
https://www.aimspress.com/journal/BDIA

BDIA, 9: 1–28.
DOI:10.3934/bdia.2025001
Received: 09 December 2024
Revised: 01 February 2025
Accepted: 07 February 2025
Published: 21 March 2025

Research article

Deep neural networks with application in predicting the spread of avian
influenza through disease-informed neural networks

Nickson Golooba1, Woldegebriel Assefa Woldegerima2,3,*and Huaiping Zhu1,2

1 Laboratory of Mathematical Parallel Systems (LAMPS), CDM, and OMNI-RÉUNIS, Department of
Mathematics and Statistics, York University, Toronto, Canada

2 Centre for Disease Modeling (CDM), Department of Mathematics and Statistics, York University,
Toronto, Canada

3 Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and
Statistics, York University, Toronto, Canada

* Correspondence: Email: wassefaw@yorku.ca.

Abstract: Deep learning has emerged in many fields in recent times where neural networks are used to
learn and understand data. This study combined deep learning frameworks with epidemiological models
and was aimed specifically at the creation and testing of disease-informed neural networks (DINNs)
with a view of modeling the infection dynamics of epidemics. Our research thus trained the DINN
on synthetic data derived from a susceptible infected-susceptible infected removed (SI-SIR) model
designed for avian influenza and showed the model’s accuracy in predicting extinction and persistence
conditions. In the method, a twelve hidden layer model was constructed with sixty-four neurons per
layer and the rectified linear unit activation function was used. The network was trained to predict
the time evolution of five state variables for birds and humans over 50,000 epochs. The overall loss
minimized to 0.000006, characterized by a combination of data and physics losses, enabling the DINN
to follow the differential equations describing the disease progression.

Keywords: disease-informed neural network; physics-informed neural networks; deep neural networks;
avian influenza; SI-SIR model; data and physics loss functions; neural network architecture

1. Introduction

One of the most advanced artificial intelligence (AI) technologies of the last decade is deep learning,
which uses neural networks to process and understand complex data. In the last few decades, we have
seen deep learning advance from just a theory to something hugely useful. Our research is centered on

https://www.aimspress.com/journal/BDIA
https://dx.doi.org/10.3934/bdia.2025001

2

developing technology to apply deep learning research to fields like epidemiology by building on the
so-called disease-informed neural networks (DINNs) designed by [1].

1.1. Background

The concept of artificial neural networks originated in the 1940s when neuroscientists Warren
McCulloch and Walter Pitts noticed that human brain neurons work similarly to operators producing
results based on thresholds [2]. In 1943, they envisioned introducing intelligence to the world [3].
Their approach involved mimicking the brain’s functionality using neurons as units, inspired by the
structure of human brain neurons transmitting signals to make decisions, thereby pioneering an artificial
neural network [4]. According to [2], this neural network model they developed generated interest
in the AI community despite limitations at that time. A breakthrough came in the 1970s with Seppo
Linnainmaa’s discovery of backpropagation, which greatly improved network performance. It was
not until 2012, when students made advancements in the ImageNet competition, that neural networks
gained recognition and popularity [2]. The achievement propelled networks, like convolutional neural
networks (CNNs) and long short-term memory (LSTM) networks, to the forefront of AI research. The
advancements in technology have allowed deep learning systems to tackle pattern recognition issues in
fields marking a step forward in the field of AI [5].

1.2. Gaps and opportunities

Epidemiological models, like the susceptible infected recovered (SIR) model, have played
a role in understanding how diseases spread [6, 7]. However, they are sometimes challenged
in capturing the details of real-world data [8]. They face two key limitations in epidemic
prediction: limited accuracy when fitting complex disease patterns, and difficulty in handling
incomplete data [6, 9]. Specifically, their rigid parameter estimation approach often struggles
to capture the nonlinear dynamics seen in avian influenza transmission between bird and human
populations [10, 11]. Today, the challenge and urgency in understanding the dynamics of infectious
diseases, as exemplified by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic, has led to the use of advanced AI techniques. The development of DINNs, which
combines AI techniques with these models, represents an innovative integration of epidemiological
data into the neural network framework and can improve prediction accuracy through advanced
data analysis methods, improved parameter estimations, and modeling complex relationships
between different variables [12, 13]. DINNs directly address the limitations mentioned earlier in
two ways. First, they achieve higher prediction accuracy by simultaneously optimizing model
parameters while enforcing epidemiological constraints through a unified loss function [1, 14]. This
dual optimization will allow our DINN to better capture the complex transmission patterns of avian
influenza. Second, DINNs handle modeling complexities more effectively through their neural network
architecture [15,16], which can automatically adapt to nonlinear incidence rates and varying transmission
patterns without requiring mathematical reformulation of the underlying equations.

While deep learning models have shown promise, there are still obstacles to overcome, such as
issues related to data quality and quantity, ensuring model transparency, and effectively incorporating
real-time data [9, 13]. Tackling these challenges presents opportunities for advancing modeling and
creating resilient and understandable models [12].

Big Data and Information Analytics Volume 9, 1–28.

3

1.3. Integration of mathematics with AI

The solid mathematical foundation underlying deep learning is crucial, as it enhances the ability
of neural networks to process visual information and enables them to solve complex mathematical
puzzles, thus expanding what computers can do beyond previous limitations. This collaboration between
deep learning and mathematics is essential, as highlighted by noted researchers [4, 17]. Despite its
capabilities, deep learning as a field is still maturing, with ongoing research focused on uncovering its
theoretical foundations to ensure these systems are both effective and equitable [17].

Building on these ideas, the DINNs are designed to utilize the detailed compartmentalization from
classical epidemiology and the learning capabilities of neural networks to offer more precise predictions
and effective management strategies for infectious diseases. The ongoing research on DINNs goes
beyond modifying existing network structures; it involves establishing a reliable methodology that can
aid real-world decision-making in public health [15].

This work will explore the mathematics behind neural networks, discuss their development over
time, and explain how they are being used to address the challenges presented by infectious diseases
using DINNs. By combining theoretical analysis with real-world applications in predicting diseases,
this study intends to add to academic understanding and effective approaches in tackling worldwide
health emergencies. It is important to note that for the remainder of this work, whenever we refer to
“neuron”, we are actually referring to an “artificial neuron”.

Research questions

1) How can traditional epidemiological models be enhanced using deep neural networks?
2) What mathematical foundations are needed to integrate epidemiological parameters into neural

network architectures?
3) How can the integration of classical epidemiological models with modern neural network

architectures improve public health decision-making?

1.4. Brief review of the mathematics of DNNs

Here, we state some important definitions and concepts that are useful for this research and that have
been adapted from [17–19].

Definition 1.1. An artificial neuron with weights w1, · · · ,wn ∈ R, bias b ∈ R, and activation function
ρ : R→ R is defined as the function f : Rn → R given by

f (x1, · · · , xn) = ρ

 n∑
i=1

xiwi + b


= ρ ((x,w) + b) , (1.1)

where w = (w1, · · · ,wn) and x = (x1, · · · , xn).

Some common activation functions include sigmoid, Tanh, rectified linear unit (ReLU), etc. [20].
Every activation function comes with its benefits. For example, ReLU assists in addressing the issue of
vanishing gradients often encountered in networks [18], and it is inspired by the thresholding behavior
of neurons where only positive signals are transmitted. We can find more activation functions together

Big Data and Information Analytics Volume 9, 1–28.

4

with their benefits in [18] or other sources before selecting a particular activation function. For this
research, we used ReLU and Tanh.

Figure 1. Graphical representation of an artificial neuron f : Rn → R.

Layer: In a neural network, a layer is a collection of nodes or neurons that operate parallelly, receiving
either the input data or the output from the preceding layer. Neural networks can consist of input, hidden,
and output layers.

Definition 1.2. (Artificial neural network) Let d ∈ N be the dimension of the input layer, let L be the
number of layers, let N0 := d,Nℓ, ℓ = 1, . . . , L, be the dimensions of the hidden and last layer, let
ρ : R→ R be a nonlinear activation function, and, for ℓ = 1, . . . , L, let Tℓ be the affine-linear functions

Tℓ : RNℓ−1 → RNℓ , Tℓx = W (ℓ)x + b(ℓ),

with W (ℓ) ∈ RNℓ×Nℓ−1 being the weight matrices and b(ℓ) ∈ RNℓ the bias vectors of the ℓth layer. Then
Φ : Rd → RNL given by

Φ(x) = TLρ (TL−1ρ (. . . ρ (T1(x)))) , x ∈ Rd,

is called a (deep) neural network. This composition of affine-linear functions with a nonlinear activation
function, is referred to as a neural network of depth L.

Big Data and Information Analytics Volume 9, 1–28.

5

Figure 2. Deep Neural Network Φ : R10 → R2 of depth 4. We plotted this using the software
in [21].

Definition 1.3. (Feed forward neural networks (FFNNs) process): Let a(0) = x ∈ Rd be the input vector.
For each value of ℓ, from 1, to L, the outputs of the layer denoted by ℓ are determined by the activations
a(ℓ).

a(ℓ) = ρ(W(ℓ)a(ℓ−1) + b(ℓ)),

where W(ℓ) ∈ RNℓ×Nℓ−1 is the weight matrix, a(ℓ−1) ∈ RNℓ−1 is the activation vector from the previous layer,
and b(ℓ) ∈ RNℓ is the bias vector.

Optimization algorithms: Optimization algorithms are crucial for training neural networks. They
iteratively adjust the network’s weights to minimize the loss function, which measures the discrepancy
between the predicted output and the actual target. Commonly used optimization algorithms include
stochastic gradient descent (SGD), adaptive gradient gradient algorithm (AdaGrad), root mean square
propagation (RMSprop), and Adam optimizer (adaptive moment estimation) [22].

During optimization, we aim to minimize the loss function. The common loss functions include the
mean squared error (MSE) and cross-entropy loss, represented mathematically as:

L =
1
n

n∑
i=1

L(yi, ŷi),

where L is the loss function, yi is the actual target, and ŷi is the predicted output [18].
For regression tasks, the MSE is often used and it is defined as:

L(y, ŷ) = (y − ŷ)2.

For classification tasks, the cross-entropy loss is commonly used and it is defined as:

L(y, ŷ) = −
C∑

c=1

yc log(ŷc),

Big Data and Information Analytics Volume 9, 1–28.

6

where C is the number of classes, yc is a binary indicator (0 or 1) if class label c is the correct
classification for observation y, and ŷc is the predicted probability of observation y being in class c.

During training, we use the backpropagation method to determine fine-tuning network parameters.
Its primary objective is to minimize the loss function, which gauges the variance between the output
and the desired target [19].

Mathematically, the gradient of the loss L with respect to the weights w(l)
ji is computed as:

∂L

∂w(l)
ji

=
∂L

∂a(l)
j

·
∂a(l)

j

∂z(l)
j

·
∂z(l)

j

∂w(l)
ji

, i, j = 1, ..., n

For our work, we used the Adam optimizer as an optimization algorithm that combines the advantages
of two other extensions of SGD, that is to say, AdaGrad and RMSprop. From AdaGrad, Adam adapts the
learning rates for each parameter based on the magnitude of past squared gradients, ensuring infrequent
parameters receive larger updates, which is especially useful for sparse data. In addition, from RMSprop,
Adam improves on AdaGrad by using an exponentially decaying average of squared gradients to prevent
the learning rate from shrinking too much, which ensures that the learning process remains efficient
even in the later stages of training.

Adam maintains two moving averages of the gradients, which are used to adapt the learning rate per
parameter.

The updated rules for Adam (used in our code) are as follows:

1) Compute the moving averages of the gradient (mt) and the squared gradient (vt) as

mt = β1mt−1 + (1 − β1)∇L

vt = β2vt−1 + (1 − β2)(∇L)2.

2) Correct the bias in the estimates as

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2
.

3) Update the weights as

w(l)
ji = w(l−1)

ji − η
m̂t
√

v̂t + ϵ
.

Here, mt and vt are the first and second moment estimates, respectively, and β1, β2, and ϵ are
hyperparameters. The default values recommended by the authors are β1 = 0.9, β2 = 0.999, and
ϵ = 10−8 [23].

Expressivity of DNNs: Expressivity in neural networks aims to understand the extent to which
aspects of a neural network’s architecture affect its performance in deep learning. Methods from
applied harmonic analysis and approximation theory are typically employed to study this aspect [17].
The universal approximation theorem states that a neural network with at least one hidden layer and
nonlinear activation functions can approximate any continuous function to arbitrary precision, given

Big Data and Information Analytics Volume 9, 1–28.

7

sufficient neurons [24]. This theorem underscores the power and flexibility of neural networks in
function approximation, asserting that a feedforward network with a single hidden layer containing a
finite number of neurons can approximate any continuous function on compact subsets of Rn, under
mild assumptions on the activation function [25, 26].

Theorem 1. (Universal approximation theorem) [17] Let d ∈ N, K ⊂ Rd be compact, f : K → R be
continuous, and ρ : R→ R be continuous and not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak, bk ∈ R, and wk ∈ R

d, 1 ≤ k ≤ N, such that∥∥∥∥∥∥∥ f −
N∑

k=1

akρ(⟨wk, ·⟩ − bk)

∥∥∥∥∥∥∥
∞

≤ ϵ.

In short, it states that each continuous function on a compact domain can be approximated to an
arbitrary accuracy by a shallow neural network.

2. Predicting the spread of infectious diseases using a DINN

In this study, we examine an SI-SIR type of compartmental model focusing on avian influenza
disease using a DINN. We begin by presenting the mathematical model formulation we will consider.

2.1. Avian influenza mathematical model

1) Avian influenza introduction and current context

Avian influenza, commonly known as bird flu, is a disease that mainly impacts birds but can
also affect humans and other animals. This disease is caused by influenza A viruses from the
Orthomyxoviridae family, known for their ability to change and create strains with levels of severity
and ease of transmission [27].
Avian influenza viruses are categorized into two groups based on how harmful they are to poultry,
that is to say, low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI).
HPAI strains like H5N1 and H7N9 have led to outbreaks in birds and have occasionally crossed
over to humans, causing respiratory problems and high mortality rates [28, 29].
The transmission of avian influenza viruses to humans can happen through direct contact with
infected birds, contaminated surroundings, or, less frequently, through human-to-human contact.
The risk of these viruses causing pandemics is a concern in public health since they can undergo
genetic changes that make them more easily transmissible among people [30]. Therefore, it is
vital to understand how avian influenza spreads and develop strategies to control it in order to
prevent and manage outbreaks. Recent occurrences have emphasized the significance of bird flu,
as a public health issue. For example, on March 25, 2024, the Centers for Disease Control and
Prevention (CDC) in the United States announced instances of H5N1 outbreaks with cases detected
in animals like dairy cows. This marked the discovery of these avian flu strains in cattle [31].
There are worries about the virus’s ability to change and spread easily among people, leading to
increased efforts in monitoring and controlling outbreaks [32].
In Canada, authorities like the Canadian Food Inspection Agency (CFIA) and the Public Health
Agency of Canada (PHAC) are taking steps to address the threat of avian influenza by strengthening

Big Data and Information Analytics Volume 9, 1–28.

8

surveillance and biosecurity measures. Following the detection of H5N1 in U.S. dairy cattle, they
have increased testing of imported dairy cattle, checking milk for traces, and conducting voluntary
testing on asymptomatic cows to ensure safety [33]. These actions are aimed at preventing the
virus from entering Canadian livestock and safeguarding the food supply. The rapid spread of the
H5N1 clade 2.3.4.4b virus globally has caused concern with detections in wild bird species and
domestic poultry, leading to mass culling efforts to contain it in North America and Canada where
it has impacted commercial and non-commercially bird populations significantly [34].
Inspired by all these, we decided to choose this disease for our implementation.

2) Model equations for avian influenza
In our study, we use a version of the SI-SIR model to examine how avian influenza transmission
occurs. This model is based on the work of Yu and Ma [11] which looks at nonlinear incidence
and recovery rates in both deterministic and stochastic environments [11]. Unlike the model’s
varying recovery rate in their study, our simplified version assumes a constant recovery rate for
humans. This simplification allows us to focus on key transmission dynamics without dealing
with the complexities of changing recovery rates. The SI-SIR model’s differential equations are as
follows:

dS a

dt
= raS a

(
1 −

S a

Ka

)
−
βaIaS a

1 + bIa
(2.1)

dIa

dt
=
βaIaS a

1 + bIa
− (µa + δa)Ia (2.2)

dS h

dt
= Πh −

βhIaS h

1 + cI2
h

− µhS h (2.3)

dIh

dt
=
βhIaS h

1 + cI2
h

− (µh + δh + γ)Ih (2.4)

dRh

dt
= γIh − µhRh, (2.5)

where the model variables and parameters are summarized in the tables below.

Table 1. Model variables and initial values.

Variable Description Initial Value Reference
S a Susceptible avian population 9900 [10]
Ia Infectious avian population 100 [10]
S h Susceptible human population 9999 [10]
Ih Infectious human population 1 [10]
Rh Recovered human population 0 [10]

Big Data and Information Analytics Volume 9, 1–28.

9

Table 2. Model parameters.

Parameter Description Value Reference
ra Intrinsic growth rate of avian population 5 × 10−3 [10]
Ka Carrying capacity for avian population 5 × 104 [10]
βa Transmission rate from avian to avian Varied: 0.8 × 10−8 to 2.6 × 10−8 [11]
βh Transmission rate from avian to human 8 × 10−7 [10]
µa Natural death rate for avian population 3.4246 × 10−4 [10]
b Nonlinear incidence coefficient (avian) 0.001 [11]
µh Natural death rate for human population 3.91 × 10−5 [10]
δa Disease-induced death rate for avian population 4 × 10−4 [10]
c Nonlinear incidence coefficient (human) 0.01 [11]
γ Constant recovery rate of human population 0.1 [10]
δh Disease-induced death rate for human population 0.077 [10]
Πh Recruitment rate of human population 30 [10]

It is important to note that the transmission rate from avian to avian (βa) was varied in the study
conducted by [11] to examine different scenarios.
When βa = 0.8 × 10−8, the basic reproduction number is R0 = 0.54 < 1, leading to disease
extinction.
When βa = 2.6 × 10−8, R0 = 1.75 > 1, resulting in disease persistence. According to [11],
increasing the parameter βa impacts whether the disease persists or is eliminated, resulting in
number of infected individuals. It is also important to note that in [11], a comprehensive stability
analysis of this model was performed, proving that the system exhibits a forward bifurcation
behavior. Their analysis demonstrated that when R0 < 1, the disease-free equilibrium is globally
asymptotically stable, and when R0 > 1, the endemic equilibrium is globally asymptotically stable.
This mathematical property ensures the model has a clear threshold behavior, with no possibility
of backward bifurcation or multiple endemic equilibria. These stability properties support our use
of this model framework for examining disease dynamics through DINNs.
This model helps in understanding how avian influenza spreads and identifies strategies for
controlling it. It explores how avian and human populations interact, taking into account
transmission patterns and consistent recovery rates. While the original model by [11] offers
insights by incorporating variable recovery rates, it also adds complexity. Through this approach,
our goal is to offer an explanation of the fundamental mechanisms behind avian influenza spread
and provide valuable insights, for shaping public health policies aimed at managing outbreaks.

2.2. Numerical simulation for the avian influenza model

To illustrate the dynamics of our avian influenza model under different scenarios, we vary the avian
to avian transmission rate (βa) to examine its impact on disease dynamics, as this parameter plays
an important role in determining whether the disease persists or becomes extinct. We then conduct
numerical simulations similar to one of those conducted by [11] using the same parameters as used in
their study.

Big Data and Information Analytics Volume 9, 1–28.

10

Figure 3. Avian influenza dynamics for different βa values.

Figure 3 shows the results of these simulations for different values of βa. The left subplot illustrates
scenarios where the basic reproduction number is R0 < 1, leading to disease extinction, while the right
subplot shows cases where R0 > 1, resulting in disease persistence.

In our simulations, we used the initial conditions as specified in Table 1 and the parameter values
as detailed in Table 2. The time span for the simulation was set from 0 to 100, 000 days to better
understand the long-term behavior of the pandemic. Additionally, it is worth noting the computational
complexity underlying our implementation. The system is solved through numerical integration over
100, 000 days sampled at 1000 evenly spaced points, with each time point tracking five coupled
state variables. This generates a dataset of 5000 data points in total, for all the 5 compartments,
in capturing the transmission dynamics. The integration process handles multiple nonlinear terms
simultaneously, including density-dependent growth and varying transmission rates. We examine six
distinct transmission scenarios (βa ranging from 0.8 × 10−8 to 2.6 × 10−8), each requiring separate
numerical integration and demonstrating the model’s robustness in capturing both disease extinction
and persistence regimes. This computational framework ensures accurate solutions across different
parameter regimes while maintaining the biological constraints inherent in the epidemiological system.

As depicted in Figure 3, when βa ≤ 1.3 × 10−8, the number of infected humans initially increases but
eventually declines to zero, indicating disease extinction. Conversely, for βa ≥ 1.6 × 10−8, the number
of infected humans stabilizes at a nonzero value, signifying disease persistence.

These simulations confirm the findings of [11], that is to say, the avian-to-avian transmission rate βa

is a critical parameter in determining the long-term behavior of the epidemic.
Higher values of βa lead to a larger number of infected humans at equilibrium, underscoring the
importance of controlling avian-to-avian transmission in managing avian influenza outbreaks.

The data generated from these simulations will be instrumental in training and validating our DINN
model, enabling us to assess its effectiveness in capturing both disease extinction and persistence
scenarios in the next section.

Big Data and Information Analytics Volume 9, 1–28.

11

3. DINNs

The combination of machine learning methods, with modeling has become a tool for comprehending
and forecasting disease patterns [16]. DINNs, as introduced by [1], are a technique merging neural
network adaptability with the expert knowledge inherent in epidemiological models. DINNs are a type
of neural network that incorporates knowledge of disease mechanisms and biology into their architecture
and learning process. By leveraging insights from disease pathology, DINNs aim to improve the
diagnosis, prognosis, and treatment of diseases.

DINNs are a specialized type of physics-informed neural networks (PINNs) designed for
epidemiological applications [14]. This approach uses effectively the universal approximation
capabilities of neural networks while integrating the foundational structure of disease transmission
models. This combination enables the DINNs to grasp the dynamics while upholding the core principles
of epidemiology [35].

A key strength of the DINNs is their capacity to learn from both the data and the governing equations
of disease models simultaneously. This dual learning approach improves the prediction accuracy in
scenarios with noisy data, which is common during the early stages of disease outbreaks [35].

Although important work on DINNs has been done by [1] and other related works by [16] and [36],
these studies have inspired us to further optimize the DINN model and apply it to a nonlinear avian
influenza model for our study. Some of the choices made in our research such as the number of neurons
in each layer of the network, learning rate, search range, and number of epochs, are based on the findings
by [1].

3.1. Principles of DINNs

For our avian influenza model, we apply the DINN framework as illustrated in Figure 4. Our
specific definition of the DINN, as illustrated in Figure 4, consists of a neural network defined
in our code as net si sir with 12 hidden layers, each containing 64 neurons and using a ReLU
activation function. The network takes time t as input and output the normalized compartment values
Ŝ a(t), Îa(t), Ŝ h(t), Îh(t), R̂h(t).

We incorporate 12 learnable parameters corresponding to the avian model parameters (ra, Ka, µa, δa,
Πh, βh, βa, µh, δh, b, c, and γ). These parameters are initialized randomly and constrained to biologically
feasible ranges using a tanh transformation. For example, the avian-to-avian transmission rate βa

is constrained to the range [0.8 × 10−8, 2.6 × 10−8], which is within the values used in our previous
simulations in Section 2.1.

All computational experiments were performed on a high-performance virtual machine provided by
the Laboratory of Mathematical Parallel Systems (LAMPS) together with one health modeling network
for infectious diseases (OMNI) at York University. The system specifications are as follows:

• Device name: omni.hpc1
• Operating system: Microsoft Windows Server 2022 Standard, Version 21H2 (OS Build

20348.2700)
• Processor (CPU): AMD EPYC 7513 32-Core Processor at 2.60 GHz (Max Clock Speed: 2.95

GHz)
• Cores and logical processors: 16 cores, 16 logical processors

Big Data and Information Analytics Volume 9, 1–28.

12

Figure 4. A DINN architecture for avian influenza model.

• Memory (RAM): 80.0 GB of installed physical memory; 75.2 GB available
• Storage: 699 GB total disk size with 643 GB available
• Virtualization platform: VMware 20.1 (System Manufacturer: VMware, Inc.)

This high-performance computing environment facilitated the efficient training and evaluation
of our DINN model. The substantial processing power and memory were essential for handling
the computational demands of our DINN training, especially when integrating physics-informed
components.

In our implementation, we combine both data loss and physics loss in the loss function of our DINN
to ensure that the model not only fits the data but also adheres to the underlying dynamics of the SI-SIR
model for avian influenza.

The loss function is formulated as:

Total Loss = Data Loss + Physics Loss. (3.1)

Data Loss: This measures the discrepancy between the network’s predictions and the available
synthetic data using the MSE:

Data Loss =
1
N

N∑
i=1

(
(Ŝ a,i − S a,i)2 + (Îa,i − Ia,i)2 + (Ŝ h,i − S h,i)2 + (Îh,i − Ih,i)2 + (R̂h,i − Rh,i)2

)
(3.2)

Here, Ŝ a,i, Îa,i, Ŝ h,i, Îh,i, R̂h,i are the network’s predictions at time ti, and S a,i, Ia,i, S h,i, Ih,i,Rh,i are the
true values.

Big Data and Information Analytics Volume 9, 1–28.

13

Physics loss: This quantifies how well the network’s predictions satisfy the differential equations of
our SI-SIR model. Using automatic differentiation, we compute the time derivatives of the network
outputs and compare them with the righthand sides of the SI-SIR model equations:

Physics Loss =
1
N

N∑
i=1

(
f 2
1 (ti) + f 2

2 (ti) + f 2
3 (ti) + f 2

4 (ti) + f 2
5 (ti)

)
, (3.3)

where the residuals f j(ti) are defined as:

f1(ti) =
dŜ a

dt
−

(
raŜ a

(
1 −

Ŝ a

Ka

)
−
βa ÎaŜ a

1 + bÎa

)
(3.4)

f2(ti) =
dÎa

dt
−

(
βa ÎaŜ a

1 + bÎa
− (µa + δa)Îa

)
(3.5)

f3(ti) =
dŜ h

dt
−

Πh −
βh ÎaŜ h

1 + cÎ2
h

− µhŜ h

 (3.6)

f4(ti) =
dÎh

dt
−

 βh ÎaŜ h

1 + cÎ2
h

− (µh + δh + γ)Îh

 (3.7)

f5(ti) =
dR̂h

dt
−

(
γÎh − µhR̂h

)
. (3.8)

By minimizing the Total Loss in Eq (3.1), the DINN learns to produce predictions that not only fit
the data but also satisfy the SI-SIR model dynamics.

3.2. Implementation details of automatic differentiation using PyTorch

By carefully integrating the automatic differentiation capabilities of PyTorch and structuring the loss
function to include both data fidelity and adherence to physical laws, our DINN effectively learns the
dynamics of the avian influenza SI-SIR model. The combination of data loss and physics loss guides
the neural network to produce accurate predictions that are consistent with both the observed data and
the underlying epidemiological model. In our code, we utilize PyTorch’s automatic differentiation
capabilities to compute the time derivatives of the network outputs with respect to time t. The
implementation details that describe the automatic differentiation capabilities of the PyTorch algorithm
can be found in the Appendix.

We use PyTorch for the training process, employing the Adam optimizer and a learning rate scheduler
that decreases the rate by 10% every 1000 epochs. The network undergoes training for 50, 000 epochs
to ensure it reaches convergence.

Throughout the training phase, the model not only learns to fit the given data but also adheres to the
underlying equations of the SI-SIR model. This dual learning approach enables DINN to capture both
the dynamics and the essential epidemiological principles governing avian influenza spread.

Once trained, the DINN can forecast how avian influenza outbreaks evolve, potentially revealing
insights that may not be clearly visible from the original differential equation model. Additionally,
the trained network can offer parameter estimates that can be compared with values obtained through
traditional estimation methods.

Big Data and Information Analytics Volume 9, 1–28.

14

By applying this DINN architecture to our avian influenza model, we aim to enhance predictions of
disease spread in situations where data may be scarce or uncertain. This strategy combines modeling
and machine learning strengths, potentially leading to precise forecasts and informed public health
decisions [37].

4. Results

In this section, we provide an account of how we implemented our DINN approach for modeling
avian influenza. We describe the process of training, analyze the outcomes of parameter estimation,
and assess how well the model predicts disease patterns in scenarios. Our focus is on how the model
captures both disease disappearance and persistence while evaluating its performance across varying
transmission rates.

4.1. DINN training and parameter estimation

In this section, we describe the training setup of our DINN model discussing the selected optimization
method and the hyperparameters used. We then proceed to evaluate the accuracy of estimating
parameters of the model by comparing the DINN’s estimations with the target values and then provide a
brief discussion regarding the conclusion and implication of the study.

In the table below, we compare the final estimated parameters by our DINN model with their target
values from the original model (see Eqs (2.1)–(2.5)). It is important to note that these results were
obtained with specific hyperparameters: a learning rate of 1 × 10−4, 1000 time points, and a parameter
search range of approximately 1000% for the same architecture as illustrated in Figure 4.

Table 3. Comparison of the DINN’s estimated parameters with target values (learning rate:
1 × 10−4, time points: 1000).

Parameter DINN Estimate Target Value Relative Error Search Range
ra 0.004777 0.005000 4.46% [0.0045, 0.0055]
Ka 50,005 50,000 0.01% [0, 100,000]
µa 0.00029792 0.00034246 13.01% [0.0002, 0.0004]
δa 0.0004085 0.0004000 2.13% [0.0003, 0.0005]
Πh 31 30 3.33% [−70, 130]
βh 0.0000009723 0.0000008000 21.54% [0.0000006, 0.000001]
βa 0.00000002402 0.000000026 7.62% [8 × 10−9, 2.6 × 10−8]
µh 0.00003732 0.00003910 4.55% [0.000029, 0.000049]
δh 0.070335 0.077000 8.66% [0.05, 0.09]
b 0.000930 0.001000 7.00% [−0.001, 0.003]
c 0.01111 0.01000 11.10% [−0.01, 0.03]

γ 0.12409 0.10000 24.09% [−0.15, 0.45]

In the Figure below, we show the evolution of the loss function over the course of training.

Big Data and Information Analytics Volume 9, 1–28.

15

Figure 5. Loss vs. Epochs during DINN Training.

We conduct training for our DINN model for over 50,000 epochs using the Adam optimizer with a
learning rate scheduler. The training process lasts around 28 minutes in total, and Figure 5 illustrates
how the loss function evolved during training.

4.2. Analysis of DINN training and parameter estimation

In this section, we review the outcomes from Section 4.1 of our DINN training process and assess how
accurately parameters are estimated. We discuss the impact of hyperparameters on model performance,
analyze the variation in parameter estimations across runs, and interpret how the loss function behaves
during training. Furthermore, we investigate how the model reacts to parameters and discuss what our
discoveries mean for applications of DINN in epidemiological modeling.

It’s important to stress that the values shown in Table 3 heavily rely on the chosen hyperparameters.
The learning rate, number of time points, and parameter search range all have impacts on the DINN
performance and the resulting parameter estimations. Thoughtful consideration of these hyperparameters
is crucial for implementing the DINN model. For example, we noticed that when using a 0% search
range (where the parameter was limited to its target value), DINN consistently replicated the target
values regardless of epochs. This underscores how crucial the search range is to both the model’s
behavior and outcomes.

The search ranges for each parameter specified in our code are displayed in the rightmost column
of Table 3. These ranges were established using the “ tanh ” function to keep the parameters within
biologically reasonable limits while allowing for exploration around the desired values. For instance,
the search range for ra was defined as [0.0045, 0.0055], centered around its target value of 0.005. The
broad search ranges (sometimes covering orders of magnitude) were selected to assess the DINNs
capability to converge on accurate parameter values from an initial distribution. However, this decision

Big Data and Information Analytics Volume 9, 1–28.

16

also introduces variability in the outcomes as the model needs to navigate a large parameter space.
The DINN model exhibited a strong performance in estimating most parameters, showing particularly

high accuracy for the Ka, ra, δa, and Πh parameters. The carrying capacity Ka was estimated with
outstanding precision, displaying just a 0.01% relative error. Parameters like µa, βh, and γ demonstrated
errors which may indicate areas where the model is less sensitive or where there might be interactions
between parameters that make precise estimation more challenging. It is important to note that for
parameters with higher relative errors, the DINN estimates fall within the defined search ranges and
biologically feasible limits. This suggests that the DINN approach can offer insights into parameter
values even when exact estimation proves challenging.

During our project, we conducted several simulations with varying hyperparameters. Like the
findings of [1], in their simulations with other infectious diseases, we noticed that using lower learning
rates and more time points resulted in longer training durations. For instance, when we had 100, 000
time points and a learning rate of 1 × 10−6, the training process took around 5 hours and 39 minutes.
However, when we reduced the time points to 1000 and increased the learning rate to 1 × 10−4, we were
able to reduce the training time to 28 minutes for 50, 000 epochs. Conversely, keeping our time points
at 1000 and lowering the learning rate to 1 × 10−6 led to a training duration of 29 minutes for 50, 000
epochs.

In our DINN model’s normalization and loss calculation stages, we introduced an epsilon value
(self.epsilon 1 × 10−8). This tiny constant helped to prevent division by zero and enhanced numerical
stability, especially when working with parameters that might have approached very small values.

During our simulations, we noticed variations in how parameters were estimated across runs even
when using the same code. While some parameters consistently matched the target values closely, others
showed differences. This variability stayed consistent across runs without any changes to the code,
indicating that factors like the nature of optimization, the complexity of parameter space, and wide
search ranges all play a role in this behavior.

These results underscore the importance of multiple runs and conducting analyses in implementing
DINN. The variation in outcomes emphasizes the need for robust validation methods, possibly using
ensemble techniques to enhance parameter estimation reliability. Additionally, it highlights the role of
tuning hyperparameters in defining appropriate search ranges for each parameter to achieve accurate
and consistent results with DINN models.

In Figure 5 we see that, initially, there is a decrease in loss, indicating that DINN quickly grasps the
dynamics of the avian influenza model. Following this drop, the decline in loss becomes more gradual,
suggesting adjustments are being made to fine-tune model parameters. The continuous decrease in loss
signifies that our DINN is effectively learning to balance both data-driven and physics-informed aspects
within its loss function. We think that the smoothness of the curve, with no fluctuations, indicates a
stable training process. It’s interesting to note that the loss does not level off completely after 50, 000
epochs. This could mean that additional training could lead to improvements or it might indicate that
the model has struck a balance between fitting the data and satisfying the physical constraints set by the
differential equations.

The final loss value reached is 0.000006, which reflects both the error in fitting the data and ensuring
that the model’s differential equations are satisfied. We believe that this low loss value indicates that our
DINN has effectively learned to replicate the dynamics of the avian influenza model while adhering to
physical principles.

Big Data and Information Analytics Volume 9, 1–28.

17

4.3. Selection of neural network architecture:

To determine the optimal depth for our DINN, we experimented with neural networks of varying
depths: 8, 10, and 12 layers. We trained each network using the same hyperparameters and compared
their performance in terms of parameter estimation accuracy and computational efficiency.

Table 4. Comparison of DINN performance with different network depths.

Parameter Target Value 8 Layers 10 Layers 12 Layers
ra 0.005000 0.003044 0.003692 0.004777
Relative Error (%) 39.12% 26.16% 4.46%
Ka 50000.0 66220.4 50055.8 50005.0
Relative Error (%) 32.44% 0.11% 0.01%
µa 0.00034246 0.00028369 0.00030127 0.00029792
Relative Error (%) 17.15% 12.04% 13.01%
δa 0.0004000 0.0003941 0.0004117 0.0004085
Relative Error (%) 1.48% 2.93% 2.13%
Πh 30.00 20.14 35.38 31.00
Relative Error (%) 32.87% 17.93% 3.33%
βh 8 × 10−7 9.564 × 10−7 9.734 × 10−7 9.723 × 10−7

Relative Error (%) 19.55% 21.68% 21.54%
βa 2.6 × 10−8 1.951 × 10−8 2.442 × 10−8 2.402 × 10−8

Relative Error (%) 24.96% 6.08% 7.62%
µh 0.00003910 0.00003797 0.00003753 0.00003732
Relative Error (%) 2.89% 4.01% 4.55%
δh 0.077000 0.071843 0.070740 0.070335
Relative Error (%) 6.70% 8.13% 8.66%
b 0.001000 0.001635 0.000947 0.000930
Relative Error (%) 63.50% 5.30% 7.00%
c 0.01000 0.01628 0.01075 0.01111
Relative Error (%) 62.80% 7.50% 11.10%
γ 0.10000 0.14560 0.13007 0.12409
Relative Error (%) 45.60% 30.07% 24.09%
Average Relative Error 26.84% 12.81% 9.72%
Training Time 19 min 26 s 23 min 40 s 28 min 5 s

From Table 4, the estimates of the critical parameters like ra, Ka, and Πh, for the 12-layer network
are significantly closer to the target values. While the 12-layer network requires slightly more training
time than the 8-layer and 10-layer networks, it remains computationally feasible, with a training time
of approximately 28 minutes. In fact, the 12-layer network consistently outperforms the 8-layer and
10-layer networks in terms of lower relative errors across most parameters. This means that increasing
our number of layers to above 12 will help us have lower percentage relative errors, at least lower than
the higher ones as seen in γ, from 24.09% to a lower percentage value.

Calculation of Relative Errors: The relative error for each parameter is calculated using the formula:

Big Data and Information Analytics Volume 9, 1–28.

18

Relative Error (%) =
(
|Estimated Value − Target Value|

Target Value

)
× 100%

For example, for ra in the 8-layer network:

Relative Error =
(
|0.003044 − 0.005000|

0.005000

)
× 100% = 39.12%

Therefore, based on the comparative analysis in Table 4, a 12-layer DINN is the most suitable choice
for our framework because it balances accuracy and computational efficiency and we are happy with
the results obtained with this choice of layers. This decision is supported by the empirical evidence
from our experiments, but we expect better performance as we increase the number of layers of our
DINN despite the high computational power that will be required in such a case. This expectation can
be supported by the work done by [1].

4.4. DINN disease model prediction

In this section, we evaluate the DINN model’s ability to predict disease dynamics under various
scenarios, focusing on its performance in capturing both disease extinction and persistence.

Figure 6. DINN predictions vs. true values for disease extinction (R0 < 1) and persistence
(R0 > 1), showing the model performance across different βa values.

To generate the prediction plots in Figure 6, we use the same DINN methodology as described in
Section 4.1.

For each βa value (8.0 × 10−9, 1.0 × 10−8, 1.3 × 10−8, 1.6 × 10−8, 2.0 × 10−8, and 2.6 × 10−8), we
follow these steps:

1) We load the corresponding synthetic data generated from the original SI-SIR model.
2) We train a separate DINN model for each βa value, using the loaded data.

Big Data and Information Analytics Volume 9, 1–28.

19

3) After training, we use each DINN model to predict the number of infected humans (Ih) over the
same time period as the training data.

4) We plot both the true values from the original model (solid lines) and the DINN predictions (dashed
lines) on the same graph.

The results are displayed in two sections: the left side illustrates scenarios where the disease becomes
extinct (R0 < 1), while the right side shows scenarios where the disease persists (R0 > 1). Each line on
the graph is color-coded and marked with its value of βa for comparison.

This method enabled us to compare the predictions made by the DINN model with values across
various transmission rates, showcasing the model’s capacity to capture both extinction and persistence
dynamics.

4.5. Analysis of DINN’s disease model prediction

In this section, we present the forecasts generated by the DINN model for avian-to-avian transmission
rates (βa) and compare them with the true data obtained from the SI SIR model. Additionally, we evaluate
the model’s precision by exploring the compartments of the system and analyzing its performance under
varying transmission rates.

4.5.1. Disease extinction (R0 < 1)

In the left panel of Figure 6, we can see that the number of infected individuals changes over time
for the three βa values; 8.0 × 10−9, 1.0 × 10−8, and 1.3 × 10−8. Our findings are:

• Initially, there is a spike in infections that later decreases to zero. This trend indicates that the
disease is declining, as expected when R0 < 1.
• Our DINN model (represented by dashed lines) closely mirrors the values (solid lines), capturing

the initial peak and subsequent decline accurately.
• The model performs well across different βa values, suggesting that it is robust to changes in the

transmission rate.

4.5.2. Disease persistence (R0 > 1)

The right panel of Figure 6 shows what happens with higher βa values, that is to say, 1.6 × 10−8,
2.0 × 10−8, and 2.6 × 10−8. The obtained results vary from when R0 < 1, as elaborated.

• Instead of dying out, the number of infected individuals levels off at a steady state. This aligns
with what we would expect when R0 > 1 where the disease sticks around in the population.
• Again, our DINN model predictions (dashed lines) match up well with the true values (solid lines).

It’s good to see this consistency even as we crank up the βa values.
• The model captures the different steady-state levels for each βa value, showing it can adapt to

various epidemic scenarios.

4.5.3. DINN performance across βa values

We also examine how effectively our model performs for different compartments at certain βa values.
The comparison of RMSE losses is displayed in the figure below.

Big Data and Information Analytics Volume 9, 1–28.

20

Figure 7. DINN model performance for different βa values.

By analyzing the graph in Figure 7, we can conclude the following;

• The Ia compartment (population) poses the greatest challenge for our model as it exhibits the
highest relative MSE loss, particularly at lower βa values. This difficulty may stem from the
complexity of predicting the infectious avian population when transmission rates are reduced.
Nonetheless, there could be factors not addressed in this research.
• Despite some variation, the overall total loss stays pretty low. This suggests that our DINN is

generally doing a good job across different βa values.
• As the avian-to-avian transmission rate increases (βa), there are changes in relative MSE losses

at various parts of the DINN model. The shifts in error characteristics show how the framework
behaves to the shifts in patterns of the disease. Thus, when the transmission rates are high,
this substantially influences the speed and area where the diseases spread – starting with birds
and then humans. Our introduced DINN model is able to capture such changes as depicted by
the losses above. Therefore, the above adaptive response indicates that our model is flexible,
in a way that it is able to attend to conditions and make predictions correspondingly depending on
transmission rate.

5. Discussion

In recent studies, DINNs have been designed to utilize the detailed compartmentalization from
classical epidemiology and the learning capabilities of neural networks to offer more precise predictions
and effective management strategies for infectious diseases.

The DINN designed in our work managed to capture the dynamics of both disease extinction and

Big Data and Information Analytics Volume 9, 1–28.

21

persistence scenarios. Our DINN model is not perfect but we believe it is a considerable improvement
in the combination of neural networks with epidemiological modeling. While we are still in the process
of improvement and expansion around this very approach, it has the potential to become a tool of great
potential for the understanding of and prediction of the complex dynamics of diseases.

Concerning the lower values of βa, we noticed that the typical outbreak curve ratio grew to the
maximum and then had periodic declines to zero. The DINN behaved almost like this curve, which is
essential for forecasting the possible extinction of a disease. On the other hand, when βa was increased,
the disease prevalence remained in the population at a certain level in the long run. This flexibility
is significant, as this suggests that our proposed DINN could, in principle, have to deal with a lot of
real-world scenarios.

The rate at which avian influenza spreads within bird populations is heavily influenced by the
transmission rate among birds (βa) in the SI-SIR model for influenza. Changes in βa can have an impact,
on the progression of the epidemic. Ultimately we decide whether the disease will fade away or continue
to exist in the population. Therefore, analyzing βa provides essential insights into the effectiveness of
intervention strategies aimed at reducing transmission among birds, which is a key factor in controlling
the spread of avian influenza to human populations.

Moreover, we observed the sensitivity of the DINN especially in the Ia compartment as the number
of new cases of transmission fell. We believe that the model seems to have struggled to approximate the
population of infected birds, especially when rates were lower. This could possibly be worth further
investigation.

It was very informative to look at how hyperparameters act. The modification of the learning rate
with the amount of time points affected the performance of the DINN. It is like a situation! Since the
decision is made by us, or by some of us at least, we have some levers that we can pull if we want to
increase the model’s efficiency.

On the parameter constraints, we were satisfied with the way the tanh function was performing. It
tried to remain biologically realistic but also allowed the model to be somewhat loose. That said, though,
it was refreshing to see how different the parameter estimates are in different runs, given that one is
really optimizing a very complex function here.

Last but not least, the loss that was observed during the course of the training was encouraging,
too. It confirms that our DINN is developing as expected and manages to strike a balance in the model
between learning the data and respecting the differential equations.

6. Conclusions

In summation, we say our DINN implementation for avian influenza modeling shows great promise
in model predictions to inform the public health sectors. We have created a tool that can successfully
simulate different disease scenarios (including adapting to varying transmission rates) with a high degree
of accuracy.

Our main reason for excitement is that the model was able to predict both extinction and persistence
scenarios with high accuracy. Such flexibility in the model can prove to be highly beneficial in the
public health sector, especially for planning, as it can anticipate a variety of possible outcomes.

Our investigation into using DINNs for modeling avian influenza has revealed some avenues for
future research. One challenge we encountered with the Ia compartment at low transmission rates is a

Big Data and Information Analytics Volume 9, 1–28.

22

potential area we might look into for future refinements, as there is always room for improvement. One
could investigate deeper into this by:

1) Experimenting with various neural network architectures or exploring the use of a network or a
transformer-based model.

2) Adjusting the loss function to prioritize giving importance to the Ia component during training.

Moreover, although our synthetic data has served well in demonstrating the concept, there may be
a desire to validate our model in real-world scenarios. In future work, we plan to compare our DINN
approach against other learning frameworks such as sparse identification of nonlinear dynamics (SINDy)
and neural ordinary differential equations (ODEs). This will help us better understand the relative
advantages, computational costs, and robustness to noisy data of each method, which will, in the end,
help us make more informed choices for epidemiological modeling and prediction. A study could be
conducted to answer the questions below.

1) How does our DINN handle noisy or incomplete data, which is a challenge in the field of
epidemiology?

2) How could one explore the methods for filling in missing data or reducing noise? This could be
beneficial as part of the data preparation process.

We intend to incorporate advanced uncertainty quantification techniques, such as Bayesian methods
or bootstrapping, to derive confidence intervals for the model parameters. This will offer a statistically
rigorous measure of reliability for our DINN-based estimates, complementing the multiple-run approach
and biologically constrained parameter ranges presented in this work. We also plan to use LSTMs,
as a substitute for the FFNNs employed in this research project. LSTMs are adept at handling time
series information, and they have the capability to capture sequential patterns by retaining knowledge
across extended sequences. Enhancing the model’s capacity to grasp patterns in epidemiological data by
employing an LSTM-based DINN could result in more accurate forecasts of disease trends.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgment

W.A.W acknowledges financial support from the NSERC Discovery Grant (Appl No.:
RGPIN-2023-05100) used to support the student. W.A.W also acknowledges support from
the Canadian Institute for Health Research (CIHR) under the Mpox and Other Zoonotic Threats Team
Grant (FRN. 187246). HZ acknowledges financial support from the Natural Sciences and Engineering
Research Council of Canada and the Public Health Agency of Canada (NSERC-PHAC). Nickson
Golooba would like to express his gratitude for the financial support received from Woldegebriel Assefa
Woldegerima and Huaiping Zhu, and for their invaluable guidance and mentorship throughout this
research. Appreciation is also extended to the Canadian “One Health Modelling Network for Emerging
Infections” (OMNI) for their support and provision of computational resources.

Big Data and Information Analytics Volume 9, 1–28.

23

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Shaier S, Raissi M, Seshaiyer P, Data-driven approaches for predicting spread of infectious
diseases through dinns: Disease informed neural networks. preprint, arXiv:2110.05445.
https://doi.org/10.48550/arXiv.2110.05445

2. Lichtner-Bajjaoui A, A Mathematical Introduction to Neural Networks. Master’s thesis, Universitat
de Barcelona, 2021.

3. McCulloch WS, Pitts W, (1943) A logical calculus of the ideas immanent in nervous activity. Bull
Math Biophys 5: 115–133. https://doi.org/10.1007/BF02478259

4. Kutyniok G, The mathematics of artificial intelligence. preprint, arXiv:2203.08890.
https://doi.org/10.48550/arXiv.2203.08890

5. Galván E, Mooney P, (2021) Neuroevolution in deep neural networks: Current trends and future
challenges. IEEE Trans Artif Intell 2: 476–493. https://doi.org/10.1109/TAI.2021.3067574

6. Hethcote HW, (2000) The mathematics of infectious diseases. SIAM Rev 42: 599–653.
https://doi.org/10.1137/S0036144500371907

7. Brauer F, Castillo-Chavez C, (2012) Mathematical Models in Population Biology and Epidemiology,
2 Eds., New York: Springer. https://doi.org/10.1007/978-1-4614-1686-9

8. Brauer F, Castillo-Chavez C, Feng Z, (2019) Mathematical Models in Epidemiology, New York:
Springer. https://doi.org/10.1007/978-1-4939-9828-9

9. Holzinger A, Biemann C, Pattichis CS, Kell DB, What do we need to build explainable ai systems
for the medical domain?. preprint, arXiv:1712.09923. https://doi.org/10.48550/arXiv.1712.09923

10. Liu S, Ruan S, Zhang X, (2017) Nonlinear dynamics of avian influenza epidemic models. Math
Biosci 283: 118–135. https://doi.org/10.1016/j.mbs.2016.11.014

11. Yu X, Ma Y, (2022) An avian influenza model with nonlinear incidence and recovery
rates in deterministic and stochastic environments. Nonlinear Dyn 108: 4611–4628.
https://doi.org/10.1007/s11071-022-07422-6

12. Yang S, Santillana M, Kou SC, (2015) Accurate estimation of influenza epidemics using google
search data via ARGO, In: Proceedings of the National Academy of Sciences, 112: 14473–14478.
https://doi.org/10.1073/pnas.1515373112

13. Wiens J, Shenoy ES, (2018) Machine learning for healthcare: On the verge of a major shift in
healthcare epidemiology. Clin Infect Dis 66: 149–153. https://doi.org/10.1093/cid/cix731

14. Raissi M, Perdikaris P, Karniadakis GE, (2019) Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. J Comput Phys 378: 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

Big Data and Information Analytics Volume 9, 1–28.

http://dx.doi.org/https://doi.org/10.48550/arXiv.2110.05445
http://dx.doi.org/https://doi.org/10.1007/BF02478259
http://dx.doi.org/https://doi.org/10.48550/arXiv.2203.08890
http://dx.doi.org/https://doi.org/10.1109/TAI.2021.3067574
http://dx.doi.org/https://doi.org/10.1137/S0036144500371907
http://dx.doi.org/https://doi.org/10.1007/978-1-4614-1686-9
http://dx.doi.org/https://doi.org/10.1007/978-1-4939-9828-9
http://dx.doi.org/https://doi.org/10.48550/arXiv.1712.09923
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2016.11.014
http://dx.doi.org/https://doi.org/10.1007/s11071-022-07422-6
http://dx.doi.org/https://doi.org/10.1073/pnas.1515373112
http://dx.doi.org/https://doi.org/10.1093/cid/cix731
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045

24

15. Nguyen L, Raissi M, Seshaiyer P, (2022) Modeling, analysis and physics informed neural network
approaches for studying the dynamics of COVID-19 involving human-human and human-pathogen
interaction. Comput Math Biophys 10: 1–17. https://doi.org/10.1515/cmb-2022-0001

16. Ning X, Jia L, Wei Y, Li XA, Chen F, (2023) Epi-DNNs: Epidemiological priors informed
deep neural networks for modeling COVID-19 dynamics. Comput Biol Med 158: 106693.
https://doi.org/10.1016/j.compbiomed.2023.106693

17. Kutyniok G, (2023) An introduction to the mathematics of deep learning, In: European Congress
of Mathematics, 73–91. https://doi.org/10.4171/8ECM/30

18. Goodfellow I, Bengio Y, Courville A, (2016) Deep learning, MIT Press.
https://doi.org/10.4258/hir.2016.22.4.351

19. Rumelhart DE, Hinton GE, Williams RJ, (1986) Learning representations by back-propagating
errors. Nature 323: 533–536. https://doi.org/10.1038/323533a0

20. Glorot X, Bordes A, Bengio Y, (2011) Deep sparse rectifier neural networks, In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, 315–323.

21. Lenail A, (2019) NN-SVG: Publication-ready neural network architecture schematics. J Open
Source Softw 4: 747. https://doi.org/10.21105/joss.00747 .

22. Tieleman T, (2012) Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA Neural Networks Mach Learn 4: 26.

23. Kingma DP, Ba J, Adam: A method for stochastic optimization. preprint, arXiv:1412.6980.
https://doi.org/10.48550/arXiv.1412.6980

24. Hornik K, (1991) Approximation capabilities of multilayer feedforward networks. Neural Networks
4: 251–257. https://doi.org/10.1016/0893-6080(91)90009-T

25. Hornik K, Stinchcombe M, White H, (1989) Multilayer feedforward networks are universal
approximators. Neural Networks 2: 359–366. https://doi.org/10.1016/0893-6080(89)90020-8

26. Funahashi KI, (1989) On the approximate realization of continuous mappings by neural networks.
Neural networks 2: 183–192. https://doi.org/10.1016/0893-6080(89)90003-8

27. Shao W, Li X, Goraya MU, Wang S, Chen JL, (2017) Evolution of influenza a virus by mutation
and re-assortment. Int J Mol Sci 18: 1650. https://doi.org/10.3390/ijms18081650

28. Peiris JM, De Jong MD, Guan Y, (2007) Avian influenza virus (H5N1): A threat to human health.
Clin Microbiol Rev 20: 243–267. https://doi.org/10.1128/cmr.00037-06

29. Alexander DJ, (2007) An overview of the epidemiology of avian influenza. Vaccine 25: 5637–5644.
https://doi.org/10.1016/j.vaccine.2006.10.051

30. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. (2013) Human infection
with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 368: 1888–1897.
https://doi.org/10.1056/NEJMoa1304459

31. Centers for Disease Control and Prevention, Avian Influenza in Mammals, 2024. Available from:
https://www.cdc.gov/bird-flu/situation-summary/mammals.html.

32. USDA, USDA, FDA and CDC Share Update on HPAI Detections in Dairy Cattle, 2024. Available
from: https://www.aphis.usda.gov/news/agency-announcements/usda-fda-cdc-share-update-hpai-de
tections-dairy-cattle.

Big Data and Information Analytics Volume 9, 1–28.

http://dx.doi.org/https://doi.org/10.1515/cmb-2022-0001
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2023.106693
http://dx.doi.org/https://doi.org/10.4171/8ECM/30
http://dx.doi.org/https://doi.org/10.4258/hir.2016.22.4.351
http://dx.doi.org/https://doi.org/10.1038/323533a0
http://dx.doi.org/https://doi.org/10.21105/joss.00747
http://dx.doi.org/https://doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/https://doi.org/10.3390/ijms18081650
http://dx.doi.org/https://doi.org/10.1128/cmr.00037-06
http://dx.doi.org/https://doi.org/10.1016/j.vaccine.2006.10.051
http://dx.doi.org/https://doi.org/10.1056/NEJMoa1304459

25

33. Government of Canada, The Government of Canada provides an
update on Highly Pathogenic Avian Influenza, 2024. Available from:
https://www.canada.ca/en/food-inspection-agency/news/2024/05/the-government-of-canada-provide
s-an-update-on-the-highly-pathogenic-avian-influenza.html.

34. Government of Canada, Animals susceptible to H5N1 highly
pathogenic avian influenza (HPAI), 2024. Available from:
https://inspection.canada.ca/en/animal-health/terrestrial-animals/diseases/reportable/avian-influenza
/animals-susceptible-h5n1-hpai.

35. Peng L, Yang W, Zhang D, Zhuge C, Hong L, Epidemic analysis of COVID-19 in China by
dynamical modeling. preprint, arXiv:2002.06563. https://doi.org/10.48550/arXiv.2002.06563

36. Ning X, Guan J, Li XA, Wei Y, Chen F, (2023) Physics-informed neural networks integrating
compartmental model for analyzing COVID-19 transmission dynamics. Viruses 15: 1749.
https://doi.org/10.3390/v15081749

37. Yang Z, Zeng Z, Wang K, Wong SS, Liang W, Zanin M, et al. (2020) Modified SEIR and AI
prediction of the epidemics trend of COVID-19 in China under public health interventions. J
Thorac Dis, 12: 165. https://doi.org/10.21037/jtd.2020.02.64

Appendix

PyTorch algorithm for automatic differentiation

In our code, we utilize PyTorch’s automatic differentiation capabilities to compute the time derivatives
of the network outputs with respect to time t. The key steps in our implementation are as follows:

Computing Time Derivatives:
To compute the time derivatives dŜ a

dt ,
dÎa
dt ,

dŜ h
dt ,

dÎh
dt ,

dR̂h
dt , we use the following procedure:

• Define masks self.m1, self.m2, self.m3, self.m4, self.m5, which are zero tensors except
for a one in the position corresponding to the variable of interest.
• Perform a backward pass with respect to the input time t using these masks to compute the

gradients.

Code Snippet: Here is the relevant portion of our code:

Compute gradients for each compartment with respect to time:

S_a_t

si_sir_hat.backward(self.m1, retain_graph=True)

S_a_hat_t = self.t.grad.clone()

self.t.grad.zero_()

I_a_t

si_sir_hat.backward(self.m2, retain_graph=True)

I_a_hat_t = self.t.grad.clone()

self.t.grad.zero_()

Big Data and Information Analytics Volume 9, 1–28.

http://dx.doi.org/https://doi.org/10.48550/arXiv.2002.06563
http://dx.doi.org/https://doi.org/10.3390/v15081749
http://dx.doi.org/https://doi.org/10.21037/jtd.2020.02.64

26

S_h_t

si_sir_hat.backward(self.m3, retain_graph=True)

S_h_hat_t = self.t.grad.clone()

self.t.grad.zero_()

I_h_t

si_sir_hat.backward(self.m4, retain_graph=True)

I_h_hat_t = self.t.grad.clone()

self.t.grad.zero_()

R_h_t

si_sir_hat.backward(self.m5, retain_graph=True)

R_h_hat_t = self.t.grad.clone()

self.t.grad.zero_()

In this code:

• si sir hat is the output of the neural network, which is a tensor containing Ŝ a, Îa, Ŝ h, Îh, R̂h for
all time points.
• The backward function computes the gradient of the network outputs with respect to the input t.
• The masks self.m1, . . . , self.m5 ensure that we compute the gradient for only one output at a

time.
• We clone the gradients and reset them after each computation to avoid accumulation.

Calculating the Residuals:
Once we have the time derivatives, we calculate the residuals f j(ti) by substituting the network’s

predictions and the computed derivatives into the SI-SIR model equations.
In our code, this is implemented as:

Unnormalize the predictions

S_a = self.S_a_min + (self.S_a_max - self.S_a_min) * S_a_hat

I_a = self.I_a_min + (self.I_a_max - self.I_a_min) * I_a_hat

S_h = self.S_h_min + (self.S_h_max - self.S_h_min) * S_h_hat

I_h = self.I_h_min + (self.I_h_max - self.I_h_min) * I_h_hat

R_h = self.R_h_min + (self.R_h_max - self.R_h_min) * R_h_hat

Compute the residuals (normalized)

f1_hat = S_a_hat_t -

(self.r_a * S_a * (1 - S_a / (self.K_a + self.epsilon))-

(self.beta_a * I_a * S_a) / (1 + self.b * I_a + self.epsilon)) /

(self.S_a_max - self.S_a_min + self.epsilon)

f2_hat = I_a_hat_t - ((self.beta_a * I_a * S_a) /

Big Data and Information Analytics Volume 9, 1–28.

27

(1 + self.b * I_a + self.epsilon) - (self.mu_a + self.delta_a) * I_a) /

(self.I_a_max - self.I_a_min + self.epsilon)

f3_hat = S_h_hat_t - (self.Pi_h - (self.beta_h * I_a * S_h) /

(1 + self.c * I_h**2 + self.epsilon) - self.mu_h * S_h) /

(self.S_h_max - self.S_h_min + self.epsilon)

f4_hat = I_h_hat_t - ((self.beta_h * I_a * S_h) /

(1 + self.c * I_h**2 + self.epsilon) -

(self.mu_h + self.delta_h + self.gamma) * I_h) /

(self.I_h_max - self.I_h_min + self.epsilon)

f5_hat = R_h_hat_t - (self.gamma * I_h - self.mu_h * R_h) /

(self.R_h_max - self.R_h_min + self.epsilon)

Here:

• S a hat t, I a hat t, . . . are the time derivatives of the normalized compartment values.
• We un-normalize the predictions before substituting them into the SI-SIR equations.
• The residuals f j are computed in their normalized form to maintain consistency with the normalized

predictions and derivatives.
• ϵ is a small constant added to prevent division by zero.

Total Loss Calculation:
Finally, we compute the total loss by summing the data loss and the physics loss:

loss = (torch.mean(torch.square(self.S_a_hat - S_a_pred)) +

torch.mean(torch.square(self.I_a_hat - I_a_pred)) +

torch.mean(torch.square(self.S_h_hat - S_h_pred)) +

torch.mean(torch.square(self.I_h_hat - I_h_pred)) +

torch.mean(torch.square(self.R_h_hat - R_h_pred)) +

torch.mean(torch.square(f1_hat)) +

torch.mean(torch.square(f2_hat)) +

torch.mean(torch.square(f3_hat)) +

torch.mean(torch.square(f4_hat)) +

torch.mean(torch.square(f5_hat))

)

In this expression:

• The first five terms correspond to the data loss (MSE between the normalized true values and
predictions).
• The last five terms correspond to the physics loss (MSE of the residuals).

Optimization: During training, we minimize the total loss using an optimizer (for example, Adam
optimizer) and update the network parameters accordingly.

Big Data and Information Analytics Volume 9, 1–28.

28

self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()

self.scheduler.step()

By incorporating both data and physics losses, the DINN is guided to produce solutions that are
consistent with both the observed data and the underlying physical laws described by the differential
equations.

Normalization and Stability Considerations: Normalization is crucial in our implementation to
ensure numerical stability and effective training:

• We normalize the compartment values to the range [0, 1] using the maximum and minimum values
from the data.
• During the computation of residuals, we un-normalize the predictions to substitute them into the

SI-SIR equations.
• We use a small epsilon (ϵ = 1 × 10−8) to prevent division by zero.

Parameter Constraints: We enforce biologically feasible ranges for the model parameters using the
hyperbolic tangent (tanh) function:

Parameter = tanh(Parametertilda) × Scale + Shift (6.1)

For example:

@property

def r_a(self):

return torch.tanh(self.r_a_tilda) * 0.01 + 0.005

Range: [0.0045, 0.0055]

This approach ensures that during training, the parameters stay within specified bounds reflecting
realistic biological values.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Big Data and Information Analytics Volume 9, 1–28.

https://creativecommons.org/licenses/by/4.0

	Introduction
	Background
	Gaps and opportunities
	Integration of mathematics with AI
	Brief review of the mathematics of DNNs

	Predicting the spread of infectious diseases using a DINN
	Avian influenza mathematical model
	Numerical simulation for the avian influenza model

	DINNs
	Principles of DINNs
	Implementation details of automatic differentiation using PyTorch

	Results
	DINN training and parameter estimation
	Analysis of DINN training and parameter estimation
	Selection of neural network architecture:
	DINN disease model prediction
	Analysis of DINN's disease model prediction
	Disease extinction (R0 < 1)
	Disease persistence (R0 > 1)
	DINN performance across beta a values

	Discussion
	Conclusions
	Appendix A: Implementation Details

