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1. Introduction

In this article, we study the initial-boundary value problem for the class of finitely degenerate
semilinear parabolic equations with singular potential term as follows

ut − ∆Xu − µV (x) u = g (x) |u|p−1 u, x ∈ Ω, t > 0,
u (x, t) = 0, x ∈ ∂Ω, t > 0,
u (x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where X = (X1, · · · , Xm) is a system of real smooth vector fields defined on open set U in Rn for n ≥ 3,
Ω ⊂⊂ U is a bounded open domain, X j =

∑n
k=1 a jk (x) ∂xk , a jk ∈ C∞ (U), j = 1, · · · ,m, and (x1, . . . , xn)

is the coordinate system of U. In general, X j is different from the position vector field x =
∑n

k=1 xk∂xk of
U in Rn. In the whole paper, we always suppose that the system of vector fields X is finitely degenerate,
i.e., it satisfies the following Hörmander’s condition [13] with Q > 1.

(H) X1, X2, . . . , Xm together with their commutators of length at most Q can span the tangent space
Tx (U) at each point x ∈ U, where Q is the Hörmander index of U with respect to X.
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The sum of square operator ∆X :=
∑m

j=1 X2
j , also called the Hörmander type operator, is finitely

degenerate elliptic operator if Q > 1, while it is the usual elliptic operator and m ≥ n if Q = 1. Here,
we further pose the following hypotheses:

(H∂Ω) ∂Ω is smooth and non-characteristic for the system of vector fields X, i.e., for any x ∈ ∂Ω, there
exists at least one vector field X j such that X j (x) < Tx (∂Ω).(

Hp

)
1 < p ≤ ν̃

ν̃−2 , where ν̃ ≥ 3 is the generalized Métivier index (cf. Definition 2.2).

(HV) µ ∈
(
0, 1/C2

∗

)
is constant, and the positive singular potential function V (x) ∈ L∞ (Ω) ∩ C (Ω)

satisfies the Hardy’s inequality ∫
Ω

V (x) |u|2 dx ≤ C
∫
Ω

|Xu|2 dx (1.2)

for any u of the Hilbert space H1
X,0 (Ω) (cf. Section 2), where

C∗ := sup
u∈H1

X,0(Ω)\{0}

∥
√

V (x)u∥
∥Xu∥

. (1.3)

(
Hg

)
g (x) ∈ L∞ (Ω) ∩C (Ω) is a non-negative weighted function.

Finitely degenerate elliptic operators originate from physical applications and mathematical
problems, e.g., Lewy’s example [19], the stochastic differential equations [30], ∂̄-Neumann problem
in complex geometry [17], Kohn Laplacian on the Heisenberg group Hn in quantum mechanics [4].
Hörmander [13] proved the hypoellipticity and the subelliptic estimates of ∆X, and thus ∆X is still
called the subelliptic operator. Bony [3] obtained the maximum principle and the Harnack inequality
of ∆X, and Rothschild and Stein [29] gave the regularity estimates of ∆X. By Hörmander condition
one can define a Carnot-Carathéodory metric induced by X, which is paid attentions by scholars in
sub-Riemannian geometry [27]. Moreover, the Poincaré inequality [14], the Sobolev embedding
theorem [6, 33, 39], heat kernel and Green kernel estimates [15] were well investigated.

Furthermore, under the Métivier’s condition Métivier [26] studied the eigenvalues problems of ∆X,
and defined the Métivier index ν, also namely the Hausdorff dimension of Ω related to X. For
example, let X = (X1, . . . , Xn,Y1, . . . ,Yn) on the Heisenberg group Hn ⊂ R2n+1, where X j = ∂x j + 2y j∂t,
Y j = ∂y j + 2x j∂t, j = 1, . . . , n. Then X satisfies the Hörmander’s condition for Q = 2, the Métivier’s
condition for ν = 2n + 2, and the Kohn Laplacian ∆X =

∑n
j=1

(
X2

j + Y2
j

)
is a finitely degenerate elliptic

operator. Unfortunately, in the finitely degenerate case, if no Métivier’s condition there are no
Rellich-Kondrachov compact embedding results, while such compact embedding results play an
important role when one discusses the existence of solutions for the Dirichlet problem of semilinear
subelliptic equations. To deal with this case, Chen and Luo [8] defined the generalized Métivier index
ν̃, also named non-isotropic dimension of Ω associated with X [39], which is exactly the Métivier
index under the Métivier’s condition. Note that X always has the generalized Métivier index ν̃ on Ω
even without the Métivier’s condition. For example, the Grushin type vector fields
X =

(
∂x1 , . . . , ∂xn−1 , x

i
1∂xn

)
, n ≥ 2, i ∈ Z+, defined on a domain Ω ⊂ Rn. If Ω ∩ {x1 = 0} , ∅, then X

satisfies the Hörmander’s condition with Q = i + 1, the Grushin type operator ∆X =
∑m

j=1 X2
j is finitely

degenerate, and ν̃ = n + i.
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For the vector fields X =
(
∂x1 , ∂x2 , · · · , ∂xn

)
, ∆X is exactly the usual Laplacian operator ∆, and the

equation in (1.1) is the heat equation with singular potentials, which has attracted attentions since the
work of Baras and Goldstein [2] in 1984. In fact, they studied the initial-boundary value problem for
the linear heat equation

ut − ∆u − V (x) u = f (x, t) (1.4)

with singular potential V (x) = c/ |x|2, and proved that under the initial data u0 > 0, if c ≤ (n−2)2

4 it has
a global weak solution, otherwise it has no solution [2] and even no local solution [5]. Particularly, if
V (x) = 0, the equation in (1.1) becomes

ut − △u = f (u) , (1.5)

which has been popularly studied. For the initial-boundary value problem (1.5), Liu in [23] improved
the potential wells method of Payne and Sattinger [28], and obtained the global existence and blow-up
of solutions with subcritical initial energy in [24]. Then, Xu [34] studied this problem with critical
initial energy, and Gazzola and Weth [12] further discussed the high initial energy. Since the family
of potential wells was proposed in [23], it has been used to study various important and interesting
nonlinear evolution equations, including hyperbolic [20, 22, 32, 38], the system of coupled parabolic
equation [35], and the pseudo-parabolic equation [21, 36, 37].

On singular manifolds, Alimohammady and Kalleji [1] studied the initial-boundary value problem
of the semilinear evolution equation as follows

∂k
t u − ∆Bu − ϱV (x) u = g (x) |u|p−1 u, k ≥ 1 (1.6)

with ϱ = 1, obtained the global existence and the finite time blow-up of weak solutions on cone
type Sobolev spaces. However, for the case k ≥ 2 the results in [1] are invalid, hence later Luo, Xu
and Yang [25] considered the case k = 2 and ϱ in some value range, proved the local existence and
uniqueness of the solution by using the contraction mapping principle, and obtained the existence of
global solutions and finite time blow-up of solutions on the cone-type Sobolev spaces. On the other
hand, the edge-degenerate parabolic equation with singular potentials was studied by Chen and Liu [7].

In this article, under the assumptions (H), (H∂Ω), (HV),
(
Hg

)
and

(
Hp

)
, by the known properties

of ∆X we establish the local and global existence, decay and finite time blow-up of the solutions for
problem (1.1). This article is organized as follows. After introducing some notions and results on the
finite degenerate vector fields in Section 2, by applying the Galerkin method and Banach fixed theorem
we establish the local existence and uniqueness of the weak solution of problem (1.1) in Section 3.
In Section 4, by constructing a family of potential wells, we prove some auxiliary results for it. In
Section 5, by potential well method we obtain the global existence, the decay estimate and the finite
time blow-up of solutions with subcritical or critical initial energy.

2. Preliminaries

In this section, we recall some notions and properties of the finite degenerate vector fields X.
First, by X we define the Sobolev space (cf. [33])

H1
X (U) =

{
u ∈ L2 (U) | Xiu ∈ L2 (U) , i = 1, · · · ,m

}
.
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This is a Hilbert space equipped with the norm

∥u∥2H1
X(U) = ∥u∥

2
L2(U) + ∥Xu∥2L2(U),

where ∥Xu∥2L2(U) =
∑m

i=1 ∥Xiu∥2L2(U). We denote by H1
X,0 (Ω) the closure of C∞0 (Ω) in H1

X (U), which is
still a Hilbert space. For simplicity, from now on, we write ∥ · ∥H1

X,0
= ∥ · ∥H1

X,0(Ω), ∥ · ∥p = ∥ · ∥Lp(Ω) for
1 ≤ p ≤ ∞, and also let ∥ · ∥ = ∥ · ∥L2(Ω). Moreover, we denote by (u, v) the inner product in L2 (Ω), and
follow the convention that C is an arbitrary positive constant, which may be different from line to line.

Next, we introduce the Métivier’s condition [26] and the generalized Métivier index [8] as follows.

Definiton 2.1 (Métivier’s condition). Under the Hörmander’s condition (H) for the vector fields X, let
Vi (x) be the subspace of the tangent space at x ∈ Ω̄ spanned by all commutators of X1, · · · , Xm with
length at most i for 1 ≤ i ≤ Q. If each νi = dim Vi (x) is constant on some neighborhood of every
x ∈ Ω̄, we call X satisfying the Métivier’s condition on Ω, and define the Métivier index by

ν :=
Q∑

i=1

i (νi − νi−1) , ν0 := 0,

namely also the Hausdorff dimension of Ω related to the subelliptic metric induced by X.

Definiton 2.2 (Generalized Métivier index). Under the Hörmander’s condition (H), by the notations in
Definition 2.1, let νi (x) be the dimension of vector space Vi (x) at point x ∈ Ω̄, we define the pointwise
homogeneous dimension at x by

ν (x) :=
Q∑

i=1

i (νi (x) − νi−1 (x)) , ν0 (x) := 0. (2.1)

Then, the generalized Métivier index of Ω is defined by

ν̃ := max
x∈Ω̄
ν (x) , (2.2)

which is also named the non-isotropic dimension of Ω (cf. [39]).

For Q > 1 we see from (2.1) that 3 ≤ n + Q − 1 ≤ ν̃ < nQ, and ν̃ is exactly ν under the Métivier’s
condition.

Now, we recall the weighted Poincaré inequality and weighted Sobolev embedding theorem related
to X as follows.

Proposition 2.1 (Weighted Poincaré inequality [16]). Under the assumptions (H) and (H∂Ω), the first
eigenvalue λ1 of −∆X is strictly positive, and

λ1∥u∥2 ≤ ∥Xu∥2, ∀ u ∈ H1
X,0 (Ω) . (2.3)

Proposition 2.2 (Weighted Sobolev embedding theorem [39]). Under the assumptions (H) and (H∂Ω),
for arbitrary u ∈ C∞(Ω̄) we have

∥u∥p∗ ≤ C(∥Xu∥p + ∥u∥p),

where 1
p∗ =

1
p −

1
ν̃
, p ∈ [1, ν̃) related to the generalized Métivier index ν̃, and C = C (Ω, X) is a positive

constant.
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Remark 2.1. As ν̃ ≥ 3, by Proposition 2.2 for p = 2 we see that H1
X,0 (Ω) ↪→ Lq (Ω) is a bounded

embedding for any 1 ≤ q ≤ 2∗ν̃ := 2ν̃
ν̃−2 .

Proposition 2.3 (compact embedding theorem, cf. [9]). Under the assumptions (H) and (H∂Ω), for
1 ≤ q < 2∗ν̃, the embedding

H1
X,0 (Ω) ↪→ Lq (Ω)

is compact.

Note from
(
Hp

)
and Remark 2.1 that 2 < p + 1 < 2∗ν̃. Together with the Poincaré inequality (2.3),

Proposition 2.3 and
(
Hg

)
, we can deduce the following inequality.

Lemma 2.1. Under the assumptions (H), (H∂Ω),
(
Hp

)
and

(
Hg

)
, for arbitrary u ∈ H1

X,0 (Ω), we have

∥g (x)
1

p+1 u∥p+1 ≤ C∥Xu∥.

Thanks to Lemmas 2.1, for 1 < p ≤ ν̃
ν̃−2 we can define a positive constant

CX := sup
u∈H1

X,0(Ω)\{0}

∥g (x)
1

p+1 u∥p+1

∥Xu∥
. (2.4)

Proposition 2.4 (cf. [9]). Under the assumptions (H) and (H∂Ω), the subelliptic Dirichlet problem−∆Xu = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω
(2.5)

is well-defined, i.e., −∆X possesses a sequence of discrete eigenvalues {λk}k≥1 such that 0 < λ1 < λ2 ≤

λ3 ≤ · · · ≤ λk ≤ · · · , and λk → +∞ as k → +∞. Denote the corresponding eigenfunctions by {ϕk}k≥1,
which forms an orthonormal basis of L2 (Ω) and also an orthogonal basis of the Hilbert space H1

X,0 (Ω).

Lemma 2.2. For n ≥ 3, C∞0 (Ω\{0}) is dense in H1
X,0 (Ω).

Proof. As C∞0 (Ω) is dense in H1
X,0 (Ω), we just need to prove that

C∞0 (Ω) ⊂ C∞0 (Ω\{0})
∥·∥H1

X,0 .

Denote by φ a smooth function such that

φ (x) =

0, 0 < x ≤ 1,
1, x ≥ 2.

Now, taking a sufficiently small ϵ > 0 and defining uϵ (x) = φ
(
|x|
ϵ

)
u (x) for u ∈ C∞0 (Ω), we have

uϵ (x) ∈ C∞0 (Ω\{0}) and
∥uϵ − u∥2H1

X,0
= ∥uϵ − u∥2 + ∥X (uϵ − u) ∥2.

It follows from the dominated convergence theorem that

∥uϵ − u∥2
ϵ→0
−−−→ 0,

∫
Ω

∣∣∣∣∣∣φ
(
|x|
ϵ

)
− 1

∣∣∣∣∣∣2 |Xu (x)|2 dx
ϵ→0
−−−→ 0.
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Moreover, ∫
Ω

∣∣∣∣∣∣X
(
|x|
ϵ

)∣∣∣∣∣∣2
∣∣∣∣∣∣∇φ

(
|x|
ϵ

)∣∣∣∣∣∣2 |u (x)|2 dx ≤
C
ϵ2

∫
Ω

∣∣∣∣∣∣∇φ
(
|x|
ϵ

)∣∣∣∣∣∣2 |u (x)|2 dx

≤
C
ϵ2
∥u∥2∞∥∇φ∥

2
∞

∫
{ϵ≤|x|≤2ϵ}

dx

≤Cϵn−2 ϵ→0
−−−→ 0.

Lemma 2.2 has been proved. □

By the Hardy inequality on C1
0 (Ω\{0}) related to degenerate elliptic differential operators [10] and

Lemma 2.2, we immediately see that there exists a positive singular potential function V (x) ∈ L∞ (Ω)∩
C (Ω) such that Hardy inequality (1.2) holds for any u ∈ H1

X,0 (Ω). Therefore, the assumption (HV) is
reasonable. From (HV) and the Poincaré inequality (2.3) we see that the operator −∆X − µV (x) is a
positive operator on H1

X,0 (Ω). Moreover, we have the following result.

Proposition 2.5. Under the assumptions (H), (H∂Ω) and (HV), the Dirichlet eigenvalue problem−∆Xu − µV (x) u = ηu, x ∈ Ω,

u = 0, x ∈ ∂Ω
(2.6)

is well-defined, i.e., −∆X − µV (x) possesses a sequence of discrete Dirichlet eigenvalues {ηk}k≥1 such
that 0 < η1 ≤ η2 ≤ η3 ≤ · · · ≤ ηk ≤ · · · , and ηk → +∞ as k → +∞. Denote the corresponding
eigenfunctions by {φk}k≥1, which is an orthonormal basis of L2 (Ω) and also an orthogonal basis of the
Hilbert space H1

X,0 (Ω).

Proof. Define the bilinear form

a [u, v] =
(
Lµu, v

)
: H1

X,0 (Ω) × H1
X,0 (Ω)→ R,

where Lµ := −∆X − µV (x) is an operator defined on the Hilbert space H1
X,0 (Ω). By combining with the

Hölder inequality, (1.3) and the Poincaré inequality (2.3) we have

|a [u, v]| = |(−∆Xu − µV (x) u, v)|

≤

∣∣∣∣∣∫
Ω

XuXvdx
∣∣∣∣∣ + ∣∣∣∣∣µ∫

Ω

V (x) uvdx
∣∣∣∣∣

≤∥Xu∥∥Xv∥ + µ∥
√

V (x)u∥∥
√

V (x)v∥

≤
(
1 + µC2

∗

)
∥Xu∥∥Xv∥

≤
(
1 + µC2

∗

)
∥u∥H1

X,0
∥v∥H1

X,0
, ∀ u, v ∈ H1

X,0 (Ω) ,

and

a [u, u] = (−∆Xu − µV (x) u, u) = ∥Xu∥2 − µ
∫
Ω

V (x) |u|2 dx

≥
(
1 − µC2

∗

)
∥Xu∥2

≥
(
1 − µC2

∗

) λ1

1 + λ1
∥u∥2H1

X,0
, ∀ u ∈ H1

X,0 (Ω) .
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It follows from the Lax-Milgram theorem that for any g ∈ H−1
X (Ω), the Dirichlet problemLµu = −∆Xu − µV (x) u = g, x ∈ Ω,

u = 0, x ∈ ∂Ω

has a unique solution u ∈ H1
X,0 (Ω), where H−1

X (Ω) is the dual space of H1
X,0 (Ω) with the norm

∥g∥H−1
X (Ω) = sup

φ∈H1
X,0(Ω),φ,0

|⟨g, φ⟩|
∥φ∥H1

X,0

,

and Lµ : H1
X,0 (Ω)→ H−1

X (Ω) is continuous. Therefore, the inverse operator L−1
µ = (−∆X − µV (x))−1 of

Lµ is well-defined and is a continuous map from H−1
X (Ω) into H1

X,0 (Ω).
Since that the embedding i : H1

X,0 (Ω) → L2 (Ω) is compact and the embedding i∗ : L2 (Ω) →
H−1

X (Ω) is continuous, we deduce that

Kµ := L−1
µ ◦ i∗ ◦ i : H1

X,0 (Ω)→ H1
X,0 (Ω)

is a compact and self-adjoint operator. Therefore, Kµ possesses a sequence of discrete eigenvalues
{µk}k≥1 such that µk > 0, decreasing on k and µk → 0 as k → +∞. Denote the corresponding
eigenfunctions by {φk}k≥1, then

Kµφk = µkφk, ∀ k ≥ 1

and {φk}k≥1 form an orthonormal basis of H1
X,0 (Ω). Proposition 2.5 has been proved. □

Finally, we give the definition of weak solutions.

Definiton 2.3 (Weak solution). A function u = u (x, t) is called a weak solution of problem (1.1) on
Ω × [0,T ), if u ∈ L∞(0,T ; H1

X,0 (Ω)) with ut ∈ L2(0,T ; L2 (Ω)) satisfies u(0, x) = u0 (x) ∈ H1
X,0 (Ω) and

(ut,w) + (Xu, Xw) − (µV (x) u,w) =
(
g (x) |u|p−1 u,w

)
(2.7)

for any w ∈ H1
X,0 (Ω), 0 < t < T, where T is the maximum existence time of the solution.

3. Local existence of the solution

In this section, we will prove the existence and uniqueness of the local solution for the problem
(1.1). First, we consider the linear problem of (1.1)

vt − ∆Xv − µV (x) v = g (x) |u|p−1 u, x ∈ Ω, t > 0,
v (x, t) = 0, x ∈ ∂Ω, t > 0,
v (x, 0) = u0 (x) , x ∈ Ω.

(3.1)

For a given T > 0 and any µ ∈
(
0, 1

C2
∗

)
, define the Banach space

H :=
{
u | u ∈ C

(
[0,T ] ; H1

X,0 (Ω)
)
, ut ∈ L2

(
[0,T ] ; L2 (Ω)

)}
equipped with the norm

∥u∥2
H

:= sup
t∈[0,T ]

(
1 − µC2

∗

)
∥Xu∥2. (3.2)

By the Galerkin method we establish the local existence result of the problem (3.1) as follows.

Communications in Analysis and Mechanics Volume 15, Issue 2, 132–161.



139

Lemma 3.1. Under the assumptions (H), (H∂Ω), (HV),
(
Hg

)
and

(
Hp

)
, for every u0 ∈ H1

X,0 (Ω) and
u ∈ H , the problem (3.1) has a unique local solution v ∈ H .

Proof. By Proposition 2.5, we see that {ηi}i≥1 are the eigenvalues of the positive operator Lµ = −∆X −

µV (x) of the Dirichlet eigenvalue problem−∆Xφi − µV (x)φi = ηiφi, x ∈ Ω,

φi = 0, x ∈ ∂Ω,
(3.3)

where ∥φi∥ = 1 for all i, and the eigenfunctions {φi}i≥1 are the orthogonal basis of both H1
X,0 (Ω) and

L2 (Ω). Let Wm = Span{φ1, · · · , φm}, m ∈ N+. For each m ∈ N+, we can construct the approximate
solutions of problem (3.1) as follows

vm (t) =
m∑

i=1

himφi, (3.4)

which satisfies the following Cauchy problem in Wm(vmt − ∆Xvm − µV (x) vm, φi) =
(
g (x) |u|p−1 u, φi

)
,

vm (x, 0) = um0 =
∑m

i=1 (u0, φi)φi
m→∞
−−−−→ u0 in H1

X,0 (Ω) .
(3.5)

By taking (3.4) into (3.5), we get the Cauchy problem of the ordinary differential equation with respect
to him (t) as follows h

′

im (t) + ηihim (t) =
(
g (x) |u|p−1 u, φi

)
, i = 1, 2, · · · ,m,

him (0) = (u0, φi) .
(3.6)

Thanks to the theory of ordinary differential equations, the problem (3.6) has a solution him ∈ C1 [0,T ]
for each i. Multiplying both sides of the equation in (3.5) by h

′

im (t), summing for i and integrating over
[0, t], one has

2
∫ t

0
∥vmτ∥

2dτ + ∥Xvm∥
2 −

∫
Ω

µV (x) |vm|
2 dx

=∥Xum0∥
2 −

∫
Ω

µV (x) |um0|
2 dx + 2

∫ t

0

∫
Ω

g (x) |u|p−1 uvmτdx.
(3.7)

Next, according to the Hölder inequality,
(
Hg

)
, the Sobolev embedding H1

X,0 (Ω) ↪→ L2p (Ω), the
Poincaré inequality (2.3) and the Cauchy inequality with ϵ, we can estimate the last term of (3.7) as
follows

2
∫ t

0

∫
Ω

g (x) |u|p−1 uvmτdxdτ

≤2∥g∥∞

∫ t

0
∥u∥p2p∥vmτ∥dτ

≤2C∥g∥∞

∫ t

0
∥u∥p

H1
X,0
∥vmτ∥dτ

≤
C
2ϵ

(
1 +

1
λ1

)p

∥g∥∞

∫ t

0
∥Xu∥2pdτ + 2Cϵ∥g∥∞

∫ t

0
∥vmτ∥

2dτ

≤CT + 2Cϵ∥g∥∞

∫ t

0
∥vmτ∥

2dτ,

(3.8)
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where the positive constant C may be different from line to line. By choosing ϵ > 0 such that
2Cϵ∥g∥∞ = 1, we see from (1.3), (3.7) and (3.8) that∫ t

0
∥vmτ∥

2dτ +
(
1 − µC2

∗

)
∥Xvm∥

2

≤

∫ t

0
∥vmτ∥

2dτ + ∥Xvm∥
2 −

∫
Ω

µV (x) |vm|
2 dx

= ∥Xum0∥
2 −

∫
Ω

µV (x) |um0|
2 dx +CT

≤CT.

(3.9)

Let
w∗
−−→ be the weakly star convergence. By (3.9) we have a subsequence, also denoted by {vm},

satisfying as m→ ∞,

vm
w∗
−−→ v in L∞

(
[0,T ] ; H1

X,0 (Ω)
)
, (3.10)

vmt
w∗
−−→ vt in L2

(
[0,T ] ; L2 (Ω)

)
. (3.11)

These imply that
v ∈ H1

(
[0,T ] ; L2 (Ω)

)
.

Then one has from Evans Theorem ( [11], 5.9.2. Theorem 2, p. 304) that

v ∈ C
(
[0,T ] ; L2 (Ω)

)
. (3.12)

By Proposition 2.3 and Remark 2.1, the injection H1
X,0 ↪→ L2 (Ω) is continuous and compact, which

together with (3.12) and Temam lemma ( [31], Section II, Lemma 3.3) shows that

v ∈ C
(
[0,T ] ; H1

X,0 (Ω)
)
. (3.13)

It follows from (3.5) and (3.10) that

vmt
w∗
−−→ vt in L∞([0,T ] ; H−1

X (Ω)). (3.14)

For fixed i, letting m→ ∞, taking the limit in (3.5), by (3.10)-(3.11) we get

(vt, φi) + (Xv, Xφi) − (µV (x) v, φi) =
(
g (x) |u|p−1 u, φi

)
, ∀ i ≥ 1.

Since {φi}i≥1 is a base of H1
X,0 (Ω), we deduce that v ∈ H satisfies the equation in (3.1).

Finally, we prove the uniqueness of solutions. Otherwise, assume that w1 and w2 are two solutions
of problem (3.1). Let w̃ = w1 − w2, there holds

w̃t − ∆Xw̃ − µV (x) w̃ = 0, x ∈ Ω, t > 0,
w̃ (x, t) = 0, x ∈ ∂Ω, t > 0,
w̃ (x, 0) = 0, x ∈ Ω.
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Multiplying both sides of w̃t − ∆Xw̃ − µV (x) w̃ = 0 by w̃t, and integrating it over Ω × (0, t), we have

2
∫ t

0
∥w̃τ∥2dτ + ∥Xw̃∥2 −

∫
Ω

µV (x) |w̃|2dx

=∥Xw̃ (x, 0) ∥2 −
∫
Ω

µV (x) |w̃ (x, 0) |2dx = 0.

It follows from (HV) that

0 ≤ 2
∫ t

0
∥w̃τ∥2dτ +

(
1 − µC2

∗

)
∥Xw̃∥2

≤ ∥Xw̃ (x, 0) ∥2 −
∫
Ω

µV (x) |w̃ (x, 0) |2dx ≡ 0,

and thus w̃ = 0 a.e. in Ω, i.e., w1 ≡ w2. The conclusion follows. □

Theorem 3.1 (Local existence). Under the assumptions (H), (H∂Ω), (HV),
(
Hg

)
and

(
Hp

)
, if u0 ∈

H1
X,0 (Ω), there exists T > 0 such that the problem (1.1) has a unique weak solution

u ∈ C
(
[0,T ] ; H1

X,0 (Ω)
)
, ut ∈ L2

(
[0,T ] ; L2 (Ω)

)
. (3.15)

Proof. For any T > 0, we define the set

MT := {u ∈ H | u(0) = u0, ∥u∥H ≤ ρ} , (3.16)

where
ρ2 = 2

(
∥Xu0∥

2 − µ∥
√

V (x)u0∥
2
)
.

By Lemma 3.1 we can define the mapping Ψ on MT , such that Ψ (u) is the unique solution of the
problem (3.1), i.e., Ψ (u) = v. We will prove that Ψ : MT → MT is a contractive mapping for small
enough T .

First, for sufficiently small T we show that Ψ is a mapping from MT to itself. For any u ∈ MT ,
similar to (3.7) and (3.8) the unique solution v = Ψ (u) satisfies

2
∫ t

0
∥vτ∥2dτ + ∥Xv∥2 −

∫
Ω

µV (x) |v|2 dx

=∥Xu0∥
2 −

∫
Ω

µV (x) |u0|
2 dx + 2

∫ t

0

∫
Ω

g (x) |u|p−1 uvτdx

≤
1
2
ρ2 +C2

(
1 +

1
λ1

)p

∥g∥2∞

∫ t

0
∥Xu∥2pdτ +

∫ t

0
∥vτ∥2dτ

≤
1
2
ρ2 +C2

(
1 +

1
λ1

)p

∥g∥2∞
ρ2p(

1 − µC2
∗

)p T +
∫ t

0
∥vτ∥2dτ.

(3.17)

It follows from (1.3) that (
1 − µC2

∗

)
∥Xu∥2

≤

∫ t

0
∥vτ∥2dτ + ∥Xv∥2 −

∫
Ω

µV (x) |v|2 dx

≤ρ2
(
1
2
+C2

(
1 +

1
λ1

)p

∥g∥2∞
ρ2(p−1)(

1 − µC2
∗

)p T
)
.

(3.18)
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Then by (3.2) we obtain

∥u∥2
H
≤ ρ2

(
1
2
+C2

(
1 +

1
λ1

)p

∥g∥2∞
ρ2(p−1)(

1 − µC2
∗

)p T
)
.

Therefore, for T small enough ∥u∥2
H
≤ ρ2, i.e., Ψ(MT ) ⊆ MT .

Now, we will show that Ψ is a contraction mapping. Let u1, u2 ∈ MT and v1 = Ψ (u1), v2 = Ψ (u2).
By taking ṽ := v1 − v2, we see that ṽ satisfies the following problem

ṽt − ∆X ṽ − µV (x) ṽ = g (x)
(
|u1|

p−1 u1 − |u2|
p−1 u2

)
, x ∈ Ω, t > 0,

ṽ (x, t) = 0, x ∈ ∂Ω, t > 0,
ṽ (x, 0) = 0, x ∈ Ω.

(3.19)

Multiplying the equation above by ṽt, and integrating it over Ω × (0, t), we deduce

2
∫ t

0
∥ṽτ∥2dτ + ∥Xṽ∥2 −

∫
Ω

µV (x) |ṽ|2 dx

=∥Xṽ0∥
2 −

∫
Ω

µV (x) |ṽ0|
2 dx + 2

∫ t

0

∫
Ω

g (x)
(
|u1|

p−1 u1 − |u2|
p−1 u2

)
ṽτdx

=2
∫ t

0

∫
Ω

g (x)
(
|u1|

p−1 u1 − |u2|
p−1 u2

)
ṽτdx.

(3.20)

Note from Lemma 4 of [32] that |u1|
p−1 u1 − |u2|

p−1 u2 ≤ p (|u1| + |u2|)p−1
|u1 − u2|. Together with the

Minkowski inequality, similar to (3.8) we have

2
∫ t

0

∫
Ω

g (x)
(
|u1|

p−1 u1 − |u2|
p−1 u2

)
ṽτdx

≤2p∥g∥∞

∫ t

0
∥ (|u1| + |u2|)p−1

∥ 2p
p−1
∥u1 − u2∥2p∥ṽτ∥dτ

≤2p∥g∥∞

∫ t

0

(
∥u1∥2p + ∥u2∥2p

)p−1
∥u1 − u2∥2p∥ṽτ∥dτ

≤2C∥g∥∞

∫ t

0

(
∥u1∥H1

X,0
+ ∥u2∥H1

X,0

)p−1
∥u1 − u2∥H1

X,0
∥ṽτ∥dτ

≤
C
2ϵ

(
1 + λ1

λ1
(
1 − µC2

∗

))p

∥g∥∞

∫ t

0
(∥u1∥H + ∥u2∥H )2(p−1)

∥u1 − u2∥
2
H

dτ

+ 2Cϵ∥g∥∞

∫ t

0
∥ṽτ∥2dτ

≤C2
(

1 + λ1

λ1
(
1 − µC2

∗

))p

∥g∥2∞

∫ T

0
(2ρ)2(p−1)

∥u1 − u2∥
2
H

dτ +
∫ t

0
∥ṽτ∥2dτ

≤CTρ2(p−1)
∥u1 − u2∥

2
H
+

∫ t

0
∥ṽτ∥2dτ.

(3.21)

Combining with (1.3), (3.20) and (3.21) we can deduce that(
1 − µC2

∗

)
∥Xṽ∥2 ≤

∫ t

0
∥ṽτ∥2dτ + ∥Xṽ∥2 −

∫
Ω

µV (x) |ṽ|2 dx

≤CTρ2(p−1)
∥u1 − u2∥

2
H
.
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It follows from (3.2) that

∥ṽ∥2
H
= ∥Ψ (u1) − Ψ (u2) ∥2

H
≤CTρ2(p−1)

∥u1 − u2∥
2
H

:= δT ∥u1 − u2∥
2
H
.

By choosing T > 0 such that δT = CTρ2(p−1) < 1, we obtain that Ψ is a contraction mapping fromMT

to itself. Thanks to the Banach fixed point theorem, we get the local existence result. The proof has
been completed. □

4. Some auxiliary results of the potential wells

Under the assumptions (H), (H∂Ω), (HV),
(
Hg

)
and

(
Hp

)
, for further discussions we construct a

family of potential wells in this section, and prove some auxiliary results for it.
First, we define the potential energy functional J and Nehari functional I on H1

X,0 (Ω) given by

J (u) =
1
2
∥Xu∥2 −

1
2

∫
Ω

µV (x) |u|2 dx −
1

p + 1
∥g (x)

1
p+1 u∥p+1

p+1,

I (u) = ∥Xu∥2 −
∫
Ω

µV (x) |u|2 dx − ∥g (x)
1

p+1 u∥p+1
p+1.

(4.1)

It follows that

J (u) =
p − 1

2 (p + 1)

(
∥Xu∥2 −

∫
Ω

µV (x) |u|2 dx
)
+

1
p + 1

I (u) . (4.2)

Define the mountain pass level

d := inf
{

sup
λ≥0

J (λu) | u ∈ H1
X,0 (Ω) , ∥Xu∥ , 0

}
, (4.3)

also called potential well depth. We now discuss the properties of the functionals J and I.

Lemma 4.1. For arbitrary u ∈ H1
X,0 (Ω) and ∥Xu∥ , 0, we have

(1) lim
λ→0

J (λu) = 0, and lim
λ→+∞

J (λu) = −∞;
(2) J (λu) with respect to λ is strictly decreasing on [λX,+∞), strictly increasing on [0, λX], and thus

attains the maximum at λX, where

λX =

∥Xu∥2 −
∫
Ω
µV (x) |u|2 dx

∥g (x)
1

p+1 u∥p+1
p+1


1

p−1

;

(3) 
I (λu) > 0, λ ∈ (0, λX) ,
I (λu) = 0, λ = λX,

I (λu) < 0, λ ∈ (λX,+∞) ;

(4) d = p−1
2(p+1)

(
1 − µC2

∗

) p+1
p−1 C

−
2(p+1)

p−1

X , where CX is the best Sobolev constant defined in (2.4).
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Proof. It follows from (4.1) that

J (λu) = λ2
(
1
2
∥Xu∥2 −

1
2

∫
Ω

µV (x) |u|2 dx −
λp−1

p + 1
∥g (x)

1
p+1 u∥p+1

p+1

)
,

and
I (λu) = λ2∥Xu∥2 − λ2

∫
Ω

µV (x) |u|2 dx − λp+1∥g (x)
1

p+1 u∥p+1
p+1.

Then, we have Lemma 4.1 (1) and

d
dλ

J (λu) = λ∥Xu∥2 − λ
∫
Ω

µV (x) |u|2 dx − λp∥g (x)
1

p+1 u∥p+1
p+1 =

1
λ

I (λu) .

Hence we have a unique λX :=
 ∥Xu∥2−

∫
Ω
µV(x)|u|2dx

∥g(x)
1

p+1 u∥p+1
p+1

 1
p−1

such that d
dλ J (λu) |λ=λX= 0 and

J (λXu) =
λ2

X

2
∥Xu∥2 −

λ2
X

2

∫
Ω

µV (x) |u|2 dx −
λ

p+1
X

p + 1
∥g (x)

1
p+1 u∥p+1

p+1

=

(
∥Xu∥2 −

∫
Ω

µV (x) |u|2 dx
) p+1

p−1
(
1
2
−

1
p + 1

)
∥g (x)

1
p+1 u∥

−
2(p+1)

p−1

p+1

≥
p − 1

2 (p + 1)

(
1 − µC2

∗

) p+1
p−1 C

−
2(p+1)

p−1

X ,

where we used (1.3) and (2.4) in the inequality above. Together with (4.3) we immediately get
remaining conclusions. □

Defining the Nehari manifold

N :=
{
u ∈ H1

X,0 (Ω) | I (u) = 0, ∥Xu∥ , 0
}
,

by Lemma 4.1 we get d > 0, and
d = inf

u∈N
J (u) . (4.4)

For any δ > 0, we introduce the functionals

Iδ (u) = δ∥Xu∥2 − δ
∫
Ω

µV (x) |u|2 dx − ∥g (x)
1

p+1 u∥p+1
p+1

with the associated Nehari manifolds

Nδ =
{
u ∈ H1

X,0 (Ω) | Iδ (u) = 0, ∥Xu∥ , 0
}
,

and the depth of such potential wells

d (δ) := inf
u∈Nδ

J (u) , r (δ) =


(
1 − µC2

∗

)
δ

Cp+1
X


1

p−1

, (4.5)

where C∗ is defined in (1.3). With these in mind we can prove
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Lemma 4.2. Assume u ∈ H1
X,0 (Ω), we obtain

(1) if 0 < ∥Xu∥ < r (δ), there holds Iδ (u) > 0;
(2) if Iδ (u) < 0, there holds ∥Xu∥ > r (δ);
(3) if Iδ (u) = 0, either ∥Xu∥ = 0 or ∥Xu∥ ≥ r (δ) holds;
(4) if Iδ (u) = 0 and ∥Xu∥ , 0, there hold

J (u) < 0, δ ∈
(

p+1
2 ,+∞

)
,

J (u) = 0, δ = p+1
2 ,

J (u) > 0, δ ∈
(
0, p+1

2

)
.

Proof. (1) As 0 < ∥Xu∥ < r (δ), by (1.3) and (2.4) there holds

δ

∫
Ω

µV (x) |u|2 dx + ∥g (x)
1

p+1 u∥p+1
p+1 ≤δµC

2
∗∥Xu∥2 +Cp+1

X ∥Xu∥p+1

<
(
δµC2

∗ +Cp+1
X rp−1 (δ)

)
∥Xu∥2

= δ∥Xu∥2.

By the definitions of Iδ (u) we have Lemma 4.2 (1).
(2) For Iδ (u) < 0, we obtain that ∥Xu∥ , 0 and

δ∥Xu∥2 <δ
∫
Ω

µV (x) |u|2 dx + ∥g (x)
1

p+1 u∥p+1
p+1

≤
(
δµC2

∗ +Cp+1
X ∥Xu∥p−1

)
∥Xu∥2.

The conclusion (2) follows.
(3) When Iδ (u) = 0, there holds

δ∥Xu∥2 =δ
∫
Ω

µV (x) |u|2 dx + ∥g (x)
1

p+1 u∥p+1
p+1

≤
(
δµC2

∗ +Cp+1
X ∥Xu∥p−1

)
∥Xu∥2.

Thus the conclusion (3) holds.
(4) The last conclusion follows immediately from (3) and

J (u) =
(
∥Xu∥2 −

∫
Ω

µV (x) |u|2 dx
) (

1
2
−
δ

p + 1

)
+

Iδ (u)
p + 1

. (4.6)

□

Next, we estimate the depth d (δ) and its expression as follows.

Lemma 4.3. For the function d (δ), there hold

(1) for δ ∈
(
0, p+1

2

)
, d (δ) ≥ b (δ) r2 (δ), where b (δ) :=

(
1 − µC2

∗

) (
1
2 −

δ
p+1

)
;

(2) for δ ∈
(
0, p+1

2

)
, d (δ) = inf

u∈Nδ
J (u) =

(
1
2 −

δ
p+1

)
2(p+1)

p−1 δ
2

p−1 d;
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(3) lim
δ→0

d (δ) = 0, d
(

p+1
2

)
= 0, and d (δ) < 0 for δ ∈

(
p+1

2 ,+∞
)
;

(4) d (δ) is strictly increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ p+1
2 and attains the maximum d at

δ = 1.

Proof. (1) For u ∈ Nδ, we have Iδ (u) = 0 and ∥Xu∥ , 0. It follows from Lemma 4.2 (3) that

∥Xu∥ ≥ r (δ) .

Together with (1.3) and (4.6) we see that

J (u) =
(
∥Xu∥2 −

∫
Ω

µV (x) |u|2 dx
) (

1
2
−
δ

p + 1

)
+

Iδ (u)
p + 1

≥

(
1
2
−
δ

p + 1

) (
1 − µC2

∗

)
∥Xu∥2

≥ b (δ) r2 (δ) .

By combining with (4.5) we have d (δ) ≥ b (δ) r2 (δ).
(2) Taking u∗ ∈ N as the minimizer of d = inf

u∈N
J (u), i.e., d = J (u∗), we introduce λ = λ (δ) by

δ∥X (λu∗) ∥2 − δ
∫
Ω

µV (x) |λu∗|2 dx = ∥g (x)
1

p+1 λu∗∥
p+1
p+1.

Then there holds

λ = λ (δ) =

δ∥Xu∗∥2 − δ
∫
Ω
µV (x) |u∗|2 dx

∥g (x)
1

p+1 u∗∥
p+1
p+1


1

p−1

= δ
1

p−1 , ∀ δ > 0,

and thus λu∗ ∈ Nδ. Together with I (u∗) = 0, (4.1) and (4.5), we deduce

d (δ) ≤ J (λu∗) =
1
2

(
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
)
λ2 −

λp+1

p + 1
∥g (x)

1
p+1 u∗∥

p+1
p+1

=
1
2

(
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
)
δ

2
p−1 −

1
p + 1

δ
p+1
p−1 ∥g (x)

1
p+1 u∗∥

p+1
p+1

=

(
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
) (

1
2
−
δ

p + 1

)
δ

2
p−1 .

Note that

d = J (u∗) =
(
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
) (

1
2
−

1
p + 1

)
,

thus

d (δ) ≤
2 (p + 1)

p − 1

(
1
2
−
δ

p + 1

)
δ

2
p−1 d (4.7)

for any δ ∈
(
0, p+1

2

)
.
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Now, by taking u∗ ∈ Nδ as the minimizer of d (δ) = inf
u∈Nδ

J (u), i.e., J(u∗) = d (δ), we determine

λ = λ (δ) by

∥X (λu∗) ∥2 −
∫
Ω

µV (x) |λu∗|2 dx = ∥g (x)
1

p+1 λu∗∥p+1
p+1.

Therefore, we obtain

λ = λ (δ) =

∥Xu∗∥2 −
∫
Ω
µV (x) |u∗|2 dx

∥g (x)
1

p+1 u∗∥p+1
p+1


1

p−1

= δ
1

1−p , ∀ δ > 0,

and thus λu∗ ∈ N . Combining with (4.1), (4.4) and Iδ (u∗) = 0, we have

d ≤ J (λu∗) =
1
2

(
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
)
λ2 −

λp+1

p + 1
∥g (x)

1
p+1 u∗∥p+1

p+1

=

(
λ2

2
−
λp+1

p + 1
δ

) (
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
)

= δ−
2

p−1

(
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
) (

1
2
−

1
p + 1

)
.

Together with

d (δ) = J (u∗) =
(
∥Xu∗∥2 −

∫
Ω

µV (x) |u∗|2 dx
) (

1
2
−
δ

p + 1

)
,

we deduce

d ≤
(
1
2
−
δ

p + 1

)−1 (
1
2
−

1
p + 1

)
δ−

2
p−1 d (δ) ,

which shows

d (δ) ≥
(
1
2
−
δ

p + 1

)
2 (p + 1)

p − 1
δ

2
p−1 d, δ ∈

(
0,

p + 1
2

)
. (4.8)

By (4.7) and (4.8) we have Lemma 4.3 (2).
The conclusions of (3) and (4) follow immediately from (2) and

d′ (δ) =
2 (p + 1)
(p − 1)2 (1 − δ) δ

3−p
p−1 d, δ ∈

(
0,

p + 1
2

)
.

□

Lemma 4.4. Assume that u ∈ H1
X,0 (Ω), J (u) ≤ d (δ) with δ ∈

(
0, p+1

2

)
.

(1) For Iδ (u) > 0, there holds ∥Xu∥2 < d (δ) /b (δ).
(2) For Iδ (u) = 0, there holds ∥Xu∥2 ≤ d (δ) /b (δ).
(3) For ∥Xu∥2 > d (δ) /b (δ), there holds Iδ (u) < 0.
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Proof. As δ ∈
(
0, p+1

2

)
, we can see from (4.6), (1.3) and J (u) ≤ d (δ) that

d (δ) ≥
(
1
2
−
δ

p + 1

) (
∥Xu∥2 −

∫
Ω

µV (x) |u|2 dx
)
+

Iδ (u)
p + 1

≥

(
1
2
−
δ

p + 1

) (
1 − µC2

∗

)
∥Xu∥2 +

Iδ (u)
p + 1

= b (δ) ∥Xu∥2 +
Iδ (u)
p + 1

.

(4.9)

Then, the corresponding conclusions in Lemma 4.4 follow from the assumption of (1)-(3), respectively.
□

Lemma 4.5. Suppose that 0 < J (u) < d for any given u ∈ H1
X,0 (Ω). Denote by δ1, δ2 the two roots of

d (δ) = J (u) with δ1 < 1 < δ2. Then the sign of Iδ (u) is unchangeable on δ ∈ (δ1, δ2).

Proof. Otherwise, we assume that Iδ̃ (u) = 0 for some δ̃ ∈ (δ1, δ2). Note from the assumption J (u) > 0
that ∥Xu∥ , 0. It follows from (4.5) that d(δ̃) ≤ J (u), which contradicts J (u) = d (δ1) = d (δ2) <
d(δ̃). □

Now, we introduce the potential well

W =
{
u ∈ H1

X,0 (Ω) | J (u) < d, I (u) > 0
}
∪ {0},

and the outer of the potential well

V =
{
u ∈ H1

X,0 (Ω) | J (u) < d, I (u) < 0
}
.

For each δ ∈
(
0, p+1

2

)
, by the ideas of [23] we can extend W and V respectively to the more general

family of potential wells

Wδ =
{
u ∈ H1

X,0 (Ω) | J (u) < d (δ) , Iδ (u) > 0
}
∪ {0},

and its outsider
Vδ =

{
u ∈ H1

X,0 (Ω) | J (u) < d (δ) , Iδ (u) < 0
}
.

From Lemma 4.3 we get the following result.

Lemma 4.6. There hold that

(1) Wδ∗ ⊂ Wδ∗ for any 0 < δ∗ < δ∗ ≤ 1;
(2) Vδ∗ ⊂ Vδ∗ for any 1 ≤ δ∗ < δ∗ <

p+1
2 .

Moreover, by introducing

Br(δ) =
{
u ∈ H1

X,0 (Ω) | ∥Xu∥ < r (δ)
}
,

B̄r(δ) =
{
u ∈ H1

X,0 (Ω) | ∥Xu∥ ≤ r (δ)
}
,

Bc
r(δ) =

{
u ∈ H1

X,0 (Ω) | ∥Xu∥ ≥ r (δ)
}
,

we can prove the following result.
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Lemma 4.7. For 0 < δ < p+1
2 , we have

Br1(δ) ⊂ Wδ ⊂ Br2(δ), Vδ ⊂ B̄c
r(δ),

where r1 (δ) = min{r (δ) ,
√

2d (δ)} and r2 (δ) =
√

d (δ) /b (δ).

Proof. For arbitrary u ∈ Br1(δ), we have ∥Xu∥ < r (δ). Together with 4.2 (1) we deduce that either
Iδ (u) > 0 or ∥Xu∥ = 0 holds. In addition, by (4.1) there holds J (u) ≤ 1

2∥Xu∥2. By combining with
∥Xu∥2 < 2d (δ) we have J (u) < d (δ). Then u ∈ Wδ, and thus Br1(δ) ⊂ Wδ. By Lemmas 4.2 and 4.4 the
other conclusion follows. □

By Definition 2.3 we see that the weak solution u satisfies the energy equality∫ t

0
∥uτ∥2dτ + J (u) = J (u0) , ∀ t ∈ [0,T ). (4.10)

Next, we consider the invariance of Wδ,Vδ as follows.

Proposition 4.1. Assume that u0 ∈ H1
X,0 (Ω), 0 < µ < d. Denote by δ1, δ2 the two solutions of d (δ) = µ

for δ1 < 1 < δ2. For any weak solution u of problem (1.1) satisfying J (u0) ∈ (0, µ], there hold that for
arbitrary t ∈ [0,T ), δ ∈ (δ1, δ2),

(1) if I (u0) > 0, then u ∈ Wδ;
(2) if I (u0) < 0, then u ∈ Vδ.

Proof. (1) First, we claim u0 ∈ Wδ for δ ∈ (δ1, δ2). In fact, if J (u0) ≤ µ and I (u0) > 0, we see from
Lemma 4.5 that J (u0) < d (δ) and Iδ (u0) > 0, and the claim follows.

Now, for arbitrary δ ∈ (δ1, δ2), t ∈ (0,T ) we claim u (x, t) ∈ Wδ. Otherwise, there exist a first
time t0 ∈ (0,T ) and δ0 ∈ (δ1, δ2) such that u (x, t0) ∈ ∂Wδ0 . This implies that either Iδ0 (u (t0)) = 0,
∥Xu (t0) ∥ , 0 or J (u (t0)) = d (δ0) holds. By (4.10) we obtain∫ t

0
∥uτ∥2dτ + J (u) = J (u0) < d (δ) , ∀ t ∈ [0,T ), δ ∈ (δ1, δ2) , (4.11)

which implies J (u (t0)) , d (δ0). Thus Iδ0 (u (t0)) = 0 and ∥Xu (t0) ∥ , 0, by (4.5) we get J (u (t0)) ≥
d (δ0), which contradicts (4.11).

(2) First, we claim u0 ∈ Vδ for δ ∈ (δ1, δ2). By J (u0) ≤ µ, I (u0) < 0 and Lemma 4.5 we get
J (u0) < d (δ) and Iδ (u0) < 0, and thus the claim follows.

Next, for arbitrary δ ∈ (δ1, δ2) and t ∈ (0,T ) we claim u (x, t) ∈ Vδ. Otherwise, there exist a first
time t0 ∈ (0,T ) and δ0 ∈ (δ1, δ2) such that Iδ0 (u (t)) < 0 for t ∈ [0, t0), and u (x, t0) ∈ ∂Vδ0 . This implies
that

Iδ0 (u (t0)) = 0 or J (u (t0)) = d (δ0) .

It follows from (4.11) that J (u (t0)) , d (δ0), and thus Iδ0 (u (t0)) = 0. Together with Lemma 4.2
there holds ∥Xu (t) ∥ ≥ r (δ0) for 0 ≤ t ≤ t0. Hence, we see from (4.5) that J (u (t0)) ≥ d (δ0), which
contradicts (4.11). □

Now, by Proposition 4.1 and Lemma 4.3 we have the corollary as follows.
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Corollary 4.1. Assume that u0 ∈ H1
X,0 (Ω), 0 < J (u0) ≤ µ < d. Denote by δ1, δ2 the two solutions of

d (δ) = µ for δ1 < 1 < δ2. Then, both Wδ and Vδ are invariant for arbitrary δ ∈ (δ1, δ2), and thus

Wδ1δ2 =
⋃
δ1<δ<δ2

Wδ, Vδ1δ2 =
⋃
δ1<δ<δ2

Vδ

are invariant under the flow of problem (1.1).

Furthermore, we discuss the invariant manifolds of the solutions with non-positive level energy by
the following results.

Proposition 4.2. For any nontrivial solutions u of problem (1.1) satisfying J (u0) = 0, we have u ∈ Bc
r0

,
where

Bc
r0
=

{
u ∈ H1

X,0 (Ω) | ∥Xu∥ ≥ r0

}
, r0 :=

 p + 1

2Cp+1
X

(
1 − µC2

∗

)
1

p−1

.

Proof. It follows from (4.10) that J (u) ≤ 0 for 0 ≤ t < T . Then

1
2
∥Xu∥2 ≤

1
2

∫
Ω

µV (x) |u|2 dx +
1

p + 1
∥g (x)

1
p+1 u∥p+1

p+1

≤

(
µ

2
C2
∗ +

1
p + 1

Cp+1
X ∥Xu∥p−1

)
∥Xu∥2, ∀ t ∈ [0,T ),

which implies that either ∥Xu∥ = 0 or ∥Xu∥ ≥ r0 holds. We claim ∥Xu∥ ≡ 0 for any t ∈ [0,T ) if
∥Xu0∥ = 0. If it is false, there holds 0 < ∥Xu (t0) ∥ < r0 for some t0 ∈ (0,T ), a contradiction appears.
Similarly, for the case ∥Xu0∥ ≥ r0 we can prove ∥Xu∥ ≥ r0 for t ∈ [0,T ). The conclusion follows. □

Proposition 4.3. Let u0 ∈ H1
X,0 (Ω). If either J (u0) < 0 or J (u0) = 0, ∥Xu0∥ , 0 occurs, then u ∈ Vδ

for any δ ∈
(
0, p+1

2

)
, where u is a weak solution of problem (1.1).

Proof. It follows from (4.10) and (4.9) that

J (u0) ≥ J (u) ≥ b (δ) ∥Xu∥2 +
Iδ (u)
p + 1

, ∀ δ ∈

(
0,

p + 1
2

)
. (4.12)

If J (u0) < 0, there holds

J (u) < 0 < d (δ) , Iδ (u) < 0, ∀ δ ∈
(
0,

p + 1
2

)
. (4.13)

This shows that

u ∈ Vδ, ∀ δ ∈
(
0,

p + 1
2

)
, t ∈ [0,T ). (4.14)

On the other hand, if J (u0) = 0 and ∥Xu0∥ , 0 occur, by Proposition 4.2 we have ∥Xu∥ ≥ r0 for
t ∈ [0,T ). By combining with (4.12), we obtain (4.13), and thus (4.14). The conclusion follows. □

Corollary 4.2. Let u0 ∈ H1
X,0 (Ω). If either J (u0) < 0 or J (u0) = 0, ∥Xu0∥ , 0 occurs, then u ∈ Bc

r
( p+1

2

),
where u is a weak solution of problem (1.1).
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Proof. For any δ ∈
(
0, p+1

2

)
, by Proposition 4.3 and Lemma 4.2 we see that

∥Xu∥ > r (δ) , t ∈ [0,T ).

Letting δ→ p+1
2 , we obtain ∥Xu∥ ≥ r

(
p+1

2

)
. The conclusion follows. □

Finally, for J (u0) < d we discuss the vacuum isolating of solutions.

Proposition 4.4. Let u0 ∈ H1
X,0 (Ω), µ ∈ (0, d). Denote by δ1, δ2 the two solutions of d (δ) = µ for

δ1 < 1 < δ2, we have a vacuum region

Uµ = Nδ1δ2 =
⋃
δ1<δ<δ2

Nδ =
{
w ∈ H1

X,0 (Ω) | ∥Xw∥ , 0, Iδ (w) = 0, δ1 < δ < δ2

}
for given µ ≥ J (u0), such that any weak solution u of problem (1.1) is outside of Uµ. Moreover, Uµ
becomes larger and larger if µ is decreasing, and Uµ approximates U0 as µ→ 0, where

U0 =

{
w ∈ H1

X,0 (Ω) | ∥Xw∥ , 0, Iδ (w) = 0, δ ∈
(
0,

p + 1
2

)}
.

Proof. For any weak solution u of problem (1.1) with J (u0) ≤ µ, it is sufficient to prove that if ∥Xu∥ ,
0, for any δ ∈ (δ1, δ2) there holds u (t) < Nδ, equivalently, Iδ (u (t)) , 0 for t ∈ [0,T ).

We claim Iδ (u0) , 0. If it is false, then Iδ (u0) = 0. Together with Lemma 4.3 and (4.5) we have
d (δ1) = d (δ2) = µ < d (δ) ≤ J (u0), which contradicts J (u0) ≤ µ.

Now, assume that there exists t1 > 0 such that u (t1) ∈ Uµ. This shows that u (t1) ∈ Nδ0 for some
δ0 ∈ (δ1, δ2). Then we see from (4.11) and (4.5) that J (u0) < d (δ0) ≤ J (u (t1)) ≤ J (u0), which is a
contradiction. Proposition 4.4 has been proved. □

5. Global existence and blow-up in finite time of solutions

In this section, we establish the global existence, the asymptotic behavior and the finite time blow-
up of solutions for problem (1.1) with subcritical or critical initial energy.

5.1. Global existence of solutions

By the potential well method and the Galerkin method, we will show the following theorem.

Theorem 5.1 (Global existence). Under the assumptions (H), (H∂Ω), (HV),
(
Hg

)
and

(
Hp

)
, for any

u0 ∈ H1
X,0 (Ω) satisfying J (u0) ≤ d and I (u0) ≥ 0, there exists a global weak solution u for the problem

(1.1) such that u (x, t) ∈ L∞
(
0,+∞; H1

X,0 (Ω)
)

with ut ∈ L2
(
0,+∞; L2 (Ω)

)
. Moreover,

• if J (u0) < d, there holds

∥Xu (·, t) ∥ ≤ ∥Xu0∥e
1
2−ξλ1t, t ∈ [0,+∞), (5.1)

where

ξ = 1 − µC2
∗ −Cp+1

X

(
2 (p + 1)

p − 1

(
1 − µC2

∗

)−1
J (u0)

) p−1
2

> 0;
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• if J (u0) = d and I (u0) > 0, for any ε ∈ (0, d) small enough, there exists tε > 0 such that

∥Xu (·, t) ∥ ≤ ∥Xu (tε) ∥e
1
2−ζλ1t, t ∈ [tε,+∞), (5.2)

where

ζ = 1 − µC2
∗ −Cp+1

X

(
2 (p + 1)

p − 1

(
1 − µC2

∗

)−1
(d − ε)

) p−1
2

> 0.

For later use, we recall the following estimation.

Lemma 5.1 (cf. [18] Theorem 8.1). Denote by φ (t) : R+ → R+ a non-increasing function. If∫ +∞

s
φ (t) dt ≤ Cφ (s) , s ∈ [0,+∞)

for some constant C > 0, then φ (t) ≤ φ (0) e1−t/C for all t.

Proof of Theorem 5.1. We divide our proof into the four steps as follows.
Step 1: Global existence for J (u0) < d.
Let {ϕk (x)}k≥1 be a base of H1

X,0 (Ω) in Proposition 2.5. Then we can construct the approximate
solutions of problem (1.1) as follows

um (x, t) =
m∑

k=1

akm (t) ϕk (x) , m = 1, 2, · · · ,

such that (
umt, ϕ j

)
+

(
Xum, Xϕ j

)
−

(
µV (x) um, ϕ j

)
=

(
g (x) |um|

p−1 um, ϕ j

)
, j = 1, · · · ,m, (5.3)

and as m→ ∞,

um (x, 0) =
m∑

k=1

akm (0) ϕk (x)→ u0 (x) in H1
X,0 (Ω) . (5.4)

Now, multiply (5.3) by a′jm (t), sum for j, integrate with respect to t, we get∫ t

0
∥umτ∥

2dτ + J (um (t)) = J (um (0)) , t ∈ [0,T ). (5.5)

Together with (5.4) we obtain J (um (0))→ J (u0) as m→ ∞, and thus∫ t

0
∥umτ∥

2dτ + J (um (t)) = J (um (0)) < d, t ∈ [0,T ) (5.6)

for m large enough.
Similar to the proof of Proposition 4.1 (1), for m large enough and t ∈ [0,T ), by (5.6) we have

um (x, t) ∈ W. Together with (1.3), (4.2) and (5.6) we conclude that∫ t

0
∥umτ∥

2dτ +
p − 1

2 (p + 1)

(
1 − µC2

∗

)
∥Xum∥

2 < d, t ∈ [0,T ),

Communications in Analysis and Mechanics Volume 15, Issue 2, 132–161.



153

which shows that T = +∞,∫ t

0
∥umτ∥

2dτ < d,

∥Xum∥
2 <

2 (p + 1)
p − 1

(
1 − µC2

∗

)−1
d,∫

Ω

V (x) |um|
2 dx ≤ C2

∗∥Xum∥
2 <

2 (p + 1)
p − 1

C2
∗

(
1 − µC2

∗

)−1
d,

(5.7)

∫
Ω

∣∣∣∣g (x)
p

p+1 |um|
p−1 um

∣∣∣∣ p+1
p

dx = ∥g (x)
1

p+1 u∥p+1
p+1

≤ Cp+1
X ∥Xum∥

p+1

< Cp+1
X

(
2 (p + 1)

p − 1

(
1 − µC2

∗

)−1
d
) p+1

2

,

(5.8)

where we used (2.4) for the penultimate inequality.

Let
w∗
−−→ be the weakly star convergence. By (5.7) and (5.8) we have a subsequence, also denoted by

{um}, satisfying as m→ ∞,

umt
w∗
−−→ ut in L2

(
0,∞; L2 (Ω)

)
,

um
w∗
−−→ u in L∞

(
0,∞; H1

X,0 (Ω)
)
,

g (x)
p

p+1 |um|
p−1 um

w∗
−−→ g (x)

p
p+1 |u|p−1 u in L∞

(
0,∞; L

p+1
p (Ω)

)
.

Then, fix j and let m→ ∞ in (5.3), we deduce(
ut, ϕ j

)
+

(
Xu, Xϕ j

)
−

(
µV (x) u, ϕ j

)
=

(
g (x) |u|p−1 u, ϕ j

)
, j = 1, 2, . . . .

As {ϕk (x)}k≥1 is a base of H1
X,0 (Ω), and thus for any w ∈ H1

X,0 (Ω) there holds

(ut,w) + (Xu, Xw) − (µV (x) u,w) =
(
g (x) |u|p−1 u,w

)
, t > 0.

Moreover, it follows from (5.4) that u (x, 0) = u0 (x) in H1
X,0 (Ω). Therefore, we have a global weak

solution u (x, t) ∈ L∞
(
0,+∞; H1

X,0 (Ω)
)

satisfying ut (x, t) ∈ L2
(
0,+∞; L2 (Ω)

)
.

Step 2: Asymptotic behavior for J (u0) < d.
Now, we only need to discuss the case that 0 < J (u0) < d and I (u0) > 0. We see from Proposition

4.1 that u ∈ W for t ≥ 0, which gives I (u) ≥ 0 for t ≥ 0. It follows from (1.3), (4.2) and (4.10) that

J (u0) ≥ J (u) =
(
∥Xu∥2 −

∫
Ω

µV (x) |u|2 dx
) (

1
2
−

1
p + 1

)
+

1
p + 1

I (u)

≥
p − 1

2 (p + 1)

(
1 − µC2

∗

)
∥Xu∥2.

(5.9)
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Then by (2.4) there holds

∥g (x)
1

p+1 u∥p+1
p+1 ≤ Cp+1

X ∥Xu∥p+1

≤ Cp+1
X

(
2 (p + 1)

p − 1

(
1 − µC2

∗

)−1
J (u0)

) p−1
2

∥Xu∥2.
(5.10)

Inserting (5.10) into (4.1), by (1.3) we conclude that

I (u) =∥Xu∥2 −
∫
Ω

µV (x) |u|2 dx − ∥g (x)
1

p+1 u∥p+1
p+1

≥

1 − µC2
∗ −Cp+1

X

(
2 (p + 1)

p − 1

(
1 − µC2

∗

)−1
J (u0)

) p−1
2
 ∥Xu∥2

= ξ∥Xu∥2,

(5.11)

where

ξ := 1 − µC2
∗ −Cp+1

X

(
2 (p + 1)

p − 1

(
1 − µC2

∗

)−1
J (u0)

) p−1
2

.

Note from J (u0) < d and Lemma 4.1 (4) that ξ > 0.
Furthermore, by taking w = u in (2.7), we deduce that

1
2

d
dt
∥u∥2 + I (u) = 0, t ∈ [0,+∞).

This gives that ∫ T

t
I (u (τ)) dτ =

1
2
∥u (t) ∥2 −

1
2
∥u (T ) ∥2 ≤

1
2
∥u (t) ∥2, t ∈ [0,T ). (5.12)

Then, by (5.11), (5.12) and the Poincaré inequality (2.3) we get∫ T

t
∥Xu (·, τ) ∥2dτ ≤

1
2ξλ1
∥Xu (t) ∥2, t ∈ [0,T ).

Let T → +∞, by Lemma 5.1 we obtain (5.1).
Step 3: Global existence for J (u0) = d.
Let u0m = θmu0 for m > 1 and θm = 1 − 1

m . We discuss the problem (1.1) with the initial condition

u (x, 0) = u0m (x) . (5.13)

From Lemma 4.1 (3) and I (u0) ≥ 0 we have

λX = λX (u0) ≥ 1,

I (u0m) = I (θmu0) > 0,

J (u0m) = J (θmu0) < J (u0) = d.

The remaining proof follows from the similar proof of step 1.
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Step 4: Asymptotic behavior for J (u0) = d and I (u0) > 0.
It follows from the discussions above that I (u) ≥ 0 for t ≥ 0. Therefore, we only need to discuss

the following two cases.
(1) I (u) = − (ut, u) > 0 for t ≥ 0. It follows that ∥ut∥ > 0, and thus

∫ t

0
∥uτ∥2dτ is increasing for t on

[0,+∞). Then, for any given ε ∈ (0, d) small enough, by (4.10) there holds

d − ε = J (u (tε)) = J (u0) −
∫ tε

0
∥uτ∥2dτ

for some tε > 0. Letting the initial time t = tε, by similar proof of step 2 we obtain (5.2).
(2) For some t1 > 0 there hold I (u (t1)) = 0 and I (u) > 0 for t ∈ [0, t1). It follows that ∥ut∥ > 0, and

thus
∫ t

0
∥uτ∥2dτ is strictly increasing for 0 ≤ t < t1. By (4.10) we conclude that

J (u (t1)) = d −
∫ t1

0
∥uτ∥2dτ < d.

Together with (4.4) we deduce that ∥Xu (t1) ∥ = 0. Then by I (u (t1)) = 0 we get J (u (t1)) = 0. By
combining with ∫ t

t1
∥uτ∥2dτ + J (u) = J (u (t1)) , t ∈ [t1,+∞),

we obtain J (u (t)) ≤ 0 for t ≥ t1. Together with (1.3), (2.4) and (4.1) we conclude

1
2
∥Xu∥2 ≤

1
2

∫
Ω

µV (x) |u|2 dx +
1

p + 1
∥g (x)

1
p+1 u∥p+1

p+1

≤

(
µ

2
C2
∗ +

1
p + 1

Cp+1
X ∥Xu∥p−1

)
∥Xu∥2, t ∈ [t1,+∞).

This shows that either ∥Xu∥ ≥
(

p+1
2Cp+1

X

(
1 − µC2

∗

)) 1
p−1

or ∥Xu∥ = 0 for t ≥ t1 holds. The former doesn’t

occur as ∥Xu (t1) ∥ = 0, thus ∥Xu∥ ≡ 0 for t ≥ t1. The decay estimate (5.2) follows.
Theorem 5.1 has been proved. □

Remark 5.1. If one replace the assumption “ J (u0) ≤ d, I (u0) ≥ 0” in Theorem 5.1 by “ 0 < J (u0) <
d, Iδ2 (u0) > 0” for δ1, δ2 being the two solutions of d (δ) = J (u0) with δ1 < 1 < δ2, by Proposition 4.1
one can deduce that the problem (1.1) has a global weak solution u ∈ L∞

(
0,+∞; H1

X,0 (Ω)
)

satisfying

ut ∈ L2
(
0,+∞; L2 (Ω)

)
and u ∈ Wδ for δ ∈ (δ1, δ2), t ∈ [0,+∞).

Remark 5.2. If one replace the assumption “ Iδ2 (u0) > 0” in Remark 5.1 by “ ∥Xu0∥ < r (δ2)”, by
Lemmas 4.2, 4.4 and Proposition 4.1 one can deduce that the problem (1.1) has a global weak solution
u ∈ L∞

(
0,+∞; H1

X,0 (Ω)
)

satisfying ut ∈ L2
(
0,+∞; L2 (Ω)

)
and

∥Xu∥2 <
d (δ)
b (δ)
, δ ∈ (δ1, δ2) , t ∈ [0,+∞).

Furthermore, there holds ∥Xu∥2 ≤ d(δ1)
b(δ1) , t ∈ [0,+∞).
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5.2. Blow-up in finite time of solutions

In this subsection, we mainly prove the following result.

Theorem 5.2 (Blow-up). Under the assumptions (H), (H∂Ω), (HV),
(
Hg

)
and

(
Hp

)
, for u0 ∈ H1

X,0 (Ω)
satisfying J (u0) ≤ d and I (u0) < 0, the weak solution u (x, t) of problem (1.1) is finite time blow-up,
i.e., for some T > 0 there holds

lim
t→T−

∫ t

0
∥u (·, τ) ∥2dτ = +∞. (5.14)

Proof. According to Theorem 3.1 we see that the problem (1.1) has a local weak solution
u ∈ C

(
[0,T ] ; H1

X,0 (Ω)
)
. We will complete the proof of Theorem 5.2 by two steps as follows.

Step 1: Blow-up for J (u0) < d.
By introducing

F (t) :=
∫ t

0
∥u (τ) ∥2dτ, t ∈ [0,T ] ,

we obtain

Ḟ (t) = ∥u (t) ∥2,
F̈ (t) = 2 (ut, u) = −2I (u) .

(5.15)

Combining with (1.3), the Poincaré inequality (2.3), (4.2) and (4.10) we obtain

F̈ (t) = (p − 1)
(
∥Xu∥2 −

∫
Ω

µV (x) |u|2 dx
)
− 2 (p + 1) J (u)

≥ (p − 1)
(
1 − µC2

∗

)
λ1Ḟ (t) − 2 (p + 1) J (u0) + 2 (p + 1)

∫ t

0
∥uτ∥2dτ.

(5.16)

We deduce from(∫ t

0
(uτ, u) dτ

)2

=
1
4

(∫ t

0

d
dτ
∥u∥2dτ

)2

=
1
4

(
Ḟ2 (t) − 2∥u0∥

2Ḟ (t) + ∥u0∥
4
)

that

Ḟ2 (t) = 2∥u0∥
2Ḟ (t) − ∥u0∥

4 + 4
(∫ t

0
(uτ, u) dτ

)2

.

Together with (5.15), (5.16) and the Hölder inequality we see that

F (t) F̈ (t) −
p + 1

2
Ḟ2 (t)

≥

(
(p − 1)

(
1 − µC2

∗

)
λ1Ḟ (t) − 2 (p + 1) J (u0) + 2 (p + 1)

∫ t

0
∥uτ∥2dτ

)
F (t)

−
p + 1

2

2∥u0∥
2Ḟ (t) − ∥u0∥

4 + 4
(∫ t

0
(uτ, u) dτ

)2
=2 (p + 1)

∫ t

0
∥u∥2dτ

∫ t

0
∥uτ∥2dτ −

(∫ t

0
(uτ, u) dτ

)2 + p + 1
2
∥u0∥

4

+ (p − 1)
(
1 − µC2

∗

)
λ1Ḟ (t) F (t) − (p + 1) ∥u0∥

2Ḟ (t) − 2 (p + 1) J (u0) F (t)

≥ (p − 1)
(
1 − µC2

∗

)
λ1Ḟ (t) F (t) − (p + 1) ∥u0∥

2Ḟ (t) − 2 (p + 1) J (u0) F (t) .

(5.17)
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Next, we will prove

F (t) F̈ (t) −
p + 1

2
Ḟ2 (t) > 0 (5.18)

in the following two cases, respectively.
(1) J (u0) ≤ 0. It follows from (5.17) that

F (t) F̈ (t) −
p + 1

2
Ḟ2 (t) ≥ (p − 1)

(
1 − µC2

∗

)
λ1Ḟ (t) F (t) − (p + 1) ∥u0∥

2Ḟ (t) . (5.19)

We claim I (u (t)) < 0 for t > 0. Otherwise, for some t0 > 0 there hold I (u (t0)) = 0 and I (u (t)) < 0
for t ∈ [0, t0). Then we see from Lemma 4.2 that ∥Xu (t) ∥ ≥ r(1) for 0 ≤ t ≤ t0. Together with (4.4)
there holds J (u (t0)) ≥ d, which contradicts (4.10).

Next, by (5.15) we have F̈ (t) > 0 for t ≥ 0, which shows that

F (t) ≥ F (0) + tḞ (0) = tḞ (0) , t ≥ 0.

Then, for t large enough we get

(p − 1)
(
1 − µC2

∗

)
λ1F (t) > (p + 1) ∥u0∥

2,

which together with (5.19) implies that (5.18).
(2) 0 < J (u0) < d. It follows from Proposition 4.1 that u (x, t) ∈ Vδ, and thus Iδ (u) < 0 for t ≥ 0

and δ ∈ [1, δ2). By combining with its continuity and Lemma 4.2 we see that ∥Xu (t) ∥ ≥ r (δ2) and
Iδ2 (u (t)) ≤ 0 for t ≥ 0, where δ2 is taken to be the bigger solution of d (δ) = J (u0). Then, by (5.15) we
deduce that for t ≥ 0 there hold

F̈ (t) = 2 (δ2 − 1)
(
∥Xu∥2 − µ

∫
Ω

V (x) |u|2 dx
)
− 2Iδ2 (u)

≥ 2 (δ2 − 1)
(
1 − µC2

∗

)
r2 (δ2) ,

Ḟ (t) ≥ 2 (δ2 − 1)
(
1 − µC2

∗

)
r2 (δ2) t + Ḟ (0) ≥ 2 (δ2 − 1)

(
1 − µC2

∗

)
r2 (δ2) t,

F (t) ≥ (δ2 − 1)
(
1 − µC2

∗

)
r2 (δ2) t2 + F (0) = (δ2 − 1)

(
1 − µC2

∗

)
r2 (δ2) t2.

Then for t large enough we obtain

1
2

(p − 1)
(
1 − µC2

∗

)
λ1F (t) > (p + 1) ∥u0∥

2,

1
2

(p − 1)
(
1 − µC2

∗

)
λ1Ḟ (t) > 2 (p + 1) J (u0) .

Together with (5.17) we get (5.18) again.
Finally, for any β > 0 a directly calculation shows that(

F−β (t)
)′
= −βF−β−1 (t) Ḟ (t) ,(

F−β (t)
)′′
= −βF−β−2 (t)

(
F (t) F̈ (t) − (β + 1) Ḟ2 (t)

)
.
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Taking β = p−1
2 , by (5.18) we obtain

(
F−

p−1
2 (t)

)′′
< 0 for t large enough, which implies that

F−
p−1

2 (t) ≤ F−
p−1

2 (t1)
(
1 −

p − 1
2

Ḟ (t1)
F (t1)

(t − t1)
)
, ∀ t > t1

for some t1 > 0 large enough. Therefore, for some T ∈ (0,+∞) there holds

lim
t→T−

F−
p−1

2 (t) = 0, i.e., lim
t→T−

F (t) = +∞.

This is exactly (5.14).
Step 2: Blow-up for J (u0) = d.
By the continuities of J (u) and I (u) with respect to t, there exists a t0 ∈ (0,T ) small enough such

that J (u (t0)) > 0 and I (u) < 0 for t ∈ [0, t0]. Then we have (ut, u) = −I (u) > 0, and thus ∥ut (t) ∥ > 0,
i.e.,

∫ t

0
∥uτ∥2dτ is strictly positive for t ∈ [0, t0]. By (4.10) we further obtain

0 < J (u (t0)) = J (u0) −
∫ t0

0
∥uτ∥2dτ < d.

Let t0 be the initial time. By following the similar proof of step 1, we conclude that u is finite time
blow-up.

Theorem 5.2 has been proved. □
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