/z + . . . , y = χ (z; v0, y0) .

We also have the monodromy mapM : Σ 7−→ Σ:

M (v0, y0) =
(
φ
(
e2πiz0; v0, y0

)
, χ

(
e2πiz0; v0, z0

))
.

In contrast to the Poincaré–Lyapunov case, this map is far from the identity. It has the form

M : (v, y) 7−→ (v + . . . , By + . . .) ,

where the spectrum of the matrix B lies in the open unit disc; B is a strong contraction. Therefore, we
need an additional argument.

On the one hand, we can use the normal hyperbolicity theorem, which ensures the existence of a
2−dimensional invariant manifold Vc = Vc

z0
, which is the center manifold forM. For this, we treatM

as a perturbation of the monodromy mapM0 associated with a polynomial truncation of the Poincaré–
Dulac normal form (when Vc = {y = 0} . The manifold Vc is unique.

Let us construct the first integral F, beginning with its definition F0 = F|Σ on Σ. This function should
have the property

M∗F0 = F0;
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then, we will use the analytic continuation. Let

∂Σ = {z0} × {|v| < ε} × {|y| = ε}

(point×disc×sphere). We put
F0|∂Σ = z0v.

We define the following family of maps hα : Σ 7−→ Σ, α ≥ 0 :

hα (v0, y0) =
(
eiαφ

(
eiαz0; v0, y0

)
, χ

(
eiα; v0, y0

))
.

Since φ
(
eiαz0; v; y

)
≈ e−iα, the maps hα do not change much for v. But, they are contractions when

acting on y. Moreover,
h2π =M.

If (v, y) = hα (v0, y0) , (v0, y0) ∈ ∂Σ, then we put

F0 (v, y) = z0v0.

This defines a correct analytic function on Σ⧹Vc, which is extended to an analytic function on Σ. Next,
the latter function F0 is extended to a neighborhood of the singular point, i.e., we get the first integral

F (z, v, y) = zv + . . . .

with the critical locus along the stable manifold W s = {z = v = 0}. This follows from the center
conditions.

By the parametric Morse lemma [37], there exist analytic coordinates Z = z + . . . , V = v + . . . ,
Y = y + . . . such that

F = ZV.

From the center conditions, it also follows that
(i)M|Vc = Id|Vc ,

(ii) Wc =
⋃
z0

Vc
z0

is an analytic center manifold, Wc = {Y = 0}, which supports a family of

periodic solutions
Z (t) = ceit, V (t) = de−it, Y (t) ≡ 0.

The corresponding family

z (t) = ceit + . . . , v (t) = de−it + . . . , y (t) = . . .

depends analytically on the parameters c, d (defined by the initial conditions). In the real domain, we
have the family z (t) = reit + . . . , z̄ (t) = re−it + . . . , y (t) = . . . , with the real parameter r; this is the
convergent family from [21]. □

Remark 5. We see that the existence of an analytic family of periodic solutions, under the assumptions
of Theorem 2 (and also of Theorem 3), implies the uniqueness and analyticity of the center manifold
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Wc ≃
(
C2, 0

)
. This surface is parametrized by complex parameters c, d and ζ = (1 + δ) eit (from a

neighborhood of the unit circle):

z = cζ + . . . , v = dζ−1 + . . . , y = . . . .

(But, this situation is somewhat special In Example 5 below, we encounter a 1–parameter family of
periodic solutions spreading non-smooth surfaces.)

Next, one can show that the Poincaré–Dulac normal form

Ż = iZ · M (ZV) , V̇ = −iV · M (ZV) , Ẏ = Ω (Y,ZV) ,

where M is a real series and Ω is polynomial in Y (with series in VZ as coefficients), is analytic.
Finally, note that, in Example 1, the formal center manifold does not support a family of periodic

solutions; formally, it has an unstable focus.

4.3. Third Lyapunov theorem

Recall that we have pure imaginary eigenvalues ±iω1, . . . ,±iωm, ω j > 0. Let ż j = iω jz j + . . . ,

v̇ j = −iω jv j + . . . .

Let us describe the Poincaré–Dulac (P–D) normal form for such systems. Assume first that the
frequencies ω j are independent over Q. Then, the only resonant relations are

iω j = k1iω1 + k1 (−iω1) + . . . +
(
1 + k j

) (
iω j

)
+ k j

(
−iω j

)
+ . . . + kmiωm + km (−iωm) ,

−iω j = k1iω1 + k1 (−iω1) + . . . + k jiω j +
(
1 + k j

) (
−iω j

)
+ . . . + kmiωm + km (−iωm) .

It follows that the P–D normal form is

Ż j = Z j

(
iω j + f j (Z1V1, . . . ,ZmVm)

)
, V̇ j = V j

(
−iω j + g j(Z1V1, . . . ,ZmVm)

)
, (4.12)

j = 1, . . . ,m.
If there are relations, like

pω1 = qω2, gcd (p, q) = 1, (4.13)

then the P–D normal form will contain additional monomial terms, like

Z j

(
Zq

1V p
2

)r ∂

∂Z j
, V j

(
Vq

1 Z p
2

)r ∂

∂V j
, Vrq−1

1 Zrp
2

∂

∂Z1

(and some other in the case of (4.13)).
Anyway, the sublattice (in Zm) of relations (k, ω) = 0 is finitely generated and the P–D normal form

has finitely many series (formal functional moduli) depending on finitely many monomials.

Assume now that the frequency ω1 is such that no other frequency ω j is a multiple of it:

ω j/ω1 < Z, j ≥ 2. (4.14)
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Lemma 1. Under the which assumption, the P–D normal form is such that the equations

Z2 = V2 = . . . = Zm = Vm = 0

define a formal invariant manifold (invariant surface) W1.
In this case, the P–D normal form restricted to W1 is like in Eq. (4.2) with the center conditions

ak = 0, k = 1, 2, . . . .

Proof. The obstacles to the existence of such an invariant surface are implied by the following
terms:

Zk
1V l

1
∂

∂Z j
, Zk

1V l
1
∂

∂V j
, ( j ≥ 2) .

They correspond to the resonant relations

iω j = (k − l) iω1, − iω j = (k − l) iω1.

By condition (4.14), there are no such relations. □

Below we give two proofs of Theorem 3. Let us being with Lyapunov’s argument. For this, the
following standard is needed.

Lemma 2. Consider the linear equation

dx
dθ
= λx + a (θ) , x ∈ C,

where a (θ) is a periodic function with period 2π. If λ is not an integer multiple of i =
√
−1, then this

equation has a unique periodic solution with the period 2π defined by

x = ϕ (θ) =
(
e−2πλ − 1

)−1
∫ θ

θ−2π
eλ(θ−α)a (α) dα. (4.15)

Proof. The solutions of the initial value problem with the initial conditions x (0) = x0 are affine in
x0. After the period of 2π, these solutions define the monodromy map x0 7−→ M (x0), which is also
affine:

M (x0) = Λx0 + A,

where Λ = e2πλ. By the assumption, Λ , 1. Hence, the mapM has a unique fixed point corresponding
to a unique 2π−periodic solution.

If Re (λ) < 0, then this solution is as follows:§

x = ϕ (θ) =
∫ θ

−∞

eλ(θ−α) f (α) dα.

After partition of the integration domain (−∞, θ] into segments of length 2π, we get Eq. (4.15), which
is valid for all λ ∈ C⧹2πZ. □

§This formula was used by Lyapunov in his proof of Theorem 2.
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Lyapunov’s proof of Theorem 3. Let z1 = reiθ and v1 = z̄1 = re−iθ, where r, θ are polar coordinates.
The phase curves of our system are defined by the equations

r′ = f (r, θ, z̃, ṽ) ,
z′j = i

(
ω j/ω1

)
z j + g j (r, θ, z̃, ṽ) ,

v′j = −i
(
ω j/ω1

)
v j + h j (r, θ, z̃, ṽ) ,

(4.16)

j = 2, 3, . . . , where z̃ = (z2, . . . , zm) , ṽ = (v2, . . . , vm) and ′ = d/dθ. We can assume that f begins with
quadratic terms in r, z̃, ṽ. For simplicity, assume that the linearization matrix of the complex system is
diagonal; the triangular case requires only slight modification of the proof. Thus, also g j and h j begin
with quadratic terms.

We look for 2π−periodic solutions to system (4.16) as power series with periodic coefficients:

r = ϕ(1) (θ) c + ϕ(2) (θ) c2 + . . .

z j = ψ(2)
j c2 + ψ(3)

j c3 + . . . ,

v j = χ(2)
j c2 + χ(3)

j c3 + . . . .

(4.17)

We set the following initial conditions:

ϕ(1) (0) = 1, ϕ(2) (0) = 0, ϕ(3) (0) = 0, . . . ; (4.18)

thus, we have that r (0) = c and ϕ(1) (θ) ≡ 1 (which is 2π−periodic). Substituting the Ansatz (4.17) into
system (4.18), we obtain a recurrent system of equations for ϕ(k), ψ(k) and χ(k).

We have
dϕ(k)/dθ = Φ(k) (θ) , k ≥ 2,

where the functions Φ(k) (θ) are defined inductively and should be 2π−periodic. Thus,

ϕ(k) (θ) =
∫ θ

0
Φ(k) (α) dα, (4.19)

where
∫ 2π

0
Φ(k) (α) dα should equal zero. The latter vanishing conditions are guaranteed by the assump-

tions of the theorem, i.e., the center conditions.
The equations for ψ(k)

j take the following form:

dψ(k)
j /dθ = λ jψ

(k)
j + Ψ

(k)
j (θ) ,

where λ j = iω j/ω1 and Ψ(k)
j (θ) are defined inductively and are 2π−periodic; analogous equations hold

for χ(k)
j , but with λ j replaced with −λ j. The latter equations dψ(k)

j /dθ are like the equation from Lemma
2 with λ = λ j < iZ. So, they have unique 2π−periodic solutions defined in Eq. (4.15); no center
conditions are needed here.

The series in Eq. (4.17) is convergent due to the analyticity of the right-hand sides of the equations
of Eq. (4.16), the compactness of the domain [0, 2π] of definition of this system and the simplicity of
the integral formulas (4.15) and (4.19). In [21], suitable estimates are given. □

Second proof of Theorem 3. Recall that we have the formal invariant surface W1, defined in Lemma
2. We will show that it is analytic.
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For this, we use the Poincaré return map P defined by solutions after the period of 2π of system
(4.16). We have

P (r, z2, . . . , zm) = (ρ, ζ1, . . . , ζm) , (4.20)

where ρ = ρ (r, z2, . . . , zm) = r + . . . , ζ j = ζ j(r, z2, . . . , zm) = µ jz j + . . . , µ j = e2πiω j/ω1 , 1. The periodic
orbits of the period ≈ 2π/ω1 correspond to the fixed points of the Poincaré map. The set of fixed points
of P lies in the curve

ζ2 − z2 = . . . = ζm − zm = 0, (4.21)

where ζ j − z j = µ jz j + . . . with µ j , 0. By the implicit function theorem, Eq. (4.21) defines a real
analytic curve.

By the center conditions, this curve isP–invariant and defines an analytic smooth surface supporting
a family of periodic solutions. □

The following example demonstrates the importance of the condition (4.14).

Example 3. The system

ż1 = iz1, v̇1 = −iv1, ż2 = 2iz2 + z2
1, v̇2 = −2iv2 + v2

1

has a general solution with the form

z1 = c1eit, v1 = d1e−it, z2 =
(
c2 + c2

1t
)

e2it, v2 =
(
d2 + d2

1t
)

e−2it.

Only the solutions with c1 = d1 = 0 are periodic, with a period of π (not 2π).

Remark 6. (a) We see that the existence of a 1–parameter family of periodic solutions can be deduced
from the P–D normal form. We need the following:

(i) formal invariant surface, and
(ii) vanishing of the series of Poincaré–Lyapunov coefficients after restriction of the P–D nor-

mal form to this surface.
The following questions arise naturally in this context.

1. Are there other 1–parameter families of periodic solutions?
2. Are there many–parameter families of periodic solutions?

Concerning the first question, there should exist other formal invariant surfaces with vanishing
corresponding Poincaré–Lyapunov quantities.

The answer to the second question can be positive in some resonant cases. For example, this holds
for the following system:

ż j = ip jz j · M, v̇ j = −ip jv j · M, (4.22)

with the integer p j and the integrating factor M = ω + . . .. Here, the typical solution is periodic with
the period 2π

pω (1 + . . .) , where p = gcd (p1, . . . , pm) .
But, when

ż j = ip jz j · M j, v̇ j = −ipvv j · M j, (4.23)

where the factors M j = ω + . . . are independent, then the motions take place on the invariant ‘tori’
{z1v1 = C1, . . . , zmvm = Cm} . In the real domain, where v j = z̄ j, the motion on the generic torus is
quasi-periodic, or periodic with a very long period.
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(b) Note that, in the case considered in this subsection, the system has two analytic invariant mani-
folds, W+ and W−, corresponding to the partition of the eigenvalues’ set into two subsets {iω1, . . . , iωm}

and {−iω1, . . . ,−iωm} . The system restricted to either of these submanifolds has analytic P–D normal
form (the systems are in the Poincaré domain).

5. Hamiltonian examples

Here, we discuss Theorem 3 (as well as the Weinstein- and Moser-type theorems) in the context of
Hamiltonian systems. Again, we assume the imaginary eigenvalues ±iω1, . . . ,±iωm, ω j > 0, where
m = n

2 is the number of degrees of freedom. The Hamiltonian functions considered in this section are
of the form

H = H2 + H3 + . . . , (5.1)

where H2 is like in Eq. (2.5) and the functions H j are homogeneous of degree j. Such an H2 is obvious
in the case that all frequencies ω j are pairwise different. The opposite case is discussed below.

Recall that, in the third Lyapunov theorem, there are two assumptions: the existence of a for-
mal invariant surface W1 associated with the eigenvalues ±iω1, and the vanishing of the series of the
Poincaré–Lyapunov focus quantities after restriction of the system to W1 (see Remark 6 above). But,
in the Hamiltonian case, the situation is simpler.

Proposition 1. If there exists a formal invariant surface W1, then all of the focus quantities for the
restriction of the system to W1 vanish.

Proof. Indeed, H restricted to W1 is a formal first integral for the restricted system. So, in the real
domain, all phase curves of that system are closed. □

People have tried to improve the third Lyapunov theorem in the Hamiltonian case. Recall that
Weinstein ( [35, Theorem 2.1] and Theorem 4 above) proved that, if H2 is positive definite, i.e., all
ϵ j = 1, then there exist at least m = n

2 families of periodic solutions.
Moreover, Moser, in [23, Theorem 4], claimed that, if H2 restricted to the maximal linear invariant

subspace E supporting periodic solutions of period T = 2π/ω of the linearized system is positive
definite, then ‘on each energy surface H = ε2, the number of periodic orbits is at least 1

2dimE’. Recall
that that result is wrong, but that some version of Moser’s statement is valid provided that H2 is positive
definite (Theorem 5).

Of course, the number m from the Weinstein theorem cannot be improved because the Hamiltonian
system

ż j = iω jz j · M j

(∣∣∣z j

∣∣∣2) , j = 1, . . . ,m,

with different factors M j, has m families of periodic solutions with independently varying periods

T j = T j

(∣∣∣z j

∣∣∣2) ≈ 2π/ω j. Compare with Remark 6 above.
Recall also Example 3 above, where we observe 1 : 2 resonance between the frequencies and only

one family of periodic solutions; but, there, the system is not Hamiltonian.
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Example 4. In the case of the Hamiltonian¶

H =
1
2

{
|z1|

2
− k |z2|

2 + zk
1z2 + z̄k

1z̄2

}
, k ≥ 2, (5.2)

from [23, Example 2], we deal with the k : 1 resonance, but with indefinite quadratic part. The
corresponding equations for z j are

ż1 = iz1 + ikz̄k−1
1 z̄2, ż2 = −kiz2 + iz̄k

1.

Of course, the plane W2 = {z1 = v1 = 0} is invariant and supports a family of periodic solutions with
the period 2π/k.

But, the Lyapunov-type function L = 1
2i

(
zk

1z2 − z̄k
1z̄2

)
satisfies

L̇ = |z1|
2(k−1)

(
|z1|

2 + k2 |z2|
2
)
,

which is positive in the domain {z1 , 0} . It prevents the existence of other periodic solutions.
Surprisingly, this example contradicts Moser’s original statement [23, Theorem 4]. Indeed, we have

two invariant subspaces of the linear system supporting periodic solutions: E2 = W2 = {(0, z2)} and
E1 = {(z1, 0)} . We have that H2|E2 = −

k
2 |z2|

2
≤ 0 and H2|E1 ≥ 0. But, only periodic solutions from E2

are ‘extended’ to periodic solutions of the whole system.
We complete this example by analysis of some return map associated with the polar coordinates in

the z1−plane. Thus, we put
z1 = reiθ, z2 = w2e−ikθ. (5.3)

We have

ṙ =
1
r

Re (ż1z̄1) =
1
r

Re
(
ir2 + ikrkw̄2

)
= krk−1Imw2,

θ̇ = Im (ż1/z1) = 1 + krk−2Rew2.

Next, ẇ2 − ikw2θ̇ = −ikw2 + irk gives

ẇ2 = irk−2(r2 + k2w2Rew2).

We get the system
dr
dθ
= k

rk−1Imw2

1 + krk−2Rew2
,

dw2

dθ
= irk−2 r2 + k2w2Rew2

1 + krk−2Rew2
, (5.4)

which we call the return system. The twisted Poincaré map (r,w2) 7−→ P (r,w2) is defined via the
evaluation of solutions at the ’time’ θ = 2π with the initial value (r,w2) at the ‘time’ θ = 0. The
periodic solutions with the period ≈ 2π and outside of W2 = {r = 0} correspond to the singular points
of the latter system (5.4) with r , 0. Thus, we have

Imw2 = 0,

i.e., w2 = Rew2, and
r2 + k2w2

2 = 0. (5.5)

The latter equation does not have nontrivial solutions.
¶In [35], we find another Hamiltonian H = 1

2 |z1|
2
− |z2| +

1
2 Im

(
z2

1z2

)
(due to Siegel [29]), also with only one family of periodic

solutions.
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The following example demonstrates that, in the case of a positively definite Hamiltonian, the situ-
ation is quite different.

Example 5. (a) Consider the positive definite Hamiltonian

H =
1
2

{
k |z1|

2 + |z2|
2 + z1z̄k

2 + z̄1zk
2

}
, (5.6)

generating the system
ż1 = ikz1 + izk

2, ż2 = iz2 + ikz1z̄k−1
2 . (5.7)

Of course, the plane W1 = {z2 = 0} is invariant and has a a family of periodic solutions with the period
2π/k.

(b) To look for periodic solutions with the period ≈ 2π, use the polar-type coordinates

z2 = reiθ, z1 = w1eikθ; (5.8)

compare with Eq. (5.3). We get the return system

dr
dθ
= −k

rk−1Imw1

1 + krk−2Rew1
,

dw1

dθ
= irk−2 r2 − k2w1Rew1

1 + krk−2Rew1
. (5.9)

Again, the closed phase curves of the period ≈ 2π outside of W1 = {r = 0} correspond to the singular
points of the vector field given by Eq. (5.9). We find that

w1 = Rew1 = ±r/k. (5.10)

Therefore, we have three families of periodic solutions. The first family {z1 = ceikt, z2 =

0} spans the invariant plane W1, but none of the two other families of closed phase curves{
z1 = ± (r/k) eikθ, z2 = reitθ

}
span a smooth surface. These real surfaces (in R4) take the form

kz1 |z2|
k−1 = ±zk

2

and are singular; in C4, we get one complex singular surface {k2z2
1vk−1

2 = zk+1
2 , k2v2

1zk−1
2 = vk+1

2 }.

The number of families of periodic solutions is greater than in the Weinstein theorem.
(c) To explain the this difference we use the fact that the Hamiltonian system in the Birkhoff normal

form is invariant with respect to the S1−action. In the present case, the action is as follows:

(z1, z2; ϕ) 7−→
(
eikϕz1, eiϕz2

)
; (5.11)

it is symplectic and generated by a corresponding Hamiltonian function (the momentum map), namely,
F = H2 =

1
2

(
k |z1|

2 + |z2|
2
)

(which is a first integral for system (5.7)). The symplectic reduction pro-
cedure (see [4]) says that, for each level surface M f = {F = f } (which is S1−invariant), the quotient
space N f = M f /S

1 with respect to the S1−action acquires a symplectic structure and we get a Hamil-
tonian vector field Y f in this quotient space. The singular points of the latter vector field correspond to
periodic solutions to system (5.7).

In this case, the hypersurface is a 3–sphere M f ≃ S
3, f > 0, and the quotient space N f turns out

to be the weighted projective space, N f ≃ Pk,1 (see Section 10.1). The weighted projective space Pk,1

Communications in Analysis and Mechanics Volume 15, Issue 2, 300–341.



321

is homeomorphic with the standard complex projective line Pk,1 ≃ P
1. The natural charts in N f are

ζ = zk
2/z1 and η = 1/ζ = z1/zk

2; thus, z1 = ηzk
2 and z2 = (ζz1)1/k.

In these charts, we get the systems

ζ̇ = ik2 |ζ |2(k−1)/k
|z1|

2(k−1)/k
− iζ2, η̇ = i

(
1 − k2 |z2|

2(k−1) η2
)
. (5.12)

Note that, in the ζ−chart on N f , we have that k |z1|
2 + |ζ |2/k |z1|

2/k = 2 f ; so, for ζ → 0, we find that
|z2| is separated from zero and the first term on the right-hand side of the equation for ζ̇ is dominating.
It follows that the latter system(s) (5.12) has three singular points: ζ = 0 (with index 0) and η =

±1/k |z2|
k−1 (both with index 1). As the Euler characteristic χ

(
P1

)
= 2, this agrees with the Poincaré–

Hopf formula.
Note also that the equilibrium points of Y f correspond to the critical points of H as a function on

N f . This amounts to critical circles of the function G = H − F = 1
2

(
z1z̄k

2 + z̄1zk
2

)
, restricted to M f . With

λ and the Lagrange multiplier, we get the equations

z̄k
2 = λkz̄1, kz̄1zk−1

2 = λz̄2. (5.13)

One solution is z2 = 0, λ = 0 and k |z1|
2 = 2 f . For the other solutions, we have λ2 = |z2|

2(k−1) ; thus,
λ = ± |z2|

k−1 , z1 = ±
1
k (z2/ |z2|)k−1 z1 and |z2|

2 = 2 f /
(
1 + 1/k2

)
.

(d) Finally, the Hamiltonian system (5.7) is completely integrable, with two independent first inte-
grals (in involution). By the Liouville–Arnold theorem [3], the common level surfaces {F = f , G = g} ,
which are compact, are tori (if smooth). There are also the action–angle variables, which are our
objectives.

Let z1,2 = r1,2eiα1,2 and β = kα2 − α1. We have the differential equations

ṙ1 = −rk
2 sin β, ṙ2 = kr1rk−1

2 sin β,
α̇1 = k + r−1

1 rk
2 cos β, α̇2 = 1 + kr1rk−1

2 cos β, .

The levels of the first integrals take the form

kr2
1 + r2

2 = 2 f , r1rk
2 cos β = g.

This leads to r1 = g/
(
rk

2 cos β
)
, cos2 β = kg2/r2k

2

(
2 f − r2

2

)
,

sin2 β =
2 fρk − ρk+1 − kg2

ρk (2 f − ρ)
,

where ρ = r2
2. Finally, we arrive at the system

ρ̇ = ±2k−1/2
√

2 fρk − ρk+1 − kg2, (5.14)
α̇2 = 1 + kg/ρ. (5.15)

We have an oval Γ =
{
kσ2 = 4

(
2 fρk − ρk+1 − kg2

)}
in the (ρ, σ) = (ρ, ρ̇)−plane defined by Eq. (5.14).

This is one of the circles generating the invariant torus. The corresponding Liouville–Arnold angle is

ϕ1 (ρ, σ) =
2π
T1

∫
γ

dρ
σ
, (5.16)
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where γ = γ (ρ, σ) is a path in Γ from (ρ0, σ0) = (ρ0, 0) to (ρ0, σ) (ρ0 is the left root of the equation
2 fρk − ρk+1 = kg2) and T1 =

∮
Γ

dρ
σ

is the corresponding period. It is the period of the solution ρ = R (t)

to Eq. (5.14).
Next, the second generating circle is parametrized by the angle α1. The corresponding solution to

Eq. (5.15) takes the form α1 = A (t) = α0+ t+ kg
∫ t

0
ds

R(s) = α
(0)
1 + t+ kg

∫
γ

dρ
ρσ
. We have the second period

T2 = A(T1) − A(0) = T1 + kg
∮
Γ

dρ
ρσ
. The second Liouville–Arnold angle equals

ϕ2 =
T1

T2
ϕ1 +

2π
T2

(
α1 −

∫
γ

(
1 −

kg
ρ

)
dρ
σ

)
. (5.17)

One can find corresponding action variables I j = I j (F,G) from the condition dI1∧dϕ1+dI2∧dϕ2 =

dp1 ∧ dq1 + dp2 ∧ dq2. For this, one has to solve some first order PDE; we omit the details.

Consider now the situation with 1 : 1 resonance and, more generally, with 1 : 1 : · · · : 1 resonances.
Here, non-diagonal cells for the linear systems associated with homogeneous quadratic Hamiltonians
H2 are expected. Canonical forms of such Hamiltonians are given in [3, Appendix 6].

Probably, the following easy statement was a motivation of Moser’s work [23].

Proposition 2. In the case of 1 : 1 : . . . : 1 resonance, i.e., with ω1 = . . . = ωm, and of definite H2

(positive definite or negative definite), the corresponding linearization matrix is diagonalizable.

Proof. If there existed a pair of Jordan cells, then the general solution of the corresponding linear
system would be unbounded. But, this would contradict the compactness of the level hypersurfaces
{H2 = h} . □

It is natural to look for families of periodic solutions in the cases with a positive definite H2, i.e.,
with a diagonalizable linear part. How many such families should exist?

Consider first the positive definite H2 and a homogeneous perturbation in the Birkhoff normal form.
Thus, we have

H =
1
2
|z|2 + H2d =

1
2

z · v + H2d, (5.18)

where z = (z1, . . . , zm) ∈ Cm and H2d is a homogeneous polynomial depending only on the monomials
z jz̄k, j, k = 1, . . . ,m. Here, we have some freedom. Namely, we can apply linear changes of the
variables z j which leave H2 invariant. The corresponding group is U(m); this group preserves the
Hermitian product (z, ζ) 7−→ z · ζ̄, whose real part is the scalar product and whose imaginary part
defines the symplectic form. Using these changes, one can reduce the our situation to the case with m
invariant complex planes.

(Note that, in the case with the indefinite quadratic part, H2 =
1
2 |x|

2
− 1

2 |y|
2, where x =

(
x1, . . . , xp

)
∈

Cp and y =
(
y1, . . . , yq

)
∈ Cq, the corresponding group is U (p, q) and the Birkhoff resonant terms

depend on x j x̄k, y jȳk, x jyk and x̄ jȳk. Also, here, m = p + q invariant planes can be found for H2 + H2d.)

Example 6. A general quartic Hamiltonian with the form of Eq. (5.16) for m = 2 with two invariant
complex planes is of the form

H =
1
2
|z|2 +

a
4
|z1|

4 +
b
2
|z1|

2
|z2|

2 +
c
4
|z2|

4 + d · Rez2
1z̄2

2, (5.19)
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with real constants a, . . . , d. The corresponding system becomes

ż1 = iz1

(
1 + a |z1|

2 + b |z2|
2
)
+ 2idz̄1z2

2, ż2 = i
(
1 + b |z1|

2 + c |z2|
2
)
+ 2idz2

1z̄2.

We study the twisted Poincaré map using the substitutions z1 = reiθ and z2 = weiθ. It leads to the
equations

ṙ = −2drImw2, ẇ = i
{
(b − a) r2w + (c − b) |w|2 w + 2d

(
rw2 − wRew2

)}
(we do not write equations for dr/dθ and dw/dθ).

The periodic solutions with period the ≈ 2π outside of r = 0 are given by Imw2 = 0 and ẇ = 0.
Thus, either (1) w = Rew, |w|2 = w2; or (2) w = i · Imw, |w|2 = −w2. Let λ = w/r.

In case (1), we get the equation

r2w
[
b − a + 2dλ + (c − b − 2d) λ2

]
= 0,

and, in case (2), we get
r2w

[
b − a + 2dλ + (b − c − 2d) λ2

]
= 0.

It follows that, for generic values of the parameters, besides the solutions r = 0 and w = 0 (corre-
sponding to periodic solutions of the Hamiltonian system in the invariant complex planes), we have
four additional solutions. Thus, the total number of periodic solutions in the generic case is six.

On the other hand, by analogy with the previous example, the symplectic reduction, with F = H2

and G = H2d, leads to Hamiltonian vector field Y f on N f ≃ P
1 with χ

(
N f

)
= 2. One can check that the

additional two pairs of singular points of Y f have opposite indices.

The above agrees with the following result of van Straten [34].

Theorem 14. We have∑
m≥1

M (m − 1, d) T m−1 = (1 − T )−3/2
[
1 − (2d − 1)2 T

]−1/2
, (5.20)

where, on the left-hand side stands the generating function for the numbers M(m − 1, d) of periodic
modes for Hamiltonian systems with a generic Hamiltonian function in the Birkhoff normal form given
by Eq. (5.18).

For d = 2, the right-hand side of Eq. (5.20) becomes 1 + 6T + . . . , which agrees with Example 6;
in fact, there are no such examples in [34].

Finally, we have the following Hamiltonian systems without periodic solutions for the expected
period.

Example 7. Assume the following Poisson brackets for the complex variables z j:{
zi, z j

}
=

{
z̄i, z̄ j

}
= 0, {z1, z̄2} = {z̄1, z2} = 2.

The Hamiltonian function equals

H =
1
2

{
|z1|

2 + i (z1z̄2 − z̄1z2) + a |z2|
4
}
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and generates the system
ż1 = iz1 + 4az2 |z2|

2 , ż2 = iz2 − z1.

Note that, for a = 0, we get a nilpotent linear system with invariant plane {z1 = 0} that supports a
family of periodic solutions; this Hamiltonian can be found also in [3, 7]. But, we assume that a < 0;
hence, the planes {z1 = 0} and {z2 = 0} are not invariant.

One should look for periodic solutions for the period ≈ 2π. Hence, we make the natural change
(look at the previous examples): z1 = reiθ, z2 = weiθ with r ≥ 0. We get the equations

dr
dθ
=

4ar |w|2 Rew
r + 4a |w|2 Imw

,
dw
dθ
= −

r2 + 4ia |w|2 Imw
r + 4a |w|2 Imw

.

The equations for the equilibrium points are given by Rew = 0 (i.e., w = iζ) and r2 + 4ia |w|2 Imw =
r2 − 4aζ4 = 0.

We refer also to previous works [12, 33] devoted to bifurcations of Hamiltonian systems in the 1:1
resonant case.

In the last example from [22, Example 9.2], the linear part is diagonal.

Example 8. Let

H =
1
2

{
|z1|

2
− |z2|

2 + 2 |z|2 Re (z1z2)
}
.

It generates the system

ż1 = iz1 (1 + 2Re (z1z2)) + i |z|2 z̄2, ż2 = −iz2 (1 − 2Re (z1z2)) + i |z|2 z̄1.

One finds that
dIm (z1z2) /dt = 2 [Re (z1z2)]2 + |z|4 ,

which excludes the existence of nontrivial periodic solutions.

6. Additional properties of the P–D normal form

Again, assume an analytic system (1.4) with the eigenvalues ±iω j, ω j > 0. Recall the equivalence
relation (1.9) on the set {ω1, . . . , ωm} of frequencies. For each equivalence class Cν, we have a linear
subspace Eν that is invariant for the linear part ẋ = Ax of system (1.4). In fact, we can say more.

Proposition 3. For each class Cν, system (1.4) has an invariant analytic submanifoldVν tangent to Eν
at the origin.

Proof. First, it is rather obvious that there exists such an invariant manifold at the formal level. To
prove its analyticity, we use the Poincaré return map (4.20), introduced in the second proof of Theorem
3.

Let z1, z̄1, . . . , zk, z̄k be the linear eigenfunctions associated with one equivalence class, say, C1, and
let zk+1, z̄k+1, . . . be the remaining eigenfunctions.
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We put z1 = reiθ and get Eq. (4.16) for the phase curves, as graphs of functions of θ. We have that
ω j =

(
p j/q j

)
ω1 and gcd(p j, q j) = 1. Let Θ = 2πgcm (q2, . . . , qk) . The solutions to Eq. (4.16) after

‘time’ θ = Θ define the Poincaré return map P : (r, z2, . . . , zm) 7−→ (ρ, ζ2, . . . , ζm) (like in Eq. 4.20)).
The linear part of this map has the form

(r, z2, . . . , zm) 7−→ (r, z2, . . . , zk, µk+1zk+1, . . . , µmzm) ,

µ j = eiΘ j , 1 for j > k; in fact, µ j are is not a root of unity.
Then, the equations ζk+1 − zk+1 = . . . = ζm − zm = 0 define an analytic submanifold Ṽν. It generates

the submanifold Vν =
⋃

θ∈[0,1π] gθ0(Ṽν), where {gθϑ} is the 2–parameter family of diffeomorphisms defined
by solutions to Eq. (4.6). □

Therefore, our problem is reduced to the case when there is only one equivalence class, i.e., that all
of the frequencies are rationally related. Let us order these frequencies like in Eq. (1.10), i.e.,

ω1 = . . . = ωk1 > ωk1+1 = . . . = ωk1+k2 > . . . > ωk1+...+kr−1+1 = . . . = ωk1+...+kr .

Proposition 4. In this situation, there exists a series V1 ⊂ V2 ⊂ . . . ⊂ Vr−1 ⊂
(
R2m, 0

)
of analytic invari-

ant submanifolds (of dimensions k1, k1 + k2, . . . , tangent at the origin to linear subspaces) associated
with corresponding groups of frequencies.

Proof. It essentially repeats the previous proof. We find Vr−1; other submanifolds are obtained
inductively.

Let z1, z̄1, . . . , zl, z̄l, l = k1+. . .+kr−1 be the eigenfunctions associated with the eigenvalues ±iω1, . . .±

iωl and zl+1, z̄l+1, . . . , zm, z̄m be the remaining eigenvalues (associated with ±iωm). We put zl = reiθ and
get the equations

dr
dθ
= . . . ,

dz j

dθ
= i

ω j

ωl
z j + . . . ,

j , l, for phase curves. Their solutions after the ‘time’ θ = 2π define the Poincaré map

P : (r, z1, . . . , zl−1, zl+1, . . . zm) 7−→ (ρ, ζ1, . . . , ζl−1, ζl+1, . . . ζm)

= (r + . . . , z1 + . . . , zl−1 + . . . , µzl+1 + . . . , . . . , µzm + . . .) ,

where the coefficient µ , 1 is a root of unity. The equations ζl+1 − zl+1 = . . . = ζm − zm = 0 define a
submanifold which is spread to the submanifold Vr−1. □

From now on, we focus our attention on the case with only one equivalence class for the frequencies.
Thus, we can write

ω j = p jω0, p j ∈ N, gcd (p1, . . . , pm) = 1. (6.1)

Proposition 5. In the case of Eq. (6.1), the Poincaré–Dulac normal form is invariant with respect to
the following action of the circle S1:

z = (z1, . . . , zm) 7−→ σϕ (z) =
(
eip1ϕz1, . . . , eipmϕzm

)
, 0 ≤ ϕ ≤ 2π. (6.2)
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Proof. Recall that a term U = zk1
1 · · · z

km
m z̄k1

1 · · · z̄
lm
m∂/∂z j is resonant in the P–D normal form if and

only if the resonant relation (k1 − l1)ω1 + . . . (km − lm)ωm = ω j holds. But, the result of change, given
by Eq. (6.2), on U is as follows:

U 7−→
(
ρϕ

)∗
U = exp

{
i
[
(k1 − l1) p1 + . . . (km − lm) pm − p j

]}
U = U.

Only such terms are S1−invariant. □

7. Theorem 8 and its proof

Recall that the assumptions of the three Lyapunov’s theorems are two-fold. One has an assumption
about the eigenvalues of the linear part; it implies the existence of a formal invariant smooth surface (it
is rather irrelevant in Theorem 1). The second assumption means that the focus quantities of the system
restricted to the formal invariant surface vanish; it amounts to the existence of a family of periodic
solutions at a formal level. We underline that this vanishing condition admits a precise definition in
terms of the P–D normal form; but, there are other approaches.

To provide a precise assumption of Theorem 8, we definitely need the P–D theorem. It roughly
states that the P–D normal form predicts the existence of a 1–parameter family of periodic solutions
for the period ≈ 2π/ωl at a formal level. Consider the equivalence class of frequencies which contains
ωl. By Proposition 3, we can focus our attention on this class, i.e., that we have the situation of Eq.
(1.10). By Proposition 4, there is an invariant submanifold associated with the frequencies ω j such that
ω j ≥ ωl. Therefore, we can assume that

ω1 ≥ ω2 ≥ . . . ≥ ωl, (7.1)

i.e., m = l, besides property (1.10).
Assume the Poincaré–Dulac normal form (with the coordinates Z j). Following Examples 4 and 5,

introduce the change
Zl = ReiΘ, Z j = W jeip jΘ/pl , ( j < l). (7.2)

Lemma 3. We have the following return system for phase curves:

dR
dΘ
= Π

(
R,W,W

)
= . . . ,

dW j

dΘ
= Λ j

(
R,W,W

)
= . . . , ( j < l), (7.3)

where the right-hand sides do not depend on Θ and the dots mean nonlinear terms.

Proof. We have that Θ̇ = ωl + . . . , Ṙ = . . . and Ẇ j = iω jW j + . . . , ( j < l), where the right-hand sides
do not depend on Θ, due to the P–D normal form. □

Definition 4. We say that the vector field given by (1.4) satisfies a center condition if system (7.3) has
a formal curve Γ, staring at (R,W) = (0, 0) , of (non-isolated) equilibrium points.
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Theorem 8 states that, in this case, there exists a genuine continuous 1–parameter family of periodic
solutions to system (1.4).

Proof of Theorem 8. Analogously to the change given by Eq. (7.2), introduce the change

zm = reiθ, z j = w jeip jθ/pm , ( j < m).

We get a system of equations dr
dθ = . . . ,

dw j

dθ = . . . (the return system) with analytic right-hand sides.
The periodic solutions of the period ≈ 2π/ωm correspond to the fixed points of the twisted Poincaré
map P, which is defined via solutions to the latter system dr/dθ and dw j/dθ after the ‘time’ θ = 2π.

The equation P (r,w) − (r,w) = 0 has a zero locus along an analytic curve γ which is formally
defined as the curve Γ from Definition 4 (after the change (R,W) 7−→ (r,w)). □

Remark 7. The statement of Theorem 8 can be generalized to the case when system (7.3) has a formal
singular locus Γ of higher dimension, say, d. Then, the equation P − Id = 0 has an analytic zero locus
γ of dimension d; it corresponds to a d−parameter family of periodic solutions for the period ≈ 2π/ωm.

8. Systems with a first integral

The assumptions of Theorems 1, 2, 3 and 8 involve an infinite number of conditions, related to either
the vanishing of all focus quantities after restriction to a formal invariant plane or the existence of a
curve of non-isolated singular points for system (7.3). These phenomena have infinite codimension.

In this section, we avoid the infinite number of conditions by imposing an additional restriction to
the class of considered vector fields and the existence of an analytic first integral with a regular leading
part. This restriction is also of infinite codimension, but it is natural in some applications.

8.1. Generalization of Theorem 7

Theorem 15. Assume that analytic system (1.4) has pure imaginary eigenvalues ±iω j, ω j > 0, and
that it has a first integral F such that D2F is definite on a linear subspace E j0 (of dimension ≥ 2)
corresponding to one pair of eigenvalues ±iω̃ j0 such that, for any other frequency ω̃ j , ω̃ j0 , one has
ω̃ j/ω̃ j0 < Z. Then, there exists at least one 1–parameter family of periodic solutions for the period
≈ 2π/ω̃ j0 .

Proof. By Proposition 4, we reduce the situation to one equivalence class of frequencies containing
ω j0; thus, we can assume that the class C1 and ω̃ j0 = ω̃1 in Eq. (1.10). By Proposition 5, we can assume
E1 = V1 = R

2m, q = m and there is a definite first integral F (z, z̄), say, with positive definite D2F (0, 0).
Assume first that the P–D normal form is analytic. So, let the system be in this form; denote the

corresponding vector field X (with variables z j, z̄ j). Recall that such a system is invariant with respect
to the corresponding S1−action

{
ρϕ

}
(Proposition 6). By averaging,

1
2π

∫ 2π

0

(
σϕ

)∗
Fdϕ; (8.1)
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we get that the first integral can be chosen also as S1−invariant: F ◦ σϕ = F.
The level hypersurfaces M f = {F(z, z̄) = 0} , f > 0, are diffeomorphic with a (2m − 1)−dimensional

sphere. They are invariant for the vector field X. Like in [23], we obtain vector fields Y f on the quotient
varieties N f = M f /S

1. The vector fields Y f ’ are diffeomorphic with the complex projective space:

N f ≃ P
m−1.

So, the Euler characteristic
χ
(
N f

)
= χ

(
Pm−1

)
= m , 0.

By the Poincaré–Hopf theorem [14],
∑

iy jY f = χ
(
N f

)
(where iy jY f denotes the indices of Y f at

the isolated singular points y j), and the vector field Y f has at least one singular point (if its singular
points are isolated). This amounts to the existence of a periodic solution of X on M f . This implies the
existence of a 1−parameter family of periodic solutions like in the thesis of Theorem 15.

Let us present our approach without the assumption of analyticity of the P–D normal form.
Suppose that there are no families of periodic solutions as above. We shall construct a real vector

field on the projective space Pm−1, which is a P–D approximation Ṽap of the vector field V.
We take an S1−invariant approximation Fap of the first integral F; we take the average given

by Eq. (8.1).
We project Ṽap onto the tangent spaces of the level hypersurfaces Map

f = {F
ap = f } , f > 0,

along the radii, such that the projection is S1−equivariant; we get a regular vector field Vap in the P–D
normal form.

Next, we quotient Map
f and Vap by S1 and obtain a vector field Yap on Nap

f = Map
f /S

1 ≃ Pm−1

without singular points. This contradicts the Poincaré–Hopf theorem. □

8.2. The Weinstein theorem

In the proof of Theorem 15 (in the previous section), we have used, essentially, the Poincaré–Hopf
formula. But, that formula does not give us much information about the singular points of the quotient
vector field Y f on the quotient variety N f = M f /S

1; it is because there is no restriction for the values
of the indices. In particular, we cannot get any bound for the number of singular points of Y f .

Probably, the only topological tool that could be used in this problem is the Lusternik–Schnirelmann
category. The corresponding theorem (Theorem 17 from Section 10.2) provides the estimate from
below for the number of critical points of a sufficiently smooth function on a manifold based on the
category of this manifold.

Weinstein [35] used this idea in the case of germs of Hamiltonian vector fields XH generated by
Hamiltonian functions H (z, z̄) such that D2H (0, 0) are definite, and in fact, positive definite. He skill-
fully constructed a function on the level hypersurface Lh = {H (z, z̄) = h} , h > 0, which has a critical
locus at the set of periodic phase curves of XH in Lh. His construction is not direct and involves many
technical details.

Below, we propose a more direct proof.

Proof of Theorem 4. Recall that we have a Hamiltonian vector field XH in
(
R2m, 0

)
with nonzero

pure imaginary eigenvalues of the linear part and with a positive definite D2H. Thus, H = H2+H3+ . . . ,
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where
H2 =

1
2

∑
ω j

∣∣∣z j

∣∣∣2
with ω j > 0 (compare with Eq. (2.5)). Here, we can reduce H to the Birkhoff normal form, which is
an analogue of the P–D normal form. Like in the proof of Theorem 15 (in the previous section), we
can reduce the situation to one equivalence class of frequencies, i.e., we assume Eq. (7.1).

Assume first that the Birkhoff normal form is analytic. So, let H be in this form.

Proposition 6. The corresponding action
{
σϕ} of S1 on

(
R2m, 0

)
defines a symmetry of the vector field

XH. This action is symplectic; in fact, it is Hamiltonian with

F = H2

as the momentum map.

Proof. We have to prove the second statement. Note that the phase flow generated by the XF is
gt (z) =

(
eiω1tz1, . . . , eiωmtzm

)
and coincides with the action

{
σϕ} . □

Now, we apply the symplectic reduction. Recall that, in the case of the general (non-abelian) sym-
metry group, the symplectic reduction concerns only the zero level of the momentum map (see [4]).
Here, the group S1 is abelian and the symplectic reduction works for any level of the momentum
function; in fact, it is the simplest case of the symplectic reduction.

So, we take the manifolds
M f = {F(z, z̄) = f } , f > 0,

which are diffeomorphic with S2m−1, and their quotients

N f = M f /S
1

of dimension 2m − 2. The varieties N f are equipped with a natural symplectic structure and support
π∗H = π∗F+π∗G fields Y f obtained from XH. Each vector field Y f is Hamiltonian with the Hamiltonian
function π∗H = π∗F + π∗G, where π : M f 7−→ N f is the projection and

G = H − H2

contains higher-order terms.

Proposition 7. The periodic orbits of the XH in M f of period ≈ 2π/ωk, for some 1 ≤ k ≤ m, correspond
to the critical points of the function π∗G on N f .

Proof. The periodic orbits from this proposition are somewhat distinguished. They are defined via
the return vector fields Uk of type (7.3), i.e., they are associated with a fixed choice of the frequency
ωk; zk = reipkθ and z j = w jeip jθ for j , k. (We do not consider possible orbits of a very long period.)
The singular points of Uk correspond to such periodic orbits.

But, the singular points of Uk, when considered on M f , are the equilibrium points of Y f . They are
the critical points of π∗F, i.e., of π∗G, on N f . Here, there is some subtlety associated with the fact that
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N f is singular, but one can use the local charts
[
w(k)

1 : . . . : r(k) : . . . : w(k)
m

]
in N f defined in Eq. (8.2)

below. □

Since M f is a sphere, its quotient N f is the weighted projective space Pp1,...,pm . By the Lusternik–
Schnirelmann theorem (Theorem 16 in Section 10.2), the number of critical points of the function π∗G
is bounded from below by the category of N f . But, Pp1,...,pm is homologically ‘similar’ to Pm−1 (see
Section 10.1) and catPp1,...,pm ≥ m (see Theorem 17 from Section 10.2).∥

This gives the estimate ≥ m for the number of isolated periodic orbits.

Now, we present our argumentation without the assumption of the analyticity of the Birkhoff normal
form. We have essentially two tools at our disposal (we have used them in the proof of Theorem 8).
Again, we assume only one equivalence class of the frequencies.

The first tool is the Birkhoff normal form, which we assume only to be formal.
The other is the Poincaré return map (as defined in the second proof of Theorem 3, see Eq. (4.20)),

or, rather, the twisted Poincaré map (as defined in the proof of Theorem 8 and in Examples 4–6).

In fact, we will use a collection of twisted Poincaré maps P(k), k = 1, . . . ,m, via the substitutions

zk = r(k)eiθ, z j = w(k)
j eip jθ/pk ( j , k) ,

as well as the solutions after the ‘time’ θ = 2π of corresponding differential systems. The variables
r(k) ∈ (R, 0) and w(k)

j ∈ (C, 0) parametrize corresponding twisted Poincaré sections.
As before, we assume that ω j = p jω0, with relatively prime positive integers such that p1 ≥ p2 ≥

. . . ≥ pm. The twisted Poincaré map differs from the standard Poincaré map (where z j = w j) in the
coordinates w j such that ω j > ωk. In the standard case we have that z j 7−→ eip j/pkz j + . . . and, in the
twisted case, we have that w j 7−→ w j + . . . .

If the system (1.7) were in an analytic Poincaré–Dulac–Birkfoff normal form with an S1−invariant
first integral F, then the variables r(k) and w(k)

j , when restricted to M f = {F = f }, would form a local
chart [

w(k)
1 : . . . : r(k) : . . . : w(k)

m

]
(8.2)

in the quotient variety N f = M f /S
1, or an affine chart w(k)

1 /r
(k), . . . ,w(k)

m /r(k), r(k) > 0.
Recall that the 1–parameter families of periodic solutions of system (1.7), whose corresponding

vector field we denote by XH, of period ≈ 2π/ωk, correspond to 1–dimensional curves of fixed points
of the twisted Poincaré mapP(k) (see the above proof of Theorem 7). They are analytic curves γ defined
by the analytic equation Pk − Id = 0. We assume that this equation has a zero locus of dimension 1;
otherwise, we have infinitely many 1–parameter families of such periodic solutions.

From the analytic geometry, we know that (germs of) analytic sets are analytically equivalent (dif-
feomorphic) with algebraic sets. This holds in the case of complex analytic sets and in the case of real
analytic sets. For example, a germ of an analytic curve is defined by a corresponding Puiseux series.
The proof uses the Weierstrass preparation theorem (see [37]). Moreover, if such a germ is defined
by a system of germs of analytic functions, then an approximation of these functions by polynomials
(sufficiently long jets) define an algebraic set locally diffeomorphic with the original germ.

We apply this to the germs γ of curves defined by the equation P(k) − Id = 0. These equations admit
the approximation P(k)

ε − Id = 0, where the twisted Poincaré map P(ε)
k is defined via a Hamiltonian

∥The category of quotient spaces was studied also by Weinstein in [36].
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vector field XHε generated by a polynomial approximation Hε of H in the Birkhoff normal form. Then,
the curve γwill correspond to a curve γε ⊂

{
P

(k)
ε − Id = 0

}
. The number of the latter curves is estimated

like above. □

8.3. The Moser-type theorem about Hamiltonian systems

Recall also that, in the original version of the work [23, Theorem 4], Moser assumed only that
H2|E⧹0 > 0, where E is the linear subspace associated with one frequency for the linear system, but
his example from [23, Example 2] (or our Example 4 above) provides a contradiction to this restricted
version.

It seems that the crucial point in Moser’s approach is his lemma (Lemma 1) from [23]. There, he
somehow associates with any small vector ξ ∈ E⧹0 a solution to the Hamiltonian system and claims
that some of them are periodic; probably, therein lies the flaw of his argument. Finally, he uses the
Lusternik–Schnirelmann category for a suitable function on Pr−1.

Our approach is more direct. In part, it repeats the above proof of the Weinstein theorem.

Proof of Theorem 5. Much of his proof repeats the corresponding part of the proof of Theorem 4
in the previous section. In particular, we can assume that the Hamiltonian function is in an analytic
Birkhoff normal form. Recall that we assume only one equivalence class among the frequencies.

Thus, we have the additional first integral F = H2, which defines the momentum map for the action
of the group S1.

Recall that, by Proposition 5, we have the filtration V1 ⊂ . . . ⊂ Vr−1 ⊂ Vr =
(
R2m, 0

)
of submanifolds

that are invariant for the vector field XH such that V j⧹V j−1 is associated with one frequency. This
filtration induces corresponding filtrations in M f = {F = f } and in N f = M f /S

1 :

V1 ∩ M f /S
1 = P(1)

⊂ . . . ⊂ Vr ∩ M f /S
1 = P(r),

where P( j) denotes weighted projective spaces with complex dimensions dimV j − 1.
We have to show that G = H − F, as a function on N f , has at least 1

2dimV j =
1
2 (k1 + . . . k j) critical

points in P( j). But, this follows from Theorems 16 and 17 in Section 10.2. □

8.4. Nonlinear functional analysis approach

Topological theorems of nonlinear functional analysis are well suited to deal with nonlinear PDEs.
But, some specialists began to use them to prove (or reprove) some qualitative results in the theory of
ODEs; see [22] for an example.

In particular, Szulkin [32] developed a functional analytic approach to the question of the accu-
mulation of small-amplitude periodic solutions to Hamiltonian systems. His method was followed in
papers by Rybicki with various collaborators [10, 15, 25, 26, 31].

The first trick in the analysis of periodic solutions for the period T = 2π/ω, which usually varies
with variation of the solution, is to normalize this period to 2π. This is done by replacing the Hamilto-
nian system ẋ = XH (x) with the following family of Hamiltonian systems:

ẏ = λXH (y) , (8.3)
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where λ > 0 is a parameter chosen (for a given periodic solution x = φ (t)) such that the corresponding
solution y = φ (λt) to Eq. (8.3) has the period 2π. One says that a family y = ψλ (t) of 2π−periodic
solutions to Eq. (8.3) emanates from (λ, y) = (λ0, 0), λ0 = 1/ω j, when x = ψλ (t/λ), with λ close to λ0,
denotes solutions to ẋ = XH with the period ≈ 2π/ω j.

Next, it is not difficult to show that the 2π−periodic solutions to system (8.3), where y = (q, p) ,
correspond to the stationary paths of the following functional (see also [23]):

Φ (γ) = Φλ (γ) =
∫ 2π

0
pdq + λHdt. (8.4)

This functional is defined on the 2π−periodic path γ : S1 7−→ R2m, γ (t) = (q(t), p(t)) . The author
considers Φ as a functional on the Sobolev spaceH = H1/2

(
S1,R2m

)
; using complex vector-variables

z = q + ip and z̄ = q − ip, we have that z = γ (t) =
∑

k∈Z z(k)eikt, z(k) =
(
z(k)

1 , . . . , z
(k)
m

)
and ∥γ∥2 =

π
{∣∣∣z(0)

∣∣∣2 +∑
k
∣∣∣z(k)

∣∣∣2} .
The first part of the functional (8.4) takes the form

⟨Lγ, γ⟩ =
∫ 2π

0
pdq =

1
2

Im
∫ 2π

0
zdz̄ = π

∑
k
∣∣∣z(k)

∣∣∣2 .
With the splitting H = H− ⊕ H0 ⊕ H+ = {(γ−, γ0, γ+)} of the above Hilbert space into subspaces
generated by negative, zero and positive modes, we have that ⟨Lγ, γ⟩ = ∥γ+∥2 − ∥γ−∥2 . In particular,
the subspaceH0,± is invariant for L.

Assume that H = H2 + . . . , with H2 =
1
2 (Az, z̄) . We have the quadratic functional

⟨Bγ, γ⟩ =
∫

H2dt;

if H2 =
1
2

∑
j ϵ jω j

∣∣∣z j

∣∣∣2 , ω j > 0, ϵ j = ±1, like in Eq. (1.8), then ⟨Bγ, γ⟩ = π
{∑

j,k ϵ jω j

∣∣∣∣z(k)
j

∣∣∣∣2} . It turns out

(see [32]) that the variational derivative δ
δγ

∫
Hdt is a compact operator inH , and that the functional Φ

satisfies the so-called Palais–Smale condition (which we do not define here).
Consider the operator L + λB and its restrictions T (k) = (L + λB) |H (k) to the subspace H (k) =

span
{
eikt, e−ikt

}
≃ R2m, k > 0, which are as follows:

T (k)(z(k), z(−k)) =
(
i (kIm + λA) z(k), i (−kIm + λA) z(−k)

)
.

We see that the operator T (k) = T (k) (λA) is non-invertible if and only if λ = k/ω j for some j; this is the
case when the linear system ẋ = XH2 (x) has a family of periodic solutions for the period 2π/ω j.

Consider the splitting H = F ⊕ F̃ , where F = H− and F̃ = H0 ⊕ H+. The subspace F is
invariant for L and L|F < 0 has a quadratic form. The operator B is a bounded self-adjoint operator
in H . Let En = span

{
eikt : k = 1, . . . , n

}
⊕ F̃ be subspaces of H (invariant for L) and Pn : H 7−→ En

be corresponding orthogonal projections. We have the Morse indices M−
(
(L + λPnB) |En

)
, i.e., the

numbers of negative eigenvalues. One defines another index

M− (λB) = lim
n→∞

{
M−

(
(L + λPnB) |En

)
− n

}
.

Communications in Analysis and Mechanics Volume 15, Issue 2, 300–341.



333

(It has a cohomological interpretation; some cohomology groups Hq
F

(W,W−), which we do not define,
vanish for q , M− (λB) and are equal to R otherwise; see [32, Proposition 2.3].)

An abstract statement, i.e., [32, Theorem 2.3], says the following:

Proposition 8. If (i) L + λB is invertible for λ ∈ I⧹λ0, where I is a neighborhood of λ0, and (ii) the
function λ 7−→ M− (λB) has a jump at λ0, then either (a) the path γ (t) ≡ 0 is a non-isolated critical
path of Φλ0 , or, (b) for all λ’s in I⧹λ0 from one side of λ0, the functional Φλ has a critical path
γλ (t) . 0 near γ (t) ≡ 0.

The quantity M− (λB) is explicitly calculated in terms of the matrix λA; we have

M− (λB) = i− (λA) := M− (−λA) +
∑
k>0

{
M−

(
T (k)

)
− 2m

}
(see [32, Proposition 3.3]).

Assume the situation like in Eq. (1.10), i.e., that we have r different frequencies, ω̃1 = ω1 (of mul-
tiplicity k1), ω̃2 = ωk1+1 (of multiplicity k2), etc., possibly belonging to different equivalence classes.
Let us fix ω̃l. It turns out that, if ω̃ j/ω̃l < N for all j , l, then M− (λB) = i− (λA) jumps at λ = 1/ω̃l if
and only if M−

(
T (1) (λA)

)
jumps.

Next, M−
(
T (1) (λA)

)
jumps at λ = 1/ω̃l if and only if

M−
(
A|El

)
, M+

(
A|El

)
:= M−

(
−A|El

)
, (8.5)

where El is the invariant subspace for A corresponding to the eigenvalues ±iω̃l (see [32, Proposition
3.6]). Condition (8.5) means that, if H2 is like in Eq. (1.8) and ω̃l = ωk1+...+ks+1, then ϵk1+...+kl−1+1 + . . . +

ϵk1+...+kl , 0 for ϵi from Eq. (1.8).
This yields the Szulkin’s Theorem 6 from Introduction.

We see that the first assumption of Theorem 6, i.e., ω̃ j/ω̃l < N, is like in the third Lyapunov theorem.
But, the assumption, i.e., inequality (8.5), is new; it replaces the definiteness assumption of H2 from
Theorems 4 and 5. Note also that, in this topological approach, one does not assume the analyticity
of the Hamiltonian function. But, when one additionally assumes the analyticity of the Hamiltonian
function, then the statement of Theorem 6 can be strenghtened: there exists at least one continuous
family of periodic solutions.

At this moment , the method to reprove this result using the proposed approach is unknown by the
author. But, in all examples considered by the author, my tools seem to be more effective. In fact,
examples of where only the Szulkin theorem works are not known by the author.

9. Applications

9.1. Quasi-periodic movement near geostationary orbit

Geostationary orbits of celestial objects, like GPS satellites, are determined by the property by
which they are fixed with respect to an Earth’s observer. The following definitions were taken from
Strzelecki’s thesis [31].
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Regarding the position and momentum framework of q = (x, y, z), p =
(
px, py, pz

)
associated with

the moving object, we get a Hamiltonian system with the following Hamiltonian:

H =
1
2
|p|2 + ν

(
xpy − ypx

)
+ V, (9.1)

where ν is the Earth’s angular velocity and the gravity potential (generated by an ellipsoid of rotation)
equals

V = V (ρ, z) = −r−1
(
1 − 2cr−2P2 (z/r)

)
= −r−1 − cr−3 + 3cz2r−5,

where P2 (λ) = 1
2

(
3λ2 − 1

)
is the quadratic Legendre polynomial, r = |q| =

√
ρ2 + z2 and c > 0 is a

constant evaluated experimentally. The corresponding Hamiltonian equations

ẋ = px − νy, ẏ = py + νx, ż = pz, ṗx = −V ′x − νpy, ṗy = −V ′y + νpx, ṗz = −V ′z (9.2)

imply the following second-order Newtonian equations:

ẍ = −V ′x − 2νẏ + ν2x, ÿ = −V ′y + 2νẋ + ν2y, z̈ = −V ′z ;

here, (−2νẏ, 2νẋ, 0) and
(
ν2x, ν2y, 0

)
are the Coriolis and the centrifugal forces caused by the rotation

of the coordinate frame.**

The function (9.1) is invariant with respect to the simultaneous rotations in the ρ⃗ = (x, y) and
σ⃗ =

(
px, py

)
planes. This S1−action is symplectic, and the corresponding momentum map is the

vertical component of the classical angular momentum, F = xpy − ypx = ρ⃗ × σ⃗. The symplectic
reduction (see Section 10.1) means the introduction of the coordinates ρ = |ρ⃗|, ϕ, z, ζ = p3, where ϕ is
the angle between the vectors ρ⃗ and σ⃗. Thus, F = ρσsinϕ, σ = |σ⃗|. On the hypersurface M f = {F = f },
where f , 0, we have

σ = f / (ρsinϕ) .

Next, d
dt ρ⃗ = σ⃗ + ν(−q2, q1) implies ρ̇ = 1

ρ
ρ⃗ · σ⃗ = σcosϕ and σ̇ = −V ′ρcosϕ. So, we get the reduced

differential system on N f = M f /S
1:

ρ̇ = fρ−1cotϕ, ϕ̇ = − fρ−2 + ρV ′ρsin2ϕ/ f , ż = ζ, ζ̇ = −V ′z . (9.3)

The equilibrium points are found as follows. First, ζ0 = z0 = 0 since V depends on z2. We have
cosϕ = 0, i.e., ϕ = ±π2 , and we choose ϕ0 =

π
2 . Next, from Eq. (9.2), we get σ0 = νρ0 and f = νρ2

0.

Thus, ϕ̇ = 0 implies −ν + 1
νρ0

(
ρ−2

0 + 3cρ−4
0

)
= 0, and we get the following equation for ρ0:

ν2ρ5
0 − ρ

2
0 − 3c = 0;

for c > 0, it has a unique positive solution.
Let us linearize system (9.3) at this equilibrium point. First, cot′ (π/2) = −1, Next, β = ∂ϕ̇/∂ρ =

2 fρ−3
0 +

2c
f ρ
−3
0 > 0. Finally, for a small z, we have that V ≈ −ρ−1

0

(
1 − z2/2ρ2

0

)
− cρ−3

0

(
1 − 3z2/2ρ2

0

)
+

3cz2ρ−5
0 = const + 1

2

(
ρ−3

0 + 15ρ−5
0

)
z2 = const + γz2, γ > 0. So, the linearization, with ρ1 = ρ − ρ0,

ρ0 = ρ − ρ0, . . ., is as follows:

ρ̇1 ≈ −αϕ1, ϕ̇1 ≈ βρ1, ż1 = ζ1, ζ̇1 ≈ γz1,

**Such systems were already considered by Lyapunov [21, Section 45]
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with positive constants α = f /ρ0, β, γ. It follows that there is a pair of pure imaginary eigenvalues
±iω = ±i

√
αβ and a pair of real eigenvalues ±

√
γ. Since the system is Hamiltonian, we have a 1–

parameter family of periodic solutions for the period ≈ 2π/ω on the 2–dimensional center manifold
Wc ≈ {z1 = ζ1 = 0}.

But, for the Hamiltonian system with three degrees of freedom (before the symplectic reduction),
we have, in fact, invariant tori, with the additional angle ψ = arg (x + iy) . The movement on these tori
is quasi-periodic; we have

ψ̇ ≈ δ,

δ = fρ−2
0 .

In Strzelecki’s approach [31], the same result was obtained using the so-called G−equivariant Con-
ley index.

9.2. Restricted four-body problem

In the restricted four-body problem, we deal with three heavy bodies, S (from the sun), J (from
Jupiter) and P (from a planet), and one light body A (an asteroid). The heavy bodies lie in the vertices
of an equilateral triangle which rotates with constant angular velocity (equal ν = −1) about their center
of mass and in a fixed plane. The asteroid moves in the gravity field generated by the principal bodies
and does not influence their movement. ††

As in the previous section, one passes to the coordinate–momentum frame wherein the heavy bodies
rest. Thus, we have the Hamiltonian function like in Eq. (9.1), but with ν = 1 and

V (q) = −
mS

|q − qS |
−

mJ

|q − qJ |
−

mP

|q − qP|
; (9.4)

here, q = 0 is the center of mass of the system. We assume two degrees of freedom (the case with
three degrees of freedom is only slightly more complex; see [15]), i.e., that A lies in the plane S JP; so,
q = (x, y) and p =

(
px, py

)
.

It is useful to rewrite the Hamiltonian as

H =
1
2

(px − y)2 +
1
2

(
py + x

)2
+W (x, y) ,

where
W = −

(
x2 + y2

)
/2 + V

is the effective potential. The critical points of H are defined by px = y j and py = −x j, where
(
x j, y j

)
are critical points of W. By putting q1 = x− x j, q2 = y− y j, p1 = px + y j, p2 = py − x j (and q̃ = (q1, q2) ,
p̃ = (p1 p2)), the quadratic part of the expansion of the Hamiltonian at such a critical point becomes

H2 (q̃, p̃) =
1
2

{
(p1 − q2)2 + (p2 + q1)2

− aq2
1 − 2bq1q2 − cq2

2

}
.

One finds (see [20]) that the characteristic polynomial of the corresponding linear system becomes

P (λ) = λ4 + a2λ
2 + a4,

a2 = 4 − a − c, a4 = ac − b2.

††Recall that periodic solutions near the triangular libration point L4 for the restricted three-body problem, i.e., with only S , J and A,
were studied by Schmidt [28]. I would like to thank one of the reviewers for this reference
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Note that the characteristic polynomial of the Hessian matrix D2W
(
x j, y j

)
=

(
−a −b
−b −c

)
equals

R (β) = β2 + (a + c) β + ac − b2.

If Q (µ) = µ2 + a2µ + a4, then we have the following relations between zeros of the polynomials Q and
R :

µ1µ2 = β1β2, µ1 + µ2 = − (β1 + β2 + 4) . (9.5)

We have the following generic possibilities for the zeros of P (in [15], these cases are expressed in
terms of β1, β2) :

(i) µ1 = µ̄2 ∈ C⧹R, i.e., a4 > 0 and ∆ = a2
2 − 4a4 < 0; then, λ j ∈ C⧹R⧹iR.

(ii) µ1, µ2 > 0, i.e., a4 > 0, a2 < 0 and ∆ > 0; then, λ1,2 = ±
√
µ1 and λ3,4 = ±

√
µ2.

(iii) µ1 < 0 < µ2, i.e., a4 < 0 and ∆ > 0; then, λ1,2 = ±i
√
|µ1| and λ3,4 = ±

√
µ2.

(iv) µ1 < µ2 < 0, i.e., a4 > 0, a2 > 0 and ∆ > 0; then, λ1,2 = ±i
√
|µ1| and λ3,4 = ±i

√
|µ2|.

We note also the following non-generic case of 0 : 1 resonance (considered in [15]):
(v) µ1 < 0 = µ2, i.e., a4 = 0 and a2 > 0; then, λ1,2 = ±i

√
|µ1| and λ3,4 = 0.

Using only the above information about the eigenvalues λ j, we can state the following.
(1) In cases (i) and (ii), there are no families of periodic solutions.
(2) In case (iii), there is one 1–parameter family of periodic solutions for the period ≈

2π/
√
|µ1|.

(3) In case (iv), there exists at least one 1–parameter family of periodic solutions for the period
≈ 2π/

√
|µ1|; moreover, if

√
|µ1| / |µ2| > 1 is not an integer, then there is another 1–parameter family

for the period ≈ 2π/
√
|µ2|.

Analogues of these statements can be found in [15, Theorem 3.1]. But, in the same theorem, we
find the following statement:

If in case (v), additionally, the index i(x j,y j)∇W (the authors call it the Brouwer index) is
nonzero, then there exists a branch of closed orbits.

We shall justify this using a refined version of the Birkhoff normal form in the 0 : 1 resonant case:

H =
1
2

{
|Z|2Ω

(
Y, |Z|2

)
− X2 + Φ (Y)

}
,

whereΩ = ω+ . . . and Φ = akYk+ . . . , ak , 0. In the case of one degree of freedom, this result is due to
Baider and Sanders [5] (some coefficients in the series Φ (Y) vanish); the above case is a generalization
of [7, Eq. (3.4)]. The corresponding differential system becomes

Ż = i (ω + . . .) Z, Ẋ = kakYk−1 (1 + O (Y)) + |Z|2Ψ
(
Y, |Z|2

)
, Ẏ = X.

As usual, when looking for periodic phase curves, we make the substitution Z = reiθ. We get the
system

dr/dθ = 0, dX/dθ = cYk−1 (1 + . . .) + r2Ξ
(
Y, r2

)
, dY/dθ = X/ (ω + . . .) ,

c = kak/ω , 0, with equilibrium points defined by X = 0 and cYk−1 (1 + . . .) + r2Ξ
(
Y, r2

)
= 0. The

sufficient condition for the existence of a nontrivial solution to the this system is that the exponent
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k − 1 is odd. But, this amounts to the property that the index of XH at this singular point is nonzero;
equivalently, the index of ∇W at

(
x j, y j

)
is nonzero.

In the case of the potential given by Eq. (9.4) for the planar restricted four-body problem, the
authors of [15] referred to works of other authors when looking for libration points (see [2, 6, 19] for
example). One assumes mS +mJ+mP = 3

√
3 (normalization); then, the sides of the equilateral triangle

T equal
√

3.
One draws three circles of radius

√
3 with centers at S , J and P and three straight lines which extend

the sides of T . Then, one obtains 16 bounded regions, but only seven of them contain libration points
(critical points of W). These (open) domains are as follows: the triangle T ; three circular sectors DS ,

DJ andDP with vertices at S , J and P, respectively; three circular triangles OS J, OJP and OPS opposite
to the corresponding sides of T (see [15, Theorem 4.1(i)]).

Moreover, in the case of equal masses, there are 10 critical points of W, all nondegenerate: the
minimum x = y = 0 and three saddle points in T , one local maximum in each O## and one saddle in
each D# (see [15, Lemma 4.2]). In the case of non-equal masses, one calculates the indices of ∇W
along the boundaries of the above domains (called the Brouwer degree) and finds that, in each of the
above seven domains, there exists a libration point with a nonzero index of ∇W.

By the above analysis of the eigenvalues λ j = ±
√
µl, using the relations of Eq. (9.5) between µk and

the eigenvalues βm of D2W, one concludes the existence of a 1–parameter family of periodic solutions
for each of the seven above libration points.

It would be interesting to study periodic solutions in the 1 : 1 resonance case, i.e., when a2 > 0 and
∆ = 0 (µ1 = µ2 < 0).

Finally, we note that the restricted four-body problem was studied from the points of view of the
Lyapunov stability of the libration points, i.e., for case (iv); the existence of a family of periodic
solutions does not imply it. Here, one uses the KAM theorem and fourth-order Birkhoff normal form.
In [20], the generic Lyapunov stability for case (iv) was established for the following situations:

when mS and mJ dominate over mP and the libration points lie near P;
when mS = mJ and the libration points lie in a symmetry line of T ;
when mS dominates over mJ and mP and the libration points lie near the circle with its center

at S and radius |S J| .

10. Appendices

10.1. Weighted projective spaces

Let p1, . . . , pm be relatively prime positive integers, called the weights. Consider the following
action of C∗ on Cm :

(λ, z) 7−→ λ · z = (λp1z1, . . . , λ
pmzm) .

By definition, the quotient of Cm⧹0 by C∗ is the weighted projective space,

Pp1,...,pm = (C∗⧹0) /C∗. (10.1)

Its complex dimension is m − 1 and real dimension is 2m − 2.
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From the algebraic geometry point of view (see [11]), it is the projective spectrum ProjS(P) , P =
(p1, . . . , pm) , of the graded polynomial algebra S(P) = C [T1, . . . ,Tm] such that degT j = p j. These
spaces are important from the complex geometry point of view. In particular, the morphism z j 7−→

T j = zp j

j defines the formal isomorphism

Pp1,...,pm ≃ P
m−1/Zp1 × . . . × Zpm .

But, we are more interested in their topological properties. Consider the standard sphere S2m−1 ={∑ ∣∣∣z j

∣∣∣2 = 1
}
. Each orbit C∗ · z, z , 0, intersects this sphere along a circle. Therefore, we have

Pp1,...,pm = S
2m−1/S1,

where the action of the circle S1 =
{
eiϕ

}
is like in Eq. (6.2), i.e., σϕ · z =

(
eip1ϕz1, . . . , eipmϕzm

)
.

Let us find the representation of our weighted projective space as a kind of CW complex (see [14]).
This complex consists of ‘cells’ of (real) dimensions 2m − 2, 2m − 4, . . . , 2, 0.

The ‘cell’ of maximal dimension σ2m−2 is defined by {zm , 0} in S2m−1. We rotate the variable zm to
get argzm = 0, i.e., zm = rm > 0. We have the following description of this ‘cell’:

σ2m−2 = D2m−2/∆,

where D2m−2 =
{
rm =

√
1 − |z1|

2
− . . . − |zm−1|

2
}

and ∆ ⊂ S1 is the stabilizer of the set
{
argzm = 0

}
. The

above upper semi-sphere is diffeomorphic with the standard (2m − 2)−dimensional unit ball, and its
quotient is singular but with the singular locus of (real) codimension ≥ 4 (complex codimension is
≥ 2). This cell defines the fundamental cycle of Pp1,...,pm .

The boundary of σ2m−2 is the weighted projective space Pp1,...,pm−1 . Note that now the weights can be
not relatively prime; but, if p j = r p̃ j , then the spaces Pp1,...,pm−1 and P p̃1,...,p̃m−1 are isomorphic (see [11]).

In this way, we successively construct the lower-dimensional cells, as well as cells in the singular
locus of the action of the group ∆ on D2m−2. By the dimensional argument, the boundaries of these
‘cells’ are zero in the homological sense; so, the only nonzero homology groups have even dimensions.
We distinguish the (2m − 4)−dimensional cycles

[
σ2m−4

1

]
, . . . ,

[
σ2m−4

m

]
corresponding to the hyperplane

sections {z1 = 0} , . . . , {zm = 0} respectively. The intersection of any collection of m − 1 of the above
cycles is nonempty and ,hence, catPp1,...,pm ≥ m (see Theorem 17 below).

Recall [14] that the homological length of a manifold M is the maximal number k such that there
exist homology classes ρ1, . . . , ρk ∈ H∗ (M,Z) , dimρ j < dimM, such that their intersection is a nonzero
cycle.‡‡

Finally, we note that, in our analysis, we can replace the standard sphere with any manifold of the
form {

c1 |z1|
2 + . . . + cm |zm|

2 = 1
}

for positive constants c j.

‡‡In fact, in [14], one finds the definition of the cohomological length (or the cup length) as the maximal number k such that there
exist cohomology classes a1, . . . , ak, dima j > 0, such that a1 ∪ . . . ∪ ak , 0. These cohomology classes are Poincaré-dual to the cycles
ρ1, . . . , ρk.

But, in the proof of Theorem 17 below given in [14], only intersections of the cycles are used.
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10.2. Lusternik–Schnirelmann category

By definition (see [14]), the Lusternik–Schnirelmann category catXA of A with respect to X is the
smallest number k for which there exist closed subsets A1, . . . , Ak of X such that

(i) A =
⋃

A j and
(ii) each A j is contractible in X.

If X is connected, then we define catXX = catX.

In this work, we have used the following properties of this notion.

Theorem 16. (Lusternik–Schnirelmann) Let M be a compact closed (without boundary) connected
manifold, and let f be a smooth function on M with isolated critical points (or bifurcational points).
Then, k ≥ catM.

Theorem 17. If M is a manifold, then catM is bounded from below by 1 plus the homological length
of M.

For the proofs, we refer the reader to a previous monograph [14].
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25. E. Pérez-Chavela, S. Rybicki, D. Strzelecki, Symmetric Lyapunov center theorem, Calculus Vari-
ations PDEs 56 (2017), art. 26. https://doi.org/10.1007/s00526-017-1120-1
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