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Abstract: Research studies have shown that human microbiome is associated with many diseases
through the linkage between bacterial taxa and environmental and genetic factors. Typical human
microbiome sequencing data that obtained by next generation sequencing technologies of the
16S rRNA gene are high dimensional and sparse because most taxa are not shared among the samples.
As a result, the data is often over-dispersed and with excess zeros. These features rise statistical
challenges for compositional data analysis. We review the recent statistical methodology development
for this setting. In particular, we summarize some current popular parametric probability models
including the cases when repeated measurements of the microbiome are applicable. Multivariate
analyses methods that are based on distance measurement for testing differences between microbes
community are introduced. Statistical models which are developed to assess the association between
genetic variants on X-chromosome and microbial components are highlighted. We discuss some
applications on analysis of the association of host genome, microbial compositions and human
diseases. Despite sophisticated approaches to statistical analysis of taxa count data, we suggest
some future research directions on how to classify and predict clinical outcomes with microbial
compositions.
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1. Introduction

The field of genomics has been developed to conduct metagenome of the microbiota over the last
two decades [1–4]. Current microbiome studies are mostly motivated by the research topics in which
aim to understand the relationship among microbiome, host, and genetic or environmental factors. A
variety of studies has identified the association between microbiome and host [5, 6], and these works
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have shown how human microbiota affects health and diseases. For example, microbial changes are
proved to be linked with Parkinson’s disease [7], inflammatory bowel disease [8,9], diabetes [10], and
cancers [11]. The other field of microbiome studies is to examine the association between
microbiome and genetic/environmental variables, in particular, the effects of the interested
genome [12] and environment covariates [13, 14] on specific microbiome composition. Research has
been conducted on skin conditions [15, 16], obesity [17], and immunity system [18].

The microbiome data is quantified by amplified sequences using generic sequence similarity,
produced via next-generation sequencing of the 16S ribosomal ribonucleic acid (rRNA) gene [19] and
bioinformatic pipelines such as QIIME [20]. Classification on the sequencing reads based on
phylogenetic levels (genus, family, suborder, order, subclass, class, phyla, kingdom, and domain) is
referred to as operational taxonomic unit (OTU) counts (Figure 1). These OTU counts provide the

Figure 1. An illustration of the taxonomic structure of OTUs.

foundation and development of research on microbiome while generating challenges of statistical
methods due to the features. The OTU counts are usually zero-inflated and over-dispersion since the
particular host’s microbiome taxonomy reads are context specific (Figure 2) [21]. In addition, both
the hierarchical structure of microbiome and the sample collection of multiple measurements from
related individuals both yields the correlation between different taxa. Another feature in many
microbiome studies is that the number of subjects can be smaller than the number of taxa to be
explored, which also imposes difficulties in statistical modeling [22–24].

This paper seeks to summarize the recent development regarding statistical methods to analyze
human microbiome sequencing data, including assessment and comparison between current popular
models and advanced technique for longitudinal microbiome involving serial correlations and
hierarchical structure. Diversity among microbiome communities is identified using non-parametric
methods. Furthermore, the association between microbial components and genome has been
explored, especially including genetic variants on X-chromosome. Finally, potential directions are
discussed to consider for further research within this field, such as prediction using microbiome data
and classification of OTUs based on the research outcome of interest.
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Figure 2. A histogram of the counts of a single OTU to exemplify the distribution of
microbial data.

2. Methods

The relationship between the abundance of single or multiple OTUs and environmental or genetic
factors has been investigated extensively yet without standard statistical methods [12–14]. Classical
models such as linear regression and logistic regression models are the most popular approaches,
while facing the risk of the violation of normality and constant variance assumptions for linear
models, and the loss of information on zero parts hence lower statistical power on (generalized)
logistic regression models [25]. Non-parametric models such as Wilcoxon rank sum (WRS) test can
be used as an alternative approach without the normality assumption, but it cannot adjust for covariate
effects [26]. Standard t-tests are used for comparison between two relative abundance
datasets [27–29]. When the number of communities is more than two, the one-way analysis of
variance (ANOVA) or the Kruskal-Wallis test become appropriate. However, none of these methods
above can account for the excess zeros, which is a key feature of microbiome components data, yet
currently are still widely used for microbiome studies.

2.1. Parametric models for Zero-inflated data

In order to deal with excess zeros, mixture models are proposed such as zero inflated (ZI) models
and hurdle models (also called two-part models). Typical microbiome data contains OTU counts which
can be referred to as the variable Yi j for OTU j in sample i. Since the mixture models deal with single
OTU, we can ignore the OTU index j in this section. ZI models are usually a mixture of a Poisson
(ZIP) or Negative Binomial (ZINB) model with a point mass at zero. These models process data
with excessive zeros in two steps. First, structure zeros are distinguished from counts data using a
Bernoulli trial with probability φi for each yi. Then the counts data is assumed to follow a Poisson or
NB distribution. Specifically, the probability mass function (PMF) of a zero-inflated model for yi can
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be written as:

fZI(yi) =

φi + (1 − φi) f (0), for yi = 0
(1 − φi) f (yi), for yi > 0

(1)

Hurdle models contain two parts: One part is a binomial model to indicate whether a zero or non-
zero outcome occurs, and the other part is a truncated-at-zero model for count parts only. In particular,
the PMF of the hurdle model for Possion or NB model is written as:

fH(yi) =

φi, for yi = 0
(1 − φi)

f (yi)
1− f (0) , for yi > 0

(2)

and the φi can be linked to covariates through logit link

logit(φi) = log(
φi

1 − φi
) = β0 + WT

i β (3)

where Wi denotes the vector of covariates for φi. The two sets of models treat zero part distinctly. ZI
models allow structural zeros in the point mass and leave sampling zeros in the parametric model part,
while hurdle models handle structural zeros and sampling zeros together in the binomial model part.

Xu. et al. [30] performed a comprehensive comparison of different model fitting performance for
zero inflated data in human microbiome studies, especially in the aspects of type I error and statistical
power of the tests. The performance of parameter estimations such as accuracy and efficiency on count
parts and zero parts as well as the goodness of fit of the models were also evaluated. Simulations
revealed that both hurdle models and ZI models provide a better model fit than standard one part
models, resulting in less biased and more efficient parameter estimations while controlling for type I
errors and maximizing power.

2.2. Bayesian latent variable models for hierarchical clustered data with repeated measures

The model introduced in the last section follows independent data assumption, which does not
always hold for general microbiome data due to the hierarchical clusters and repeated measurements.
Xu et al. [31] proposed a Bayesian latent variable (BLV) model, which is joint modeling of multiple
taxa within a single taxonomic cluster. This model can not only make inference on the genetic and
environmental risk factors effects within the cluster, but also account for repeated measurements of the
microbiome from related family members.

The BLV model can incorporate multiple response variables to account for underlying correlations
among the multiple taxa within the taxonomic cluster. Let Ycit = (ycit1, ..., ycitJ)T be the J × 1 vector
of outcomes measured at the tth time point on the ith individual from the cth family, for t = 1, ...,Tci,
i = 1, ...,Nc, c = 1, ...,C. C denotes the total number of families; Nc denotes the number of family
members in the cth family; Tci denotes the total number of repeated measurements for the ith individual
from the cth family. Let Uci = (Uci1, ...,UciTci)

T and Uz,ci = (Uz,ci1, ...,Uz,ciTci)
T be the two vectors for

the longitudinal latent trait underlying the count components and the structural zero parts.
Note that the model can accommodate a mixture of distributions such as NB and ZINB. This is

important in microbiome research since the multivariate OTU outcomes can be mixed counts with and
without a zero-inflated feature. Consequently, a portion of Ycit follows NB(τ j, µcit j) and the other part
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of the outcomes follows ZINB with PMF

fZINB(yi) =

φi + (1 − φi) fNB(0; τ j, µcit j), for yi = 0
(1 − φi) f (yi; τ j, µcit j), for yi > 0

(4)

The BLV model consists of two parts. The first part is the measurement model, which models the
latent traits and a portion of the covariates effects directly on the responses using a generalized linear
mixed model. In particular, the parameters depend on both latent traits U and Uz and some other
covariates W and Wz through canonical links log(µcit j) = γ0 j + WT

citγ j + λ jUcit + bci j and log( φcit j

1−φcit j
) =

β0 j+WT
z,citβ j+λz, jUz,cit+bz,ci j. b(z),ci j is the family-specific, within-subject random effect and both bci j and

bz,ci j are assumed follow normal distribution with mean zero and variance η2
j and η2

z, j, respectively. The
second part, known as the structural model, shows the relations between the other portion of covariates
and the latent traits with a linear mixed model. Specifically, the second part is written as

Ucit = Xcitα + gc + ZT
ciαc + RT

cit dci + εcit, (5)

and
Uz,cit = Xz,citαz + gz,c + ZT

ciαz,c + RT
z,cit dz,ci + εz,cit, (6)

where Xcit and Xz,cit are the covariates of interest on the latent traits. gc and gz,c are the environmental
random effects for Ucit and Uz,cit within a family. αc and αz,c are the additive genetic random effects. dci

and dz,ci are the serial random effects. Hence, the risk factors in this model have indirect effects on the
response through the latent variable. This Bayesian method is applied for parameter inference on the
complicated form of the posterior distribution. Polya-Gamma data augmentation (PGDA) technique is
used as a part of the Markov chain Monte Carlo (MCMC) algorithm for the model.

Simulation studies showed that both the direct and indirect effect parameters have small bias and the
root mean square errors (RMSEs), suggesting that the proposed model performs well with controlled
type I error and reasonable power of tests. Random effects estimations mostly are unbiased, except for
the variance of serial random effects on the probability of structural zeros and the LVs.

2.3. Distance based method to access differences between communities

Parametric models introduced in the previous sections can provide parameter estimations and
statistical inference on the risk factor association. However, it is difficult to identify and select the
optimal distribution of the model, and sometimes the model assumptions may be violated due to
complex microbiome data structure. Other than parametric models, distance-based non-parametric
models provide another approach to analyze differences between microbiome communities as a whole
rather than only incorporate a univariate outcome. In Shestopaloff’s paper [32], a mixture model has
been proposed to model OTUs generated from Poisson models with subject-specific underlying rates.
The observed counts are assumed to follow Poisson distribution X ∼ Poisson(ri) and ri = qiNi, in
which qi is individual specific relative abundance sampled from underlying population distribution
Gq, and Ni is the total reads in the sample.

Due to the complexity of the observed data, a set of distribution components is proposed to model
the underlying population distribution, including a zero point mass, a set of left-skewed distribution
for low rates, a set of Gamma distributions based on the posterior of the Poisson rate λ|n ∼ Γ(n + 1, 1),
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and a truncation point mass P(X > C) = 1 for a sufficiently large number C to account for sparsity.
The final mixture distribution depends on the specified M gamma distribution (αm, βm) with weights
w = (wz,w1, ...,wM,wC+) respectively. The least square optimization function is applied to estimate the
optimal weights by taking the difference between the observed and expected aggregate counts.

The choices of parameters for low rate structure are decided by selecting the model among a set of
nested models using a nonparametric bootstrap based on the minimum distance between the expected
aggregate counts and the observed counts. This model selection technique is similar to
cross-validation as a way to fit the model with a portion of data to avoid overfitting. The joint mixture
distribution estimate ~w =

∑
l v(l)~wl can be calculated using the weight v(l) of each model obtained

from the bootstrap. Then the probability of observing ni from the mth Gamma mixture conditioning on
the estimated weight and resolution ti is

pim = P(i ∈ Gm|ni, ti,w) = wm
Γ(ni + αm)

Γ(ni + 1)Γ(αm)
( βm

ti + βm

)αm(1 − βm

ti + βm

)ni . (7)

And the probabilities of the two point masses are P(i ∈ Gz) = I(ni = 0) and P(i ∈ GC+ = I(ni > C)).
Finally, permutation tests can be performed to evaluate the significance of differences between

communities after the calculation of pairwise distances. These distances can be treated as the pairwise
L2-PDF norms DL2(i1, i2) = ‖Pi1 − Pi2‖ for i1,i2 = 1, ..., I and i1 , i2, where the PDF for each sample i
is Pi = [Pi(Z), Pi(0), ..., Pi(C), Pi(C+)]. The permutation method is introduced by Anderson [33].

The simulation study showed that the mixture model correctly estimated the true underlying rate
distribution and the proportion of structure zeros. When the true model followed certain parametric
models, the corresponding parametric methods such as 2P-LOLS and NBH performed well. Non-
parametric Kruskal-Wallis tests gave a relatively robust estimation, too. However, these methods can
incorporate only a single outcome. When the comparison of multiple OTUs is of interest, distance-
based methods become the only applicable approach, and the proposed mixture model performed better
than the Manhattan distance method for most scenarios.

2.4. X-chromosome association with microbial composition

Besides the research works examined the association between microbiome and diseases, many
researchers have interests in the relationship between host factors and intestinal microbial
composition. The host factors include age, gender, dietary, and genetic variants. However, among all
the studies proved the linkage of the host genome and human microbiome [12, 34–36], none of the
research investigated the impact of genetic variants on X-chromosome on the microbiota.
Espin-Garcia et al. [37] proposed a finite mixture model (FMM) for the analysis of the
X-chromosome and the composition of the microbiota. The method incorporates multiple unknown
underlying X-chromosome mechanisms (XCMs), including random X-chromosome inactivation
(XCI), skewed XCI (XCI-S), and escape of XCI (XCI-E).

This regression-based model consists of two parts: a distribution function and a mixing proportion
of XCMs. Let yi be the OTU counts or the indicator function for the presence/absence of the OTU
for subject i depending on the outcome of interest. Let xk

i = (1, si, gs,k
i ,w

′
i) be the covariates vector

for subject i under kth mechanism, where si be the sex indicator; gs,k
i is the coded SNPs; and wi is

the vector for additional covariates. Then the likelihood for the assumed observed data with a pseudo
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mechanism is

L(β, p) =

n∏
i=1

K∑
k=1

f (yi|xk
i ; β)pk, (8)

where pk specifies the mixing proportion for the kth mechanism. f (·) is one of the two distribution
functions - either a zero-inflated probability distribution using Poisson or negative binomial
distributions for count parts, or a two-part model treating zero and count parts separately.

Comprehensive simulations were constructed to compare the performance of the proposed
X-chromosome model with some existing ones such as a Clayton-like model [38] and a PLINK-like
model [39], as well as strategies which assume the same mechanisms for all subjects.
Expectation-maximization (EM) algorithm was used to estimate the potential genetic effects, and a
score statistic was computed to evaluate hypothesis testing. In conclusion, the FMM provides
relatively less biased estimates and competitively higher power while controlling for type I error in
the comparison of other methods.

2.5. Association of host genome, microbial composition, and intestinal permeability

As implementation of the statistical models on real human microbiome studies, the heritability of
microbial components are explored using a log-normal model with a generalized estimating equation
(GEE) algorithm among 270 related individuals, and successfully identified 94 of 249 OTUs with
significant additive genetic components with high heritability [12]. This result suggested that host
genetics is strongly associated with the intestinal microbial composition. In addition, Genome-wide
association studies (GWASs) were conducted to identify an association between genetic variants and
bacterial taxa. GEE framework was adopted to identify the association between genetic polymorphisms
and the relative abundance of heritable taxa, controlling for age, sex, and the top three genetic principal
components. The two-part log-normal model was fitted on zero counts and nonzero counts separately
by using logistic regression and log-normal model, respectively. External validation confirmed four
specific OTUs associated with the host genetic variations.

Analysis of intestinal permeability (IP) is also conducted in healthy first-degree relatives of
individuals with Crohn’s disease [40]. A generalized least squares model was applied to evaluate the
association between fecal microbiota and IP. Potential clustering within families was accounted by a
compound symmetry correlation matrix. No significant correlation between several levels of bacterial
taxa (phylum, family and genus) and IP was found, adjusted by clinical factors such as age, age
squared, gender, and the province of origin.

3. Future research works

In the last few years, the introduced statistical methods have been performed more frequently to
model the zero-inflated, over-dispersion, and clustered microbiome data, and investigate the association
of microbiota and phenotypes or genotypes. In the following session, some potential directions are
introduced for prediction and classification purposes using microbial composition.
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3.1. Prediction of phenotypes based on human microbiome data

Statistical testing methods which are traditionally used for identifying associated OTUs can be
performed for prediction purposes, but they are limited by the correctness of regression models.
Particularly for microbiome data with multiple measurements for each subject, generalized linear
mixed models (GLMMs) are an effective way to estimate the OTUs’ effects on clinical outcomes
while accounting for both fixed and random effects. By setting certain thresholds for the p-values
controlled by false discovery rate (FDR), GLMMs for OTU counts given a phenotype and other
covariates can investigate not only the association between microbial composition and the phenotype,
but also the potential predictors in which we are interested. Two-part models and zero-inflated models
can be adopted to GLMMs to account for excessive zeros.

However, disagreements often occur between statistical significance and predictivity. These
limitations lead to the usage of statistical and machine learning methods such as the least absolute
shrinkage and selection operator (LASSO) for prediction purposes. LASSO serves feature selection
goal by adding the L1 of the regression coefficients as a penalty term to the log likelihood function to
achieve the intent of shrinkage. The objective log likelihood function for LASSO given observations
(yi, xi), i = 1, ..., n and a tuning parameter λ is

lLAS S O(β) = −

n∑
i=1

log(P(yi|xi, β)) + λ

K∑
k=1

‖βk‖1, (9)

where ‖βk‖1 is the L1 penalty of βk. Therefore, fitting the model for a phenotype given OTU composition
with the LASSO method could be performed to predict the presence/absence of the phenotype. As
both LASSO multinomial logistic regression and GLMMs can select OTUs as potential predictors,
a combination of the two models becomes a promising method for prediction of phenotypes by first
using GLMMs to screen on all the given OTUs then applying LASSO to the subset of OTUs selected
previously.

3.2. Classification on microbiome data

Classification methods as a supervised learning technique, provide another angle to predict the
outcome of interest by building a classifier based on the training dataset and predicting for the unknown
observations. Some existing classification methods have been developed extensively, such as logistic
regression models, discriminant analysis, classification decision trees, and k-nearest neighbor methods.
Besides those methods, the distance-based mixture models introduced previously can be extended for
a new classification method on microbiome sequencing data.

3.3. High-dimensional GLM for graphic structure

Generalized linear models (GLMs) are another way of classification under the high-dimensional
setting in which the number of predictors exceeds the number of observations. In particular, logistic
regression models are popular for classification in microbiome data. Matson et al. [41] showed that
relevant microbial compositions are naturally correlated, and thus these components within a cluster
reflected the association with an interesting clinical outcome simultaneously. Therefore, consideration
of such structure within the neighborhood that can incorporate sparsity pattern would boost the
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correctness of prediction. A combination of the graph structure and GLM through a node-wise
penalty which is able to account for neighborhood sparsity can be applied for classification.

4. Conclusions

In this paper, we review and summarize current statistical methods to analyze zero-inflated and
over-dispersion microbiome sequencing data. Other than the traditional linear models, zero-inflated
models and hurdle models are recommended which have advantages of handling excess zeros. In
addition, repeated measurements for individuals with their relatives are commonly encountered in
microbiome studies. A Bayesian latent variable model along with the PGDA technique is proposed to
handle the hierarchical clusters and the longitudinal correlation. Meanwhile, the parametric models
can only accommodate single OTU as the outcome, but distance-based methods test the differences
between communities across the population with multiple microbial compositions. The other
difference between the parametric models and non-parametric approach is that covariates can be
adjusted in parametric regression models, while distance-based methods are limited to randomized
clinical trials due to the lack of ability to handle the potential confounding variables.

Besides treating OTUs as the outcome of some interested clinical variables, some researchers also
investigate the association between genome and microbiome. Although not much work had been done
to explore the genetic effects of sex-chromosome on the microbiome, one of the papers which we
review focuses on the relationship with X-chromosome genetic variants and microbiota, by
incorporating the underlying X-chromosome architecture to the finite mixture model. Some applied
analysis has also been conducted, specifically on the association of host genome, microbiome, and
intestinal permeability.

Prediction for human health using microbial components is a promising direction. In particular,
GLMM and LASSO are the models that have good performance when a subset of OTUs is selected
to predict the disease status. Furthermore, classification of microbial communities based on disease
outcomes also has a potential impact in the medical field. Distance-based classification algorithm and
high-dimensional GLM graphic structure models are worth to investigate further to classify the related
OTUs given the presence-absence status.
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