¢ ) BDIA, 8: 43-64.
el Big Data and DOI: 10.3934/bdia.2024003
= Information Analytics Received: 08 June 2024
T Revised: 21 July 2024
Accepted: 30 July 2024

Published: 08 August 2024

https://www.aimspress.com/journal/BDIA

Research article

Motality prediction of ICU rheumatic heart disease with imbalanced

data based on machine learning

Yiwen Tao!, Zhenqiang Zhang?, Bengbeng Wang® and Jingli Ren'-*

1 School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
2 School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450003, China
3 BYD Company Ltd, Shenzhen 518118, China

* Correspondence: Email: renjl@zzu.edu.cn.

Abstract: Linked to poverty, rheumatic heart disease (RHD) disproportionately burdens the developing
world, receiving less attention than other infectious diseases. Resampling and cost-sensitive learning
techniques are applied to predict the mortality risk of imbalanced RHD datasets. A total of 57 models
were constructed, and was comprised of 50 resampled machine learning (ML) models and 7 cost-
sensitive learning models. The results from the Friedman and Nemenyi tests highlight the superior
performance of the cost-sensitive support vector classification model, with an AUC of 0.888, sensitivity
0t 0.800, G-means of 0.806, and a Brier score of 0.061. The global and local interpretability are advanced
through two post-hoc interpretable ML methods, facilitating the prioritization of key features associated
with mortality risk, the determination of thresholds for features, and a comprehension of how variations
in these features influence patient mortality rates. These findings may prove to be clinically valuable,
assisting clinicians in tailoring precise management that is essential to maximize the survival of RHD
patients.

Keywords: rheumatic heart disease; explainable machine learning; prediction mortality; resampling
and cost-sensitive learning; imbalanced data

1. Introduction

Rheumatic heart disease (RHD) is a cardiac condition that stems from rheumatic inflammation,
leading to damage in the heart valves. The primary instigator of heart valve disease is rheumatic fever,
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which is initiated by an infection with group A beta-hemolytic streptococcus [1,2]. This infection
primarily inflicts harm on the heart valves, which results in stenosis and an insufficient closure, and
ultimately progresses to heart failure [3]. The recent Global Burden of Diseases report on RHD serves
as a timely reminder of the notable global heterogeneity in RHD burden [4,5]. In developed nations,
the incidence of RHD has significantly dropped due to better living conditions, widespread healthcare
education, and the widespread use of penicillin. However, in certain regions and among vulnerable
groups, especially in low and middle-income countries such as Africa, the Western Pacific, and India,
RHD continues to be prevalent at high levels. This is mainly because of limited healthcare resources
and difficulties in early diagnoses and treatments [5].

Accurately predicting the in-hospital mortality risk of patients in intensive care units (ICU) is
crucial to optimize treatment plans, to make informed clinical decisions, and to establish harmonious
doctor-patient relationships [6]. Currently, statistical models that utilize serum related markers such as
IL-1pB, IL-8, IL-6, tumor necrosis factor a, and anti-streptolysin for the prognostic assessment of RHD
are in clinical use [7,8]. However, owing to the limitations of these statistical methods in addressing
intricate relationships between clinical and biological factors, the prognostic results frequently suffer
from a lack of specificity or sensitivity [8—10].

In recent years, with significant advancements in computer performance, the integration of
medical engineering has become increasingly prominent, and machine learning (ML) algorithms have
progressively entered the field of medicine [7]. Ngiam et al. demonstrated that Ml algorithms
outperformed traditional methods (e.g., descriptive statistics, inferential statistics, non-parametric
statistics), especially in evaluating critically ill patients with severe conditions and extensive, complex
clinical data [11]. ML approaches actively seek to capture various rich and interesting features by
considering multidimensional nonlinear patterns among variables, regardless of their complexity.
Consequently, ML algorithms have been widely applied to prognostic assessments across diverse
patient populations [12—14]. In the domain of RHD, prior research has primarily focused on the
utilization of ML algorithms for diagnoses [15,16] and classification [17]. Regarding mortality
prediction for RHD patients in the ICU, to our knowledge, there are only a few existing studies [10].
This specific study employed XGBoost and a logistic regression, and exhibited a commendable
performance in the development of prognostic models.

The imbalance between major and minor classes often results in frequent errors in prediction
and classification. In medical datasets, the minor class typically refers to events with lower
occurrence rates, such as disease recurrence, progression, or mortality [18]. Errors in predicting the
minor class have a more substantial impact on the clinical outcomes compared to errors in predicting
the major class. For instance, misclassifying disease progression as normal or low-risk may
inadvertently categorize patients as normal or low-risk, respectively, leading to potential adverse
consequences [19-21]. The age-standardized death rate for RHD was approximately 3.9 per 100,000
in 2019 [22], implying the potential occurrence of imbalanced data in the RHD dataset. However, a
pioneering effort to construct predictive mortality models seemed to have overlooked this aspect in
their work [10]. Therefore, our paper focuses on examining the issue of data distribution uniformity to
optimize the predictive performance of mortality risk in RHD patients.

Moreover, despite the favorable performance of ML algorithms in previous studies, the inherent
“black-box” nature of ML algorithms makes it challenging to elucidate which patient features are
accountable for a given prediction. The lack of interpretability has been a significant impediment to
the adoption of ML models in the medical domain [23]. To interpret the results of ML models, our
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paper integrates ML algorithms with post-hoc interpretable ML techniques such as Shapley additive
explanations (SHAP; [24]) and local interpretable model-agnostic explanations (LIME; [25]). This
integration aims to provide a deeper understanding of the complex relationships between features and
predictions.

To address the gaps that arise from data imbalance and the lack of interpretability when predicting
the death risk for RHD patients, this paper aims to complete the following:

(1) Develop RHD mortality risk predictive models customized for imbalanced data distribution;

(2) Enhance the interpretability of the constructed ML model, revealing the key features that
influence the mortality risk of RHD patients and elucidating how variations in these features impact
changes in mortality risk.

In addition to optimizing the predictive performance of mortality risk in critically ill RHD patients,
this study also offers intuitive explanations. These explanations assist clinicians in understanding the
specific prediction process of the developed model, facilitate the early identification of high-risk
individuals for in-hospital mortality, and increase opportunities for early intervention. Consequently,
this facilitates the optimization of treatment plans and the formulation of clinical decisions that
maximize the benefits for patients.

2. Materials and methods
2.1. Data

In this paper, we utilized the freely accessible critical care database known as the Medical
Information Mart for Intensive Care (MIMIC-IV) database version 4.1, with the necessary permission
granted (certificate number: 48369375). The MIMIC-1V database contains comprehensive clinical data
pertaining to patients admitted to the Beth Isracl Deaconess Medical Center between 2008 and 2019.
It encompasses a vast dataset, including over 200,000 emergency department admissions and more
than 70,000 ICU stays. The clinical data within MIMIC-IV encompasses a wide range of information,
including demographic characteristics, vital signs, results from imaging examinations, laboratory tests,
a data dictionary, and documents containing codes from the International Classification of Diseases,
Ninth and Tenth Revisions (ICD-9 and ICD-10, respectively). Additionally, it contains records of
hourly physiologic data obtained from bedside monitors, which have undergone validation by ICU
nurses. Crucially, it’s important to note that all health information sourced from the MIMIC-IV
database is anonymized, thus eliminating the need for informed consent from the patients involved.
This database has received approval from the Institutional Review Boards of the Massachusetts
Institute of Technology.

To filter missing data, we employed the missingno module in the Python software, version 3.9.12.
In Figure 1(a), each column represents a clinical variable, and the white line signifies missing data.
The denser the white lines within each column, the greater the number of missing values for that
variable. Patients that met specific criteria were chosen for this study from the database, including the
following: (1) their initial ICU admission occurring during their first hospitalization, (2) an ICU length
of stay exceeding 24 hours, and (3) an age of over 18 years. After removing 452 cases with a missing
rate that exceeded 80% for laboratory indicators and 507 cases with a total indicator missing rate that
exceeded 20%, there remained 1266 study samples. This cohort comprised 1150 in-hospital survivors
and 116 in-hospital deaths. The identification of patients with RHD was carried out using ICD-9 and
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ICD-10 codes. Each case encompassed 163 data items, and covered demographic information, vital
signs recorded within 24 hours of ICU admission, and laboratory results. The data extraction process
is depicted in Figure 1(b). In Figure 1(c), we present the distribution of inpatient statuses in the research
cohort, with 91% of the population being classified as survivors and 9% as deceased. Regarding the
gender distribution, females account for 49%, while males make up 51%. In terms of the racial
distribution, the majority are White, comprising 67.77%, followed by African Americans at 8.69%,
other races at 5.53%, Hispanic/Latinx at 3.55%, Asians at 3.24%, an unknown race at 11.06%, and
American Indian/Alaska Native at 0.16%. Furthermore, we conducted an analysis of the age

distribution across different statuses. Missing values were imputed using the K-nearest neighbor (KNN)
interpolation method [16].
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Figure 1. (2) Visualization for variable missingness: the white lines represent missing data.

(b) The detailed process of data extraction. (c¢) The status, gender, ethnicity and age
distribution of the study cohort.
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2.2. Statistical analysis

The Friedman test [27] is a non-parametric statistical test used to analyze data in which multiple
related groups or conditions are compared. The test works by ranking the data within each group,
calculating the average rank for each group, and then comparing the average ranks to determine if there
are statistically significant differences between the groups. The Friedman statistics 7,2 can be computed
as follows:

12N ,  k(E+1)
T k(k+1)(ZR —a )

where £ and N are the number of algorithms and datasets, respectively, and R; is the sum of ranks for
the j-th group.

The Friedman test can be followed by post-hoc tests (e.g., Nemenyi test, [28]) to identify which
specific groups differ from each other when significant differences are found. The performance
disparity between the two clustering methods is deemed significant when the average rank difference
between them surpasses the critical threshold. The critical difference can be computed as follows:

k(k+1)

CD=q, 6N

where qa 1s the critical value for the Nemenyi test at a specific significance level (alpha), which can be
found in Nemenyi’s critical values table.

2.3. Data normalization

In a multi-indicator system, indicators often possess varying scales and quantitative levels due to
their differing nature and meaning. Directly using raw information for an analysis can result in the
attenuation of indicators with lower values and the overemphasis of those with higher values. Therefore,
this section employs the normalization method to process the continuous indicators dimensionlessly,
thus ensuring the reliability and validity of the analysis results. The calculation formula for
normalization is as follows:

g Ty~ min(z;;)

Y max(z;)— min(z;)’

where x*; represents the normalized value, x;; is the original measured value, min(x;) denotes the
minimum value of the variable, and max(x;) denotes the maximum value of the variable.

2.4. Feature vectorization and selection

Categorical data is comprised of variable indicators that need to undergo vectorization prior to
modeling and analysis. For instance, concerning the patient survival status, “0” signifies the patient’s
survival during their ICU stay, whereas “1” signifies the patient’s demise during the ICU stay. Similarly,
in terms of gender, “0” corresponds to male, while “1” corresponds to female. When dealing with
categorical variables such as race, onehot coding was employed for the purpose of vectorization. This
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approach facilitates the representation of categorical patient characteristics in a structured and
vectorized format.

High correlations between variables can introduce bias into the model, which impacts the
estimation of explanatory variables. This bias can lead to inconsistent results compared to actual
outcomes and may even impede the model convergence. This study employed Pearson correlation
coefficients and the recursive feature elimination (RFE) technique to select features from the training
cohort data. In this context, variables with correlation coefficients that exceed 0.7 will be removed and
processed accordingly.

2.5. Modelling

The study cohort exhibited a severe data imbalance issue, with the ratio of in-hospital survival to
in-hospital mortality standing at 1150 : 116. To address this significant class imbalance, we have
devised diverse methodologies, broadly categorized into two primary approaches: data-driven and
algorithm-driven methods. Besides, hyperparameter optimization and cross-validation through
GridSearchCV were applied to prevent overfitting and to increase model accuracy. Figure 2 shows the
simplified schematic workflow for the predictive model.
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Figure 2. The simplified schematic workflow for the predictive model. It roughly includes
the following steps: data filtering and preprocessing, feature selection, model optimization,
and interpretation.

2.5.1. Data-driven approach
Data-driven approaches aim to balance class distribution in the input dataset by adjusting the class
ratio. Commonly employed sampling techniques, such as under-sampling, oversampling, or a

combination of both, have been widely utilized for this purpose [19].
In our study, we implemented four resampling methods: random (ROS) oversampling,
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Borderline-SMOTE (BS) oversampling, adaptive synthetic (ADASYN) oversampling, and a
combination of random under-sampling and ADASYN oversampling (ADASYN&ROS). The ROS
technique is a data-level approach aimed at addressing the issue of imbalanced data by increasing the
number of minority classes. This is accomplished by randomly replicating instances to balance the
majority classes [29]. BS generates synthetic minority class samples by interpolating features from
existing instances in this border region, and aims to improve the overall balance in the dataset for an
enhanced ML model performance [30]. ADASYN generates synthetic minority class samples based
on the number of neighboring samples for each data point, placing a greater emphasis on those minority
class samples that are relatively isolated in the feature space [31]. ADASYN&ROS involves random
under sampling of the majority class samples, specifically in-hospital survival data, concurrently with
ADASYN oversampling of the minority class samples, corresponding to in-hospital mortality data.
This dual approach aims to address class imbalance while preserving the diversity of the dataset.

Subsequently, ML algorithms are trained on the aforementioned four resampled training sets, and
a model validation was performed on the corresponding test sets. The candidate ML algorithms
employed in this study include a logistic regression (LR), random forest (RF), decision tree (DT), extra
tree (ET), gradient boosting (GB), extreme gradient boosting (XGBoost), Gaussian Naive Bayes
(GNB), multilayer perceptron (MLP), adaptive boosting (Adaboost), and k-nearest neighbors (KNN).
The selection of these diverse algorithms is motivated by the unique advantages inherent in each
technique. The optimal approach for the RHD dataset remains uncertain. Nevertheless, among the
mentioned candidate methods, some have demonstrated success in simulating the prediction of in-
hospital mortality for patients in the ICU [6], while others represent emerging methodologies in the
field [10,14].

2.5.2. Algorithm-driven approach

On the other hand, the algorithm-driven approach seeks to fine-tune the learning algorithm or
classifier without necessitating modifications to the original training dataset [32]. The basic
assumption by any traditional classification algorithm is that the cost of misclassification is the same
for all the response variable values. In this paper, we utilized the cost-sensitive learning methods by
deliberately increasing the cost of misclassified samples and adjusting their weights during the training
process.

To be specific, we implemented the adaptive cost-sensitive boosting (AdaCost) algorithm [33],
which adapts sample weights in real-time based on their classification errors to mitigate the impact of
high-cost classification errors. AdaCost achieves this by refining the weights of incorrectly classified
samples in accordance with the predefined cost values present in the cost matrix. This results in a more
substantial penalty for high-cost classification errors, thereby elevating the model’s sensitivity to such
errors during the training phase. This comprehensive approach places a heightened emphasis on
addressing high-cost classification errors and, consequently, enhances the model’s cost sensitivity.
Furthermore, our research was extended to encompass a range of cost-sensitive learning techniques,
including the cost-sensitive support vector classification (SVC), the cost-sensitive LR, the cost-
sensitive DT, the cost-sensitive ET, the cost-sensitive MLP, and the cost-sensitive RF. These diverse
methodologies collectively contribute to a holistic approach aimed at tackling data imbalance issues
with a robust theoretical foundation.

Big Data and Information Analytics Volume 8, 43—64.
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2.5.3 Model evaluation

The assessment of the candidate models’ performance encompasses various metrics, including
the area under the receiver operating characteristic curve (AUC), sensitivity, Brier score, geometric
mean score (G-means), and area under the precision-recall curve (PR-AUC). AUC acts as a valuable
metric that captures the balance between the true positive rate and the false positive rate at different
thresholds. It offers a quantitative evaluation of a model’s proficiency in distinguishing between
distinct classes. The Brier Score is a metric used to assess the quality of probability predictions, which
is calculated as follows:

Brier Score = M

N 5
where N represents the number of samples, y represents the actual class labels (0 or 1), and fi represents
the model’s probability predictions for the ith sample being positive. In scenarios characterized by
imbalanced datasets, solely relying on traditional metrics like accuracy can be insufficient. This
limitation arises from the model’s tendency to favor the majority class, potentially resulting in a
suboptimal performance for the minority class. Sensitivity measures the model’s capability to
accurately identify positive class samples, which is as follows:

TP

Sensitivity = m y

where TP is the true positive count, and FN is the false negative count. The G-means score introduces
a comprehensive approach to the performance evaluation, aiding in the identification and mitigation
of such imbalances. It can be calculated as follows:

G-mean = \/ Sensitivity X Specificity ,

where specificity is true negative rate. On the other hand, PR-AUC assesses a model’s performance
under varying trade-offs between precision and recall. They both are commonly employed to evaluate
the model’s effectiveness in handling imbalanced datasets. The values of the aforementioned metrics
all lie within the range of 0 to 1. In the case of the Brier Score, a proximity to 0 signifies a superior
model performance. Conversely, for the remaining metrics, a greater proximity to 1 indicates an
improved model performance.

2.5.4. Model interpretation

SHAP is a tool to measure the variable importance, and understands the global model structure
based on combining local explanations of each prediction [25]. Its method of evaluating feature
importance is to use coalitions of one or more features to predict a quantity of interest, to find the
difference in predictions between coalitions that do and do not include a given feature, and then to use
such differences to quantify the magnitudes and directions of each feature’s global and local
contributions. The method works by constructing an additive explanation model:

g(2) =¢o+ Zqzz/,
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where g is the explanation model, z (0, 1), m is the number of predictor variables, z; ” is a coalition
vector, ¢; € R is the importance value of the ith predictor, and ¢o is the expected value of the target
variable, or in other words, the mean of all prediction. For any predicted sample, the Shapley value @;
is as follows:

o= Yo BEMSI=Dh 500 — (s,

SSm\i

where (S Ui) and f (S) are the model outcomes with and without the ith predictor, respectively, and S
is a subset of features used in the model. Values of @; that are greater (less) than zero refer to the
positive (negative) effect of the variable i, which increases (decreases) the predicted value above
(below) the base value. In our study, we employed a SHAP feature importance assessment to provide
a comprehensive global interpretation of the baseline model we developed. Furthermore, we utilized
SHAP to generate illustrative instances that demonstrate the local explanations for individual
predictions.

Local interpretable model-agnostic explanations (LIME) is an interpretation method for local and
individual model explanations, and is designed to aid in understanding the reasons behind ML model
predictions for specific instances [26]. The core idea of this approach is to approximate the behavior
of the original model near a particular instance by constructing a simple and interpretable local model.
The formula for LIME is represented as follows. For the original model f and the instance to be
explained x, LIME constructs a local model g to approximate f around x. The representation of g is
given by the following:

9(z) =argminL (f,g,m.)+(g),

where L(f, g, nx) represents the loss function, which measures the disparity in predictions between
g and f on the perturbed samples, Q(g) is the regularization term, which ensures the simplicity of g,
and zx is the weight function used to assign weights to perturbed samples, which is usually determined
based on the similarity between the instance and the perturbed samples. Figure 2 shows the simplified
schematic workflow of this study.

3. Results

After calculating the Pearson correlation matrix for 67 indicators, we identified and subsequently
removed 20 variables that exhibited multicollinearity. Following a specific feature ranking criterion,
RFE initiates with a complete set and iteratively eliminates the least relevant features, resulting in the
selection of the top 26 important features. Figure 3 illustrates the Pearson correlation matrix among
the remaining 26 indicators. All the correlation coefficients are less than 0.7, which addresses the
potential issue of multicollinearity.

From a data-driven perspective, we reconstructed the dataset through oversampling techniques to
mitigate the negative impact of sample skewness during the learning process. Specifically, we explored
four resampling methods (ROS, BS, ADASYN, ROS-ADASYN) in combination with ten ML
classifiers to predict the death risk of the test cohort. Figures 4(a)—(e) depict the class distribution of
“Survive” and “Death” in the original dataset and in resampled datasets, specifically focusing on two
key features, namely wbc_max and sofa. In the original dataset, the class ratio is observed at 805 : 81.
Subsequently, the data was subjected to diverse resampling techniques, resulting in class ratios of 805 :
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805, 805 : 805, 922 : 919, and 805:805, respectively (Figure 4(f)).

Figure 5(a) presents the predictive performance for ten ML models without a resampling
technique (e.g., on the original dataset). For convenience, we referred to these models as O-models in
the following. It is conspicuously evident that, prior to implementing data balancing techniques, the
O-models exhibited a discernible trend of lower sensitivity and G-means values across the remaining
models. This occurrence can be attributed to the inherent nature of a direct analysis on severely
imbalanced datasets, which results in a pronounced bias within the trained models towards the majority
class; in this context, it pertains to the survival outcome. While the O-models boasted a commendable
AUC and Brier score, they were afflicted by a significantly low true positive rate. This, in practice,
rendered it ill-suited for the task of effectively distinguishing the outcome of deceased patients, thus
diminishing its practical reliability.

Figure 5(b)—(e) provides a comprehensive visual representation of the predictive performance of
various combinations of four re-sampling algorithms paired with ten ML models. After the application
of data balancing strategies, these re-sampling combined models exhibited consistently favorable
AUCs, and retained promising Brier scores. It is noteworthy that virtually all re-sampling combined
models showcased significant enhancements in both the sensitivity and G-means. This enhancement
was most pronounced in models such as ROS-LR, BS-LR, ADASYN-LR, and ADASYN&ROSLR,
which signifies a notable augmentation in the ability of the trained models to discriminate between
positive and negative samples.
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Figure 5. (a)—(e) Evaluated metrics for 10 ML models on the original, ROS resampled, BS
resampled, ADASYN resampled and ADASYN&ROS datasets, respectively. (f)

Evaluated metrics for seven cost-sensitive ML models.
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Figure 5(f) presents a comprehensive evaluation of seven cost-sensitive ML models. The
outcomes of this evaluation underscore the efficacy of cost-sensitive learning techniques in improving
the model performance. This is achieved by assigning higher rewards to the minority samples, thereby
increasing the accuracy of classifying these minority instances. Notably, the cost-sensitive SVC stands
out as the most distinguished method in this context. It exhibits the highest discrimination levels, as
evidenced by an AUC of 0.888 and a Brier score of 0.061. Additionally, this model demonstrates a
commendable sensitivity of 0.800 and an impressive G-mean of 0.806. Given its exceptional
performance, the cost-sensitive SVC appears to be a suitable base model for an interpretable analysis.
Subsequently, we conducted a Friedman test to further assess the performance of these seven ML
models. We computed the average rank for each algorithm across the entire dataset. In our analysis,
using a significance level of a = 0.05, the test statistics for the AUC, sensitivity, G-means, and Brier
score yielded values of 19.689, 202.067, 78.918, and 138.860, respectively. All of these values surpass
the critical threshold of 2.324, indicating statistically significant distinctions among these methods.
Subsequently, we performed a post-hoc analysis using the Nemenyi test to discern the nature of these
differences. In our scenario, the CD was determined to be 3.185. Figure 6 illustrates the CD diagram
derived from pairwise Nemenyi tests. When the black lines connect certain groups in the figure, it
indicates that the differences between these groups are not significant in multiple comparisons. To
further offer a holistic insight into the predictive performance of the aforementioned 57 ML models,
we present their PR-AUC and AUC curves in Figures 7 and 8, respectively. Notably, one striking
revelation is the exceptionally high PR-AUC of 0.977 achieved by the Adacost model. It also stands
as a favorable choice in practical applications, where the emphasis is on the identification of mortality.
Here, we are particularly focused on the overall performance across four key metrics, and therefore,
the cost-sensitive SVC should be the preferred method for practical clinical diagnoses and applications.
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7 6 5 4 3 2 1 7 6 5 4 3 2 1
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Figure 6. The CD diagram of AUC, sensitivity, G-means, and Brier score derived from
pairwise Nemenyi tests for the algorithm-driven models.
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Figure 8. The AUC curves of data and algorithm-driven approaches for the test cohort.

In SHAP, the global importance of each feature we estimated was used to understand the general
impact of various features across the study cohort (Figure 9). The SHAP summary plot illustrated the
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entire distribution of each feature’s impact on the model output. The color allowed us to understand
how changes in the value of a feature affected the change in outcome. Red represents a high feature
value, whereas blue represents a low feature value. The further away a point is from the baseline SHAP
value of zero, the stronger it effects the output. This way, a features relationship with the SHAP value
(and in turn the predicted output) can be better understood.

Our findings reveal that the physiological parameters (sofa, age, total protein max) and immune
function indicators (wbc_max, wbc_min), in conjunction with markers reflecting circulatory dysfunction
(dbp_max, temperature max, urine output), and coagulation function (ptt max), emerge as pivotal
determinants to evaluate the mortality risk in 57 patients upon ICU admission. These factors may exert
a more pronounced influence on assessing the patient’s condition and prognosis compared to other risk
factors, including the blood glucose and hematocrit levels. The directional impact of the SHAP values
suggests that a right-tailed distribution of elevated sofa, age, body temperature, white blood cell count,
and partial thromboplastin time is associated with an increased risk of mortality. Additionally, a left-
tailed distribution of low urine output, total protein level, and maximum diastolic blood pressure shows
significant associations and exhibits a positive correlation with the predicted mortality.

High
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urine_output -e —-—+- . o
age - - -+—.... §
g
dbp_max o ses s ...—+. 2
i
temperature_max +—- cmmees
total_protein_max . + o e
ptt_max -+— - ws
Sum of 17 other features . .. —+——-~ wes se
Low

—(3.6 —(‘}‘4 —6‘2 0.‘0 012 Oj4 0‘I6 O.IB
SHAP value (impact on model output)

Figure 9. SHAP summary plot of the cost-sensitive SVC model. Each dot represents a
patient’s feature attribution value. Dots are color-coded based on patient feature values,
with red indicating higher values (e.g., higher risk of death) and blue indicating lower
values. The distance from the baseline SHAP value of zero reflects the strength of each
feature’s impact on the model output.

In Figure 10, we showcase the SHAP interactive dependency plot. This visualization, which
portrays the concurrent variation of two features and its consequential impact on the SHAP values and
the ultimate model output, serves as a valuable tool to discern the sensitivity of predictions to various
features. In Figure 10(a), a noticeable trend emerges: as the sofa values rise, there is a concurrent
increase in the corresponding SHAP values. This relationship is easily interpretable, as an escalation
in the sofa score typically aligns with a deterioration in a patient’s condition and organ functionality,
ultimately heightening the risk of mortality. When the age surpasses 72.5 years, the associated SHAP
values consistently maintain positivity, thus exhibiting a gradual increase with advancing age. This
pattern signifies a persistent escalation in the risk of mortality. Notably, an interaction between the sofa
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score and age emerges during this period. Among patients of an identical age, those with elevated sofa
scores exhibit a heightened susceptibility to mortality. Contrastingly, this interaction is not discernible
below the age of 72.5 years (Figure 10(b)). With the extension of the maximum partial thromboplastin
time (ptt max), the corresponding SHAP values shift from negative to positive, thus increasing the risk
of mortality in RHD patients. This indicates potential abnormalities in the coagulation function
associated with prolonged ptt max, thereby elevating the risk of thrombotic events or other
coagulation-related complications in RHD patients.

When ppt_max exceeds 120 seconds, there may be an interaction between ppt_max and sofa: for
cases with the same ppt_max value, when the sofa is higher, there are higher SHAP values, indicating
an increased risk of mortality (Figure 10(b)). For urine output, dbp max, and total protein_max, as
their values increase, the corresponding SHAP values also turn positive, indicating a decrease in the
associated risk of mortality. This phenomenon can be attributed to the body’s improvement in the
corresponding physiological conditions. Specifically, an elevated urine output suggests an enhanced
physiological circulation and renal function, an increase in dbp_max reflects an improved diastolic
blood pressure regulation, and a rise in total protein _max signifies positive changes in the overall
protein levels. These improvements collectively contribute to a more favorable health status and a
reduced risk of mortality (Figures 10(d)—(f)).
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Figure 10. SHAP dependence plot of the cost-sensitive SVC model. The x-axis denotes
the value of the primary driver, while the y-axis represents the corresponding SHAP value.
The coloration of each point signifies the value associated with the secondary driver.

We randomly selected two positive cases (deaths) from the test dataset and conducted a local

analysis of the mortality risk using both SHAP and LIME interpreters (Figure 11). It is evident that the
top 10 key features identified by these two interpreters are remarkably similar, and the response trends
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of these features to the risk of death are consistent.
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Figure 11. Local interpretable of the model’s true positive cases (deaths). (a) and (c): True
positive individual interpretation based on SHAP. (b) and (d): True positive individual
interpretation based on LIME.

4. Discussion

RHD, as a disease associated with poverty, continues to impose a disproportionately high burden
on the developing world, despite being fundamentally preventable. Compared to other prevalent
infectious issues such as malaria, HIV/AIDS, and tuberculosis, RHD receives relatively less attention
in the medical and scientific communities, despite causing a significant cardiovascular morbidity and
mortality burden. This relative neglect and lack of funding may have contributed to the limited progress
in basic medical research in this field over the past five decades [34]. Specifically, the current research
landscape regarding accurately predicting the mortality risk in RHD remains relatively underexplored.

By systematically combining four resampling methods (ROS, BS, ADASYN, ROS-ADASYN)
with ten ML techniques, along with considering seven cost-sensitive learning models, we presented a
total of 57 ML regression prediction models in this study. We identified that the utilization of the cost-
sensitive SVC yielded the most favorable outcomes (with an AUC of 0.888, sensitivity of 0.800, G-
means of 0.806, and a Brier score of 0.061), which was well-suited for our research cohort. Given that
the negative class (deaths) is often the minority class, classifiers without balancing practices may
exhibit a bias toward predicting the majority class. We demonstrated that the application of re-sampling
and cost-sensitive learning methods significantly enhanced the sensitivity and G-means for the
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minority class. Although the improvement in the AUC was not statistically significant, resampling and
cost-sensitive learning techniques contributed to balancing the weights between high-risk and low-risk
patients. Integrating resampling and cost-sensitive learning techniques into mortality risk prediction
models should be more widely applied in real clinical cases to address the challenges posed by
imbalanced data.

Global interpretability enables clinical physicians to understand the response trends of the model
across the entire feature space. In contrast, local interpretability provides feature-based decision
explanations for specific individuals. In practice, both these approaches can assist clinical physicians
in making effective decisions during medical processes. In our study, mortality predictors of RHD
patients were examined and were found to be consistent with previous findings. Our observation of
increased the mortality rates in older individuals with RHD, which is in line with findings from earlier
studies [35,36].

One main contributing factor to this trend is the increased incidence of two high fatality
complications of RHD, namely atrial fibrillation and stroke, which rise with the age at diagnosis (by
5% and 4% per year of age, respectively) [35]. PTT emerged as a pivotal predictor within the cost-
sensitive SVC regression model. Heightened levels of fibrinogen correlated with the presence of
cerebral microbleeds in ischemic stroke patients afflicted by RHD [37]. Anticoagulation stood as the
cornerstone for mitigating the progression of RHD, especially when evaluating coagulation function
indices such as PT. This is particularly crucial for patients with RHD, especially those grappling with
atrial fibrillation, a history of thromboembolism, or left atrial thrombosis [38]. In patients with RHD,
the heart is susceptible to the effects of rheumatic inflammation, leading to valve damage and structural
alterations. These changes can impact both the contraction and relaxation functions of the heart, which
subsequently influences the diastolic pressure. A low diastolic pressure may result in a decline in
systemic tissue perfusion, which negatively affects the normal function of organs. During cardiac
diastole, a low diastolic pressure may reduce the filling of the coronary arteries, causing an insufficient
blood supply to the heart. Simultaneously, it may also decrease the blood supply to other organs
throughout the body. In the lungs, a low diastolic pressure might induce congestion in the pulmonary
circulation, leading to pulmonary congestion. The deterioration of the left ventricular (LV) diastolic
function, which causes an increase in LV filling pressure and pulmonary congestion, could potentially
trigger acute heart failure (AHF). Severe acute ischemia rapidly impairs myocardial relaxation, which
affects early LV filling and further elevates the filling pressure. In cases of sudden onset atrial fibrillation
with the loss of atrial contraction, LV filling may be compromised, which significantly increases the
filling pressure in the presence of a pre-existing diastolic dysfunction. For instance, severe mitral valve
stenosis (common in RHD) represents a diastolic dysfunction caused by valve abnormalities rather than
LV structural disease. Moreover, it can precipitate atrial fibrillation, which further escalates the risk of
AHF. An appropriate diastolic pressure level signifies normal perfusion to the heart and organs
throughout the body, which serves as a vital indicator to assess the risk of complications such as AHF
and atrial fibrillation [29]. The case report and experimental analysis [39—41] confirmed that RHD
adversely affects cardiac function, potentially resulting in a decreased cardiac pumping capacity and
reduced tissue perfusion throughout the body. This prompts the kidneys to sense the decreased blood
flow, which leads to a reduction in urine production. However, a significant improvement in the
condition is observed after administering cardiac and diuretic medications. This improvement can be
attributed to the alleviation of pulmonary vein congestion through treatment, which prolongs the
diastolic time and enhances the cardiac output [9]. The sofa score serves as a straightforward, yet potent,
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rating index. This score quantifies organ damage by measuring the burden of organ dysfunction in
critically ill individuals, and encompasses assessments of cardiovascular, hemostatic, and renal
functions [42]. Besides, total protein is a reliable indicator of nutritional status [43], and there is a
report linking malnutrition to an elevated mortality in individuals undergoing cardiac surgery [44].
Insufficient total protein levels may lead to inadequate blood volume and fluid retention, potentially
exacerbating symptoms of heart failure. Previous investigations have indicated that hypoalbuminemia
was common in patients with stable chronic or acute heart failure [45,46]. Moreover, it can impact the
transport capacity of blood, thus influencing organ perfusion and oxygenation. Moreover, reduced total
protein levels may compromise immune function, thus increasing the risk of infections; from this, the
catabolism will increase, which includes reduced protein synthesis rates and increased protein
degradation rates [47]. Therefore, when assessing the risk of mortality in patients with RHD,
consideration of total protein levels is deemed a critical factor. Therefore, monitoring changes in the
urine output, the sofa score, and the total protein levels is pivotal to evaluate the patient conditions and
to assess the mortality risk.

5. Conclusions

In response to the existing issues of data imbalance and a lack of interpretability in predicting the
mortality risk of RHD patients in the ICU, we have developed a comprehensive workflow. This
workflow integrated feature selection, resampling techniques, cost-sensitive learning methods, the
Friedman test, the Nemenyi test, and interpretable ML approaches. The key findings include the
following:

(1) The cost-sensitive SVC model demonstrated a superior performance among the 57 predictive
models constructed;

(2) Both resampling and cost-sensitive learning methods resulted in significant improvements
compared to models directly built on the original data in the predictive performance, especially in
terms of specificity and G means; and

(3) Unveiling key physiological features and their response trends to RHD-related mortality.

ML is a valuable and increasingly necessary tool in modern healthcare systems. The ML models
developed in this study have undergone rigorous validation and demonstrated state-of-the-art
performance. Their key advantage lies in their ability to be easily interpreted by clinical professionals
solely using preoperative data. Accurately quantifying the risk of postoperative mortality can better
inform patient-centered decision-making. Additionally, it can guide targeted quality improvement
interventions and support activities of accountable care organizations relying on precise population
risk estimates. Future work will focus on assessing the effectiveness and efficiency of integrating
model predictions into clinical decision processes and improving hospital costs.
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