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Abstract: This article mainly uses two methods of solving the conservation laws of two partial
differential equations and a system of equations. The first method is to construct the conservation law
directly and the second method is to apply the Ibragimov method to solve the conservation laws of
the target equation systems, which are constructed based on the symmetric rows of the target equation
system. In this paper, we select two equations and an equation system, and we try to apply these
two methods to the combined KdV-MKdV equation, the Klein-Gordon equation and the generalized
coupled KdV equation, and simply verify them. The combined KdV-MKdV equation describes the
wave propagation of bound particles, sound waves and thermal pulses. The Klein-Gordon equation
describes the nonlinear sine-KG equation that simulates the motion of the Josephson junction, the
rigid pendulum connected to the stretched wire, and the dislocations in the crystal. And the coupled
KdV equation has also attracted a lot of research due to its importance in theoretical physics and many
scientific applications. In the last part of the article, we try to briefly analyze the Hamiltonian structures
and adjoint symmetries of the target equations, and calculate their linear soliton solutions.

Keywords: conservative law; Hamiltonian structure; linear soliton solution; direct construction
method; Ibragimov method
Mathematics Subject Classification: Primary: 05.45.Yv,Secondary: 02.30.Jr, 02.30.1k

1. Introduction

In the study of differential equations in the past, the conservation law is undoubtedly a very important
part, especially in terms of integrability and linearization. How to solve the conservation law of the
equation has become a first problem to be faced [1-5]. Hence in this paper, we select three different
types of differential equations and apply two different methods to solve the conservation laws of the
partial differential equations.
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The first method of calculating conservation laws does not require the equation to have variational
conditions [6-9]. Its principle is to replace symmetry with the adjoint symmetry of a partial differential
equation. Then the invariance condition on symmetry is replaced by the invariance condition on adjoint
symmetry, and there is a direct explicit formula to calculate the multiplier and obtain the corresponding
conservation law. In the calculation process, the adjoint invariance condition is replaced by an additional
deterministic equation, and the determinant equation of the adjoint equation is expanded by writing an
additional equation, thereby obtaining a linear deterministic equation system. If the adjoint symmetry of the
equation is solved by this system, the multiplier that can be used to solve the conservation law is found.

The second part is to use a method to solve the conservation law of partial differential equations,
which is actually a derivation of Norther’s theorem [10—14]. In theory, Any Lie point, Lie-Bicklund,
and nonlocal symmetry can derive the corresponding conservation laws. In the last part of this paper,
we briefly analyze the Hamiltonian structures and adjoint symmetries [15-19] of the selected equations,
and calculate their linear soliton solutions by traveling wave transformation [20, 21].

In this paper, we apply these methods to three nonlinear partial differential equations: the combined
KdV-MKdV equation [22-26], the Klein-Gordon equation [27] and the generalized coupled KdV
equations [28, 29].

2. Brief introduction to the method of directly constructing conservation law

First we consider a system of partial differential equations with N independent variables u =

(u',...,u")and n + 1 independent variables (z, x), the forms are as follows:
. ou!
G’:E+g1(txu(9u o 0u)=0,j=1,...,N 2.1)

with x derivatives of u up to some order m. And we can use axu d2u, etc. to represent all the derivatives
of u/ with respect to x'. We denote partlal derlvatlves £ and - with x derivatives of u up to some order
m. We denote partial derlvatlves - and o5 by subscrlpts t and i respectively. And likewise, D; and D;
represent the total derivatives Wlth respect to x' and 7. We set

_ dg! agf dg!
V= =V'+ =DV +.-.+ ——D,;.; V* 2.2
(Lg)a aua 8 a + 61/[;1;["’ 1lm ( )
and we can let (L) denote the adjoint operator defined by
ag’ dg’ dgl .
(L4W! = 2LV = DUEEW) et (21D (e W) (23)

1 i1

acting on arbitrary functions V¢, W/ respectively It is well known that the determining equation of the
system (2.1) with respect to symmetric X = nJ = 1S

D +(L)in*=0,j=1,---,N (2.4)

for all solutions u(¢, x) of Egs. (2.1). The above decision equation can also be used to solve the higher
order symmetry of the Egs. (2.1), such as n/(t,x,u,0u,...,0"u), where 0 u denotes all kth order
derivatives of u with respect to all independent variables #, x. And the adjoint of Eq. (2.4) is given by

—Duw; + (L)iw, =0, j=1,-+ N (25)
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which is the determining equation for the adjoint symmetries w;(t, x,u,0u, .. .,0"u) of the Eqs. (2.1).
In general, solutions of the adjoint symmetry Eq. (2.5) are not solutions of the symmetry Eq. (2.4), and
there is no interpretation of adjoint symmetries in terms of an infinitesimal generator leaving anything
invariant. Then Let

D; = 8, (8" + (Dig’ )3, +) (2.6)

which is the total derivative with respect to ¢ on the solution space of Eqgs. (2.1) (In particular, D, = D,
when acting on all solutions u(z, x).) Then the determining equations explicitly become

0=D1' + (L )i

on’ o o’
——1 _ +—Dig"++-+—=——D; -+ D, g"
o (6u" aur D8 g P Dug?) @.7)
6g" 6gj ,
(ln a Dil.'.Dimna’]:]‘""’N
au 6 iy
for n/(t, x,u,0.u, . ..,0%u) and
0=-Dw;+ (L)fwa
ow; (6w~ . 8ij N on; o, D, ¢
— + ; + .. iy Dy
o o T V8T g "8 (2.8)
0g” Og’
+a;iawa+-- +8f Dj-Dwsj=1,...,N

i1

for w;(t, x,u,0.u, ... ,0%u). The solutions of Egs. (2.7) and (2.8) yield all symmetries and adjoint
symmetries up to any given order p.
Definition1 A local conservation law of PDE system (2.1) is a divergence expression

D¢ (t, x,u,0,u,...,05u) + Di¢'(t,x,u, 0, . ..,0) = 0

for all solutions u(t, x) of Egs. (2.1); ¢' and ¢' are called the conserved densities.
Definition2 Multipliers for PDE system (2.1) are a set of expressions

A, x,u,0.u,...,00), - An(t, x,u,0.u,...,000W)

satisfying _
(u] + g4, = D,¢' + Di¢' (2.9)
for some expression ¢'(t, x,u, 0, . . ., 6§u) and ¢'(t,x,u,0.u, . .., (9’;u) for all functions u(z, x).
Obviously ¢ = D;¢ and ¢' = —D,§' + D"/ are trivial conservation laws of the system, for some

erpressions ¢'(¢, x,u, 0u, . .., 05" 'u) and Y (t, x,u, O,u, . .., 0lu) with '/ = /i i.e. satisfying
D,¢' + Di¢' = D(D:#) + (=D,6' + D) = 0. (2.10)

The purpose of the following article is to calculate the corresponding conservation law multipliers based
on differential equations. Next we consider D,¢’ + D;¢’ and it is well konwn that

a¢' 3‘25’ ¢ 9
a_ + al/l] l + aujuit R Fu{ilmik

i1k

Dt¢t = = 8t¢t + £¢t1/£{
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where (Ly); = (g%) + (gi;)D,- + e+ (aaj;#Dil.‘.Dik) denotes the linearization operator of ¢'. Then we
u; Ui iy
can obtain

(Lo =(Lo) (] +8) = (Li)j8’
=(u] + g")Eu = (Ly);8' + DT
where I is given by an expression proportional to uf + g’ and where
Ey=08,-Did,j+DDjd, + (2.11)
is a restricted Euler operator. So we have
D¢ = 8¢’ = (Ly)jg’ + DT + (u] + g)E.i(¢). (2.12)

Then in order to ensure that the Eq. (2.10) holds, 8,¢" — (£4);g’ which involes u/ + g/ must cancel D;¢’,
so we have

Dip' = —(0,¢' = (Ly);8")- (2.13)
Then after combining the expressions (2.12) and (2.13) we obtain
D¢’ + Di(¢' —T') = (u] + g)A, (2.14)

with
Aj=Eu(¢),j=1,--,N.

Next, by solving the determination equation

E((u + g)A)) = E (D¢ + Dig) = 0 (2.15)
where
Euf = allj —_ Dlauj - Dtauj + Dleauj + DtDkauj + - .
i t ik ik
Then this yeilds
0= E((] + 8)A)) = =D + (L) Ay + (L) ol + g7, j = 1,..., N, (2.16)
where
OA; OA; OA;
(LA)J'QV(I = —Vw + —D,-V" + -+ D,'] v Di V(y (217)
ou® Ou? (9u§.f i) L
and
. . ON; . 1\ OA; .
(Ly)jaW! = — W/ — Di( W+ -+ (=1)"D;, --- D, ( W/) (2.18)
ou” ou” P ou®

i iy

acting on arbitrary functions V¢, W/. And we know
D, =D, + (u] + 8", + u; + D;g")0,r + -
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which yeilds D;A; = D,A; + (LA);joG*. So by expansion (2.16), we can get

0=—DA;+ (LA,

O OB OB, s N g
=" PG T e quz T8 (2.19)
0g” dg’

+ ANe+++——D;---D; Ay, j=1,...,N.

aua au?l...im 1 m J
Then by comparing the coefficients of G/, D;G/,...,D; ---D; G/, we can get the corresponding
determining equations:

OA; oA
_(_1\+l J a
0=(-1) rw R (2.20)
O0A; oA oA
— +1 J a q a
0 =(-1) IR CqHDqu? 4o
i1-+lg i1+lg Ielg+l
0A,
+(=1)"CID;,, -+ Dy ——.q = 1, ,p - 1, (2.21)
ipip
ON; DA, A, N,
= — —D: —1?D.
0= o o D, P + +(-1) Dan,-,, — (2.22)

i itip

]=1,,N,a/:1,,N,q:1,,p—1

where C! = - (r o Then the expression of the corresponding multiplier A; is obtained by solving the
above decismn equations. After obtaining the multiplier, we can solve the correspondmg conservation
law. Next, we introduce the theorem:

Theorem 2: For the differential equation system (2.1), the conserved densities of any nontrivial
conservation law in normal form are given in terms of the multipliers by

1 1
¢ = | da@w’ —@)Ajlu,] +1 f dAK(At, 2x), (2.23)
0 0

1 1
¢ =x' f dA'K(At, Ax) + f dAS [u -, Alu,l; glud] + S'[u —u, glu, — Aglul (2.24)
0 0
+ (1 = Dug; Alualll)

where

w, = Au+ (1 - i, K(t,x) = @ + g/[uD)A,[u),

m—1 m—I[-1 .
o0g’
S! [V W gl Z Z (= 1)k(Di1 "'Di,Vp)Djl "'Djk(Wjj—)a
=0 k=0 Wit i jo-ji
' p—1 p-I-1 I :
STV, W; Al = (=DNDy, -+ DyVP)Dj, -+ Dy (Wj———"—).
=0 k=0 fiyigjiegi
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3. Application of directly constructing conservation laws

3.1. Combined KdV-MKdV equation
Firstly, we choose an equation named the combined KdV-MKdV equation and its form is as follows:
G = u, + auu, +,8u2ux + Uy =0 (3.1

where « and S are arbitrary constants. And its symmetries with infinitesimal genertor Xu = n satisfies
the determining equation

D + auq + auDn + Bu”D,n + 2Buum + Din =0 (3.2)

where D, = 0, + u,0, + u,,0,, + u,0,, +--- and D, = 0, + u,0, + u,0, + u;.0, +--- are total derivative
operators with respect to ¢ and x. And the adjoint of Eq. (3.1) is given by

—D,w — auD,.w —ﬁu2Dxa) - Dia) =0 (3.3)

when G = 0, which is the determining equation for the adjoint symmetries w of the cKMK(the combined
KdV-MKdV equation) equation. Next, we calculate the conservation law multiplier of the equation,
namely finding A, which satisfies

D¢ + D.¢" = (u; + auity + Bty + o) Ao + Do(uy + auity + Bultty + ) Ay + -+ 3.4)
with no dependence on i, and its differential consequences. This yields the multiplier
D¢’ + D¢ — 1) = (u; + auuty + Putty + up )N, A = Ag— DAy + -+ (3.5)

where I' = O when u is restricted to be a cKMK solution. Next we set A to be related to x, ¢, u, u,., U,
the determing equation becomes

E.(GA) = —=D,A — auDA — Bu*D;A — DA + A,G — D(A,.G) + D’(A,.G)=0.  (3.6)
Then by comparing the coefficients of G and D;G, we can get the equation

0=-D,A, +DA,, (3.7)
0=A, -DA (3.8)

Uxx

and we can notice that (3.7) is a differential consequence of (3.8). The highest coefficient in formula
(3.8) 1s Ay 4, Urrx, and we know that A is not related to u,,. It yeilds A = 0, then A has the
following form:

UxxUxx

A =a(t,x,u,u)u. + b(t, x,u,u,). 3.9

Then the remaining terms in formular (3.8), after some cancellations, are of first order
0=b, —a,u,—a,. (3.10)
Next we extract the coefficient of u,,,, in (3.6) and these yeild

D.a =a,+au,+a,u, =0 (3.11)
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and a is not related with u,,, so we can obtain a,, = 0, namely a(z, x, u). Similarly, we can easily get
a,=a,=0. (3.12)

According to (3.10), we can deduce that b, = 0. We replace (3.9) into (3.6), then we can find the
coefficient of u,,,, i.€.
-b, — aua —ﬁu2a + b, + aua —ﬁuza =0 (3.13)

and the coefficient of u,, is
=3u.b,, — 3b,, + 3(aa + 2Bua — b,,)u, = 0. 3.14)

It yeilds that b,,, = @a + 2ua, a, = -3b,,.. Hence we have

t
b= ‘“’2( )2 + ﬁa(t)u + c(x, D + by(x, 1) (3.15)
from (3.14) and
1
by=c = _§af' (3.16)
We can obtain the form of b(x, ¢, u):
a , 1 4 1
b= Eau + gﬁau + (b1(¥) — ga,x)u + b2(x, 1). (3.17)
Then A has the form:
1 1
A = a(Otgey + b(t, X, 1) = a(t)uty, + %auz + gﬁalf +(bi(0) - §a,x)u + by(x, 1). (3.18)

Then after taking (3.18) back into the decision Eq. (3.6), we can get

U, au?

—by; — Bu*bay — uby; — by + 3 = =t — auby = 0. (3.19)
Then by comparing the coefficients of u and u?, we can obtain
1 a
blt = _b2xxxa blt - gxatt = abeanZx = _gat’ (320)

then solve them. We get the general forms of a(t), b (¢) and b,(x, 1)

6
a= ﬁclt+C3,b1 = —acit+cy4, by =c1x+ . (3.21)
a

So the general form of A is

68¢ 6Bc 68¢

28c
A=(———t+c3)u, + (——t+ 3)+—Bu( —t+c3)+( ac1t+c4+'8—x)u+clx+c2, (3.22)
a a a

where ¢;(i = 1,2, 3,4) are arbitrary constants. It yields that

6 26°tu’ 2x?
A= —ﬁtuxx — 3Btu* — p atu+ = ﬁu’
@ @ @ (3.23)
_ _ @, B3 _
Az—l,Ag—L{xx+§I/t +§M,A4—I/t.
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Next, we find the conservation law ¢7, ¢! according to A,.
According to the Theorem.1, we can take u = 0 so that K = 0. So we have

1
¢ = f dAu!)A [ Aul,
0

1 (3.24)
¢ = f dA(S Tu, AlAul; glAul] + S [u, glAu] — Aglul; AlAul]).
0
Firstly, for Ay,
1
A f dAuA(t, x, Ax, A05u, 10°x, . ..)
0
1 2. 4 2012
6 2Bt 2
= f OB = 3pnt = P+ 2P (3.25)
0 @ a a
2utt 1 6Btuu,, 2xBu?
= _put — Bu’t + —(—M — atu® + xpu ) + xu
2a 2 a a
and similarly, the ¢{ has the following form:
1
¢1 = f dA(S™ [u, AlAul; glAul] + S *[u; glAu] — Aglul; AlAu]])
0
1
t
= f ul[Aul(@du + BA%u?) + uD>*AlAu] — u D, AlAu] + u AlAu] + u (glAu] - Ag[u])(—ﬁ)
0
68t
- uD (8] = Aglul)(~20)
3440 2 4 5138213 i 2 3By,
__ g - B’ + P — Btuta — wp + xBu’ — 6u*Btu, + ubu _ ity _ Supiu
3a 2a 3 a a a
3 38211202 2 2 2
N U, Bty r B B tuu ~ qutu,. - 3Pt N axu N atuy N 2uxBu, T
a a a 2 2 a
(3.26)
We can simply verify that
28%u’t 2 3Bty 3upt
D¢\ + D¢ = (- S u t—atu+ 2xpu _ 3upt + x — atu — HPlitex + au?)G — M'B —D}G=0 (3.27)
a a a
when u is a solution of G.
And for A, = 1, the we can easily obtain
1 1
¢h = f dAuA(t, x, Ax, A0,u, 10°x, . ..) = f udd = u,
0 0
1
¢ = f dA(S*[u, AlAu]; glAu]] + S*[u; glAu] — Aglul; AlAul])
01 (3.28)
:f Aau? +,3/12u3 + U, dA
0
2u + B u3 + Uy,
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We can also verify that
D,¢5+ D, =G =0 (3.29)

when u is a solution of G. Identically

1
¢§=f ﬂuuxx+§uﬂ ﬁ“ﬁ*d/l
0

1 /3 u,
=— Uty + i
3 =f dA(S *[u, AlAul; g[Au]] + S [u; g[Au] — Aglul; Aldu]))
,82 af s 5B , cut WIS U, Ugley Ul
6+ + = + + U + = _ +
gt Te ! Tt T Ty T T T T T T 2
for Az = uy, + $u” + §u3. We can verify it by
D + D, = (9026 + Bt + M L TG = 0 (3.31)
2 3 2 2
when u is a solution of G.
The last one is Ay = u,
1 2
é :f Add =2,
0 2
1
&, = f AP (@du + BAPu?) + u(Auyy) — uedity + g du dA (3.32)
0
2
:%zﬁ + §u4 - % + Ul

Then we can easily obtain
D.¢; + D¢y = uG =0

when u is a solution of G.

3.2. Klein-Gordon equation
We choose the Klein-Gordon equation as the second equation to study and it has the following form:
Uy — Uyge + QU +,3u3 =0. (3.33)

It is obvious that its self-adjoint and the determing equation for its symmetries with infinitesimal
generator Xu = n and the adjoint of it is all

D’n — D+ an + 3Bu’n = 0. (3.34)

We set the A has the expression A(?, x, u, uy, u,). Then the determining equation for the conservation law
multiplier is
0 =E,((ty — tyx + au + Bu’)A)
:DtZA - DiA +alA + 3ﬁl/l2A + A”(u” — Ut au +ﬁl/l3) - Dx(Aux(utt — Uy T aU (335)
+ i) = DA, (s =ty + au + Bu)).
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By comparing the coeflicient of G, we can sort out two determining equations:

DA — D*A + aA +3Bu*A =0, (3.36)
2A, + DA, — DA, =0 (3.37)

where O, = A, + uA, + uy Ay, + (U — au — ,8u3)Au[. We start from the Eq. (3.37) and it yeilds
2Au + Atu, + utAuu, + (uxx —au _ﬁu3)Au,u, - Axux - uxAqu - uxxAuxux = O (338)
and since A does not contain u,,, we can seperat it from Eq.(3.38)

Au,u, = Auxux» (339)
2A, + Ay, + A, + (—att — BNy, — Ay, — 1Ay, = 0. (3.40)

Then we deal with (3.36). It is easy to verify that the coefficients of u,,, and u,,,; are 0. So we consider
the coeflicient of the second order u,, and u,,, i.e.

2w, Ay, — 20, + 2N, + 20, Ay, — 2, — 2P0 A, =0 (3.41)

and from (3.36) we can get
—4A, =0 (3.42)

and the coeflicient of u,, is
—2A, + 2A,, + 2(~a — Bu)A,,,, = 0. (3.43)

Then by solving the four equations (3.39), (3.40), (3.42) and (3.43) simultaneously, we can obtain the
general form of the multiplier

A= (—u, +uy)fi(t — x) + (u; + uy) o(t + x) + cu; + d(x, t) (3.44)

where f;(z — x) is any function related to t — x, f>(z + x) is any function related to ¢ + x, ¢ is an arbitrary
constant and d(x, t) is any function related to x, t. Next, we substitute the multiplier into (3.38), and
compare the coefficients of u,,, u,,. We can get

2f au + 2f,fu’ + 3uPdB — d,, + ad — 2u* f,8 — 2ufya + dy, = 0. (3.45)
We can obtain
fi=f.d=0.
We can take their simplest form for f; and f;,
fi=cat—x)+c3, fr=c(t+x)+cy (3.46)
where ¢;(i = 1,2, 3,4) are arbitary constants. Therefore, the general form of multiplier is

A= (—u +u)(cr(t — x) + ¢3) + (U + u)(cr(t + x) + ¢4) + cruy. 3.47)
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It yeilds that

A1 = u, Ay = 2tu, + 2xu,,

Ay = —u, +u,, Ay = U, + u,.

Next we solve the conservation law with the formula

1
¢t = f d/l(uj - Mo)Aj[ua],
0

1
¢ = f dA(S Tu = uo, Aluy); glual] + S'[u, glual — Aglul; Aluy]])
0

(3.48)

(3.49)

and we choose i = 1y which is a constant and K = 0. Then we can obtain that

1
(]5’1 = f wA[Adu + (1 = Dugl + (up — u) D, AlAu + (1 — Aup)]ldA
0

1
= f uAu; + (g — )D;Au, dA
0
1,

:Euz - E(u - uO)(”xx —au —Bu3),
u—u U
¢)1€ = 2 Ouxt - 2 d

for multiplier A;.

1
¢ = f w2t Au, + 2xAu,) — (u — ug)D,2Atu, + 2xAu,) dA
0

=tu,u; + xu,2 — (= up)(tuy + U, + Xty — XU — ,6’xu3),

(3.50)

t 1
&, :u0u3,8t + tuauy — a/tué - E,Bug - Eu“ + tu (U — uy) + Xt (U — Ug) — U XUy + U, — Uolt, — tu)zC

3.51)
for multiplier A,.
1
0
1 1 1 1
=— Eu,z + Euxut - (u—- uo)(—iuxx + Eaxu + 'gxlf + SUy), (3.52)
. u? u Uyy Uy i B aul
¢3 :3,81404‘50’1404'T(M—MQ)—TI(M—M())—E'F —g(l/l4+ug —70
for multiplier Aj.
1
¢ = f u(Au, + Auy) — (u — up)Dy(Au, + Auy) dA
0
1 1 1
:Eutz + Euxu, —(u- MO)(EMXX - zaxu - §XM3 + Euxz), (3.53)
3 2 au?
o :%ﬁuo+gauo+%(u—uo)+%(u—uo)—%———g(u4+u3 70

for multiplier Ay.
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3.3. The generalized coupled KdV equation

In the third example we try to apply to a multi-potential differential equation system and we choose
the generalized coupled KdV equation. It has the form as follows:

1
u; — Zuxxx —3uu, + 6vv, — 3w, =0,

1
v + 3uv, + vaxx =0, (3.54)

w; + 3uw, + %wxm =0.

The famous KdV equation is considered to be one of the most important equations in the theory of
integrable systems. It gives multiple soliton solutions with infinite number of conservation laws, double
Hamiltonian structures, Lax pairs and many other physical properties. The coupled KdV equation has
attracted a lot of research due to its importance in theoretical physics and many scientific applications.
According to the formula (2.2) and (2.3), we can obtain by calculation

1
(.E)lv = —3uy' —3uD.v —4D3v1 (.E)zv = 6Vv,V° + 6V,

(£)3v =-3D’} (L) v =3,
wyz_wuf+%m&, (3.55)
(L3 =0,(L)' = 3w,

(L3 = 0,(L)3v* = 3uD,y’ + ;Di\f’

and we can also obtain the adjoint form of them

1
(L' = ZD3601 +3uD,w', (L)w' = —6vD,w',

(LH0" = 3D, (L)1 = 3v,07,

1 (3.56)
(LHw? = —EDiwz - 3uD,w* - 3uw’, (L)} = 3w,0°,

1
(L' =0,(L)’ = —EDi 3~ 3uDw’ - 3uw’
We set D, = 0,—(g'0,+g°0,+g°0,)+--- , where g' :

3uwx+%wxxx. Then we will try to calculate the form A(¢, x, u,u,,u,,), and u means u, v, w. The determing
equations according to (2.16) become

= -y —3uu,+6vv,—3w,, g = 3uvx+%vxxx, g =

0 =E, (A + g' Ay +vils + &2 Ay + 0 A5 + 8 A3)

3.57
== DA1 + (L) Ay + (L)1) + 8°). G7

The specific forms are

0N 8A 1

1 AA
— DA, + 41) Ay +3uD A, + 3v, Ay + 3w, A5 + (.G !

Ouy

(3.58)
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A A A A A
<2 - x<a 263+ 0222262 1+ (26 - a6y 4 pr 26y o,
s Ot ou ¥ Oty Oty
1 oA oA oA
—D,A2—6vaA1—§D§A2—3ux1)x/\2 3uxA2+(—1 - Du(5 1G) DX( alel)) (3.59)
A A A A A
(Q x<a 2GQ>+DZg 2G%) + (b@ x<a : )+D2<gv3G3))—
1 A A
—DtA3+3DxA1—EDiA3—3uxDxA3 3uxA3+(LG1 ‘9 ! (gw‘ GY)  (3.60)
(%G2 Dy(—= Ons G2)+D2(§A2 G?) + (atj Do~ 07 G3)+DZ(§A3 G*) =0.

Then by comparing the coefficients of the derivative of G, we can separate the following determining
equations:

- DA+ %DiAl + 3uD Ay +3v, Ay + 3w, A3 =0, (3.61)
— DAy — 6vD,A| - %DiAQ —3uD,A; - 3u,A; = 0, (3.62)
— D,A5 + 3, DA - %Dim - 3uDA; = 3u,Az = 0, (3.63)
B 2:1 " 23; =0 _gc/u\:x * gjt\% =0 _gii * gﬁ; =0, (3.64)
)
R S PN TN
T e e T T el Tt ek et S
- Dx(:;: Digbtl =0, —Dxaalsj Di‘;i\; 0, —szgj Dii’:x =0, (3.68)
e %‘D (;\uz ngfz ﬂ"%*%")xﬁi 02333 =0, (3.69)

e PR O 5 P Pl O am

By the formula (3.65) we can know that the hignest coefficient of it is Ay, Uy, and A is not related
with u,,,, so we obtain Ay, _, =0,

A=k (8, X, U, Uy Vi, Wiy Uy + Dy (8, X U, U, Vi, W), (3.72)
Similarly, we can get

AZ = kZ(t’ X, U, Uy, Uyy, U-)xx)vxx + bZ(t, X, U, Uy, Uy, wxx)’
(3.73)
A3 = k3(t, X, U, Uy, Uyy, vxx)wxx + b3(t’ X, Uy Uy Uy, Vxx)
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and accoring to the formula (3.66), we can obtain

A2unum =0, A3MXXMXX =0, Alv“vxx =0, Alw”wn =0,---

and since the formula (3.64), we have gvﬂ = guﬁ.

Then the genreal forms of the multiplicators become

Al = (ll(X, t,u, ux)uxx + aZ(-x, tu, ux)vxx + a3(xa t,u, ux)wxx + bl(xa t,u, ux)’
A2 = CZQ(X, t,u, ux)uxx + a4(x, tu, ux)vxx + 615()C, t,u, ux)wxx + bZ(X, L,u, ux)a

A3 = Clg(x, t,u, ux)uxx + 05()(, Lu, ux)vxx + a6(-x’ tu, ux)wxx + b3(-x’ t,u, ux)-

Then we start from formula (3.65), and according to the remaining items we can get
A1y, Uxx + a2y, Vxx + a3y, Wyx + blux - (alx + ap iy + aluxuxx) =0.

According to its u,,,, coefficient of the formula (3.61), we have

1
Z(3uxalu + 3alx + bux + 4uxxa1ux - Alux) = O’

(3.74)

(3.75)

(3.76)

then it yeilds 3D,a, — az, Vix — a3, Wy = 0, SO wWe get ay,, = as,, = ay,, = ay, = a;, = 0. Similiarly
according to the forlumas (3.62) and (3.63), finally we obtain the expressions a;(¢),i = 1,--- ,6. Then
we calculate from formula (3.75), we have b,,, = 0, similarly, by, = b3, = 0. Accoring to the formula

(3.66), we get
blvx + bZLt,C =0, wax + b3V.\‘ =0,

blwx + b3ux =0, b3vx + b2wx =0,
b2ux + blvx = 0, b3ux + blwx =0.

(3.77)

We can take the simplest forms, i.e. by, b,, b3 are not related with u,. Then let us start with the formula

(3.58). The coeflicient of uyy is 3ua; — 3ua; + +b, — 1b, = 0, and the coefficient of u,, is

1 ,
Z(3buw +3u.b,, +3v.b,, +3b,,) +3v.ar + 3w.az —a (t) — 9ayu, + 3a,v, + 3azw, = 0.

Since a;, a,, a3 don’t contain u,, v,, w,, we obtain

3 3
-b,, + 6(13 =0, Zbuv + 6(12 =0,

4
3 3 ,
=by, —9a, =0,=-b,, = a ().
4 a 4 a (1)
So we have
by = 6a;u* + cu + d(x,t,v,w)
and since by, = —8a,, we get ¢, = —8a,. It yeilds ¢ = —8a,v + d , since % = —8as.
We can denote it by

4
by = 6a;u* — 8a,uv — 8azuw + gahx + p1(Ou + par(x,t,v, w).

(3.78)

(3.79)

(3.80)
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And according to the formula (3.62), the coefficient of v,, is

1 ,
—5(3172” + 3vybay, + 3wiboyy, + 3ubay,) — 3uas — a,(t) + 18v,.as + 6u,ay. (3.81)
It yeilds that
3
- EbQW +18a, = 0, by, = 0,
3 3 / (3.82)
- Equv +3a4 =0, _Ebev = a4(t)-
We can calculate the expression
2 2 7’
by = —6a,v° + 2a4uy — §a4xv + q1(t) + g2(x, t, u, w). (3.83)
Similarly, in the formula (3.63), the coffecient of w,, is
1
—§(3b3xw + 3be3ww + 3uxb3,m,) - 3uxa6. (384)
It yeilds that
3
b3vw =0, __b3ua) + 3a6 =0,
3 (3.85)
b3 =0, _bew = aé(t)'
Then we can calculate the expression
2 ’
bz = 2aguw — §a6xa) + r(Hw + r(x, t,u,v). (3.86)

Then the general forms become
A = a\ (Dt + G (O)Vix + a3(Dwiy + 6a 1> — 8aruv — 8azuw + (galtx + pi())u + pr(x,t,v, w),
Ao = ar(Dyy + gDV + as()w,, — 6a,v* + 2auuv — %a;xv + q1(O)v + g2(x, t, u, w),
Az = az(Du,, + as(O)v,, + ag(H)wy, + 2aguw — %a;xw +r(Hw + r(x, t,u,v).
(3.87)

And according to the formula (3.61), the coefficient of v, 1S (411 - %)az = 0, so we obtain a, = 0.
Similarly, we also get a; = 0. Then we separated the coefficient of u,, of the formula (3.61):

1 ,
4_1(3bx" + 3u,byy + 3viby, + 3w,by,) — a,(t) — 9a,u, = 0, (3.88)

and it yeilds that

3 , 3
buv = 0’ buw = 09 beu = al(t)a Zbuu = 96110)-
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According to the coefficients of wxxng P2 =3a1(t) =0, vi:34py = —6a,(t)y = 0, vv:3as + 12a; =
0, Viwye:3as = 0, wye:3as = 0, wwy:3as = 0. We obtain that p, = 4a,(Hw, pr = —4a,(tV?, as
ag = 0, ays = —4a,(¢). And the coefficient of vv, is

16a,x + 12ua; + 3q, + 6p; = 0. (3.89)

It yeilds that a;(¢#) = 0. The remaining coefficients of the formula (3.61) can be separated into three
equations for the coefficients of v, and w,:

= pu+3pan =0,
3g> + 12uav + 3qv + 6p1v = 0, (3.90)

3r, —3p; — 2a/6xa) —12a;u + 3rjw = 0.

They yeild that
P2xxx

4 b
g2 = —4auv — q1v — 2pyv, (3.91)

C = _p2t+

r=p;+ §a6xw +4au — ro.

Let us bring back them into the formulas (3.61), (3.62), (3.63), the remaining items of them can be
separated into four equations

3p2 = p1 =0,
P2xxx
— P+ =0,
Prr (3.92)
2p1 = 6pay,
—Pirt 3p2x =0.
By solving the equations, we can get
pi(t) = 3cit + ¢3, pa(x, 1) = c1x + ¢3. (3.93)

Then we get the genreal form of A;,i =1,2,3.

A1 = ayityy, + 6a1u* + (3eit + c)u + dayw — 4ay? + c1x + ¢,
Ay = —4dayv,, — 8ajuv — 2(3¢1t + c3)v, (3.94)
Az =3¢t + ¢c3 + 4ayu.

They yeild that
Aly = Uy + 61 + 4w — 47, Ay = —4vy, — 8uv, Ay = 4u.
Aoy = 3ut + x, Ayy = —61v, Ay; = 3t.
Az = 1,A5 =0,A5 = 0.
As =, Ay = =2v,Au3 = 1.

(3.95)
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Then we can solve the conservation laws ¢', ¢* by multipliers according to (2.23), (2.24)
1
¢t1 :f ul\[Au] + vA o[ Au] + (,L)A13[/1U] dAa
0

1
= f (A, + 6P A% + 4wd — 4?22 + v(=4Av,, — 822uv) + w(dAu) dA
0

1 4 8
= - Eui +2u° + 2wu — gvzu — 202 — —wv? + 2wu,

3
1
¢ = f dA(S "[u, AlAu]; glu]] + S *[u; glAu] — Aglu]; Alu]])
0
A A
=u(A11(=3u)) + ZDﬁAI +VOVAL + 3uA) + o2 4 w(=3A,; + 3AuA ) + ol
1 1 1 1 1 1
+ ZuxDxAll - vaDxAIZ - waDxAB - ZuxxAll + vaxDxAIZ + zwxxAB - qu(gl[/lu]

— Ag1[u]) + 4vD (g2l u] — Aga[u]) + u.(g1[Au] — Aglu]) — 4v,go[u] — Ag>[u]
Tuvvy  Buguuy,  3unvv,  3uw,

2 4
=— 0w — 6V — TV UV + Willy + WU+ Vi Vi — 3 + 2 i + 7 Vi
uu 3wu uu Ul 3upw, 3uw uu
XXXX _ vv _ XX + XY XXX + XXM XXX + XX X _ X + 6u2V2 _ XX _ 6u2w
a 2 8 32 8 2 2
My 11hVu 9
+ 2uu’ + 20U, + 1200w - — + — — ~ut
x 3 3 2
(3.96)

for Aj1, Az, Ajs.

3
¢t2 =21t + ux - 30* + 3wt,

2
9wt  3u’x Qwt Uyl X SUp iy UV S,  Sutu
2 2 xxUxx xxUUy xxVVx xx Wy XX 2
=———- +3xv” — + + - + + -3n” (3.97
& 2 T2 TV T 32 8 4 8 4 v @397
3wt 3tu§ U, 3wyt
- 3xw+ — + + — =3t +

2 4 4
for Ay1, A, Ags.

3u? Usllor  SUscllly  SU VYV SUpWy

¢?=u,¢i=—7+3v2+ 7 + R + g - 3w (3.98)
for Azi, Az, Ass.
2
¢! :% -V +w,
(]ﬁi _ 371/13 _ 3;)14 ux):c))uzxxx + 31/{,\:;1/{1/[,\; " 3lxtx8x(1)x ’/”Z-xx _ Vz + % + uzi + V)ZC — Vv, + xXx (399)
3u v,

4
for A4, Auz, Ags.
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4. Solving conservation law by Ibragimov method

In this part we try to solve the equation by Ibragimov method to obtain the conservation laws. Firstly,
we introduce a theorem:
Theorem 2. Any Lie point, Lie-Bicklund, and nonlocal symmetry

. 0
X: ' s Uy 9. + s )T
& (x, u, ug) )— " (x, u, uq) )81,:“

leads to the conservation law D;(C’) = 0, i.e.

0
=L+ W“[—af—D( £) + DD L) ]
ljk (41)
o 0L £ o 0L '
+DJ(W )[6ua _Dk(a i);k) ]+D1Dk(W )[au?jk —] + ..

where

L:ZViFi(.X,M,u(l),.. M(S)) we _7] —é:]bt a—l , M.

By using maple, we can obtain some symmetries of the target equations. Firstly, for the combined
KdV-MKdV equation (3.1), it has

0 0 a*t 0 —2Bu — 6
Xi=2x=Lx=2-2hL,, 20, ™ 4.2
e ( 685 ot T eg o *+2)
We choose X = (5 — —" ! ) o+ t& + (_ZI;Z_Q)% as the symmetry used to calculate the conservation laws.

According to the forrnula (4.1), we have

2Bu-a x a’t
e i Y WP
68 (3 6,3)u Uy

And we note £ = v(u, + auu, + Bu*u, + u,,,). Then the conservation laws calculated directly become

2

—( - —IBI)L + W(auv + Buv + vy) + D,W(=v,) + DZW(v)
aPvtu,  uv,, . 2V, au*v  ButV vy UV . | ValbaX
= - - — VlUxx — - - - — LUV xx
68 3 3 2 3 [ 3 !
VXU, a*uy azuxtvxx 2 a/zvxxuxxt 4.3)
+ Vil — Vi, + — + — atuuv — Btuu v — ——————,
3 68 68 68
C,=tL+ Wy
=atuuy + Bu i’y + Vi, — w_ar_ M Qi
- X X XXX 3 6B 3 6ﬁ
We can simply verify it:
D.C,+ D,C, = (—— - —)(ut + auu, +ﬁu Uy + Upry) = “4.4)

68 3
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when u is a solution of Eq. (3.1) and v = —u.

Similarly, for the Klein-Gordon equation (3.33), it has symmetries which are as follows:
0 0 0 0
Xi=—,Xo=—,X3=t— — 4.5
R T R M ¥ (4.5)

and we choose X = t% + x% as the symmetry to compute conservation law.
C,=tL+W(-v,)+D Wy
=Vt — 2Vt + QtUy + BV + tu, v + XUV — Vit — VXl
C,=xL+ W(-v,) +vDW

:,vau3 + XUV — XVUy — VUL + VU, + XUV, — VU,

(4.6)

where £ = v(uy; — ey + au + fu), W = —tu, — xu,.
At last, we consider the generalized coupled KdV equation (3.54), it has the symmetries which are
as follows:

0 0
Xl—E’Xz—a,
0 0 10
Xi=z— Xy=v— + —— 477
37w’ v6w+28v’ “.7)
X_x8+t8 dw 0O 2ud  2vo
>734x 4t 30w 30u 30v
0 _4wd _2ud _ v

-2 as the symmetry to compute conservation law. We

_x 4w
and we choose X = 30 + 15 — 30— S5, — 35

can calculate that

1 1 1
L=vi(u - é_lu”x = 3uu, + 6vv, — 3w,) + vo (v, + 3uv, + vaxx) + v3(w; + 3uw, + —Wyry),

W 2u XU, e W v xvy W do  xw, (4.8)
= —-— — — Ty, = —— - — — 1y, = —-— =
T3 03 S T T T

Then the conservation law is

- tw[.

1 1 1 1
C, :§,£ + Wi (=3uv, — Zlex) + WL(6vvy + 3uv, + EVZXX) + W3(=3v; + 3uvs + §V3xx) + =D, Wy,

4
1 1 1, | 1,
— =D Wy, — =D, W3v3, — —DxWﬂ/] + _DxW2V2 + —DXW3V3
2 2 4 2 2
WrV3X V3xx XWy v3xxtwt VixXUxx letuxt vltuxxt V3thxt ViexXUyx lextut
= - - - - + - + = 2uvyv
3 6 2 12 4 4 2 12 4
Vo ex XV VoV Vo XV Vo 1V 2vyv
_ e 2 L 3w, — duvyw + —— 2 2 = 4 3vyutu, — 6vvity,
6 2 6 2 3
UVIX V3 XW V3w vty ViVo X Vil
— 3uvatv, — 3uvstw, + t3 + x6 =+ x2 i zm + t3 — V30 + 22UV + gx
2 VoxxV 2v3xxw VilUx VaxVx 5 V3xWy Villxx
—4vv) — + 4w - — + + ,
3 4 2 6 3
C, =tL + Wyv; + Waovy + Waws
iu tvov viw 2uv;
=— — _3tvuu, + 6tvivy, — 3tviw, + 2tvuv, + 2 4 3tvsuw, + LS
4 2 2 3
ViXu, 2vxv,  4dvzw  vixw,
3 3 3 3
4.9)
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5. Hamiltonian Structure and Line Soliton Solution

5.1. Hamiltonian structure

For the combined KdV and MKdV equation, We notice that it has a Hamiltonian formulation

= _@(m ), where H = f @l 12'6;4 - —uzdx is the Hamiltonian functional, and D = D, is a
Hamlltoman operator. Then since D, is a Hamlltonlan operator, it can map adjoint-symmetries into
symmetries, so D' can map symmetries into adjoint-symmetries. And we can use the above symmetry
to get the adjoint symmetry of some objective equations. Applying this latter operator to the scaling

symmetries, we obtain the adjoint-symmetries:

Q1 =D'(u) =v,, Qs = D‘lux =u,

—2Bu—a  x
:D_l—____
———x+a—2tu—ﬂ+atu—2+ﬁtu—3+tu
68 68 3 2 3 e

where u = v,. In fact, the multiplier A calculated earlier in this paper is the adjoint symmetry of the
variation of the objective equation.
Then for the Klein-Gordon equation, to obtain the Hamiltonian formulation, we transform the Eq.
(3.33) into an equation system:
U =V, V; = Uy, — QU —,8u3. (5.2)

The associated Hamiltonian formulation for this system is then given by

oH
u _ o _ 0 1
t ow
where H = f % * + u + 2 u4dx We note that the determining equation of the objective equation
and its self-adjoint determmmg equation is consistent:

Dzn D? n+au +Bu’ = 5.4)

Hence, the symmetry of the equation is consistent with the adjoint symmetry.

5.2. Line soliton solutions

A line soliton is a solitary travelling wave u = U(x — ut) in one dimension where the parameter y
means the speed of the wave. Then we study the conservation laws of the combined KdV and MKdV
equation and the Klein-Gordon equation ¢’, ¢* which doesn’t contain the variables ¢, x. Then the
conservation law is obtained by reduction

d d
DtlLl:U(f) = _#df xlu uE — dé: é: x_:ut (55)

yielding

d g((qb — ")) = (5.6)
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So (¢*—u¢') = C. Then we begin with the combined KdV and MKdV equation. Using the transformation
u(x, t) = U(€), we can obtain the nonlinear ordinary differential equation:

—uU +aUU +BUU +U" =0 (5.7)

for U(¢). Conservation laws (3.28), (3,30), (3.32) do not contain the variables ¢z, x. When the first
integral formula (¢* — u¢") = C, is applied to these three conservation laws, we obtain

U BU?
C, :“T ﬁT + U~ uU =0, (5.8)
prUS  opU’ SBURU"  Q*U* .o URUYB (U
C, = U*U 5.9
5 13 + 6 + ¢ + 2 +a + 7 + 3 (5.9)
~ U/ U/N + UUIH/ ~ ( UU// + aUz + ﬁU“’ )
2 2 M 6 127
@ BU*  (U')? uU?
= - -—=0. 5.10
Ci=—g+ = 5 +UU -5 (5-10)

We impose the asymptotic conditions U, U, U",U” — 0 as |¢] — co. Then we combine the formulas
(5.8), (5.9) and (5.10), then we can calculate its general line soliton solutions:

U = 14duet (5.11)
e VI(14402 + 222F 1 864py + L)

U, = 144“ek' " (5.12)
V(14402 + 2o 4 86451 + S0

where k; is an arbitrary constant.
Figure 1 and Figure 2 display the kinds of 3D plots of U;(¢) and U,(¢) determined by (5.11) and
(5.12), and Figure 3 and Figure 4 display the kinds of density plots of them.

Figure 1. 3D plot of the U, given by Figure 2. 3D plot of the U, given by
Eq. (5.11) for parameters u = k; = Eq. (5.12) for parameters u = k; =
a=p8=1. a=p=1.

Then for the Klein Gordon equation, we make the transformation u(x, t) = U(£¢), we obtain an ODE:

WU -U" +aU+pBU° =0. (5.13)
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- 3 ;
-1 -05 0 03 1 -3 -2 -1 0 1 2 3
3 R

Figure 3. Density plot of the U, Figure 4. Density plot of the U,
given by Eq. (5.11) for parameters given by Eq. (5.12) for parameters
#:klza:ﬁzl_ 'u:klza:ﬁzl_

And we study the related conservation laws (3.50)-(3.53), only the formula (3.50) does not contain
variables x, . We can obtain

Wowpl’ | Wk W W —u)U —al ~pU)
2 2 KT 2

) =0. (5.14)

By calculating (5.14), we can get its soliton solution

Ui =uy, Uy = —pa (5.15)
B
and the roots of & — ( f Uy w16+ D) da) — k, = 0, where k; is arbitrary constant.

T V- Dt Data—up)a?Bra)

6. Conclusion

It is well known that the study of conservation laws is very important for studying the integrability of
optimal systems. In this paper, two methods are used to solve three different types of partial differential
equations and systems, namely the conservation laws of the combined KdV-MKdV equation, the
Klein-Gordon equation and the generalized coupled KdV equation. And these two methods are widely
applicable. It can be applied not only to the case of multiple independent variables, but also to the case
of multiple dependent variables and differential equation systems. In fact, the multipliers obtained in
this part of the direct construction of conservation laws are actually some adjoint symmetries of the
equation with variational properties. And the linear soliton solutions of the equations can be analyzed
by the obtained conservation law.

In fact, the two methods used in this paper to calculate the conservation law of equations have
different advantages. The adjoint equation method proposed by Ibragimov can use the symmetry of the
equation to calculate the conservation law through the explicit formula. It is convenient to calculate
and does not require complex analysis. It has a wide range of applications, but the results are directly
affected by the symmetry of the equation. The advantage of constructing conservation laws directly is
that it is not necessary to use the variational symmetry of the equation. For a partial differential equation

Communications in Analysis and Mechanics Volume 15, Issue 2, 24-49.



46

without variational symmetry, the adjoint symmetry of the equation is used to replace the symmetry.
At this time, the adjoint symmetry satisfies the linear adjoint symmetry determining equations. The
symmetry invariant condition is replaced by the adjoint symmetry invariant condition, and a formula
using adjoint symmetry is given. However, this method is computationally complex and does not
apply to any type of equation and equation system. Both methods can be naturally applied to higher
dimensional differential equations and differential equation systems. This paper mainly integrates the
two methods and applies them to different types of equations and equation systems. The examples in
Anco’s paper [6,7] basically apply the direct construction method to the (1+1) dimensional differential
equations, and this paper attempts to apply the method to the equation system.
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