¢ . BDIA, 7: 1-12.
L Big Data and DOI: 10.3934/bdia.2022001
= Information Analytics Received: 20 June 2022
Revised: 29 July 2022
Accepted: 09 September 2022

Published: 26 September 2022

http://www.aimspress.com/journal/BDIA

Research article

Modeling path-dependent state transitions by a recurrent neural

network

Bill Huajian Yang*
Garland Tech Inc., 54 Courtsfield Crescent, Etobicoke, ON M9A 4S9, Canada
* Correspondence: Email: h_y02@yahoo.ca.

Abstract: Rating transition models are widely used for credit risk evaluation. It is not uncommon that
a time-homogeneous Markov rating migration model will deteriorate quickly after projecting
repeatedly for a few periods. This is because the time-homogeneous Markov condition is generally not
satisfied. For a credit portfolio, the rating transition is usually path-dependent. In this paper, we
propose a recurrent neural network (RNN) model for modeling path-dependent rating migration. An
RNN is a type of artificial neural network where connections between nodes form a directed graph
along a temporal sequence. There are neurons for input and output at each time period. The model is
informed by the past behaviors for a loan along the path. Information learned from previous periods
propagates to future periods. The experiments show that this RNN model is robust.

Keywords: path-dependent; rating transition; recurrent neural network; deep learning; Markov
property; time homogeneity

1. Introduction

Rating transition models are widely used in the financial industry for credit risk evaluations,
including stress testing and IFRS 9 expected credit loss evaluation [1-4], under the assumption that a
rating transition is a time-homogeneous Markov process, depending only on the current rating and
covariates. However, it is not uncommon that a Markov model deteriorates quickly after projecting for
a few periods. This is because the Markov condition is generally not satisfied. A rating transition for a
credit portfolio is generally path dependent. A test for this assumption is required [5,6] for the use of
these Markov models.

There are various methods for path-dependent credit risk modeling [7], including regime-
switching models [8] and the conditional methods [9,10]. The latter is comparative to a cohort analysis.

In this paper, we propose a recurrent neural network (RNN) model for modeling path-dependent
rating transition. An RNN is a type of artificial neural network where connections between nodes form
a directed graph along a temporal sequence. There are neurons for input and output at each time-period.
The RNN is informed by past behaviours along the path. Information learned from previous periods
propagates to future periods [11-17].

The network structure for the proposed RNN model is described in Section 2 by using (2.1)—(2.4).
This RNN model was implemented in Python. The experiments show that this RNN model is robust,
compared to Markov transition models. Applications of this RNN model include the following,
wherever path dependence is relevant:

(a) Path-dependent asset evaluation or credit risk evaluation

(b) Decisioning for account management

(c) Forecasting loss for stress testing, expected credit loss for IFRS 9 projects

(d) Estimating conditional probability of default for survival analysis

The paper is organized as follows. In Section 2, we setup the proposed RNN model. In Section 3,
we calculate the partial derivatives for the network cost function. In Section 4, we present the
experimental results for this proposed RNN model, as benchmarked with the time-homogeneous and
time-inhomogeneous rating transition models.

2. Recurrent neural network models for multiperiod state transition

In this section, we describe, the proposed RNN model, as given in (2.1)—(2.4), for modeling path-
dependent rating transition. Given an observation horizon with T periods:

0:t0<t1<t2<"’<tT;

our goal is to estimate at each i > 0 the probability of transitioning to a rating at time t;,4 given the
rating and covariates at time t;.

Traditional rating transition models assume the Markov condition, i.e., the transition probability
depends only on the current rating and covariates. The type of Markov transition models includes the
following:

(a) Time-homogeneous Markov rating transition, as represented by one single transition model
for all periods

(b) Time-inhomogeneous Markov rating transition, as represented by one transition model for
each period

It is not uncommon that a time-homogeneous Markov model will deteriorate quickly after
projecting only for a few periods. This is because the Markov condition is generally not satisfied. A
rating transition for a credit portfolio is generally path dependent.

An RNN is an artificial neural network where connections between nodes form a directed graph
along a temporal sequence. The chart below depicts the structure of an RNN. At the i*"* time period of
the temporal sequence, the input neurons, the hidden neurons and the output neurons are respectively
labeled x®, h® and y(i):

Big Data and Information Analytics Volume 7, 1-12.

Figure 1. An RNN for rating transition.

An RNN shares the advantages of common neural networks; particularly, information learned at
a point is propagated back and forward to all periods. It is path dependent.

Let {R;}-, denote the n ratings for a credit portfolio. For a loan portfolio, we reserve R,,_, as the
withdrawal rating and R,, as the default ratings. Both the default and withdrawal ratings are assumed
to be absorbed states, which means that a loan rated by a default or withdrawal rating will be excluded
from the sample for future subsequent observations. Rating labels are observable at the beginning and
the end of a period.

Let 7}-(0 denote the indicator with a value of 1 if the rating for a loan at the end of the i*" period
is R; and 0 otherwise. Let n,, denote the number of non-absorbed ratings. An input at the it" period is

denoted as
x@ = (2,20, 1Dy,
where the first (m — n,) input components (xgi), xgi), s x,(,?_np) denote the covariates observable at

the beginning of the i*"period, and the remaining n, components are the rating indicators for non-
absorbed ratings observed at the end of the (i — 1)*" period:

® _ (-1
x;o=r

g m—-n,+1<j<m

That is, the non-absorbed rating observed at the end of the (i — 1)t" period is used as the input
for the next period. The output at the i"* period is denoted as

y® =Py, Ly
where
yj(i) = rj(i), 1<j<n

The structure for this RNN is described as shown in (2.1)—(2.4) below. Initially, for the first period,
we have

(@) Input: x = P, 2, .., xM;

(b) Output: y(1)=(y1(1), yz(l), s yT(Ll)), i.e., a unit vector where all components are zero except for
one , which has a value of 1, and it is a random realization generated by the multinomial probability
p1 = (P11, P12s > P1n), Where

)
P1j = exp(vil))+exp(v§1))+~~~+exp(v7(11))’

2.1)

Big Data and Information Analytics Volume 7, 1-12.

and

om_ ,® 0 @O 1) (m,.(1)
Vi = Xy Ay Xy et Xy (2.2)

Vector (vl(l),vz(l), ...,v,(ll)) in (2.1) and (2.2) represents the information learned during the 1%
period, which is stored in hidden neurons h(") = (hgl), hgl), s h;l)) in the 1% period.

In general, given the vector (vl(i_l), vz(i_l), e v,gi_l)) for the (i — 1) period (i = 2), we have

the following at the i*" period:
(©) Input: x® = (P, x, ., xDy;
(d) Output: y® = (yl(i), yz(i), e yr(li)), 1.e., a unit vector, which is a random realization generated
by multinomial probability p; = (p;1, Pi2, ---» Pin), Where
exp(v})
exp(vgi))+exp(v§i))+...+exp(v,(li))'

pij = (2.3)

and

@ _ O 0 OMO) @, @D @ (-1) @ (-1) @, (i-1)
Vi = ai Xyt ap et ap Xyt b vp +bj, v, +otbpvy L (24)

As observed, vj(i)

ie., (vl(i_l), vz(i_l)

consists of two parts, one from the current input, and the other from history,

) ey v,(li_l)), corresponding to the information learned up to the (i — 1)®" period.
Similarly, the vector (v(i),vz(i), ...,v,(f)) represents the information learned so far up to it" period,
which is stored in hidden neurons h(® = (h(i), hgi),) hg)).

This RNN model works, at the i*" stage, in the way as described below:

1) Collects the input x(¥), and information h(:=1 learned up to the end of (i — 1)

2) Learns from x® and h(*~Yand stores the learned information in hidden neurons h®

3) Derives the multinomial probability (p;1, iz, .-, Pin), Where p;; is the probability that the
event will transition to j" rating.

4) Output: y® is a random multinomial realization, given the multinomial probability
distribution (p;1, Pi2, «+» Pin)

Remark 2.1. The formulation of (2.4) does not come with a bias (i.e., intercept). An intercept can
be inserted by adding a covariate with a constant value of 1, whenever necessary.

3. Training the RNN rating transition model

Let y(®) = (yl(k), yz(k), s y,sk)) be the observed outcome at the k" period. The cost function at
the k' period is denoted by L, which is given as (for one single data point):

L = =Y,y log(p,). 3.1)

This is the negative log-likelihood for observing the multinomial outcome (yl(k), yz(k), s y,gk)).

The total cost function to be minimized for this recurrent neural network is
L:L1+L2+”'+LT. (3.2)

summing over entire training sample.

Big Data and Information Analytics Volume 7, 1-12.

3.1. Partial derivatives of L with respect to network weights

Training a neural network involves a series of gradient descent searches. Evaluation of partial
derivatives is essential. In this sub-section, we calculate the partial derivatives for the network cost
function with respect to network weights.

(k=)

3.1.1. Partial derivatives of L, with respect to v,

Let dl.(k’r) denote the partial derivative of L;, with respect to v(k_r), 0<r<k-1.By(2.1)and

i
. . . Opki
(2.3), we have the partial derivative a:(';‘) as:

J

ki _ {pki(l —Pri)r L=, 33
{0 —PkiPkj» L # J- (3-3)
Hence, by (3.1) and (3.3), we have the following for 1 < i < n:
K, k k
di® = 0Ly /0v{==3]_1y dllog(pi;)1/0v; "
= 500 = pid + Ty ot == (3 — i), (3.4)

where Z}l:lyj(k) = 1 is used.
Given d}k’o), 1 <j<n, we can calculate di(k'l) from top-down for k >1and 1 <i <n by
using (2.4):

(G9)
(k,l) _ aLk _ n aLk a‘I}J _ n (k) (k,O)
d; ~ oD = Yj=1 angk) —avi(k‘l) =Yj=1 b d;"".

Inductively, we have the following fork >7r and 0 < i < n:

g®" _ dLy
i - (k-1)
ov;
k J
(k—-r+1) (k-1)
6vj av;
k-r+1) S(kr—1
=3y, bk, (3.5)
3.1.2. Partial derivatives of L = Y'¥_, L, with respect to vl.(r)
We will use the following fact:
oL . .
F{‘D=Olfk<l. (3.6)

Big Data and Information Analytics Volume 7, 1-12.

Let DI~ denote the partial derivative of L with respect to vi(T_r). Given {dl.(k’o)l 1<i<nl1c<
k < T}, we can calculate {D] 7| 1 <i <n,0 < r < T} top-down. Initially, at the top period, we have
the following by (3.6):

Dl = ——= =d",

T ay®

Next, backward from the top period, we have D] "for T > 1 and 1 < i < n as follows:

pT-1 _ oL O(Ly + Lr—y)
Lo T~V B vV
L

i

av(-T)
oLt + dlr—1 _ <n OLp 9V 4 4710
avi(T_l) 6vi(T_1) J=1 Ov](-T) a7~V t

i

oL
— (T) (T-1,0)
= Z?:l bji m + di

J

T T-1,0
=3, b'DI +d{ ™,

where (3.6) is used for 2" and 5equality signs. Inductively, we have D " for T >rand1<i<n
from top-down as follows:

T-r _ oL _ Or+Llr—q+-+Lr—r41) OLr—r
Di "= avi(T—r) - 6vi(T_T) + avi(T—T)ﬂ (37)
(T-r+1)
~won OWr+Lp g+ -FLpryq) dv; 4 dT0
= j=1 (T-1+1) (T-1) L
6171. Ovl.
(T-r+1)
oL 0v; _
j +d§T 7,0)

= Zn=1 Z Z
J avj(T r+1) avi(T T)

— Z?:l bj(iT—r+1)D}T—r+1) + dl(T—r,O)’
where (3.6) is used for 2" and 4" equality signs.

™)

3.1.3. Partial derivatives of L = Y7_; L with respect to a; ;7 and bi(jr)

™.
;73 We can now

find the partial derivatives of L with respect network weights ai(;) and bl.(].r) as defined in (2.2) and (2.4).

Let §;; and o; denote respectively the partial derivatives of L with respect to a'” and bi(jr). By

Given {D;}, i.e., the partial derivatives of the cost function L with respect to v

ij
(2.4), at the top time period r = T, we have
oL oL v o4

(T (T) 5 (T i Hio
Oaij avi aaij
oL oL v .
ajj = = L= T Ppr,

(M)~ 4, () (M)
ob;; v, abij

If general, we have

Big Data and Information Analytics Volume 7, 1-12.

shm= xT"pI, (3.8)
of "= v VI (3.9)

3.2. Initialization of network weights

(

A good initialization of the network weights air) and bl.(jr) speeds up the convergence for the

j
network training. In this sub-section, we propose an algorithm for initializing the network weights.

Let Wj(r) denote the vector of weights in (2.4) for vj(r) at the " time period, i.e.,

@ _(,® @ @ P P (r))ranspose
w? = (a,ay,...al), b7, b, .., by (3.10A)
forr > 1,and forr =1,
L _ 1 (1) (1) transpose
w; = (aj1) Ay ,...,ajm) . (3.10B)
Then the weight matrix for the network at the " time-period is given by
w® = ww, w1 <r<T. 3.11)

(

Algorithm 3.1 (Initialization). Initialize network weights aio and bi(].r) as follows, step-by-step,

starting from the first time period:]
(a) Find W]-(l), 1 <j < n, by running a linear (or logistic if more sensitivity is required for some
yj(l)’s) regression against the binary target yj(l) with x() as the explanatory variable. Derive vj(l) by
(2.2).
(b) Given x@ = (x?,x{?, .., x2) and v® = WV, v, ., vY), find w®,1<j <n by
running a linear (or logistic if more sensitivity is required for some y].(z)'s) regression against yj(z) with
the components of x(® and v as explanatory variables. Derive vj(z) by (2.4).

c) Repeat (b) to obtain the initial weights for w; ~ at the r*"* time period for 1 < j <nand 1 <
R b) to obtain the initial weights f](” he 7th ti iod for 1 < j d1
r<T.

3.3. Training the recurrent neural network

Given initial weights, network training involves a series of gradient descent searches, as described
in the next algorithm. Let w(™ be the weight matrix as in (3.11) for the network at the r"* time period,
1.e.,

w® = (Wl(r),wz(r), ...,W,(lr)), 1<r<T.

Algorithm 3.2 (Network training). Update network weights w(,1 < r < T, step-by-step, as
described below

Big Data and Information Analytics Volume 7, 1-12.

(a) Forward scoring: Randomly select a small batch of examples (1-10 loan accounts, for
example) from the time series of the training sample and calculate p,; by (2.3) using the current
weightsfor1 <r <Tand1<j<n.

(b) Select a time period 7, from 1 to T in sequence. At the r"time period, find the partial

derivatives of L with respect to ag) and bl.(jr) by (3.8) and (3.9); then, calculate ij(r) as follows

Transpose

A ng(oL oL oL oL oL oL) <i<T

i (M) 5, (@) 4 (1) 4 (1) 4 ()77 44.(7) Tl =
aajl 6aj2 aajm (’)bj1 6bj2 (’)bjn

which is the average of the partial derivatives of L over the batch; hence, obtain the following weight
matrix:

Aw® = (Awl(r), sz(r), . AW,(Lr)).
(c) Select a learning rate 1 from a grid of values such that the update of w(™ is
w® «w® +naw™), (3.12)

which gives rise to the biggest decrease for the cost function described by (3.2) over the entire training
sample. Execute the update for w(™ by (3.12).

(d) Steps (a)—(c) are repeated until no material improvement is possible.

With the partial derivatives being evaluated over only one small batch of examples, these partial
derivatives are called the mini-batch stochastic gradient for the cost function. This gradient can go off
in a direction far from the batch gradient (i.e., the gradient over the entire training sample).
Nevertheless, this noisiness is what we need for non-convex optimization [18,19] to escape from saddle
points or local minima (Theorem 6 in [19]). The disadvantage is that more iterations are required to
reach a good solution.

Remark 3.3. For Step (c) in Algorithm 3.2, there are better approaches for selecting a value for
the learning rate n, rather than exhausting all possible values in the grid. For example, let n; be the
it"value in the grid from 1 downward, and assume that currently 7; is the best learning rate so far, and
it leads to a decrease for the cost function; stop the search for the learning rate and use 7; as the best
learning rate, if ;1 does not lead to a bigger decrease for the cost function than 7;.

4. Experimental results

In this section, we present the experimental results for the proposed RNN model, as benchmarked
with two other Markov rating transition models.

The data we used constituted a synthetic sample, simulating a commercial loan portfolio with
seven ratings {R;}/_, over seven quarters (periods). At the end of each quarter, accounts are rated by
one of seven ratings, with ratings Rg and R, being, respectively, the withdrawal and default ratings.
Both the default and withdrawal ratings are absorbed ratings that were excluded from later quarters for
observation. For simplicity, we included only three covariates, which simulated the following drivers
for a loan:

(a) Debt service coverage ratio

(b) Debt to tangible net worth ratio

Big Data and Information Analytics Volume 7, 1-12.

(¢c) Current ratio

The sample contained 10,000 accounts. It was split 50:50 into training and validation. We focued
on the following three models:

1) Model 1—The proposed RNN rating transition model;

2) Model 2—Time-inhomogeneous Markov transition model, with one separate transition
model for each period;

3) Model 3—Time-homogeneous Markov transition model, with one single transition model
for all periods.

All three model use the same covariates.

Let y; denote a binary variable for a loan with a value of 1 if the loan has the rating R; at the
quarter end, and 0 otherwise. Let (p; py, ..., p7) be the multinomial probabilities for a loan estimated
by a rating transition model at the beginning of a quarter, with p; being the probability of transitioning
to R; at the quarter end.

Tables 1 and 2 below show the Gini coefficients, over the training and validation samples
respectively, for each of the above three models for ranking each of these seven ratings individually.
For example, in Table 1, for the RNN transition model over the training sample, it had a Gini of 0.84
for the ranking rating R,. This Gini was calculated by using p; to predict y;over the entire training
sample. The results shown in these two tables demonstrate strong performance for the RNN transition
model over the other two models.

Table 1. Gini by rating on training.

Model Rating

1 2 3 4 5 6 7 Avg
1 0.84 0.69 0.62 0.48 0.54 0.50 0.68 0.62
0.73 0.45 0.39 0.24 0.37 0.37 0.55 0.44
3 0.53 0.33 0.19 0.15 0.20 0.32 0.53 0.32

Table 2. Gini by rating on vaildation.

Model Rating

1 2 3 4 5 6 7 Avg
1 0.82 0.68 0.60 0.46 0.45 0.34 0.66 0.57
0.74 0.45 0.39 0.24 0.28 0.36 0.54 0.43
3 0.52 0.34 0.18 0.12 0.28 0.32 0.51 0.33

In the remainder of this section, we focus on the robustness of a model in terms of predicting the
default event, and the quality of using p, to predict y,, the default indicator. Tables 3 and 4 below
show the Gini coefficients period by period, over the training and validation samples respectively, for
ranking the default indicator over each of seven periods. Again, the RNN transition model significantly
outperformed the other two benchmark models across all periods.

Big Data and Information Analytics Volume 7, 1-12.

10

Table 3. Gini by period for default rating on training.

Model Period

1 2 3 4 5 6 7 Avg
1 0.66 0.63 0.61 0.62 0.57 0.67 0.51 0.61
2 0.66 0.07 0.43 0.37 0.33 0.21 0.16 0.32
3 0.66 0.31 0.22 0.27 0.33 0.21 0.16 0.31

Table 4. Gini by period for default rating on validation.

Model Period

1 2 3 4 5 6 7 Avg
1 0.64 0.62 0.58 0.55 0.46 0.55 0.53 0.56
2 0.64 0.05 0.35 0.28 0.25 0.04 0.20 0.26
3 0.64 0.27 0.11 0.18 0.25 0.04 0.20 0.24

The following six tables show the actual and predicted default rates for each model by decile over
the training and validation samples. For example, Table 5 shows the actual and predicted default rates
over the training sample for the RNN rating transition model. These values in the table were calculated
by first sorting p, ascendingly, and then dividing the sample into 10 buckets, each of which was about
10%. The averages of the actual and predicted default rates over each bucket were taken.

Table 5. RNN on training (Gini-68%).

Decile | 0 1 2 3 4 5 6 7 8 9
Actual | 3.62% 4.90% 4.97% 5.33% 21.16% 23.79% 36.43% 42.47% 61.72% 81.19%
Pred 320% 4.33% 4.59% 5.63% 19.68% 23.24% 35.62% 44.20% 62.25% 82.85%
Table 6. RNN on validation (Gini-66%).
Decile |0 2 3 4 5 6 7 8 9
Actual | 4.53% 4.89% 4.53% 8.49% 24.73% 24.03% 34.46% 45.04% 61.44% 81.09%
Pred 317% 431% 4.57% 6.45% 20.65% 23.49% 36.65% 45.87% 63.57% 84.49%
Table 7. One migration matrix per period on training (Gini-55%).
Decile |0 2 3 4 5 6 7 8 9
Actual | 11.29% 12.50% 4.55% 7.03% 23.01% 26.99% 38.99% 32.67% 50.14% 78.42%
Pred 1.46% 5.04% 5.84% 6.19% 8.20% 15.54% 24.29% 49.62% 73.66% 95.73%
Table 8. One migration matrix per period on validation (Gini-54%).
Decile 0 2 3 4 5 6 7 8 9
Actual 11.87% 14.89% 5.25% 8.42% 22.65% 26.40% 39.86% 34.39% 51.80% 77.71%
Pred 1.52% 5.16% 597% 6.36% 8.58% 16.22% 24.82% 51.71% 76.60% 96.29%

Big Data and Information Analytics

Volume 7, 1-12.

11

Table 9. One single migration matrix on training (Gini-53%).

Decile |0 1 2 3 4 5 6 7 8 9
Actual | 19.11% 4.90% 12.93% 4.97% 19.03% 29.05% 27.70% 39.28% 50.07% 78.57%
Pred 2.52% 536% 620% 6.71% 9.82% 21.95% 25.37% 35.67% 75.51% 96.46%

Table 10. One single migration matrix on validation (Gini-51%).

Decile | 0 1 2 3 4 5 6 7 8 9
Actual | 21.30% 5.90% 14.46% 4.53% 19.41% 29.06% 29.50% 39.64% 52.09% 77.35%
Pred 2.52% 549% 635% 6.87% 10.39% 22.60% 25.81% 37.94% 78.29% 96.97%

These results demonstrate a significant improvement for the RNN model over the other two
models, either on training or validation.

5. Conclusions

A rating transition for a credit portfolio is generally path dependent. A Markov rating transition
model, either homogeneous or inhomogeneous, usually does not perform well after projecting for a
few periods. The RNN model proposed in this paper provides a solution for modeling state transitions
under non-Markov settings. This RNN is informed by the information history along the path. The
experiments show that this proposed RNN model significantly outperforms Markov models where path
dependence is relevant.

Acknowledgements

The author thanks Biao Wu for many valuable discussions in the last 3 years in deep machine
learning, Python financial engineering, as well as his insights and comments. Thanks also go to Felix
Kan for many valuable comments, to Zunwei Du, Kaijie Cui, and Glenn Fei for many valuable
conversations.

Conflict of interest

The views expressed in this article are not necessarily those of the banks the author works with.
Please direct any comments to the author Bill Huajian Yang at: h y02@yahoo.ca.

References
1. Yang BH, Du Z, (2016) Rating transition probability models and CCAR stress testing. J Risk
Model Validation 10: 1-19. https://doi.org/10.21314/JRMV.2016.155

2. Yang BH, (2017) Forward ordinal models for point-in-time probability of default term structure.
J Risk Model Validation 11: 1-18. https://doi.org/10.21314/JRMV.2017.181

Big Data and Information Analytics Volume 7, 1-12.

12

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Dos Reis G, Pfeuffer M, Smith G, (2020) Capturing model risk and rating momentum in the
estimation of probabilities of default and credit rating migrations. Quant Finance 20: 1069-1083.
https://doi.org/10.1080/14697688.2020.1726439

Miu P, Ozdemir B, (2009) Stress testing probability of default and rating migration rate with
respect to Basel Il requirements. J Risk Model Validation 3: 3-38.
https://doi.org/10.21314/JRMV.2009.048

Kiefer NM, Larson CE, (2004) Testing Simple Markov Structures for Credit Rating Transitions.
Comptroller of the Currency.

Kiefer NM, Larson CE, (2007) A simulation estimator for testing the time homogeneity of credit
rating transitions. J Empirical Finance 14: 818-835.
https://doi.org/10.1016/j.jemptin.2006.08.001

Juhasz P, Vidovics-Dancs A, Szaz J, (2017) Measuring path dependency. UTMS J Econ 8: 29—
37.

Russo E, (2020) A discrete-time approach to evaluate path-dependent derivatives in a regime-
switching risk model. Risks 8: 9. https://doi.org/10.3390/risks8010009
Yang BH, (2017) Point-in-time PD term structure models for multi-period scenario loss projection.
J Risk Model Validation 11: 73-94. https://doi.org/10.21314/JRMV.2017.164

Zhu S, Lomibao D, (2005) A conditional valuation approach for path-dependent instruments.
SSRN Electron J. https://doi.org/10.2139/ssrn.806704

Graves A, Liwicki M, Fernandez S, Bertolami R, Bunke H, Schmidhuber J, (2009) A novel
connectionist system for unconstrained handwriting recognition. /EEE Trans Pattern Anal Mach
Intell 31: 855-868. https://doi.org/10.1109/TPAMI.2008.137

Tealab A, (2018) Time series forecasting using artificial neural networks methodologies: A
systemati review. Future Comput Inf J 3: 334-340. https://doi.org/10.1016/}.fcij.2018.10.003
Hyo6tyniemi H, (1997) Proceedings of STeP'96, (eds. Jarmo Alander, Timo Honkela and Matti
Jakobsson), Publications of the Finnish Artificial Intelligence Society, 13-24.

Elman JL, (1990) Finding structure in time. Cognitive Sci 14: 179-211.
https://doi.org/10.1016/0364-0213(90)90002-E

Schmidhuber J, (2015) Deep learning in neural networks: An overview. Neural Networks 61: 85—
117. https://doi.org/10.1016/j.neunet.2014.09.003

Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018), State-of-the-art
in artificial neural network applications: A survey, Heliyvon 4. e00938.
https://doi.org/10.1016/j.heliyon.2018.e00938

Dupond S (2019), A thorough review on the current advance of neural network structures. Annu
Rev Control 14: 200-230.

Bottou L, (2010) Large-scale machine learning with stochastic gradient descent, In Proceedings
of COMPSTAT 2010 Physica-Verlag HD, 177-186. https://doi.org/10.1007/978-3-7908-2604-
3 16

Ge R, Huang F, Jin C, Yuan Y, (2015) Escaping from saddle points-online stochastic gradient for
tensor decomposition, In Conference on Learning Theory, PMLR, 1-46.

ﬁEEﬁ ©2022 the Author(s), licensee AIMS Press. This is an open access
ATMS A[MS Press article distributed under the terms of the Creative Commons
R Attribution License (http://creativecommons.org/licenses/by/4.0)

Big Data and Information Analytics Volume 7, 1-12.

