
BDIA, 7: 1–12.
DOI: 10.3934/bdia.2022001
Received: 20 June 2022
Revised: 29 July 2022
Accepted: 09 September 2022
Published: 26 September 2022

http://www.aimspress.com/journal/BDIA

Research article

Modeling path-dependent state transitions by a recurrent neural

network

Bill Huajian Yang*

Garland Tech Inc., 54 Courtsfield Crescent, Etobicoke, ON M9A 4S9, Canada

* Correspondence: Email: h_y02@yahoo.ca.

Abstract: Rating transition models are widely used for credit risk evaluation. It is not uncommon that
a time-homogeneous Markov rating migration model will deteriorate quickly after projecting
repeatedly for a few periods. This is because the time-homogeneous Markov condition is generally not
satisfied. For a credit portfolio, the rating transition is usually path-dependent. In this paper, we
propose a recurrent neural network (RNN) model for modeling path-dependent rating migration. An
RNN is a type of artificial neural network where connections between nodes form a directed graph
along a temporal sequence. There are neurons for input and output at each time period. The model is
informed by the past behaviors for a loan along the path. Information learned from previous periods
propagates to future periods. The experiments show that this RNN model is robust.

Keywords: path-dependent; rating transition; recurrent neural network; deep learning; Markov
property; time homogeneity

1. Introduction

Rating transition models are widely used in the financial industry for credit risk evaluations,
including stress testing and IFRS 9 expected credit loss evaluation [1–4], under the assumption that a
rating transition is a time-homogeneous Markov process, depending only on the current rating and
covariates. However, it is not uncommon that a Markov model deteriorates quickly after projecting for
a few periods. This is because the Markov condition is generally not satisfied. A rating transition for a
credit portfolio is generally path dependent. A test for this assumption is required [5,6] for the use of
these Markov models.

2

Big Data and Information Analytics Volume 7, 1–12.

There are various methods for path-dependent credit risk modeling [7], including regime-
switching models [8] and the conditional methods [9,10]. The latter is comparative to a cohort analysis.

In this paper, we propose a recurrent neural network (RNN) model for modeling path-dependent
rating transition. An RNN is a type of artificial neural network where connections between nodes form
a directed graph along a temporal sequence. There are neurons for input and output at each time-period.
The RNN is informed by past behaviours along the path. Information learned from previous periods
propagates to future periods [11–17].

The network structure for the proposed RNN model is described in Section 2 by using (2.1)–(2.4).
This RNN model was implemented in Python. The experiments show that this RNN model is robust,
compared to Markov transition models. Applications of this RNN model include the following,
wherever path dependence is relevant:

(a) Path-dependent asset evaluation or credit risk evaluation
(b) Decisioning for account management
(c) Forecasting loss for stress testing, expected credit loss for IFRS 9 projects
(d) Estimating conditional probability of default for survival analysis
The paper is organized as follows. In Section 2, we setup the proposed RNN model. In Section 3,

we calculate the partial derivatives for the network cost function. In Section 4, we present the
experimental results for this proposed RNN model, as benchmarked with the time-homogeneous and
time-inhomogeneous rating transition models.

2. Recurrent neural network models for multiperiod state transition

In this section, we describe, the proposed RNN model, as given in (2.1)–(2.4), for modeling path-
dependent rating transition. Given an observation horizon with 𝑇 periods:

0 ൌ 𝑡଴ ൏ 𝑡ଵ ൏ 𝑡ଶ ൏ ⋯ ൏ 𝑡்;

our goal is to estimate at each 𝑖 ൒ 0 the probability of transitioning to a rating at time 𝑡௜ାଵ given the
rating and covariates at time 𝑡௜.

Traditional rating transition models assume the Markov condition, i.e., the transition probability
depends only on the current rating and covariates. The type of Markov transition models includes the
following:

(a) Time-homogeneous Markov rating transition, as represented by one single transition model
for all periods

(b) Time-inhomogeneous Markov rating transition, as represented by one transition model for
each period

It is not uncommon that a time-homogeneous Markov model will deteriorate quickly after
projecting only for a few periods. This is because the Markov condition is generally not satisfied. A
rating transition for a credit portfolio is generally path dependent.

An RNN is an artificial neural network where connections between nodes form a directed graph
along a temporal sequence. The chart below depicts the structure of an RNN. At the 𝑖௧௛ time period of
the temporal sequence, the input neurons, the hidden neurons and the output neurons are respectively
labeled 𝑥ሺ௜ሻ, ℎሺ௜ሻ and 𝑦ሺ௜ሻ:

3

Big Data and Information Analytics Volume 7, 1–12.

Figure 1. An RNN for rating transition.

An RNN shares the advantages of common neural networks; particularly, information learned at
a point is propagated back and forward to all periods. It is path dependent.

Let ሼ𝑅௜ሽ௜ୀଵ
௡ denote the 𝑛 ratings for a credit portfolio. For a loan portfolio, we reserve 𝑅௡ିଵ as the

withdrawal rating and 𝑅௡ as the default ratings. Both the default and withdrawal ratings are assumed
to be absorbed states, which means that a loan rated by a default or withdrawal rating will be excluded
from the sample for future subsequent observations. Rating labels are observable at the beginning and
the end of a period.

Let 𝑟௝
ሺ௜ሻ denote the indicator with a value of 1 if the rating for a loan at the end of the 𝑖௧௛ period

is 𝑅௝ and 0 otherwise. Let 𝑛௣ denote the number of non-absorbed ratings. An input at the 𝑖௧௛ period is
denoted as

𝑥ሺ௜ሻ ൌ ሺ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, … , 𝑥௠
ሺ௜ሻሻ,

where the first (𝑚 െ 𝑛௣ሻ input components ሺ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, … , 𝑥௠ି௡೛

ሺ௜ሻ) denote the covariates observable at

the beginning of the 𝑖௧௛period, and the remaining 𝑛௣ components are the rating indicators for non-
absorbed ratings observed at the end of the ሺ𝑖 െ 1ሻ௧௛ period:

𝑥௝
ሺ௜ሻ ൌ 𝑟௝

ሺ௜ିଵሻ, 𝑚 െ 𝑛௣ ൅ 1 ൑ 𝑗 ൑ 𝑚.

That is, the non-absorbed rating observed at the end of the ሺ𝑖 െ 1ሻ௧௛ period is used as the input
for the next period. The output at the 𝑖௧௛ period is denoted as

𝑦ሺ௜ሻ ൌ ሺ𝑦ଵ
ሺ௜ሻ, 𝑦ଶ

ሺ௜ሻ, … , 𝑦௡
ሺ௜ሻ)

where

𝑦௝
ሺ௜ሻ ൌ 𝑟௝

ሺ௜ሻ, 1 ൑ 𝑗 ൑ 𝑛.

The structure for this RNN is described as shown in (2.1)–(2.4) below. Initially, for the first period,
we have

(a) Input: 𝑥ሺଵሻ ൌ ሺ𝑥ଵ
ሺଵሻ, 𝑥ଶ

ሺଵሻ, … , 𝑥௠
ሺଵሻሻ;

(b) Output: 𝑦ሺଵሻ=ሺ𝑦ଵ
ሺଵሻ, 𝑦ଶ

ሺଵሻ, … , 𝑦௡
ሺଵሻሻ, i.e., a unit vector where all components are zero except for

one , which has a value of 1, and it is a random realization generated by the multinomial probability
𝑝ଵ ൌ ሺ𝑝ଵଵ, 𝑝ଵଶ, … , 𝑝ଵ௡ሻ, where

𝑝ଵ௝ ൌ
ୣ୶୮ቀ௩ೕ

ሺభሻቁ

ୣ୶୮ቀ௩భ
ሺభሻቁାୣ୶୮ቀ௩మ

ሺభሻቁା⋯ାୣ୶୮ቀ௩೙
ሺభሻቁ

, (2.1)

4

Big Data and Information Analytics Volume 7, 1–12.

and

𝑣௝
ሺଵሻ ൌ 𝑎௝ଵ

ሺଵሻ𝑥ଵ
ሺଵሻ ൅ 𝑎௝ଶ

ሺଵሻ𝑥ଶ
ሺଵሻ ൅ ⋯ ൅ 𝑎௝௠

ሺଵሻ𝑥௠
ሺଵሻ. (2.2)

Vector (𝑣ଵ
ሺଵሻ, 𝑣ଶ

ሺଵሻ, … , 𝑣௡
ሺଵሻሻ in (2.1) and (2.2) represents the information learned during the 1st

period, which is stored in hidden neurons ℎሺଵሻ ൌ ሺℎଵ
ሺଵሻ, ℎଶ

ሺଵሻ, … , ℎ௡
ሺଵሻሻ in the 1st period.

In general, given the vector (𝑣ଵ
ሺ௜ିଵሻ, 𝑣ଶ

ሺ௜ିଵሻ, … , 𝑣௡
ሺ௜ିଵሻሻ for the ሺ𝑖 െ 1ሻ௧௛ period (𝑖 ൒ 2ሻ, we have

the following at the 𝑖௧௛ period:

(c) Input: 𝑥ሺ௜ሻ ൌ ሺ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, … , 𝑥௠
ሺ௜ሻሻ;

(d) Output: 𝑦ሺ௜ሻ ൌ ሺ𝑦ଵ
ሺ௜ሻ, 𝑦ଶ

ሺ௜ሻ, … , 𝑦௡
ሺ௜ሻ), i.e., a unit vector, which is a random realization generated

by multinomial probability 𝑝௜ ൌ ሺ𝑝௜ଵ, 𝑝௜ଶ, … , 𝑝௜௡ሻ, where

𝑝௜௝ ൌ
ୣ୶୮ቀ௩ೕ

ሺ೔ሻቁ

ୣ୶୮ቀ௩భ
ሺ೔ሻቁାୣ୶୮ቀ௩మ

ሺ೔ሻቁା…ାୣ୶୮ቀ௩೙
ሺ೔ሻቁ

. (2.3)

and

𝑣௝
ሺ௜ሻ ൌ 𝑎௝ଵ

ሺ௜ሻ𝑥ଵ
ሺ௜ሻ ൅ 𝑎௝ଶ

ሺ௜ሻ𝑥ଶ
ሺ௜ሻ ൅ ⋯ ൅ 𝑎௝௠

ሺ௜ሻ𝑥௠
ሺ௜ሻ+ 𝑏௝ଵ

ሺ௜ሻ𝑣ଵ
ሺ௜ିଵሻ ൅ 𝑏௝ଶ

ሺ௜ሻ𝑣ଶ
ሺ௜ିଵሻ ൅ ⋯ ൅ 𝑏௝௡

ሺ௜ሻ𝑣௡
ሺ௜ିଵሻ. (2.4)

As observed, 𝑣௝
ሺ௜ሻ consists of two parts, one from the current input, and the other from history,

i.e., (𝑣ଵ
ሺ௜ିଵሻ, 𝑣ଶ

ሺ௜ିଵሻ, … , 𝑣௡
ሺ௜ିଵሻሻ, corresponding to the information learned up to the ሺ𝑖 െ 1ሻ௧௛ period.

Similarly, the vector (𝑣ଵ
ሺ௜ሻ, 𝑣ଶ

ሺ௜ሻ, … , 𝑣௡
ሺ௜ሻሻ represents the information learned so far up to 𝑖௧௛ period,

which is stored in hidden neurons ℎሺ௜ሻ ൌ ሺℎଵ
ሺ௜ሻ, ℎଶ

ሺ௜ሻ, … , ℎ௡
ሺ௜ሻሻ.

This RNN model works, at the 𝑖௧௛ stage, in the way as described below:
1) Collects the input 𝑥ሺ௜ሻ, and information ℎሺ௜ିଵሻ learned up to the end of ሺ𝑖 െ 1ሻ
2) Learns from 𝑥ሺ௜ሻ and ℎሺ௜ିଵሻand stores the learned information in hidden neurons ℎሺ௜ሻ
3) Derives the multinomial probability ሺ𝑝௜ଵ, 𝑝௜ଶ, … , 𝑝௜௡ሻ, where 𝑝௜௝ is the probability that the

event will transition to 𝑗௧௛ rating.
4) Output: 𝑦ሺ௜ሻ is a random multinomial realization, given the multinomial probability

distribution ሺ𝑝௜ଵ, 𝑝௜ଶ, … , 𝑝௜௡ሻ
Remark 2.1. The formulation of (2.4) does not come with a bias (i.e., intercept). An intercept can

be inserted by adding a covariate with a constant value of 1, whenever necessary.

3. Training the RNN rating transition model

Let 𝑦ሺ௞ሻ ൌ ሺ𝑦ଵ
ሺ௞ሻ, 𝑦ଶ

ሺ௞ሻ, … , 𝑦௡
ሺ௞ሻሻ be the observed outcome at the 𝑘௧௛ period. The cost function at

the 𝑘௧௛ period is denoted by 𝐿௞, which is given as (for one single data point):

𝐿௞ ൌ െ∑௝ୀଵ
௡ 𝑦௝

ሺ௞ሻlog ሺ𝑝௞௝ሻ. (3.1)

This is the negative log-likelihood for observing the multinomial outcome ሺ𝑦ଵ
ሺ௞ሻ, 𝑦ଶ

ሺ௞ሻ, … , 𝑦௡
ሺ௞ሻሻ.

The total cost function to be minimized for this recurrent neural network is

𝐿 ൌ 𝐿ଵ ൅ 𝐿ଶ ൅ ⋯ ൅ 𝐿். (3.2)

summing over entire training sample.

5

Big Data and Information Analytics Volume 7, 1–12.

3.1. Partial derivatives of 𝐿 with respect to network weights

Training a neural network involves a series of gradient descent searches. Evaluation of partial
derivatives is essential. In this sub-section, we calculate the partial derivatives for the network cost
function with respect to network weights.

3.1.1. Partial derivatives of 𝐿௞ with respect to 𝑣௜
ሺ௞ି௥ሻ

Let 𝑑௜
ሺ௞,௥ሻ denote the partial derivative of 𝐿௞ with respect to 𝑣௜

ሺ௞ି௥ሻ, 0 ൑ 𝑟 ൑ 𝑘 െ 1. By (2.1) and

(2.3), we have the partial derivative
డ௣ೖ೔

డ௩ೕ
ሺೖሻ as:

డ௣ೖ೔

డ௩ೕ
ሺೖሻ ൌ ൜

𝑝௞௜ሺ1 െ 𝑝௞௜ሻ, 𝑖 ൌ 𝑗,
െ𝑝௞௜𝑝௞௝, 𝑖 ് 𝑗. (3.3)

Hence, by (3.1) and (3.3), we have the following for 1 ൑ 𝑖 ൑ 𝑛:

𝑑௜
ሺ௞,଴ሻ ൌ 𝜕𝐿௞/𝜕𝑣௜

ሺ௞ሻ=െ∑௝ୀଵ
௡ 𝑦௝

ሺ௞ሻ ∂ሾlog൫𝑝௞௝൯ሿ/𝜕𝑣௜
ሺ௞ሻ

ൌ െ𝑦௜
ሺ௞ሻሺ1 െ 𝑝௞௜ሻ ൅ ∑௝ஷ௜

௡ 𝑦௝
ሺ௞ሻ𝑝௞௜ =െቀ𝑦௜

ሺ௞ሻ െ 𝑝௞௜ቁ, (3.4)

where ∑௝ୀଵ
௡ 𝑦௝

ሺ௞ሻ ൌ 1 is used.

Given 𝑑௝
ሺ௞,଴ሻ, 1 ൑ 𝑗 ൑ 𝑛, we can calculate 𝑑௜

ሺ௞,ଵሻ from top-down for 𝑘 ൐ 1 and 1 ൑ 𝑖 ൑ 𝑛 by

using (2.4):

𝑑௜
ሺ௞,ଵሻ ൌ డ௅ೖ

డ௩೔
ሺೖషభሻ ൌ ∑௝ୀଵ

௡ ቆ డ௅ೖ

డ௩ೕ
ሺೖሻቇ ቆ

డ௩ೕ
ሺೖሻ

డ௩೔
ሺೖషభሻቇ ൌ ∑௝ୀଵ

௡ 𝑏௝௜
ሺ௞ሻ𝑑௝

ሺ௞,଴ሻ.

Inductively, we have the following for 𝑘 ൐ 𝑟 and 0 ൑ 𝑖 ൑ 𝑛:

𝑑௜
ሺ௞,௥ሻ ൌ

𝜕𝐿௞

𝜕𝑣௜
ሺ௞ି௥ሻ

ൌ ∑௝ୀଵ
௡ ൭

𝜕𝐿௞

𝜕𝑣௝
ሺ௞ି௥ାଵሻ൱ ൭

𝜕𝑣௝
ሺ௞ି௥ାଵሻ

𝜕𝑣௜
ሺ௞ି௥ሻ ൱

ൌ ∑௝ୀଵ
௡ 𝑏௝௜

ሺ௞ି௥ାଵሻ𝑑௝
ሺ௞,௥ିଵሻ. (3.5)

3.1.2. Partial derivatives of 𝐿 ൌ ∑௞ୀଵ
் 𝐿௞ with respect to 𝑣௜

ሺ௥ሻ

We will use the following fact:

డ𝑳𝒌

𝝏௩ೕ
ሺ೔ሻ ൌ 0 if 𝑘 ൏ 𝑖. (3.6)

6

Big Data and Information Analytics Volume 7, 1–12.

Let 𝐷௜
்ି௥ denote the partial derivative of 𝐿 with respect to 𝑣௜

ሺ்ି௥ሻ. Given ሼ𝑑௜
ሺ௞,଴ሻ| 1 ൑ 𝑖 ൑ 𝑛, 1 ൑

𝑘 ൑ 𝑇ሽ, we can calculate ሼ𝐷௜
்ି௥| 1 ൑ 𝑖 ൑ 𝑛, 0 ൑ 𝑟 ൏ 𝑇ሽ top-down. Initially, at the top period, we have

the following by (3.6):

𝐷௜
் ൌ

𝜕𝑳

𝝏𝑣௜
ሺ்ሻ ൌ

𝜕𝑳𝑻

𝝏𝑣௜
ሺ்ሻ ൌ 𝑑௜

ሺ்,଴ሻ.

Next, backward from the top period, we have 𝐷௜
்ିଵfor 𝑇 ൐ 1 and 1 ൑ 𝑖 ൑ 𝑛 as follows:

𝐷௜
்ିଵ ൌ

𝜕𝐿

𝜕𝑣௜
ሺ்ିଵሻ ൌ

𝜕ሺ𝐿் ൅ 𝐿்ିଵሻ

𝜕𝑣௜
ሺ்ିଵሻ

=
డ௅೅

డ௩೔
ሺ೅షభሻ ൅ డ௅೅షభ

డ௩೔
ሺ೅షభሻ ൌ ∑௝ୀଵ

௡ డ௅೅

డ௩ೕ
ሺ೅ሻ

డ௩ೕ
ሺ೅ሻ

డ௩೔
ሺ೅షభሻ ൅ 𝑑௜

ሺ்ିଵ,଴ሻ

ൌ ∑௝ୀଵ
௡ 𝑏௝௜

ሺ்ሻ 𝜕𝐿

𝜕𝑣௝
ሺ்ሻ ൅ 𝑑௜

ሺ்ିଵ,଴ሻ

ൌ ∑௝ୀଵ
௡ 𝑏௝௜

ሺ்ሻ𝐷௝
் ൅ 𝑑௜

ሺ்ିଵ,଴ሻ,

where (3.6) is used for 2nd and 5௧௛equality signs. Inductively, we have 𝐷௜
்ି௥ for 𝑇 ൐ 𝑟 and 1 ൑ 𝑖 ൑ 𝑛

from top-down as follows:

𝐷௜
்ି௥ ൌ డ௅

డ௩೔
ሺ೅షೝሻ ൌ డሺ௅೅ା௅೅షభା⋯ା௅೅షೝశభሻ

డ௩೔
ሺ೅షೝሻ ൅ డ௅೅షೝ

డ௩೔
ሺ೅షೝሻ, (3.7)

ൌ ∑௝ୀଵ
௡ 𝜕ሺ𝐿் ൅ 𝐿்ିଵ ൅ ⋯ ൅ 𝐿்ି௥ାଵሻ

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௜
ሺ்ି௥ሻ ൅ 𝑑௜

ሺ்ି௥,଴ሻ

ൌ ∑௝ୀଵ
௡ 𝜕𝐿

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௜
ሺ்ି௥ሻ ൅ 𝑑௜

ሺ்ି௥,଴ሻ

ൌ ∑௝ୀଵ
௡ 𝑏௝௜

ሺ்ି௥ାଵሻ𝐷௝
ሺ்ି௥ାଵሻ ൅ 𝑑௜

ሺ்ି௥,଴ሻ,

where (3.6) is used for 2nd and 4௧௛ equality signs.

3.1.3. Partial derivatives of 𝐿 ൌ ∑௞ୀଵ
் 𝐿௞ with respect to 𝑎௜௝

ሺ௥ሻ and 𝑏௜௝
ሺ௥ሻ

Given ሼ𝐷௜
௥ሽ, i.e., the partial derivatives of the cost function 𝐿 with respect to 𝑣௜

ሺ௥ሻ; we can now

find the partial derivatives of 𝐿 with respect network weights 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ as defined in (2.2) and (2.4).

Let 𝛿௜௝
௥ and 𝜎௜௝

௥ denote respectively the partial derivatives of 𝐿 with respect to 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ. By

(2.4), at the top time period 𝑟 ൌ 𝑇, we have

𝛿௜௝
் ൌ

𝜕𝐿

𝜕𝑎௜௝
ሺ்ሻ ൌ

𝜕𝐿

𝜕𝑣௜
ሺ்ሻ

𝜕𝑣௜
ሺ்ሻ

𝜕𝑎௜௝
ሺ்ሻ ൌ 𝑥௝

ሺ்ሻ𝐷௜
் ,

𝜎௜௝
் ൌ

𝜕𝐿

𝜕𝑏௜௝
ሺ்ሻ ൌ

𝜕𝐿

𝜕𝑣௜
ሺ்ሻ

𝜕𝑣௜
ሺ்ሻ

𝜕𝑏௜௝
ሺ்ሻ ൌ 𝑣௝

ሺ்ିଵሻ𝐷௜
் .

If general, we have

7

Big Data and Information Analytics Volume 7, 1–12.

𝛿௜௝
்ି௥ ൌ 𝑥௝

ሺ்ି௥ሻ𝐷௜
்ି௥ , (3.8)

𝜎௜௝
்ି௥ ൌ 𝑣௝

ሺ்ି௥ିଵሻ𝐷௜
்ି௥ . (3.9)

3.2. Initialization of network weights

A good initialization of the network weights 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ speeds up the convergence for the

network training. In this sub-section, we propose an algorithm for initializing the network weights.

Let 𝑤௝
ሺ௥ሻ denote the vector of weights in (2.4) for 𝑣௝

ሺ௥ሻ at the 𝑟௧௛ time period, i.e.,

𝑤௝
ሺ௥ሻ ൌ ቀ𝑎௝ଵ

ሺ௥ሻ, 𝑎௝ଶ
ሺ௥ሻ, … , 𝑎௝௠

ሺ௥ሻ, 𝑏௝ଵ
ሺ௥ሻ, 𝑏௝ଶ

ሺ௥ሻ, … , 𝑏௝௡
ሺ௥ሻቁ

௧௥௔௡௦௣௢௦௘
 (3.10A)

for 𝑟 ൐ 1, and for 𝑟 ൌ 1,

𝑤௝
ሺଵሻ ൌ ቀ𝑎௝ଵ

ሺଵሻ, 𝑎௝ଶ
ሺଵሻ, … , 𝑎௝௠

ሺଵሻቁ
௧௥௔௡௦௣௢௦௘

. (3.10B)

Then the weight matrix for the network at the 𝑟௧௛ time-period is given by

𝑤ሺ௥ሻ ൌ ሺ𝑤ଵ
ሺ௥ሻ, 𝑤ଶ

ሺ௥ሻ, … , 𝑤௡
ሺ௥ሻሻ, 1 ൑ 𝑟 ൑ 𝑇. (3.11)

Algorithm 3.1 (Initialization). Initialize network weights 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ as follows, step-by-step,

starting from the first time period:

(a) Find 𝑤௝
ሺଵሻ, 1 ൑ 𝑗 ൑ 𝑛, by running a linear (or logistic if more sensitivity is required for some

𝑦௝
ሺଵሻ′𝑠) regression against the binary target 𝑦௝

ሺଵሻ with 𝑥ሺଵሻ as the explanatory variable. Derive 𝑣௝
ሺଵሻ by

(2.2).

(b) Given 𝑥ሺଶሻ ൌ ሺ𝑥ଵ
ሺଶሻ, 𝑥ଶ

ሺଶሻ, …, 𝑥௠
ሺଶሻሻ and 𝑣ሺଵሻ ൌ ሺ𝑣ଵ

ሺଵሻ, 𝑣ଶ
ሺଵሻ, … , 𝑣௡

ሺଵሻሻ, find 𝑤௝
ሺଶሻ, 1 ൑ 𝑗 ൑ 𝑛 by

running a linear (or logistic if more sensitivity is required for some 𝑦௝
ሺଶሻ′𝑠) regression against 𝑦௝

ሺଶሻ with

the components of 𝑥ሺଶሻ and 𝑣ሺଵሻ as explanatory variables. Derive 𝑣௝
ሺଶሻ by (2.4).

(c) Repeat (b) to obtain the initial weights for 𝑤௝
ሺ௥ሻ at the 𝑟௧௛ time period for 1 ൑ 𝑗 ൑ 𝑛 and 1 ൑

𝑟 ൑ 𝑇.

3.3. Training the recurrent neural network

Given initial weights, network training involves a series of gradient descent searches, as described
in the next algorithm. Let 𝑤ሺ௥ሻ be the weight matrix as in (3.11) for the network at the 𝑟௧௛ time period,
i.e.,

𝑤ሺ௥ሻ ൌ ሺ𝑤ଵ
ሺ௥ሻ, 𝑤ଶ

ሺ௥ሻ, … , 𝑤௡
ሺ௥ሻሻ, 1 ൑ 𝑟 ൑ 𝑇.

Algorithm 3.2 (Network training). Update network weights 𝑤ሺ௥ሻ, 1 ൑ 𝑟 ൑ 𝑇, step-by-step, as
described below

8

Big Data and Information Analytics Volume 7, 1–12.

(a) Forward scoring: Randomly select a small batch of examples (1–10 loan accounts, for
example) from the time series of the training sample and calculate 𝑝௥௝ by (2.3) using the current
weights for 1 ൑ 𝑟 ൑ 𝑇 and 1 ൑ 𝑗 ൑ 𝑛.

(b) Select a time period 𝑟, from 1 to 𝑇 in sequence. At the 𝑟௧௛ time period, find the partial

derivatives of 𝐿 with respect to 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ by (3.8) and (3.9); then, calculate Δ𝑤௝
ሺ௥ሻ as follows

Δ𝑤௝
ሺ௥ሻ ൌ 𝑎𝑣𝑔 ൭

𝜕𝐿

𝜕𝑎௝ଵ
ሺ௥ሻ ,

𝜕𝐿

𝜕𝑎௝ଶ
ሺ௥ሻ , . . . ,

𝜕𝐿

𝜕𝑎௝௠
ሺ௥ሻ ,

𝜕𝐿

𝜕𝑏௝ଵ
ሺ௥ሻ ,

𝜕𝐿

𝜕𝑏௝ଶ
ሺ௥ሻ , . . . ,

𝜕𝐿

𝜕𝑏௝௡
ሺ௥ሻ൱

்௥௔௡௦௣௢௦௘

, 1 ൑ 𝑗 ൑ 𝑇,

which is the average of the partial derivatives of 𝐿 over the batch; hence, obtain the following weight
matrix:

Δ𝑤ሺ௥ሻ ൌ ቀΔ𝑤ଵ
ሺ௥ሻ, Δ𝑤ଶ

ሺ௥ሻ, . . . , Δ𝑤௡
ሺ௥ሻቁ.

(c) Select a learning rate 𝜂 from a grid of values such that the update of 𝑤ሺ௥ሻ is

𝑤ሺ௥ሻ ⇐ 𝑤ሺ௥ሻ ൅ 𝜂ሺΔ𝑤ሺ௥ሻሻ, (3.12)

which gives rise to the biggest decrease for the cost function described by (3.2) over the entire training
sample. Execute the update for 𝑤ሺ௥ሻ by (3.12).

(d) Steps (a)–(c) are repeated until no material improvement is possible.
With the partial derivatives being evaluated over only one small batch of examples, these partial

derivatives are called the mini-batch stochastic gradient for the cost function. This gradient can go off
in a direction far from the batch gradient (i.e., the gradient over the entire training sample).
Nevertheless, this noisiness is what we need for non-convex optimization [18,19] to escape from saddle
points or local minima (Theorem 6 in [19]). The disadvantage is that more iterations are required to
reach a good solution.

Remark 3.3. For Step (c) in Algorithm 3.2, there are better approaches for selecting a value for
the learning rate 𝜂, rather than exhausting all possible values in the grid. For example, let 𝜂௜ be the
𝑖௧௛value in the grid from 1 downward, and assume that currently 𝜂௜ is the best learning rate so far, and
it leads to a decrease for the cost function; stop the search for the learning rate and use 𝜂௜ as the best
learning rate, if 𝜂௜ାଵ does not lead to a bigger decrease for the cost function than 𝜂௜.

4. Experimental results

In this section, we present the experimental results for the proposed RNN model, as benchmarked
with two other Markov rating transition models.

The data we used constituted a synthetic sample, simulating a commercial loan portfolio with
seven ratings ሼ𝑅௜ሽ௜ୀଵ

଻ over seven quarters (periods). At the end of each quarter, accounts are rated by
one of seven ratings, with ratings 𝑅଺ and 𝑅଻ being, respectively, the withdrawal and default ratings.
Both the default and withdrawal ratings are absorbed ratings that were excluded from later quarters for
observation. For simplicity, we included only three covariates, which simulated the following drivers
for a loan:

(a) Debt service coverage ratio
(b) Debt to tangible net worth ratio

9

Big Data and Information Analytics Volume 7, 1–12.

(c) Current ratio
The sample contained 10,000 accounts. It was split 50:50 into training and validation. We focued

on the following three models:
1) Model 1—The proposed RNN rating transition model;
2) Model 2—Time-inhomogeneous Markov transition model, with one separate transition

model for each period;
3) Model 3—Time-homogeneous Markov transition model, with one single transition model

for all periods.
All three model use the same covariates.
Let 𝑦௝ denote a binary variable for a loan with a value of 1 if the loan has the rating 𝑅௝ at the

quarter end, and 0 otherwise. Let ሺ𝑝ଵ, 𝑝ଶ, … , 𝑝଻ሻ be the multinomial probabilities for a loan estimated
by a rating transition model at the beginning of a quarter, with 𝑝௝ being the probability of transitioning
to 𝑅௝ at the quarter end.

Tables 1 and 2 below show the Gini coefficients, over the training and validation samples
respectively, for each of the above three models for ranking each of these seven ratings individually.
For example, in Table 1, for the RNN transition model over the training sample, it had a Gini of 0.84
for the ranking rating 𝑅ଵ. This Gini was calculated by using 𝑝ଵ to predict 𝑦ଵover the entire training
sample. The results shown in these two tables demonstrate strong performance for the RNN transition
model over the other two models.

Table 1. Gini by rating on training.

Model Rating

1 2 3 4 5 6 7 Avg

1
2
3

0.84
0.73
0.53

0.69
0.45
0.33

0.62
0.39
0.19

0.48
0.24
0.15

0.54
0.37
0.20

0.50
0.37
0.32

0.68
0.55
0.53

0.62
0.44
0.32

Table 2. Gini by rating on vaildation.

Model Rating

1 2 3 4 5 6 7 Avg

1
2
3

0.82
0.74
0.52

0.68
0.45
0.34

0.60
0.39
0.18

0.46
0.24
0.12

0.45
0.28
0.28

0.34
0.36
0.32

0.66
0.54
0.51

0.57
0.43
0.33

In the remainder of this section, we focus on the robustness of a model in terms of predicting the
default event, and the quality of using 𝑝଻ to predict 𝑦଻, the default indicator. Tables 3 and 4 below
show the Gini coefficients period by period, over the training and validation samples respectively, for
ranking the default indicator over each of seven periods. Again, the RNN transition model significantly
outperformed the other two benchmark models across all periods.

10

Big Data and Information Analytics Volume 7, 1–12.

Table 3. Gini by period for default rating on training.

Model Period
1 2 3 4 5 6 7 Avg

1 0.66 0.63 0.61 0.62 0.57 0.67 0.51 0.61
2 0.66 0.07 0.43 0.37 0.33 0.21 0.16 0.32
3 0.66 0.31 0.22 0.27 0.33 0.21 0.16 0.31

Table 4. Gini by period for default rating on validation.

Model Period

1 2 3 4 5 6 7 Avg

1 0.64 0.62 0.58 0.55 0.46 0.55 0.53 0.56
2 0.64 0.05 0.35 0.28 0.25 0.04 0.20 0.26
3 0.64 0.27 0.11 0.18 0.25 0.04 0.20 0.24

The following six tables show the actual and predicted default rates for each model by decile over
the training and validation samples. For example, Table 5 shows the actual and predicted default rates
over the training sample for the RNN rating transition model. These values in the table were calculated
by first sorting 𝑝଻ ascendingly, and then dividing the sample into 10 buckets, each of which was about
10%. The averages of the actual and predicted default rates over each bucket were taken.

Table 5. RNN on training (Gini-68%).

Decile 0 1 2 3 4 5 6 7 8 9

Actual 3.62% 4.90% 4.97% 5.33% 21.16% 23.79% 36.43% 42.47% 61.72% 81.19%

Pred 3.20% 4.33% 4.59% 5.63% 19.68% 23.24% 35.62% 44.20% 62.25% 82.85%

Table 6. RNN on validation (Gini-66%).

Decile 0 1 2 3 4 5 6 7 8 9

Actual 4.53% 4.89% 4.53% 8.49% 24.73% 24.03% 34.46% 45.04% 61.44% 81.09%

Pred 3.17% 4.31% 4.57% 6.45% 20.65% 23.49% 36.65% 45.87% 63.57% 84.49%

Table 7. One migration matrix per period on training (Gini-55%).

Decile 0 1 2 3 4 5 6 7 8 9

Actual 11.29% 12.50% 4.55% 7.03% 23.01% 26.99% 38.99% 32.67% 50.14% 78.42%

Pred 1.46% 5.04% 5.84% 6.19% 8.20% 15.54% 24.29% 49.62% 73.66% 95.73%

Table 8. One migration matrix per period on validation (Gini-54%).

Decile 0 1 2 3 4 5 6 7 8 9

Actual 11.87% 14.89% 5.25% 8.42% 22.65% 26.40% 39.86% 34.39% 51.80% 77.71%

Pred 1.52% 5.16% 5.97% 6.36% 8.58% 16.22% 24.82% 51.71% 76.60% 96.29%

11

Big Data and Information Analytics Volume 7, 1–12.

Table 9. One single migration matrix on training (Gini-53%).

Decile 0 1 2 3 4 5 6 7 8 9

Actual 19.11% 4.90% 12.93% 4.97% 19.03% 29.05% 27.70% 39.28% 50.07% 78.57%

Pred 2.52% 5.36% 6.20% 6.71% 9.82% 21.95% 25.37% 35.67% 75.51% 96.46%

Table 10. One single migration matrix on validation (Gini-51%).

Decile 0 1 2 3 4 5 6 7 8 9

Actual 21.30% 5.90% 14.46% 4.53% 19.41% 29.06% 29.50% 39.64% 52.09% 77.35%

Pred 2.52% 5.49% 6.35% 6.87% 10.39% 22.60% 25.81% 37.94% 78.29% 96.97%

These results demonstrate a significant improvement for the RNN model over the other two
models, either on training or validation.

5. Conclusions

A rating transition for a credit portfolio is generally path dependent. A Markov rating transition
model, either homogeneous or inhomogeneous, usually does not perform well after projecting for a
few periods. The RNN model proposed in this paper provides a solution for modeling state transitions
under non-Markov settings. This RNN is informed by the information history along the path. The
experiments show that this proposed RNN model significantly outperforms Markov models where path
dependence is relevant.

Acknowledgements

The author thanks Biao Wu for many valuable discussions in the last 3 years in deep machine
learning, Python financial engineering, as well as his insights and comments. Thanks also go to Felix
Kan for many valuable comments, to Zunwei Du, Kaijie Cui, and Glenn Fei for many valuable
conversations.

Conflict of interest

The views expressed in this article are not necessarily those of the banks the author works with.
Please direct any comments to the author Bill Huajian Yang at: h_y02@yahoo.ca.

References

1. Yang BH, Du Z, (2016) Rating transition probability models and CCAR stress testing. J Risk
Model Validation 10: 1–19. https://doi.org/10.21314/JRMV.2016.155

2. Yang BH, (2017) Forward ordinal models for point-in-time probability of default term structure.
J Risk Model Validation 11: 1–18. https://doi.org/10.21314/JRMV.2017.181

12

Big Data and Information Analytics Volume 7, 1–12.

3. Dos Reis G, Pfeuffer M, Smith G, (2020) Capturing model risk and rating momentum in the
estimation of probabilities of default and credit rating migrations. Quant Finance 20: 1069–1083.
https://doi.org/10.1080/14697688.2020.1726439

4. Miu P, Ozdemir B, (2009) Stress testing probability of default and rating migration rate with
respect to Basel II requirements. J Risk Model Validation 3: 3–38.
https://doi.org/10.21314/JRMV.2009.048

5. Kiefer NM, Larson CE, (2004) Testing Simple Markov Structures for Credit Rating Transitions.
Comptroller of the Currency.

6. Kiefer NM, Larson CE, (2007) A simulation estimator for testing the time homogeneity of credit
rating transitions. J Empirical Finance 14: 818–835.
https://doi.org/10.1016/j.jempfin.2006.08.001

7. Juhasz P, Vidovics-Dancs A, Szaz J, (2017) Measuring path dependency. UTMS J Econ 8: 29–
37.

8. Russo E, (2020) A discrete-time approach to evaluate path-dependent derivatives in a regime-
switching risk model. Risks 8: 9. https://doi.org/10.3390/risks8010009

9. Yang BH, (2017) Point-in-time PD term structure models for multi-period scenario loss projection.
J Risk Model Validation 11: 73–94. https://doi.org/10.21314/JRMV.2017.164

10. Zhu S, Lomibao D, (2005) A conditional valuation approach for path-dependent instruments.
SSRN Electron J. https://doi.org/10.2139/ssrn.806704

11. Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J, (2009) A novel
connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach
Intell 31: 855–868. https://doi.org/10.1109/TPAMI.2008.137

12. Tealab A, (2018) Time series forecasting using artificial neural networks methodologies: A
systemati review. Future Comput Inf J 3: 334–340. https://doi.org/10.1016/j.fcij.2018.10.003

13. Hyötyniemi H, (1997) Proceedings of STeP'96, (eds. Jarmo Alander, Timo Honkela and Matti
Jakobsson), Publications of the Finnish Artificial Intelligence Society, 13–24.

14. Elman JL, (1990) Finding structure in time. Cognitive Sci 14: 179–211.
https://doi.org/10.1016/0364-0213(90)90002-E

15. Schmidhuber J, (2015) Deep learning in neural networks: An overview. Neural Networks 61: 85–
117. https://doi.org/10.1016/j.neunet.2014.09.003

16. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018), State-of-the-art
in artificial neural network applications: A survey, Heliyon 4: e00938.
https://doi.org/10.1016/j.heliyon.2018.e00938

17. Dupond S (2019), A thorough review on the current advance of neural network structures. Annu
Rev Control 14: 200–230.

18. Bottou L, (2010) Large-scale machine learning with stochastic gradient descent, In Proceedings
of COMPSTAT’2010 Physica-Verlag HD, 177–186. https://doi.org/10.1007/978-3-7908-2604-
3_16

19. Ge R, Huang F, Jin C, Yuan Y, (2015) Escaping from saddle points-online stochastic gradient for
tensor decomposition, In Conference on Learning Theory, PMLR, 1–46.

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

