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Abstract: Linked to poverty, rheumatic heart disease (RHD) disproportionately burdens the developing 
world, receiving less attention than other infectious diseases. Resampling and cost-sensitive learning 
techniques are applied to predict the mortality risk of imbalanced RHD datasets. A total of 57 models 
were constructed, and was comprised of 50 resampled machine learning (ML) models and 7 cost-
sensitive learning models. The results from the Friedman and Nemenyi tests highlight the superior 
performance of the cost-sensitive support vector classification model, with an AUC of 0.888, sensitivity 
of 0.800, G-means of 0.806, and a Brier score of 0.061. The global and local interpretability are advanced 
through two post-hoc interpretable ML methods, facilitating the prioritization of key features associated 
with mortality risk, the determination of thresholds for features, and a comprehension of how variations 
in these features influence patient mortality rates. These findings may prove to be clinically valuable, 
assisting clinicians in tailoring precise management that is essential to maximize the survival of RHD 
patients. 

Keywords: rheumatic heart disease; explainable machine learning; prediction mortality; resampling 
and cost-sensitive learning; imbalanced data 

 

1. Introduction 

Rheumatic heart disease (RHD) is a cardiac condition that stems from rheumatic inflammation, 
leading to damage in the heart valves. The primary instigator of heart valve disease is rheumatic fever, 
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which is initiated by an infection with group A beta-hemolytic streptococcus [1,2]. This infection 
primarily inflicts harm on the heart valves, which results in stenosis and an insufficient closure, and 
ultimately progresses to heart failure [3]. The recent Global Burden of Diseases report on RHD serves 
as a timely reminder of the notable global heterogeneity in RHD burden [4,5]. In developed nations, 
the incidence of RHD has significantly dropped due to better living conditions, widespread healthcare 
education, and the widespread use of penicillin. However, in certain regions and among vulnerable 
groups, especially in low and middle-income countries such as Africa, the Western Pacific, and India, 
RHD continues to be prevalent at high levels. This is mainly because of limited healthcare resources 
and difficulties in early diagnoses and treatments [5]. 

Accurately predicting the in-hospital mortality risk of patients in intensive care units (ICU) is 
crucial to optimize treatment plans, to make informed clinical decisions, and to establish harmonious 
doctor-patient relationships [6]. Currently, statistical models that utilize serum related markers such as 
IL-1β, IL-8, IL-6, tumor necrosis factor α, and anti-streptolysin for the prognostic assessment of RHD 
are in clinical use [7,8]. However, owing to the limitations of these statistical methods in addressing 
intricate relationships between clinical and biological factors, the prognostic results frequently suffer 
from a lack of specificity or sensitivity [8–10]. 

In recent years, with significant advancements in computer performance, the integration of 
medical engineering has become increasingly prominent, and machine learning (ML) algorithms have 
progressively entered the field of medicine [7]. Ngiam et al. demonstrated that Ml algorithms 
outperformed traditional methods (e.g., descriptive statistics, inferential statistics, non-parametric 
statistics), especially in evaluating critically ill patients with severe conditions and extensive, complex 
clinical data [11]. ML approaches actively seek to capture various rich and interesting features by 
considering multidimensional nonlinear patterns among variables, regardless of their complexity. 
Consequently, ML algorithms have been widely applied to prognostic assessments across diverse 
patient populations [12–14]. In the domain of RHD, prior research has primarily focused on the 
utilization of ML algorithms for diagnoses [15,16] and classification [17]. Regarding mortality 
prediction for RHD patients in the ICU, to our knowledge, there are only a few existing studies [10]. 
This specific study employed XGBoost and a logistic regression, and exhibited a commendable 
performance in the development of prognostic models. 

The imbalance between major and minor classes often results in frequent errors in prediction 
and classification. In medical datasets, the minor class typically refers to events with lower 
occurrence rates, such as disease recurrence, progression, or mortality [18]. Errors in predicting the 
minor class have a more substantial impact on the clinical outcomes compared to errors in predicting 
the major class. For instance, misclassifying disease progression as normal or low-risk may 
inadvertently categorize patients as normal or low-risk, respectively, leading to potential adverse 
consequences [19–21]. The age-standardized death rate for RHD was approximately 3.9 per 100,000 
in 2019 [22], implying the potential occurrence of imbalanced data in the RHD dataset. However, a 
pioneering effort to construct predictive mortality models seemed to have overlooked this aspect in 
their work [10]. Therefore, our paper focuses on examining the issue of data distribution uniformity to 
optimize the predictive performance of mortality risk in RHD patients. 

Moreover, despite the favorable performance of ML algorithms in previous studies, the inherent 
“black-box” nature of ML algorithms makes it challenging to elucidate which patient features are 
accountable for a given prediction. The lack of interpretability has been a significant impediment to 
the adoption of ML models in the medical domain [23]. To interpret the results of ML models, our 
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paper integrates ML algorithms with post-hoc interpretable ML techniques such as Shapley additive 
explanations (SHAP; [24]) and local interpretable model-agnostic explanations (LIME; [25]). This 
integration aims to provide a deeper understanding of the complex relationships between features and 
predictions. 

To address the gaps that arise from data imbalance and the lack of interpretability when predicting 
the death risk for RHD patients, this paper aims to complete the following: 

(1) Develop RHD mortality risk predictive models customized for imbalanced data distribution; 
(2) Enhance the interpretability of the constructed ML model, revealing the key features that 

influence the mortality risk of RHD patients and elucidating how variations in these features impact 
changes in mortality risk. 

In addition to optimizing the predictive performance of mortality risk in critically ill RHD patients, 
this study also offers intuitive explanations. These explanations assist clinicians in understanding the 
specific prediction process of the developed model, facilitate the early identification of high-risk 
individuals for in-hospital mortality, and increase opportunities for early intervention. Consequently, 
this facilitates the optimization of treatment plans and the formulation of clinical decisions that 
maximize the benefits for patients. 

2. Materials and methods 

2.1. Data 

In this paper, we utilized the freely accessible critical care database known as the Medical 
Information Mart for Intensive Care (MIMIC-IV) database version 4.1, with the necessary permission 
granted (certificate number: 48369375). The MIMIC-IV database contains comprehensive clinical data 
pertaining to patients admitted to the Beth Israel Deaconess Medical Center between 2008 and 2019. 
It encompasses a vast dataset, including over 200,000 emergency department admissions and more 
than 70,000 ICU stays. The clinical data within MIMIC-IV encompasses a wide range of information, 
including demographic characteristics, vital signs, results from imaging examinations, laboratory tests, 
a data dictionary, and documents containing codes from the International Classification of Diseases, 
Ninth and Tenth Revisions (ICD-9 and ICD-10, respectively). Additionally, it contains records of 
hourly physiologic data obtained from bedside monitors, which have undergone validation by ICU 
nurses. Crucially, it’s important to note that all health information sourced from the MIMIC-IV 
database is anonymized, thus eliminating the need for informed consent from the patients involved. 
This database has received approval from the Institutional Review Boards of the Massachusetts 
Institute of Technology. 

To filter missing data, we employed the missingno module in the Python software, version 3.9.12. 
In Figure 1(a), each column represents a clinical variable, and the white line signifies missing data. 
The denser the white lines within each column, the greater the number of missing values for that 
variable. Patients that met specific criteria were chosen for this study from the database, including the 
following: (1) their initial ICU admission occurring during their first hospitalization, (2) an ICU length 
of stay exceeding 24 hours, and (3) an age of over 18 years. After removing 452 cases with a missing 
rate that exceeded 80% for laboratory indicators and 507 cases with a total indicator missing rate that 
exceeded 20%, there remained 1266 study samples. This cohort comprised 1150 in-hospital survivors 
and 116 in-hospital deaths. The identification of patients with RHD was carried out using ICD-9 and 
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ICD-10 codes. Each case encompassed 163 data items, and covered demographic information, vital 
signs recorded within 24 hours of ICU admission, and laboratory results. The data extraction process 
is depicted in Figure 1(b). In Figure 1(c), we present the distribution of inpatient statuses in the research 
cohort, with 91% of the population being classified as survivors and 9% as deceased. Regarding the 
gender distribution, females account for 49%, while males make up 51%. In terms of the racial 
distribution, the majority are White, comprising 67.77%, followed by African Americans at 8.69%, 
other races at 5.53%, Hispanic/Latinx at 3.55%, Asians at 3.24%, an unknown race at 11.06%, and 
American Indian/Alaska Native at 0.16%. Furthermore, we conducted an analysis of the age 
distribution across different statuses. Missing values were imputed using the K-nearest neighbor (KNN) 
interpolation method [16]. 

 

(a) 

 

(b)                                        (c) 

Figure 1. (a) Visualization for variable missingness: the white lines represent missing data. 
(b) The detailed process of data extraction. (c) The status, gender, ethnicity and age 
distribution of the study cohort. 
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2.2. Statistical analysis 

The Friedman test [27] is a non-parametric statistical test used to analyze data in which multiple 
related groups or conditions are compared. The test works by ranking the data within each group, 
calculating the average rank for each group, and then comparing the average ranks to determine if there 
are statistically significant differences between the groups. The Friedman statistics τχ2 can be computed 
as follows: 

 

where k and N are the number of algorithms and datasets, respectively, and Rj is the sum of ranks for 
the j-th group. 

The Friedman test can be followed by post-hoc tests (e.g., Nemenyi test, [28]) to identify which 
specific groups differ from each other when significant differences are found. The performance 
disparity between the two clustering methods is deemed significant when the average rank difference 
between them surpasses the critical threshold. The critical difference can be computed as follows: 

 

where qa is the critical value for the Nemenyi test at a specific significance level (alpha), which can be 
found in Nemenyi’s critical values table. 

2.3. Data normalization 

In a multi-indicator system, indicators often possess varying scales and quantitative levels due to 
their differing nature and meaning. Directly using raw information for an analysis can result in the 
attenuation of indicators with lower values and the overemphasis of those with higher values. Therefore, 
this section employs the normalization method to process the continuous indicators dimensionlessly, 
thus ensuring the reliability and validity of the analysis results. The calculation formula for 
normalization is as follows: 

 

where x∗ij represents the normalized value, xij is the original measured value, min(xij) denotes the 
minimum value of the variable, and max(xij) denotes the maximum value of the variable. 

2.4. Feature vectorization and selection 

Categorical data is comprised of variable indicators that need to undergo vectorization prior to 
modeling and analysis. For instance, concerning the patient survival status, “0” signifies the patient’s 
survival during their ICU stay, whereas “1” signifies the patient’s demise during the ICU stay. Similarly, 
in terms of gender, “0” corresponds to male, while “1” corresponds to female. When dealing with 
categorical variables such as race, onehot coding was employed for the purpose of vectorization. This 
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approach facilitates the representation of categorical patient characteristics in a structured and 
vectorized format. 

High correlations between variables can introduce bias into the model, which impacts the 
estimation of explanatory variables. This bias can lead to inconsistent results compared to actual 
outcomes and may even impede the model convergence. This study employed Pearson correlation 
coefficients and the recursive feature elimination (RFE) technique to select features from the training 
cohort data. In this context, variables with correlation coefficients that exceed 0.7 will be removed and 
processed accordingly. 

2.5. Modelling 

The study cohort exhibited a severe data imbalance issue, with the ratio of in-hospital survival to 
in-hospital mortality standing at 1150 : 116. To address this significant class imbalance, we have 
devised diverse methodologies, broadly categorized into two primary approaches: data-driven and 
algorithm-driven methods. Besides, hyperparameter optimization and cross-validation through 
GridSearchCV were applied to prevent overfitting and to increase model accuracy. Figure 2 shows the 
simplified schematic workflow for the predictive model. 

 

Figure 2. The simplified schematic workflow for the predictive model. It roughly includes 
the following steps: data filtering and preprocessing, feature selection, model optimization, 
and interpretation. 

2.5.1. Data-driven approach 

Data-driven approaches aim to balance class distribution in the input dataset by adjusting the class 
ratio. Commonly employed sampling techniques, such as under-sampling, oversampling, or a 
combination of both, have been widely utilized for this purpose [19]. 

In our study, we implemented four resampling methods: random (ROS) oversampling, 
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Borderline-SMOTE (BS) oversampling, adaptive synthetic (ADASYN) oversampling, and a 
combination of random under-sampling and ADASYN oversampling (ADASYN&ROS). The ROS 
technique is a data-level approach aimed at addressing the issue of imbalanced data by increasing the 
number of minority classes. This is accomplished by randomly replicating instances to balance the 
majority classes [29]. BS generates synthetic minority class samples by interpolating features from 
existing instances in this border region, and aims to improve the overall balance in the dataset for an 
enhanced ML model performance [30]. ADASYN generates synthetic minority class samples based 
on the number of neighboring samples for each data point, placing a greater emphasis on those minority 
class samples that are relatively isolated in the feature space [31]. ADASYN&ROS involves random 
under sampling of the majority class samples, specifically in-hospital survival data, concurrently with 
ADASYN oversampling of the minority class samples, corresponding to in-hospital mortality data. 
This dual approach aims to address class imbalance while preserving the diversity of the dataset. 

Subsequently, ML algorithms are trained on the aforementioned four resampled training sets, and 
a model validation was performed on the corresponding test sets. The candidate ML algorithms 
employed in this study include a logistic regression (LR), random forest (RF), decision tree (DT), extra 
tree (ET), gradient boosting (GB), extreme gradient boosting (XGBoost), Gaussian Naive Bayes 
(GNB), multilayer perceptron (MLP), adaptive boosting (Adaboost), and k-nearest neighbors (KNN). 
The selection of these diverse algorithms is motivated by the unique advantages inherent in each 
technique. The optimal approach for the RHD dataset remains uncertain. Nevertheless, among the 
mentioned candidate methods, some have demonstrated success in simulating the prediction of in-
hospital mortality for patients in the ICU [6], while others represent emerging methodologies in the 
field [10,14]. 

2.5.2. Algorithm-driven approach 

On the other hand, the algorithm-driven approach seeks to fine-tune the learning algorithm or 
classifier without necessitating modifications to the original training dataset [32]. The basic 
assumption by any traditional classification algorithm is that the cost of misclassification is the same 
for all the response variable values. In this paper, we utilized the cost-sensitive learning methods by 
deliberately increasing the cost of misclassified samples and adjusting their weights during the training 
process. 

To be specific, we implemented the adaptive cost-sensitive boosting (AdaCost) algorithm [33], 
which adapts sample weights in real-time based on their classification errors to mitigate the impact of 
high-cost classification errors. AdaCost achieves this by refining the weights of incorrectly classified 
samples in accordance with the predefined cost values present in the cost matrix. This results in a more 
substantial penalty for high-cost classification errors, thereby elevating the model’s sensitivity to such 
errors during the training phase. This comprehensive approach places a heightened emphasis on 
addressing high-cost classification errors and, consequently, enhances the model’s cost sensitivity. 
Furthermore, our research was extended to encompass a range of cost-sensitive learning techniques, 
including the cost-sensitive support vector classification (SVC), the cost-sensitive LR, the cost-
sensitive DT, the cost-sensitive ET, the cost-sensitive MLP, and the cost-sensitive RF. These diverse 
methodologies collectively contribute to a holistic approach aimed at tackling data imbalance issues 
with a robust theoretical foundation. 
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2.5.3 Model evaluation 

The assessment of the candidate models’ performance encompasses various metrics, including 
the area under the receiver operating characteristic curve (AUC), sensitivity, Brier score, geometric 
mean score (G-means), and area under the precision-recall curve (PR-AUC). AUC acts as a valuable 
metric that captures the balance between the true positive rate and the false positive rate at different 
thresholds. It offers a quantitative evaluation of a model’s proficiency in distinguishing between 
distinct classes. The Brier Score is a metric used to assess the quality of probability predictions, which 
is calculated as follows: 

 

where N represents the number of samples, y represents the actual class labels (0 or 1), and fi represents 
the model’s probability predictions for the ith sample being positive. In scenarios characterized by 
imbalanced datasets, solely relying on traditional metrics like accuracy can be insufficient. This 
limitation arises from the model’s tendency to favor the majority class, potentially resulting in a 
suboptimal performance for the minority class. Sensitivity measures the model’s capability to 
accurately identify positive class samples, which is as follows: 

 

where TP is the true positive count, and FN is the false negative count. The G-means score introduces 
a comprehensive approach to the performance evaluation, aiding in the identification and mitigation 
of such imbalances. It can be calculated as follows: 

 

where specificity is true negative rate. On the other hand, PR-AUC assesses a model’s performance 
under varying trade-offs between precision and recall. They both are commonly employed to evaluate 
the model’s effectiveness in handling imbalanced datasets. The values of the aforementioned metrics 
all lie within the range of 0 to 1. In the case of the Brier Score, a proximity to 0 signifies a superior 
model performance. Conversely, for the remaining metrics, a greater proximity to 1 indicates an 
improved model performance. 

2.5.4. Model interpretation 

SHAP is a tool to measure the variable importance, and understands the global model structure 
based on combining local explanations of each prediction [25]. Its method of evaluating feature 
importance is to use coalitions of one or more features to predict a quantity of interest, to find the 
difference in predictions between coalitions that do and do not include a given feature, and then to use 
such differences to quantify the magnitudes and directions of each feature’s global and local 
contributions. The method works by constructing an additive explanation model: 
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where g is the explanation model, z∈(0, 1)m, m is the number of predictor variables, zi′is a coalition 
vector, ϕi ∈ R is the importance value of the ith predictor, and ϕ0 is the expected value of the target 
variable, or in other words, the mean of all prediction. For any predicted sample, the Shapley value Φi 
is as follows: 

 

where f (S∪i) and f (S) are the model outcomes with and without the ith predictor, respectively, and S 
is a subset of features used in the model. Values of Φi that are greater (less) than zero refer to the 
positive (negative) effect of the variable i, which increases (decreases) the predicted value above 
(below) the base value. In our study, we employed a SHAP feature importance assessment to provide 
a comprehensive global interpretation of the baseline model we developed. Furthermore, we utilized 
SHAP to generate illustrative instances that demonstrate the local explanations for individual 
predictions. 

Local interpretable model-agnostic explanations (LIME) is an interpretation method for local and 
individual model explanations, and is designed to aid in understanding the reasons behind ML model 
predictions for specific instances [26]. The core idea of this approach is to approximate the behavior 
of the original model near a particular instance by constructing a simple and interpretable local model. 
The formula for LIME is represented as follows. For the original model f and the instance to be 
explained x, LIME constructs a local model g to approximate f around x. The representation of g is 
given by the following: 

 

where L(f, g, πx) represents the loss function, which measures the disparity in predictions between 
g and f on the perturbed samples, Ω(g) is the regularization term, which ensures the simplicity of g, 
and πx is the weight function used to assign weights to perturbed samples, which is usually determined 
based on the similarity between the instance and the perturbed samples. Figure 2 shows the simplified 
schematic workflow of this study. 

3. Results 

After calculating the Pearson correlation matrix for 67 indicators, we identified and subsequently 
removed 20 variables that exhibited multicollinearity. Following a specific feature ranking criterion, 
RFE initiates with a complete set and iteratively eliminates the least relevant features, resulting in the 
selection of the top 26 important features. Figure 3 illustrates the Pearson correlation matrix among 
the remaining 26 indicators. All the correlation coefficients are less than 0.7, which addresses the 
potential issue of multicollinearity. 

From a data-driven perspective, we reconstructed the dataset through oversampling techniques to 
mitigate the negative impact of sample skewness during the learning process. Specifically, we explored 
four resampling methods (ROS, BS, ADASYN, ROS-ADASYN) in combination with ten ML 
classifiers to predict the death risk of the test cohort. Figures 4(a)–(e) depict the class distribution of 
“Survive” and “Death” in the original dataset and in resampled datasets, specifically focusing on two 
key features, namely wbc_max and sofa. In the original dataset, the class ratio is observed at 805 : 81. 
Subsequently, the data was subjected to diverse resampling techniques, resulting in class ratios of 805 : 
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805, 805 : 805, 922 : 919, and 805:805, respectively (Figure 4(f)). 
Figure 5(a) presents the predictive performance for ten ML models without a resampling 

technique (e.g., on the original dataset). For convenience, we referred to these models as O-models in 
the following. It is conspicuously evident that, prior to implementing data balancing techniques, the 
O-models exhibited a discernible trend of lower sensitivity and G-means values across the remaining 
models. This occurrence can be attributed to the inherent nature of a direct analysis on severely 
imbalanced datasets, which results in a pronounced bias within the trained models towards the majority 
class; in this context, it pertains to the survival outcome. While the O-models boasted a commendable 
AUC and Brier score, they were afflicted by a significantly low true positive rate. This, in practice, 
rendered it ill-suited for the task of effectively distinguishing the outcome of deceased patients, thus 
diminishing its practical reliability. 

Figure 5(b)–(e) provides a comprehensive visual representation of the predictive performance of 
various combinations of four re-sampling algorithms paired with ten ML models. After the application 
of data balancing strategies, these re-sampling combined models exhibited consistently favorable 
AUCs, and retained promising Brier scores. It is noteworthy that virtually all re-sampling combined 
models showcased significant enhancements in both the sensitivity and G-means. This enhancement 
was most pronounced in models such as ROS-LR, BS-LR, ADASYN-LR, and ADASYN&ROSLR, 
which signifies a notable augmentation in the ability of the trained models to discriminate between 
positive and negative samples. 

 

Figure 3. The heatmap of Pearson correlation coefficients among 26 selected features. 
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Figure 4. (a)–(e) The class distribution of “Survive” and “Death” in the original dataset, 
as well as in datasets resampled using ROS, BS, ADASYN, and ROS-ADASYN 
techniques. (f) The counts of “Survive” and “Death” for each of the five datasets. 

 
(a)                               (b)                               (c)

 
(d)                               (e)                                (f) 

Figure 5. (a)–(e) Evaluated metrics for 10 ML models on the original, ROS resampled, BS 
resampled, ADASYN resampled and ADASYN&ROS datasets, respectively. (f) 
Evaluated metrics for seven cost-sensitive ML models. 
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Figure 5(f) presents a comprehensive evaluation of seven cost-sensitive ML models. The 
outcomes of this evaluation underscore the efficacy of cost-sensitive learning techniques in improving 
the model performance. This is achieved by assigning higher rewards to the minority samples, thereby 
increasing the accuracy of classifying these minority instances. Notably, the cost-sensitive SVC stands 
out as the most distinguished method in this context. It exhibits the highest discrimination levels, as 
evidenced by an AUC of 0.888 and a Brier score of 0.061. Additionally, this model demonstrates a 
commendable sensitivity of 0.800 and an impressive G-mean of 0.806. Given its exceptional 
performance, the cost-sensitive SVC appears to be a suitable base model for an interpretable analysis. 
Subsequently, we conducted a Friedman test to further assess the performance of these seven ML 
models. We computed the average rank for each algorithm across the entire dataset. In our analysis, 
using a significance level of α = 0.05, the test statistics for the AUC, sensitivity, G-means, and Brier 
score yielded values of 19.689, 202.067, 78.918, and 138.860, respectively. All of these values surpass 
the critical threshold of 2.324, indicating statistically significant distinctions among these methods. 
Subsequently, we performed a post-hoc analysis using the Nemenyi test to discern the nature of these 
differences. In our scenario, the CD was determined to be 3.185. Figure 6 illustrates the CD diagram 
derived from pairwise Nemenyi tests. When the black lines connect certain groups in the figure, it 
indicates that the differences between these groups are not significant in multiple comparisons. To 
further offer a holistic insight into the predictive performance of the aforementioned 57 ML models, 
we present their PR-AUC and AUC curves in Figures 7 and 8, respectively. Notably, one striking 
revelation is the exceptionally high PR-AUC of 0.977 achieved by the Adacost model. It also stands 
as a favorable choice in practical applications, where the emphasis is on the identification of mortality. 
Here, we are particularly focused on the overall performance across four key metrics, and therefore, 
the cost-sensitive SVC should be the preferred method for practical clinical diagnoses and applications. 

 

(a) AUC                                       (b) Sensitivity 

 

(c) G-means                                    (d) Brier score 

Figure 6. The CD diagram of AUC, sensitivity, G-means, and Brier score derived from 
pairwise Nemenyi tests for the algorithm-driven models. 
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(a)                        (b)                           (c) 

 

(d)                    (e)                               (f) 

Figure 7. The PR-AUC curves of data and algorithm-driven approaches for the test cohort. 

 

(a)                       (b)                         (c) 

 

(d)                    (e)                            (f) 

Figure 8. The AUC curves of data and algorithm-driven approaches for the test cohort. 

In SHAP, the global importance of each feature we estimated was used to understand the general 
impact of various features across the study cohort (Figure 9). The SHAP summary plot illustrated the 
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entire distribution of each feature’s impact on the model output. The color allowed us to understand 
how changes in the value of a feature affected the change in outcome. Red represents a high feature 
value, whereas blue represents a low feature value. The further away a point is from the baseline SHAP 
value of zero, the stronger it effects the output. This way, a features relationship with the SHAP value 
(and in turn the predicted output) can be better understood. 

Our findings reveal that the physiological parameters (sofa, age, total_protein_max) and immune 
function indicators (wbc_max, wbc_min), in conjunction with markers reflecting circulatory dysfunction 
(dbp_max, temperature_max, urine output), and coagulation function (ptt_max), emerge as pivotal 
determinants to evaluate the mortality risk in 57 patients upon ICU admission. These factors may exert 
a more pronounced influence on assessing the patient’s condition and prognosis compared to other risk 
factors, including the blood glucose and hematocrit levels. The directional impact of the SHAP values 
suggests that a right-tailed distribution of elevated sofa, age, body temperature, white blood cell count, 
and partial thromboplastin time is associated with an increased risk of mortality. Additionally, a left-
tailed distribution of low urine output, total protein level, and maximum diastolic blood pressure shows 
significant associations and exhibits a positive correlation with the predicted mortality. 

 

Figure 9. SHAP summary plot of the cost-sensitive SVC model. Each dot represents a 
patient’s feature attribution value. Dots are color-coded based on patient feature values, 
with red indicating higher values (e.g., higher risk of death) and blue indicating lower 
values. The distance from the baseline SHAP value of zero reflects the strength of each 
feature’s impact on the model output. 

In Figure 10, we showcase the SHAP interactive dependency plot. This visualization, which 
portrays the concurrent variation of two features and its consequential impact on the SHAP values and 
the ultimate model output, serves as a valuable tool to discern the sensitivity of predictions to various 
features. In Figure 10(a), a noticeable trend emerges: as the sofa values rise, there is a concurrent 
increase in the corresponding SHAP values. This relationship is easily interpretable, as an escalation 
in the sofa score typically aligns with a deterioration in a patient’s condition and organ functionality, 
ultimately heightening the risk of mortality. When the age surpasses 72.5 years, the associated SHAP 
values consistently maintain positivity, thus exhibiting a gradual increase with advancing age. This 
pattern signifies a persistent escalation in the risk of mortality. Notably, an interaction between the sofa 
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score and age emerges during this period. Among patients of an identical age, those with elevated sofa 
scores exhibit a heightened susceptibility to mortality. Contrastingly, this interaction is not discernible 
below the age of 72.5 years (Figure 10(b)). With the extension of the maximum partial thromboplastin 
time (ptt max), the corresponding SHAP values shift from negative to positive, thus increasing the risk 
of mortality in RHD patients. This indicates potential abnormalities in the coagulation function 
associated with prolonged ptt max, thereby elevating the risk of thrombotic events or other 
coagulation-related complications in RHD patients. 

When ppt_max exceeds 120 seconds, there may be an interaction between ppt_max and sofa: for 
cases with the same ppt_max value, when the sofa is higher, there are higher SHAP values, indicating 
an increased risk of mortality (Figure 10(b)). For urine output, dbp_max, and total_protein_max, as 
their values increase, the corresponding SHAP values also turn positive, indicating a decrease in the 
associated risk of mortality. This phenomenon can be attributed to the body’s improvement in the 
corresponding physiological conditions. Specifically, an elevated urine output suggests an enhanced 
physiological circulation and renal function, an increase in dbp_max reflects an improved diastolic 
blood pressure regulation, and a rise in total_protein_max signifies positive changes in the overall 
protein levels. These improvements collectively contribute to a more favorable health status and a 
reduced risk of mortality (Figures 10(d)–(f)). 

 

(a)                           (b)                           (c) 

 

(d)                           (e)                           (f) 

Figure 10. SHAP dependence plot of the cost-sensitive SVC model. The x-axis denotes 
the value of the primary driver, while the y-axis represents the corresponding SHAP value. 
The coloration of each point signifies the value associated with the secondary driver. 

We randomly selected two positive cases (deaths) from the test dataset and conducted a local 
analysis of the mortality risk using both SHAP and LIME interpreters (Figure 11). It is evident that the 
top 10 key features identified by these two interpreters are remarkably similar, and the response trends 
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of these features to the risk of death are consistent. 

 

      (a)                                         (b) 

 
      (d)                                         (e) 

Figure 11. Local interpretable of the model’s true positive cases (deaths). (a) and (c): True 
positive individual interpretation based on SHAP. (b) and (d): True positive individual 
interpretation based on LIME. 

4. Discussion 

RHD, as a disease associated with poverty, continues to impose a disproportionately high burden 
on the developing world, despite being fundamentally preventable. Compared to other prevalent 
infectious issues such as malaria, HIV/AIDS, and tuberculosis, RHD receives relatively less attention 
in the medical and scientific communities, despite causing a significant cardiovascular morbidity and 
mortality burden. This relative neglect and lack of funding may have contributed to the limited progress 
in basic medical research in this field over the past five decades [34]. Specifically, the current research 
landscape regarding accurately predicting the mortality risk in RHD remains relatively underexplored.  

By systematically combining four resampling methods (ROS, BS, ADASYN, ROS-ADASYN) 
with ten ML techniques, along with considering seven cost-sensitive learning models, we presented a 
total of 57 ML regression prediction models in this study. We identified that the utilization of the cost-
sensitive SVC yielded the most favorable outcomes (with an AUC of 0.888, sensitivity of 0.800, G-
means of 0.806, and a Brier score of 0.061), which was well-suited for our research cohort. Given that 
the negative class (deaths) is often the minority class, classifiers without balancing practices may 
exhibit a bias toward predicting the majority class. We demonstrated that the application of re-sampling 
and cost-sensitive learning methods significantly enhanced the sensitivity and G-means for the 
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minority class. Although the improvement in the AUC was not statistically significant, resampling and 
cost-sensitive learning techniques contributed to balancing the weights between high-risk and low-risk 
patients. Integrating resampling and cost-sensitive learning techniques into mortality risk prediction 
models should be more widely applied in real clinical cases to address the challenges posed by 
imbalanced data. 

Global interpretability enables clinical physicians to understand the response trends of the model 
across the entire feature space. In contrast, local interpretability provides feature-based decision 
explanations for specific individuals. In practice, both these approaches can assist clinical physicians 
in making effective decisions during medical processes. In our study, mortality predictors of RHD 
patients were examined and were found to be consistent with previous findings. Our observation of 
increased the mortality rates in older individuals with RHD, which is in line with findings from earlier 
studies [35,36]. 

One main contributing factor to this trend is the increased incidence of two high fatality 
complications of RHD, namely atrial fibrillation and stroke, which rise with the age at diagnosis (by 
5% and 4% per year of age, respectively) [35]. PTT emerged as a pivotal predictor within the cost-
sensitive SVC regression model. Heightened levels of fibrinogen correlated with the presence of 
cerebral microbleeds in ischemic stroke patients afflicted by RHD [37]. Anticoagulation stood as the 
cornerstone for mitigating the progression of RHD, especially when evaluating coagulation function 
indices such as PT. This is particularly crucial for patients with RHD, especially those grappling with 
atrial fibrillation, a history of thromboembolism, or left atrial thrombosis [38]. In patients with RHD, 
the heart is susceptible to the effects of rheumatic inflammation, leading to valve damage and structural 
alterations. These changes can impact both the contraction and relaxation functions of the heart, which 
subsequently influences the diastolic pressure. A low diastolic pressure may result in a decline in 
systemic tissue perfusion, which negatively affects the normal function of organs. During cardiac 
diastole, a low diastolic pressure may reduce the filling of the coronary arteries, causing an insufficient 
blood supply to the heart. Simultaneously, it may also decrease the blood supply to other organs 
throughout the body. In the lungs, a low diastolic pressure might induce congestion in the pulmonary 
circulation, leading to pulmonary congestion. The deterioration of the left ventricular (LV) diastolic 
function, which causes an increase in LV filling pressure and pulmonary congestion, could potentially 
trigger acute heart failure (AHF). Severe acute ischemia rapidly impairs myocardial relaxation, which 
affects early LV filling and further elevates the filling pressure. In cases of sudden onset atrial fibrillation 
with the loss of atrial contraction, LV filling may be compromised, which significantly increases the 
filling pressure in the presence of a pre-existing diastolic dysfunction. For instance, severe mitral valve 
stenosis (common in RHD) represents a diastolic dysfunction caused by valve abnormalities rather than 
LV structural disease. Moreover, it can precipitate atrial fibrillation, which further escalates the risk of 
AHF. An appropriate diastolic pressure level signifies normal perfusion to the heart and organs 
throughout the body, which serves as a vital indicator to assess the risk of complications such as AHF 
and atrial fibrillation [29]. The case report and experimental analysis [39–41] confirmed that RHD 
adversely affects cardiac function, potentially resulting in a decreased cardiac pumping capacity and 
reduced tissue perfusion throughout the body. This prompts the kidneys to sense the decreased blood 
flow, which leads to a reduction in urine production. However, a significant improvement in the 
condition is observed after administering cardiac and diuretic medications. This improvement can be 
attributed to the alleviation of pulmonary vein congestion through treatment, which prolongs the 
diastolic time and enhances the cardiac output [9]. The sofa score serves as a straightforward, yet potent, 
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rating index. This score quantifies organ damage by measuring the burden of organ dysfunction in 
critically ill individuals, and encompasses assessments of cardiovascular, hemostatic, and renal 
functions [42]. Besides, total protein is a reliable indicator of nutritional status [43], and there is a 
report linking malnutrition to an elevated mortality in individuals undergoing cardiac surgery [44]. 
Insufficient total protein levels may lead to inadequate blood volume and fluid retention, potentially 
exacerbating symptoms of heart failure. Previous investigations have indicated that hypoalbuminemia 
was common in patients with stable chronic or acute heart failure [45,46]. Moreover, it can impact the 
transport capacity of blood, thus influencing organ perfusion and oxygenation. Moreover, reduced total 
protein levels may compromise immune function, thus increasing the risk of infections; from this, the 
catabolism will increase, which includes reduced protein synthesis rates and increased protein 
degradation rates [47]. Therefore, when assessing the risk of mortality in patients with RHD, 
consideration of total protein levels is deemed a critical factor. Therefore, monitoring changes in the 
urine output, the sofa score, and the total protein levels is pivotal to evaluate the patient conditions and 
to assess the mortality risk. 

5. Conclusions 

In response to the existing issues of data imbalance and a lack of interpretability in predicting the 
mortality risk of RHD patients in the ICU, we have developed a comprehensive workflow. This 
workflow integrated feature selection, resampling techniques, cost-sensitive learning methods, the 
Friedman test, the Nemenyi test, and interpretable ML approaches. The key findings include the 
following: 

(1) The cost-sensitive SVC model demonstrated a superior performance among the 57 predictive 
models constructed; 

(2) Both resampling and cost-sensitive learning methods resulted in significant improvements 
compared to models directly built on the original data in the predictive performance, especially in 
terms of specificity and G means; and 

(3) Unveiling key physiological features and their response trends to RHD-related mortality. 
ML is a valuable and increasingly necessary tool in modern healthcare systems. The ML models 

developed in this study have undergone rigorous validation and demonstrated state-of-the-art 
performance. Their key advantage lies in their ability to be easily interpreted by clinical professionals 
solely using preoperative data. Accurately quantifying the risk of postoperative mortality can better 
inform patient-centered decision-making. Additionally, it can guide targeted quality improvement 
interventions and support activities of accountable care organizations relying on precise population 
risk estimates. Future work will focus on assessing the effectiveness and efficiency of integrating 
model predictions into clinical decision processes and improving hospital costs. 
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