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Abstract: Rating transition models are widely used for credit risk evaluation. It is not uncommon that 
a time-homogeneous Markov rating migration model will deteriorate quickly after projecting 
repeatedly for a few periods. This is because the time-homogeneous Markov condition is generally not 
satisfied. For a credit portfolio, the rating transition is usually path-dependent. In this paper, we 
propose a recurrent neural network (RNN) model for modeling path-dependent rating migration. An 
RNN is a type of artificial neural network where connections between nodes form a directed graph 
along a temporal sequence. There are neurons for input and output at each time period. The model is 
informed by the past behaviors for a loan along the path. Information learned from previous periods 
propagates to future periods. The experiments show that this RNN model is robust.  

Keywords: path-dependent; rating transition; recurrent neural network; deep learning; Markov 
property; time homogeneity 
 

1. Introduction 

Rating transition models are widely used in the financial industry for credit risk evaluations, 
including stress testing and IFRS 9 expected credit loss evaluation [1–4], under the assumption that a 
rating transition is a time-homogeneous Markov process, depending only on the current rating and 
covariates. However, it is not uncommon that a Markov model deteriorates quickly after projecting for 
a few periods. This is because the Markov condition is generally not satisfied. A rating transition for a 
credit portfolio is generally path dependent. A test for this assumption is required [5,6] for the use of 
these Markov models. 
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There are various methods for path-dependent credit risk modeling [7], including regime-
switching models [8] and the conditional methods [9,10]. The latter is comparative to a cohort analysis. 

In this paper, we propose a recurrent neural network (RNN) model for modeling path-dependent 
rating transition. An RNN is a type of artificial neural network where connections between nodes form 
a directed graph along a temporal sequence. There are neurons for input and output at each time-period. 
The RNN is informed by past behaviours along the path. Information learned from previous periods 
propagates to future periods [11–17]. 

The network structure for the proposed RNN model is described in Section 2 by using (2.1)–(2.4). 
This RNN model was implemented in Python. The experiments show that this RNN model is robust, 
compared to Markov transition models. Applications of this RNN model include the following, 
wherever path dependence is relevant: 

(a) Path-dependent asset evaluation or credit risk evaluation  
(b) Decisioning for account management 
(c) Forecasting loss for stress testing, expected credit loss for IFRS 9 projects 
(d) Estimating conditional probability of default for survival analysis 
The paper is organized as follows. In Section 2, we setup the proposed RNN model. In Section 3, 

we calculate the partial derivatives for the network cost function. In Section 4, we present the 
experimental results for this proposed RNN model, as benchmarked with the time-homogeneous and 
time-inhomogeneous rating transition models. 

2. Recurrent neural network models for multiperiod state transition 

In this section, we describe, the proposed RNN model, as given in (2.1)–(2.4), for modeling path-
dependent rating transition. Given an observation horizon with 𝑇 periods: 

0 ൌ 𝑡଴ ൏ 𝑡ଵ ൏ 𝑡ଶ ൏ ⋯ ൏ 𝑡்; 

our goal is to estimate at each 𝑖 ൒ 0 the probability of transitioning to a rating at time 𝑡௜ାଵ given the 
rating and covariates at time 𝑡௜. 

Traditional rating transition models assume the Markov condition, i.e., the transition probability 
depends only on the current rating and covariates. The type of Markov transition models includes the 
following: 

(a) Time-homogeneous Markov rating transition, as represented by one single transition model 
for all periods 

(b) Time-inhomogeneous Markov rating transition, as represented by one transition model for 
each period  

It is not uncommon that a time-homogeneous Markov model will deteriorate quickly after 
projecting only for a few periods. This is because the Markov condition is generally not satisfied. A 
rating transition for a credit portfolio is generally path dependent. 

An RNN is an artificial neural network where connections between nodes form a directed graph 
along a temporal sequence. The chart below depicts the structure of an RNN. At the 𝑖௧௛ time period of 
the temporal sequence, the input neurons, the hidden neurons and the output neurons are respectively 
labeled 𝑥ሺ௜ሻ, ℎሺ௜ሻ and 𝑦ሺ௜ሻ: 
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Figure 1. An RNN for rating transition. 

An RNN shares the advantages of common neural networks; particularly, information learned at 
a point is propagated back and forward to all periods. It is path dependent. 

Let ሼ𝑅௜ሽ௜ୀଵ
௡  denote the 𝑛 ratings for a credit portfolio. For a loan portfolio, we reserve 𝑅௡ିଵ as the 

withdrawal rating and 𝑅௡ as the default ratings. Both the default and withdrawal ratings are assumed 
to be absorbed states, which means that a loan rated by a default or withdrawal rating will be excluded 
from the sample for future subsequent observations. Rating labels are observable at the beginning and 
the end of a period. 

Let 𝑟௝
ሺ௜ሻ denote the indicator with a value of 1 if the rating for a loan at the end of the 𝑖௧௛ period 

is 𝑅௝ and 0 otherwise. Let 𝑛௣ denote the number of non-absorbed ratings. An input at the 𝑖௧௛ period is 
denoted as 

𝑥ሺ௜ሻ ൌ ሺ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, … , 𝑥௠
ሺ௜ሻሻ, 

where the first (𝑚 െ 𝑛௣ሻ input components ሺ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, … , 𝑥௠ି௡೛

ሺ௜ሻ ) denote the covariates observable at 

the beginning of the 𝑖௧௛period, and the remaining 𝑛௣ components are the rating indicators for non-
absorbed ratings observed at the end of the ሺ𝑖 െ 1ሻ௧௛ period: 

𝑥௝
ሺ௜ሻ ൌ 𝑟௝

ሺ௜ିଵሻ, 𝑚 െ 𝑛௣ ൅ 1 ൑ 𝑗 ൑ 𝑚. 

That is, the non-absorbed rating observed at the end of the ሺ𝑖 െ 1ሻ௧௛ period is used as the input 
for the next period. The output at the 𝑖௧௛ period is denoted as 

𝑦ሺ௜ሻ ൌ ሺ𝑦ଵ
ሺ௜ሻ, 𝑦ଶ

ሺ௜ሻ, … , 𝑦௡
ሺ௜ሻ) 

where 

𝑦௝
ሺ௜ሻ ൌ 𝑟௝

ሺ௜ሻ, 1 ൑ 𝑗 ൑ 𝑛. 

The structure for this RNN is described as shown in (2.1)–(2.4) below. Initially, for the first period, 
we have 

(a) Input: 𝑥ሺଵሻ ൌ ሺ𝑥ଵ
ሺଵሻ, 𝑥ଶ

ሺଵሻ, … , 𝑥௠
ሺଵሻሻ; 

(b) Output: 𝑦ሺଵሻ=ሺ𝑦ଵ
ሺଵሻ, 𝑦ଶ

ሺଵሻ, … , 𝑦௡
ሺଵሻሻ, i.e., a unit vector where all components are zero except for 

one , which has a value of 1, and it is a random realization generated by the multinomial probability 
𝑝ଵ ൌ ሺ𝑝ଵଵ, 𝑝ଵଶ, … , 𝑝ଵ௡ሻ, where 

𝑝ଵ௝ ൌ
ୣ୶୮ቀ௩ೕ

ሺభሻቁ

ୣ୶୮ቀ௩భ
ሺభሻቁାୣ୶୮ቀ௩మ

ሺభሻቁା⋯ାୣ୶୮ቀ௩೙
ሺభሻቁ

,                                            (2.1) 
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and 

𝑣௝
ሺଵሻ ൌ  𝑎௝ଵ

ሺଵሻ𝑥ଵ
ሺଵሻ ൅ 𝑎௝ଶ

ሺଵሻ𝑥ଶ
ሺଵሻ ൅ ⋯ ൅ 𝑎௝௠

ሺଵሻ𝑥௠
ሺଵሻ.                                 (2.2) 

Vector (𝑣ଵ
ሺଵሻ, 𝑣ଶ

ሺଵሻ, … , 𝑣௡
ሺଵሻሻ in (2.1) and (2.2) represents the information learned during the 1st 

period, which is stored in hidden neurons ℎሺଵሻ ൌ ሺℎଵ
ሺଵሻ, ℎଶ

ሺଵሻ, … , ℎ௡
ሺଵሻሻ in the 1st period. 

In general, given the vector (𝑣ଵ
ሺ௜ିଵሻ, 𝑣ଶ

ሺ௜ିଵሻ, … , 𝑣௡
ሺ௜ିଵሻሻ for the ሺ𝑖 െ 1ሻ௧௛ period (𝑖 ൒ 2ሻ, we have 

the following at the 𝑖௧௛ period: 

(c) Input: 𝑥ሺ௜ሻ ൌ ሺ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, … , 𝑥௠
ሺ௜ሻሻ; 

(d) Output: 𝑦ሺ௜ሻ ൌ ሺ𝑦ଵ
ሺ௜ሻ, 𝑦ଶ

ሺ௜ሻ, … , 𝑦௡
ሺ௜ሻ), i.e., a unit vector, which is a random realization generated 

by multinomial probability 𝑝௜ ൌ ሺ𝑝௜ଵ, 𝑝௜ଶ, … , 𝑝௜௡ሻ, where 

𝑝௜௝ ൌ
ୣ୶୮ቀ௩ೕ

ሺ೔ሻቁ

ୣ୶୮ቀ௩భ
ሺ೔ሻቁାୣ୶୮ቀ௩మ

ሺ೔ሻቁା…ାୣ୶୮ቀ௩೙
ሺ೔ሻቁ

.                                                (2.3) 

and 

𝑣௝
ሺ௜ሻ ൌ  𝑎௝ଵ

ሺ௜ሻ𝑥ଵ
ሺ௜ሻ ൅ 𝑎௝ଶ

ሺ௜ሻ𝑥ଶ
ሺ௜ሻ ൅ ⋯ ൅ 𝑎௝௠

ሺ௜ሻ𝑥௠
ሺ௜ሻ+ 𝑏௝ଵ

ሺ௜ሻ𝑣ଵ
ሺ௜ିଵሻ ൅ 𝑏௝ଶ

ሺ௜ሻ𝑣ଶ
ሺ௜ିଵሻ ൅ ⋯ ൅ 𝑏௝௡

ሺ௜ሻ𝑣௡
ሺ௜ିଵሻ.   (2.4) 

As observed, 𝑣௝
ሺ௜ሻ consists of two parts, one from the current input, and the other from history, 

i.e., (𝑣ଵ
ሺ௜ିଵሻ, 𝑣ଶ

ሺ௜ିଵሻ, … , 𝑣௡
ሺ௜ିଵሻሻ, corresponding to the information learned up to the ሺ𝑖 െ 1ሻ௧௛ period. 

Similarly, the vector (𝑣ଵ
ሺ௜ሻ, 𝑣ଶ

ሺ௜ሻ, … , 𝑣௡
ሺ௜ሻሻ represents the information learned so far up to 𝑖௧௛  period, 

which is stored in hidden neurons ℎሺ௜ሻ ൌ ሺℎଵ
ሺ௜ሻ, ℎଶ

ሺ௜ሻ, … , ℎ௡
ሺ௜ሻሻ. 

This RNN model works, at the 𝑖௧௛ stage, in the way as described below: 
1) Collects the input 𝑥ሺ௜ሻ, and information ℎሺ௜ିଵሻ learned up to the end of ሺ𝑖 െ 1ሻ 
2) Learns from 𝑥ሺ௜ሻ and ℎሺ௜ିଵሻand stores the learned information in hidden neurons ℎሺ௜ሻ  
3) Derives the multinomial probability ሺ𝑝௜ଵ, 𝑝௜ଶ, … , 𝑝௜௡ሻ, where 𝑝௜௝  is the probability that the 

event will transition to 𝑗௧௛ rating. 
4) Output: 𝑦ሺ௜ሻ  is a random multinomial realization, given the multinomial probability 

distribution ሺ𝑝௜ଵ, 𝑝௜ଶ, … , 𝑝௜௡ሻ 
Remark 2.1. The formulation of (2.4) does not come with a bias (i.e., intercept). An intercept can 

be inserted by adding a covariate with a constant value of 1, whenever necessary. 

3. Training the RNN rating transition model 

Let 𝑦ሺ௞ሻ ൌ ሺ𝑦ଵ
ሺ௞ሻ, 𝑦ଶ

ሺ௞ሻ, … , 𝑦௡
ሺ௞ሻሻ be the observed outcome at the 𝑘௧௛ period. The cost function at 

the 𝑘௧௛ period is denoted by 𝐿௞, which is given as (for one single data point): 

𝐿௞ ൌ െ∑௝ୀଵ
௡ 𝑦௝

ሺ௞ሻlog ሺ𝑝௞௝ሻ.                                                        (3.1) 

This is the negative log-likelihood for observing the multinomial outcome ሺ𝑦ଵ
ሺ௞ሻ, 𝑦ଶ

ሺ௞ሻ, … , 𝑦௡
ሺ௞ሻሻ. 

The total cost function to be minimized for this recurrent neural network is 

𝐿 ൌ 𝐿ଵ ൅ 𝐿ଶ ൅ ⋯ ൅ 𝐿்.                                                             (3.2) 

summing over entire training sample. 
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3.1. Partial derivatives of  𝐿 with respect to network weights 

Training a neural network involves a series of gradient descent searches. Evaluation of partial 
derivatives is essential. In this sub-section, we calculate the partial derivatives for the network cost 
function with respect to network weights. 

3.1.1. Partial derivatives of 𝐿௞ with respect to 𝑣௜
ሺ௞ି௥ሻ 

Let 𝑑௜
ሺ௞,௥ሻ denote the partial derivative of 𝐿௞ with respect to 𝑣௜

ሺ௞ି௥ሻ, 0 ൑ 𝑟 ൑ 𝑘 െ 1. By (2.1) and 

(2.3), we have the partial derivative 
డ௣ೖ೔

డ௩ೕ
ሺೖሻ as: 

డ௣ೖ೔

డ௩ೕ
ሺೖሻ ൌ ൜

𝑝௞௜ሺ1 െ 𝑝௞௜ሻ, 𝑖 ൌ 𝑗,
െ𝑝௞௜𝑝௞௝, 𝑖 ് 𝑗.                                                   (3.3) 

Hence, by (3.1) and (3.3), we have the following for 1 ൑ 𝑖 ൑ 𝑛: 

𝑑௜
ሺ௞,଴ሻ ൌ 𝜕𝐿௞/𝜕𝑣௜

ሺ௞ሻ=െ∑௝ୀଵ
௡ 𝑦௝

ሺ௞ሻ ∂ሾlog൫𝑝௞௝൯ሿ/𝜕𝑣௜
ሺ௞ሻ 

ൌ െ𝑦௜
ሺ௞ሻሺ1 െ 𝑝௞௜ሻ ൅ ∑௝ஷ௜

௡ 𝑦௝
ሺ௞ሻ𝑝௞௜  =െቀ𝑦௜

ሺ௞ሻ െ 𝑝௞௜ቁ,                                  (3.4) 

where ∑௝ୀଵ
௡ 𝑦௝

ሺ௞ሻ ൌ 1 is used. 

Given 𝑑௝
ሺ௞,଴ሻ, 1 ൑ 𝑗 ൑ 𝑛,  we can calculate 𝑑௜

ሺ௞,ଵሻ  from top-down for 𝑘 ൐ 1 and 1 ൑ 𝑖 ൑ 𝑛  by 

using (2.4): 

𝑑௜
ሺ௞,ଵሻ ൌ డ௅ೖ

డ௩೔
ሺೖషభሻ  ൌ ∑௝ୀଵ 

௡  ቆ డ௅ೖ

డ௩ೕ
ሺೖሻቇ ቆ

డ௩ೕ
ሺೖሻ

డ௩೔
ሺೖషభሻቇ ൌ ∑௝ୀଵ 

௡    𝑏௝௜
ሺ௞ሻ𝑑௝

ሺ௞,଴ሻ. 

Inductively, we have the following for 𝑘 ൐ 𝑟  and 0 ൑ 𝑖 ൑ 𝑛: 

𝑑௜
ሺ௞,௥ሻ ൌ

𝜕𝐿௞

𝜕𝑣௜
ሺ௞ି௥ሻ 

ൌ ∑௝ୀଵ 
௡  ൭

𝜕𝐿௞

𝜕𝑣௝
ሺ௞ି௥ାଵሻ൱ ൭

𝜕𝑣௝
ሺ௞ି௥ାଵሻ

𝜕𝑣௜
ሺ௞ି௥ሻ ൱ 

ൌ ∑௝ୀଵ 
௡    𝑏௝௜

ሺ௞ି௥ାଵሻ𝑑௝
ሺ௞,௥ିଵሻ.                                                            (3.5) 

3.1.2. Partial derivatives of  𝐿 ൌ ∑௞ୀଵ 
்  𝐿௞ with respect to 𝑣௜

ሺ௥ሻ 

We will use the following fact: 

డ𝑳𝒌

𝝏௩ೕ
ሺ೔ሻ ൌ 0 if 𝑘 ൏ 𝑖.                                                       (3.6) 
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Let 𝐷௜
்ି௥ denote the partial derivative of 𝐿 with respect to 𝑣௜

ሺ்ି௥ሻ. Given ሼ𝑑௜
ሺ௞,଴ሻ| 1 ൑ 𝑖 ൑ 𝑛, 1 ൑

𝑘 ൑ 𝑇ሽ, we can calculate ሼ𝐷௜
்ି௥|  1 ൑ 𝑖 ൑ 𝑛, 0 ൑ 𝑟 ൏ 𝑇ሽ top-down. Initially, at the top period, we have 

the following by (3.6): 

𝐷௜
் ൌ

𝜕𝑳

𝝏𝑣௜
ሺ்ሻ ൌ

𝜕𝑳𝑻

𝝏𝑣௜
ሺ்ሻ ൌ 𝑑௜

ሺ்,଴ሻ. 

Next, backward from the top period, we have 𝐷௜
்ିଵfor 𝑇 ൐ 1  and 1 ൑ 𝑖 ൑ 𝑛 as follows: 

𝐷௜
்ିଵ ൌ

𝜕𝐿

𝜕𝑣௜
ሺ்ିଵሻ ൌ

𝜕ሺ𝐿் ൅ 𝐿்ିଵሻ

𝜕𝑣௜
ሺ்ିଵሻ  

=
డ௅೅

డ௩೔
ሺ೅షభሻ ൅ డ௅೅షభ

డ௩೔
ሺ೅షభሻ ൌ ∑௝ୀଵ 

௡ డ௅೅

డ௩ೕ
ሺ೅ሻ

డ௩ೕ
ሺ೅ሻ

డ௩೔
ሺ೅షభሻ ൅ 𝑑௜

ሺ்ିଵ,଴ሻ 

ൌ ∑௝ୀଵ 
௡ 𝑏௝௜

ሺ்ሻ 𝜕𝐿

𝜕𝑣௝
ሺ்ሻ     ൅ 𝑑௜

ሺ்ିଵ,଴ሻ 

ൌ ∑௝ୀଵ 
௡    𝑏௝௜

ሺ்ሻ𝐷௝
் ൅ 𝑑௜

ሺ்ିଵ,଴ሻ, 

where (3.6) is used for 2nd and 5௧௛equality signs. Inductively, we have 𝐷௜
்ି௥ for 𝑇 ൐ 𝑟 and 1 ൑ 𝑖 ൑ 𝑛 

from top-down as follows: 

𝐷௜
்ି௥ ൌ డ௅

డ௩೔
ሺ೅షೝሻ ൌ డሺ௅೅ା௅೅షభା⋯ା௅೅షೝశభሻ

డ௩೔
ሺ೅షೝሻ ൅ డ௅೅షೝ

డ௩೔
ሺ೅షೝሻ,                                   (3.7) 

ൌ ∑௝ୀଵ 
௡ 𝜕ሺ𝐿் ൅ 𝐿்ିଵ ൅ ⋯ ൅ 𝐿்ି௥ାଵሻ

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௜
ሺ்ି௥ሻ ൅ 𝑑௜

ሺ்ି௥,଴ሻ 

ൌ ∑௝ୀଵ 
௡ 𝜕𝐿

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௝
ሺ்ି௥ାଵሻ

𝜕𝑣௜
ሺ்ି௥ሻ ൅ 𝑑௜

ሺ்ି௥,଴ሻ 

ൌ ∑௝ୀଵ 
௡    𝑏௝௜

ሺ்ି௥ାଵሻ𝐷௝
ሺ்ି௥ାଵሻ ൅ 𝑑௜

ሺ்ି௥,଴ሻ, 

where (3.6) is used for 2nd and 4௧௛ equality signs. 

3.1.3. Partial derivatives of  𝐿 ൌ ∑௞ୀଵ 
்  𝐿௞ with respect to 𝑎௜௝

ሺ௥ሻ and 𝑏௜௝
ሺ௥ሻ 

Given ሼ𝐷௜
௥ሽ, i.e., the partial derivatives of the cost function 𝐿 with respect to 𝑣௜

ሺ௥ሻ; we can now 

find the partial derivatives of 𝐿 with respect network weights 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ as defined in (2.2) and (2.4). 

Let 𝛿௜௝
௥  and 𝜎௜௝

௥  denote respectively the partial derivatives of 𝐿 with respect to 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ. By 

(2.4), at the top time period 𝑟 ൌ 𝑇, we have 

𝛿௜௝
் ൌ

𝜕𝐿

𝜕𝑎௜௝
ሺ்ሻ ൌ

𝜕𝐿

𝜕𝑣௜
ሺ்ሻ

𝜕𝑣௜
ሺ்ሻ

𝜕𝑎௜௝
ሺ்ሻ ൌ  𝑥௝

ሺ்ሻ𝐷௜
் , 

𝜎௜௝
் ൌ

𝜕𝐿

𝜕𝑏௜௝
ሺ்ሻ ൌ

𝜕𝐿

𝜕𝑣௜
ሺ்ሻ

𝜕𝑣௜
ሺ்ሻ

𝜕𝑏௜௝
ሺ்ሻ ൌ    𝑣௝

ሺ்ିଵሻ𝐷௜
் . 

If general, we have 
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𝛿௜௝
்ି௥ ൌ    𝑥௝

ሺ்ି௥ሻ𝐷௜
்ି௥ ,                                                             (3.8) 

𝜎௜௝
்ି௥ ൌ    𝑣௝

ሺ்ି௥ିଵሻ𝐷௜
்ି௥ .                                                         (3.9) 

3.2. Initialization of network weights 

A good initialization of the network weights 𝑎௜௝
ሺ௥ሻ  and 𝑏௜௝

ሺ௥ሻ speeds up the convergence for the 

network training. In this sub-section, we propose an algorithm for initializing the network weights. 

Let 𝑤௝
ሺ௥ሻ denote the vector of weights in (2.4) for 𝑣௝

ሺ௥ሻ at the 𝑟௧௛ time period, i.e., 

𝑤௝
ሺ௥ሻ ൌ ቀ𝑎௝ଵ

ሺ௥ሻ, 𝑎௝ଶ
ሺ௥ሻ, … , 𝑎௝௠

ሺ௥ሻ, 𝑏௝ଵ
ሺ௥ሻ, 𝑏௝ଶ

ሺ௥ሻ, … , 𝑏௝௡
ሺ௥ሻቁ

௧௥௔௡௦௣௢௦௘
              (3.10A) 

for 𝑟 ൐ 1, and for 𝑟 ൌ 1, 

𝑤௝
ሺଵሻ ൌ ቀ𝑎௝ଵ

ሺଵሻ, 𝑎௝ଶ
ሺଵሻ, … , 𝑎௝௠

ሺଵሻቁ
௧௥௔௡௦௣௢௦௘

.                                           (3.10B) 

Then the weight matrix for the network at the 𝑟௧௛ time-period is given by 

𝑤ሺ௥ሻ ൌ ሺ𝑤ଵ
ሺ௥ሻ, 𝑤ଶ

ሺ௥ሻ, … , 𝑤௡
ሺ௥ሻሻ, 1 ൑ 𝑟 ൑ 𝑇.                                        (3.11) 

Algorithm 3.1 (Initialization). Initialize network weights 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ as follows, step-by-step, 

starting from the first time period: 

(a) Find 𝑤௝
ሺଵሻ, 1 ൑ 𝑗 ൑ 𝑛,  by running a linear (or logistic if more sensitivity is required for some 

𝑦௝
ሺଵሻ′𝑠) regression against the binary target 𝑦௝

ሺଵሻ with 𝑥ሺଵሻ as the explanatory variable. Derive 𝑣௝
ሺଵሻ by 

(2.2). 

(b) Given 𝑥ሺଶሻ ൌ ሺ𝑥ଵ
ሺଶሻ, 𝑥ଶ

ሺଶሻ, …,  𝑥௠
ሺଶሻሻ  and 𝑣ሺଵሻ ൌ ሺ𝑣ଵ

ሺଵሻ, 𝑣ଶ
ሺଵሻ, … , 𝑣௡

ሺଵሻሻ,  find 𝑤௝
ሺଶሻ, 1 ൑ 𝑗 ൑ 𝑛  by 

running a linear (or logistic if more sensitivity is required for some 𝑦௝
ሺଶሻ′𝑠) regression against 𝑦௝

ሺଶሻ with 

the components of 𝑥ሺଶሻ and 𝑣ሺଵሻ as explanatory variables. Derive 𝑣௝
ሺଶሻ by (2.4). 

(c) Repeat (b) to obtain the initial weights for 𝑤௝
ሺ௥ሻ at the 𝑟௧௛ time period for 1 ൑ 𝑗 ൑ 𝑛 and 1 ൑

𝑟 ൑ 𝑇. 

3.3. Training the recurrent neural network 

Given initial weights, network training involves a series of gradient descent searches, as described 
in the next algorithm. Let 𝑤ሺ௥ሻ be the weight matrix as in (3.11) for the network at the 𝑟௧௛ time period, 
i.e., 

𝑤ሺ௥ሻ ൌ ሺ𝑤ଵ
ሺ௥ሻ, 𝑤ଶ

ሺ௥ሻ, … , 𝑤௡
ሺ௥ሻሻ, 1 ൑ 𝑟 ൑ 𝑇. 

Algorithm 3.2 (Network training). Update network weights 𝑤ሺ௥ሻ, 1 ൑ 𝑟 ൑ 𝑇, step-by-step, as 
described below 
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(a) Forward scoring: Randomly select a small batch of examples (1–10 loan accounts, for 
example) from the time series of the training sample and calculate 𝑝௥௝  by (2.3) using the current 
weights for 1 ൑ 𝑟 ൑ 𝑇 and 1 ൑ 𝑗 ൑ 𝑛. 

(b) Select a time period 𝑟,  from 1  to 𝑇  in sequence. At the 𝑟௧௛ time period, find the partial 

derivatives of 𝐿 with respect to 𝑎௜௝
ሺ௥ሻ and 𝑏௜௝

ሺ௥ሻ by (3.8) and (3.9); then, calculate Δ𝑤௝
ሺ௥ሻ as follows 

Δ𝑤௝
ሺ௥ሻ ൌ 𝑎𝑣𝑔 ൭ 

𝜕𝐿

𝜕𝑎௝ଵ
ሺ௥ሻ ,

𝜕𝐿

𝜕𝑎௝ଶ
ሺ௥ሻ , . . . ,

𝜕𝐿

𝜕𝑎௝௠
ሺ௥ሻ ,

𝜕𝐿

𝜕𝑏௝ଵ
ሺ௥ሻ ,

𝜕𝐿

𝜕𝑏௝ଶ
ሺ௥ሻ , . . . ,

𝜕𝐿

𝜕𝑏௝௡
ሺ௥ሻ൱

்௥௔௡௦௣௢௦௘

, 1 ൑ 𝑗 ൑ 𝑇, 

which is the average of the partial derivatives of 𝐿 over the batch; hence, obtain the following weight 
matrix: 

Δ𝑤ሺ௥ሻ ൌ ቀΔ𝑤ଵ
ሺ௥ሻ, Δ𝑤ଶ

ሺ௥ሻ, . . . , Δ𝑤௡
ሺ௥ሻቁ. 

(c) Select a learning rate 𝜂 from a grid of values such that the update of 𝑤ሺ௥ሻ is 

𝑤ሺ௥ሻ ⇐ 𝑤ሺ௥ሻ ൅ 𝜂ሺΔ𝑤ሺ௥ሻሻ,                                                             (3.12) 

which gives rise to the biggest decrease for the cost function described by (3.2) over the entire training 
sample. Execute the update for 𝑤ሺ௥ሻ by (3.12). 

(d) Steps (a)–(c) are repeated until no material improvement is possible. 
With the partial derivatives being evaluated over only one small batch of examples, these partial 

derivatives are called the mini-batch stochastic gradient for the cost function. This gradient can go off 
in a direction far from the batch gradient (i.e., the gradient over the entire training sample). 
Nevertheless, this noisiness is what we need for non-convex optimization [18,19] to escape from saddle 
points or local minima (Theorem 6 in [19]). The disadvantage is that more iterations are required to 
reach a good solution. 

Remark 3.3. For Step (c) in Algorithm 3.2, there are better approaches for selecting a value for 
the learning rate 𝜂, rather than exhausting all possible values in the grid. For example, let 𝜂௜ be the 
𝑖௧௛value in the grid from 1 downward, and assume that currently 𝜂௜ is the best learning rate so far, and 
it leads to a decrease for the cost function; stop the search for the learning rate and use 𝜂௜ as the best 
learning rate, if 𝜂௜ାଵ does not lead to a bigger decrease for the cost function than 𝜂௜. 

4. Experimental results 

In this section, we present the experimental results for the proposed RNN model, as benchmarked 
with two other Markov rating transition models. 

The data we used constituted a synthetic sample, simulating a commercial loan portfolio with 
seven ratings ሼ𝑅௜ሽ௜ୀଵ

଻  over seven quarters (periods). At the end of each quarter, accounts are rated by 
one of seven ratings, with ratings 𝑅଺ and 𝑅଻ being, respectively, the withdrawal and default ratings. 
Both the default and withdrawal ratings are absorbed ratings that were excluded from later quarters for 
observation. For simplicity, we included only three covariates, which simulated the following drivers 
for a loan: 

(a) Debt service coverage ratio 
(b) Debt to tangible net worth ratio   
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(c) Current ratio 
The sample contained 10,000 accounts. It was split 50:50 into training and validation. We focued 

on the following three models: 
1) Model 1—The proposed RNN rating transition model; 
2) Model 2—Time-inhomogeneous Markov transition model, with one separate transition 

model for each period; 
3) Model 3—Time-homogeneous Markov transition model, with one single transition model 

for all periods. 
All three model use the same covariates. 
Let 𝑦௝ denote a binary variable for a loan with a value of 1 if the loan has the rating 𝑅௝ at the 

quarter end, and 0 otherwise. Let ሺ𝑝ଵ, 𝑝ଶ, … , 𝑝଻ሻ be the multinomial probabilities for a loan estimated 
by a rating transition model at the beginning of a quarter, with 𝑝௝ being the probability of transitioning 
to 𝑅௝ at the quarter end. 

Tables 1 and 2 below show the Gini coefficients, over the training and validation samples 
respectively, for each of the above three models for ranking each of these seven ratings individually. 
For example, in Table 1, for the RNN transition model over the training sample, it had a Gini of 0.84 
for the ranking rating 𝑅ଵ. This Gini was calculated by using 𝑝ଵ to predict 𝑦ଵover the entire training 
sample. The results shown in these two tables demonstrate strong performance for the RNN transition 
model over the other two models. 

Table 1. Gini by rating on training. 

Model Rating 

1 2 3 4 5 6 7 Avg 

1 
2 
3 

0.84 
0.73 
0.53 

0.69 
0.45 
0.33 

0.62 
0.39 
0.19 

0.48 
0.24 
0.15 

0.54 
0.37 
0.20 

0.50 
0.37 
0.32 

0.68 
0.55 
0.53 

0.62 
0.44 
0.32 

Table 2. Gini by rating on vaildation. 

Model Rating 

1 2 3 4 5 6 7 Avg 

1 
2 
3 

0.82 
0.74 
0.52 

0.68 
0.45 
0.34 

0.60 
0.39 
0.18 

0.46 
0.24 
0.12 

0.45 
0.28 
0.28 

0.34 
0.36 
0.32 

0.66 
0.54 
0.51 

0.57 
0.43 
0.33 

In the remainder of this section, we focus on the robustness of a model in terms of predicting the 
default event, and the quality of using 𝑝଻ to predict 𝑦଻, the default indicator. Tables 3 and 4 below 
show the Gini coefficients period by period, over the training and validation samples respectively, for 
ranking the default indicator over each of seven periods. Again, the RNN transition model significantly 
outperformed the other two benchmark models across all periods. 
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Table 3. Gini by period for default rating on training. 

Model Period 
1 2 3 4 5 6 7 Avg

1 0.66 0.63 0.61 0.62 0.57 0.67 0.51 0.61
2 0.66 0.07 0.43 0.37 0.33 0.21 0.16 0.32
3 0.66 0.31 0.22 0.27 0.33 0.21 0.16 0.31

Table 4. Gini by period for default rating on validation. 

Model Period 

1 2 3 4 5 6 7 Avg 

1 0.64 0.62 0.58 0.55 0.46 0.55 0.53 0.56 
2 0.64 0.05 0.35 0.28 0.25 0.04 0.20 0.26 
3 0.64 0.27 0.11 0.18 0.25 0.04 0.20 0.24 

The following six tables show the actual and predicted default rates for each model by decile over 
the training and validation samples. For example, Table 5 shows the actual and predicted default rates 
over the training sample for the RNN rating transition model. These values in the table were calculated 
by first sorting 𝑝଻ ascendingly, and then dividing the sample into 10 buckets, each of which was about 
10%. The averages of the actual and predicted default rates over each bucket were taken. 

Table 5. RNN on training (Gini-68%). 

Decile 0 1 2 3 4 5 6 7 8 9 

Actual 3.62% 4.90% 4.97% 5.33% 21.16% 23.79% 36.43% 42.47% 61.72% 81.19%

Pred 3.20% 4.33% 4.59% 5.63% 19.68% 23.24% 35.62% 44.20% 62.25% 82.85%

Table 6. RNN on validation (Gini-66%). 

Decile 0 1 2 3 4 5 6 7 8 9 

Actual 4.53% 4.89% 4.53% 8.49% 24.73% 24.03% 34.46% 45.04% 61.44% 81.09%

Pred 3.17% 4.31% 4.57% 6.45% 20.65% 23.49% 36.65% 45.87% 63.57% 84.49%

Table 7. One migration matrix per period on training (Gini-55%). 

Decile 0 1 2 3 4 5 6 7 8 9 

Actual 11.29% 12.50% 4.55% 7.03% 23.01% 26.99% 38.99% 32.67% 50.14% 78.42%

Pred 1.46% 5.04% 5.84% 6.19% 8.20% 15.54% 24.29% 49.62% 73.66% 95.73%

Table 8. One migration matrix per period on validation (Gini-54%). 

Decile 0 1 2 3 4 5 6 7 8 9 

Actual 11.87% 14.89% 5.25% 8.42% 22.65% 26.40% 39.86% 34.39% 51.80% 77.71%

Pred 1.52% 5.16% 5.97% 6.36% 8.58% 16.22% 24.82% 51.71% 76.60% 96.29%
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Table 9. One single migration matrix on training (Gini-53%). 

Decile 0 1 2 3 4 5 6 7 8 9 

Actual 19.11% 4.90% 12.93% 4.97% 19.03% 29.05% 27.70% 39.28% 50.07% 78.57%

Pred 2.52% 5.36% 6.20% 6.71% 9.82% 21.95% 25.37% 35.67% 75.51% 96.46%

Table 10. One single migration matrix on validation (Gini-51%). 

Decile 0 1 2 3 4 5 6 7 8 9 

Actual 21.30% 5.90% 14.46% 4.53% 19.41% 29.06% 29.50% 39.64% 52.09% 77.35%

Pred 2.52% 5.49% 6.35% 6.87% 10.39% 22.60% 25.81% 37.94% 78.29% 96.97%

These results demonstrate a significant improvement for the RNN model over the other two 
models, either on training or validation. 

5. Conclusions 

A rating transition for a credit portfolio is generally path dependent. A Markov rating transition 
model, either homogeneous or inhomogeneous, usually does not perform well after projecting for a 
few periods. The RNN model proposed in this paper provides a solution for modeling state transitions 
under non-Markov settings. This RNN is informed by the information history along the path. The 
experiments show that this proposed RNN model significantly outperforms Markov models where path 
dependence is relevant. 
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