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Abstract: Previously, boundary control problems for parabolic type equations were considered. A
portion of the thin rod boundary has a temperature-controlled heater. Its mode of operation should
be found so that the average temperature in some region reaches a certain value. In this article, we
consider the boundary control problem for the pseudo-parabolic equation. The value of the solution
with the control parameter is given in the boundary of the interval. Control constraints are given such
that the average value of the solution in considered domain takes a given value. The auxiliary problem
is solved by the method of separation of variables, and the problem under consideration is reduced to
the Volterra integral equation. The existence theorem of admissible control is proved by the Laplace
transform method.
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1. Introduction and statement of the problem

Consider the pseudo-parabolic equation in the domain Ω = {(x, t) : 0 < x < l, t > 0}:

∂u
∂t

=
∂2

∂t∂x

(
k(x)

∂u
∂x

)
+
∂

∂x

(
k(x)

∂u
∂x

)
, (x, t) ∈ Ω, (1.1)

with boundary conditions
u(0, t) = µ(t), u(l, t) = 0, t > 0, (1.2)

and initial condition
u(x, 0) = 0, 0 ≤ x ≤ l. (1.3)

Assume that the function k(x) ∈ C2([0, l]) satisfies the conditions

k(x) > 0, k′(x) ≤ 0, 0 ≤ x ≤ l.
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The condition (1.2) means that there is a magnitude of output given by a measurable real-valued
function µ(t) (See [1–3] for more information).
Definition 1. If function µ(t) ∈ W1

2 (R+) satisfies the conditions µ(0) = 0 and |µ(t)| ≤ 1, we say that this
function is an admissible control.

Problem B. For the given function θ(t) Problem B consists looking for the admissible control µ(t)
such that the solution u(x, t) of the initial-boundary problem (1.1)-(1.3) exists and for all t ≥ 0 satisfies
the equation

l∫
0

u(x, t) dx = θ(t). (1.4)

One of the models is the theory of incompressible simple fluids with decaying memory, which can
be described by equation (1) (see [1]). In [2], stability, uniqueness, and availability of solutions of
some classical problems for the considered equation were studied (see also [4, 5]). Point control prob-
lems for parabolic and pseudo-parabolic equations were considered. Some problems with distributed
parameters impulse control problems for systems were studied in [3,6]. More recent results concerned
with this problem were established in [7–15]. Detailed information on the problems of optimal control
for distributed parameter systems is given in [16] and in the monographs [17–20]. General numerical
optimization and optimal boundary control have been studied in a great number of publications such
as [21]. The practical approaches to optimal control of the heat conduction equation are described in
publications like [22].

Control problems for parabolic type equations are considered in works [13, 14] and [15]. In this
work, such control problems are considered for the pseudo-parabolic equation.

Consider the following eigenvalue problem

d
dx

(
k(x)

dvk(x)
dx

)
= −λk vk(x), 0 < x < l, (1.5)

with boundary condition
vk(0) = vk(l) = 0, 0 ≤ x ≤ l. (1.6)

It is well-know that this problem is self-adjoint in L2(Ω) and there exists a sequence of eigenvalues
{λk} so that 0 < λ1 ≤ λ2 ≤ ... ≤ λk → ∞, k → ∞. The corresponding eigenfuction vk form a
complete orthonormal system {vk}kεN in L2(Ω) and these function belong to C(Ω̄), where Ω̄ = Ω ∪ ∂Ω

(see, [23, 24]).

2. Main integral equation

Definition 2. By the solution of the problem (1.1)–(1.3) we understand the function u(x, t) repre-
sented in the form

u(x, t) =
l − x

l
µ(t) − v(x, t), (2.1)

where the function v(x, t) ∈ C2,1
x,t (Ω) ∩C(Ω̄), vx ∈ C(Ω̄) is the solution to the problem:

vt =
∂2

∂t∂x

(
k(x)

∂v
∂x

)
+
∂

∂x

(
k(x)

∂v
∂x

)
+
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+
k′(x)

l
µ(t) +

k′(x)
l
µ′(t) +

l − x
l
µ′(t),

with boundary conditions
v(0, t) = 0, v(l, t) = 0,

and initial condition
v(x, 0) = 0.

Set
βk =

(
λkak − bk

)
γk, (2.2)

where

ak =

l∫
0

l − x
l

vk(x)dx, bk =

l∫
0

k′(x)
l

vk(x)dx, (2.3)

and

γk =

l∫
0

vk(x)dx. (2.4)

Consequently, we have

v(x, t) =

∞∑
k=1

vk(x)
1 + λk

t∫
0

e−µk (t−s)(µ′(s) ak + µ′(s) bk + µ(s) bk
)

ds, (2.5)

where ak, bk defined by (2.3) and µk = λk
1+λk

.
From (2.1) and (2.5) we get the solution of the problem (1.1)–(1.3) (see, [23, 25]):

u(x, t) =
l − x

l
µ(t) −

∞∑
k=1

vk(x)
1 + λk

t∫
0

e−µk (t−s)(µ′(s) ak + µ′(s) bk + µ(s) bk
)

ds.

According to condition (1.4) and the solution of the problem (1.1)-(1.3), we may write

θ =

l∫
0

u(x, t)dx = µ(t)

l∫
0

l − x
l

dx

−

∞∑
k=1

1
1 + λk

( t∫
0

e−µk (t−s)(µ′(s) ak + µ′(s) bk + µ(s) bk
)

ds
) l∫

0

vk(x)dx

= µ(t)

l∫
0

l − x
l

dx −
∞∑

k=1

bk γk

1 + λk

t∫
0

e−µk(t−s)µ(s)ds

−

∞∑
k=1

(ak + bk) γk

1 + λk

t∫
0

e−µk(t−s) µ′(s)ds = µ(t)

l∫
0

l − x
l

dx
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−

∞∑
k=1

bk γk

1 + λk

t∫
0

e−µk(t−s)µ(s)ds − µ(t)
∞∑

k=1

(ak + bk) γk

1 + λk

+

∞∑
k=1

(ak + bk) λk γk

(1 + λk)2

t∫
0

e−µk(t−s) µ(s)ds. (2.6)

where γk defined by (2.4).
Note that

l∫
0

l − x
l

dx =

l∫
0

( ∞∑
k=1

ak vk(x)
)
dx =

∞∑
k=1

ak γk. (2.7)

Thus, from (2.6) and (2.7) we get

θ(t) = µ(t)
∞∑

k=1

βk

1 + λk
+

∞∑
k=1

βk

(1 + λk)2

t∫
0

e−µk(t−s) µ(s)ds, t > 0, (2.8)

where βk defined by (2.2).
Set

B(t) =

∞∑
k=1

βk

(1 + λk)2 e−µk t, t > 0, (2.9)

and

δ =

∞∑
k=1

βk

1 + λk
.

According to (2.8) and (2.9), we have the following integral equation

δ µ(t) +

t∫
0

B(t − s) µ(s)ds = θ(t), t > 0. (2.10)

Proposition 1. For the cofficients {βk}
∞
k=1 the estimate

0 ≤ βk ≤ C, k = 1, 2, ...

is valid.

Proof. Step 1. Now we use (1.5) and (2.3). Then consider the following equality

λk ak =

l∫
0

l − x
l
λk vk(x)dx = −

l∫
0

l − x
l

d
dx

(
k(x)

dvk(x)
dx

)
dx

= −

( l − x
l

k(x)v′k(x)
∣∣∣∣∣x=l

x=0
+

1
l

l∫
0

k(x) v′k(x)dx
)

= k(0)v′k(0) −
1
l

l∫
0

k(x) v′k(x)dx
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= k(0)v′k(0) −
1
l

(
k(l)vk(l) − k(0)vk(0)

)
+

l∫
0

k′(x)
l

vk(x)dx

= k(0)v′k(0) + bk.

Then we have
λk ak − bk = k(0)v′k(0). (2.11)

Step 2. Now we integrate the Eq. (1.5) from 0 to x

k(x)v′k(x) − k(0)v′k(0) = −λk

x∫
0

vk(τ)dτ,

and according to k(x) > 0, x ∈ [0, l], we can write

v′k(x) −
1

k(x)
k(0)v′k(0) = −

λk

k(x)

x∫
0

vk(τ)dτ. (2.12)

Thus, we integrate the Eq. (2.12) from 0 to l. Then we have

vk(l) − vk(0) − k(0)v′k(0)

l∫
0

dx
k(x)

= −λk

l∫
0

1
k(x)

( x∫
0

vk(τ)dτ
)
dx. (2.13)

From (1.6) and (2.13) we get

k(0)v′k(0)

l∫
0

dx
k(x)

= λk

l∫
0

1
k(x)

( x∫
0

vk(τ)dτ
)
dx.

Then

k(0)v′k(0) = λk

l∫
0

G(τ)vk(τ)dτ, (2.14)

where

G(τ) =

l∫
τ

dx
k(x)

( l∫
0

dx
k(x)

)−1
.

According to G(τ) > 0 and from (2.14) we have (see, [24])

v′k(0)

l∫
0

vk(τ)dτ ≥ 0. (2.15)
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Consequently, from (2.11) and (2.15) we get the following estimate

βk = (λk bk − ak) γk = k(0)v′k(0) ·

l∫
0

vk(x)dx ≥ 0.

Step 3. It is clear that if k(x) ∈ C1([0, l]), we may write the estimate (see, [24, 26])

max
0≤x≤l
|v′k(x)| ≤ Cλ1/2

k .

Therefore,
|v′k(0)| ≤ Cλ1/2

k , |v′k(l)| ≤ Cλ1/2
k , (2.16)

Then from Eq. (1.5), we can write

k(l)v′k(l) − k(0)v′k(0) = −λk

l∫
0

vk(x)dx = −λk γk. (2.17)

According to (2.16) and (2.17) we have the estimate

|γk| ≤

∣∣∣∣ 1
λk

(
k(l)v′k(l) − k(0)v′k(0)

)∣∣∣∣ ≤ Cλ−1/2
k .

Then
βk ≤ k(0)

∣∣∣v′k(0)γk

∣∣∣ ≤ C.

Proposition 2. A function B(t) is continuous on the half-line t ≥ 0.

Proof. Indeed, according to Proposition 1 and (2.9), we can write

0 < B(t) ≤ const
∞∑

k=1

1
(1 + λk)2 .

3. Main result

Denote by W(M) the set of function θ ∈ W2
2 (−∞,+∞), θ(t) = 0 for t ≤ 0 which satisfies the

condition
‖θ‖W2

2 (R+) ≤ M.

Theorem 1. There exists M > 0 such that for any function θ ∈ W(M) the solution µ(t) of the equation
(2.10) exists, and satisfies condition

|µ(t)| ≤ 1.
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We write integral equation (2.10)

δ µ(t) +

t∫
0

B(t − s)µ(s)ds = θ(t), t > 0.

By definition of the Laplace transform we have

µ̃(p) =

∞∫
0

e−pt µ(t) dt.

Applying the Laplace transform to the second kind Volterra integral equation (2.10) and taking into
account the properties of the transform convolution we get

θ̃(p) = δ µ̃(p) + B̃(p) µ̃(p).

Consequently, we obtain

µ̃(p) =
θ̃(p)

δ + B̃(p)
, where p = a + iξ, a > 0,

and

µ(t) =
1

2πi

a+iξ∫
a−iξ

θ̃(p)

δ + B̃(p)
eptdp =

1
2π

+∞∫
−∞

θ̃(a + iξ)

δ + B̃(a + iξ)
e(a+iξ)tdξ. (3.1)

Then we can write

B̃(p) =

∞∫
0

B(t)e−pt dt =

∞∑
k=1

βk

(1 + λk)2

∞∫
0

e−(p+µk)t dt =

∞∑
k=1

ρk

p + µk
,

where ρk =
βk

(1+λk)2 ≥ 0 and

B̃(a + iξ) =

∞∑
k=1

ρk

a + µk + iξ
=

∞∑
k=1

ρk (a + µk)
(a + µk)2 + ξ2 − iξ

∞∑
k=1

ρk

(a + µk)2 + ξ2 .

It is clear that
(a + µk)2 + ξ2 ≤ [(a + µk)2 + 1](1 + ξ2),

and we have the inequality
1

(a + µk)2 + ξ2 ≥
1

1 + ξ2

1
(a + µk)2 + 1

. (3.2)

Consequently, according to (3.2) we can obtain the estimates

|Re(δ + B̃(a + iξ))| = δ +

∞∑
k=1

ρk (a + µk)
(a + µk)2 + ξ2
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≥
1

1 + ξ2

∞∑
k=1

ρk (a + µk)
(a + µk)2 + 1

=
C1a

1 + ξ2 , (3.3)

and

|Im(δ + B̃(a + iξ))| = |ξ|
∞∑

k=1

ρk

(a + µk)2 + ξ2

≥
|ξ|

1 + ξ2

∞∑
k=1

ρk

(a + µk)2 + 1
=

C2a |ξ|

1 + ξ2 , (3.4)

where C1a, C2a as follows

C1a =

∞∑
k=1

ρk (a + µk)
(a + µk)2 + 1

, C2a =

∞∑
k=1

ρk

(a + µk)2 + 1
.

From (3.3) and (3.4), we have the estimate

|δ + B̃(a + iξ)|2 = |Re(δ + B̃(a + iξ))|2 + |Im(δ + B̃(a + iξ))|2 ≥
min(C2

1a,C
2
2a)

1 + ξ2 ,

and
|δ + B̃(a + iξ)| ≥

Ca√
1 + ξ2

, where Ca = min(C1a,C2a). (3.5)

Then, by passing to the limit at a→ 0 from (3.1), we can obtain the equality

µ(t) =
1

2π

+∞∫
−∞

θ̃(iξ)

δ + B̃(iξ)
eiξtdξ. (3.6)

Lemma 1. Let θ(t) ∈ W(M). Then for the image of the function θ(t) the following inequality

+∞∫
−∞

|̃θ(iξ)|
√

1 + ξ2dξ ≤ C ‖θ‖W2
2 (R+),

is valid.

Proof. We use integration by parts in the integral representing the image of the given function θ(t)

θ̃(a + iξ) =

∞∫
0

e−(a+iξ)tθ(t) dt = −θ(t)
e−(a+iξ)t

a + iξ

∣∣∣∣∣t=∞
t=0

+
1

a + iξ

∞∫
0

e−(a+iξ)t θ′(t) dt.

Then using the obtained inequality and multiplying by the corresponding coefficient we get

(a + iξ) θ̃(a + iξ) =

∞∫
0

e−(a+iξ)t θ′(t) dt,
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297

and for a→ 0 we have

iξ θ̃(iξ) =

∞∫
0

e−iξt θ′(t) dt.

Also, we can write the following equality

(iξ)2 θ̃(iξ) =

∞∫
0

e−iξt θ′′(t) dt.

Then we have
+∞∫
−∞

|̃θ(iξ)|2(1 + ξ2)2dξ ≤ C1 ‖θ‖
2
W2

2 (R+). (3.7)

Consequently, according to (3.7) we get the following estimate

+∞∫
−∞

|̃θ(iξ)|
√

1 + ξ2dξ =

+∞∫
−∞

|̃θ(iξ)|(1 + ξ2)√
1 + ξ2

≤

( +∞∫
−∞

|̃θ(iξ)|2(1 + ξ2)2dξ
)1/2( +∞∫

−∞

1
1 + ξ2 dξ

)1/2

≤ C ‖θ‖W2
2 (R+).

Proof of the Theorem 1. We prove that µ ∈ W1
2 (R+). Indeed, according to (3.5) and (3.6), we

obtain
+∞∫
−∞

|̃µ(ξ)|2(1 + |ξ|2) dξ =

+∞∫
−∞

∣∣∣∣∣∣ θ̃(iξ)

δ + B̃(iξ)

∣∣∣∣∣∣
2

(1 + |ξ|2) dξ

≤ C

+∞∫
−∞

|̃θ(iξ)|2(1 + |ξ|2)2 dξ = C‖θ‖2W2
2 (R).

Further,

|µ(t) − µ(s)| =

∣∣∣∣∣∣∣∣
t∫

s

µ′(τ) dτ

∣∣∣∣∣∣∣∣ ≤ ‖µ′‖L2

√
t − s.

Hence, µ ∈ Lipα, where α = 1/2. Then from (3.5), (3.6) and (3.7), we have

|µ(t)| ≤
1

2π

+∞∫
−∞

|̃θ(iξ)|

|δ + B̃(iξ)|
dξ ≤

1
2πC0

+∞∫
−∞

|̃θ(iξ)|
√

1 + ξ2dξ

≤
C

2πC0
‖θ‖W2

2 (R+) ≤
C M
2πC0

= 1,

as M we took
M =

2πC0

C
.
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4. Conclusion

An auxiliary boundary value problem for the pseudo-parabolic equation was considered. The re-
striction for the admissible control is given in the integral form. By the separation variables method,
the desired problem was reduced to Volterra’s integral equation. The last equation was solved by the
Laplace transform method. Theorem on the existence of an admissible control is proved. Later, it is
also interesting to consider this problem in the n− dimensional domain. We assume that the methods
used in the present problem can also be used in the n− dimensional domain.
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