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Abstract: Option valuation problems are often solved using standard Monte Carlo (MC) methods.
These techniques can often be enhanced using several strategies especially when one discretizes the
dynamics of the underlying asset, of which we assume follows a diffusion process. We consider the
combination of two methodologies in this direction. The first is the well-known multilevel Monte Carlo
(MLMC) method [7], which is known to reduce the computational effort to achieve a given level of
mean square error (MSE) relative to MC in some cases. Sequential Monte Carlo (SMC) (or the particle
filter (PF)) methods (e.g. [6]) have also been shown to be beneficial in many option pricing problems
potentially reducing variances by large magnitudes (relative to MC) [11, 17]. We propose a multilevel
particle filter (MLPF) as an alternative approach to price options. We show via numerical simulations
that under suitable assumptions regarding the discretization of the SDE driven by Brownian motion the
cost to obtain O(ε2) MSE scales like O(ε−2.5) for our method, as compared with the standard particle
filter O(ε−3).

Keywords: option pricing; barrier options; Multilevel Monte Carlo; particle filters; multilevel
particle filters

1. Introduction

An option is a financial derivative which gives the option holder the right, but not the obligation, to
buy or sell a specified amount of an underlying asset at a fixed price on or before the expiration date
of the option. To price an option is to evaluate the integral of its expected payoff under a risk-neutral
probability measure, if such a measure exists (which is assumed). In many practical applications, the
underlying financial asset, which we shall assume throughout in this article, can be modelled by a
diffusion process, or a pair of correlated diffusion processes (for instance stochastic volatility models).
The value of the financial option is the expectation of the underlying along a (discrete) path under the
risk neutral meausure associated to the process just described.
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As the value of the option is seldom available, one often resorts to numerical methods to approxi-
mate it. Monte Carlo methods for pricing options dates back at least to [2]. These methods and their
variants: quasi Monte Carlo (QMC), stratified sampling, control variate, antithetic variates and so on
have been used extensively in the financial engineering literature; see for example [9] for a complete
description of these techniques. The main advantage of MC methods for pricing options compared to
other numerical methods is its ability to deal with high-dimensional integrals. It is this methodology
that is focussed upon for the duration of the article.

In some recent works the standard MC method has been improved upon, especially when the dif-
fusion process must be time-discretized. In this latter scenario, the method of MLMC has (for some
pay-offs and diffusions) been shown to provide the same overall MSE as an MC method, but with less
computational effort; see for instance [8] and the references therein. We briefly note that the MLMC
method works by considering a hierarchy of time-discretizations and a simple collapsing sum represen-
tation of the expectation w.r.t. the most precise time-discretized diffusion process. For each summand,
a difference of expectations under successively fine discretizations, the joint law of the discretized
processes are coupled and sampled. This coupling, if sufficiently efficient can mean that the MLMC
method achieves the afore-mentioned savings. In addition to this, several works beginning with [11]
and more recently in [17, 18] have shown that standard MC and importance sampling (IS) can be en-
hanced by using SMC or PF methodology. This is an algorithm that can approximate expectations
w.r.t. a sequence of probability distributions by sampling a collection of N particles (samples) in par-
allel, sequentially in time using sampling and resampling operations; see [6] for an introduction. The
main improvement of SMC over IS for option pricing is that as the number of points of the path of the
diffusion process grows, call it n (and under several mathematical assumptions) the relative variance
of the SMC estimate is O(n/N) whereas for IS it can be O(κn/N) for some κ > 1 (see e.g. [3]). In this
article, we show how using the works of [14, 15], called the MLPF (see also [16]), MLMC and SMC
can be combined to help to improve upon the estimation of options.

The main contribution of this article is two-fold:

1. To show how the MLPF technique can be used in pricing European type exotic options.
2. To illustrate by numerical examples the gains obtained when such methods are used to estimate

option prices over vanilla particle filter.

In terms of 1, we aim to demonstrate that the MLPF framework is applicable in estimating the
price of an exotic options. We compare the computational benefits one obtained in using the MLPF
compared with standard particle filter (introduced in [11]) in estimating both basic and path dependent
options. With respect to 2, detailed numerical examples on European call options, knock-out barrier
options and TARNs are presented to verify the computational superiority of the MLPF over standard
methods. We are not intended to show that these methods presented here are competitors to the existing
ones but demonstrate that it enhances the existing methods in the literature.

The rest of the article is structured as follows. Section 2 introduces the option pricing problem
and two path dependent options, barrier options and target accrual redemption notes (TARNs). It also
reviews identities for approximation for evaluating the expected value of the function of the under-
yling process, and finally briefly reviews the multilevel particle filter technique relevant in this context.
Section 3 numerically illustrates our methods. The article concludes in Section 4.

In what is to follow in the rest of the paper, the following notations will be adopted. For any vector
x1:n will denote (x1, . . . , xn). Expectations are written generically as E and subscript is added, if it is
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required to denote dependence upon a measure/point. Rd denote the d-dimensional Euclidean space.
For k ∈ N, Tk = {1, . . . , k}.

2. The model, options and strategy

In this section, we briefly describe the option pricing problem of interest in this article. We focus
on European options in this section, and describe the methods for pricing two kinds of exotic options,
namely barrier options and TARNs, which we shall describe shortly.

2.1. The price process

Let {S t}t∈[0,T ] be the price process, S t ∈ R
+ and T the terminal time of an underlying financial asset.

We assume that it follows a diffusion:

dS t = α (S t) dt + β (S t,Vt) dWt

dVt = γ (Vt) dt + ν (Vt) dBt (2.1)

where α : R+ → R, β : (R+)2 → R+ γ : R → R, ν : R → R+, with {Vt}t∈[0,T ] is the volatility (or
log-volatility) and {Wt}t∈[0,T ], {Bt}t∈[0,T ] are independent standard Brownian motion. Throughout V0, S 0

is assumed known. In addition, the functions α, β, γ and ν are assumed known (see e.g. [1, 11, 18]). In
some examples there will not be any volatility process.

We are interested in computing options of the form

E
[
g
(
S t1:tk

)]
for some k ≥ 1 given and g : (R+)k → R+ and the expectation is typically w.r.t. the time discretized
process (e.g. Euler discretization).

2.2. Barrier options

Barrier options are derivatives for which the payoff may be zero dependent on the path of the
underlying asset {S t}t∈I , I ⊂ [0,T ], breaching a barrier. There are two broad types of barrier options:

1. Knock-in: the option pays zero unless a function of the underlying asset values breaches prespec-
ified barriers (option springs into existence) and

2. Knock-out: the option pays zero if a function of the underlying asset values breaches prespecified
barriers (option is extinguished).

Compared to basic options, barrier options are cheaper because it may expire worthless if knocked
out (or knocked in) in the same condition in which the vanilla option would have paid off.

Barrier options are hard to price using standard MC methods due to most particles leading to a zero
payoff and this gives inaccurate estimates of the option. As noted in [10] many paths may lead to zero
Monte Carlo and a simple remedy suggested is to use conditional distribution gvien one-step survival.

2.2.1. Barrier options with constant volatility

In this paper, we will concentrate upon European style options

ES 0

[
g ({S t}t∈I)

]
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with

g ({S t}t∈I) = IB ({S t}t∈I) e−rT (S T − K)+

a barrier call option, with strike K > 0, interest rate r > 0 and B the barrier set. Consider, for instance
in a simpler case, a constant volatility and a discretely monitored knock-out barrier option, a series of
monitoring dates I = {t1, . . . , tk : 0 < t1 < · · · < tk = T }, t0 = 0, barrier set B =

⊗k
i=1

[
Lti ,Uti

]
, where Lti

and Uti denote a sequence of lower and upper barriers respectively. The option price is given by∫
e−rT (

stk − K
)
+

k∏
i=1

{
I[Lti ,Uti]

(
sti

)
p
(
sti | sti−1

)}
d
(
st1:k

)
, (2.2)

where we assumed that the unknown transition densities can be written with respect to a dominating
measure abusively denoted here as d

(
st1:k

)
. The estimation of the barrier option 2.2 is non-trivial in

Monte Carlo integration. For instance, if we assume all the parameter functions and transition densities
are known and the Euler discretization adopted, it is still the case that many paths may yield to a zero
Monte Carlo estimate before the terminal time. We remark here that, a more complicated model of the
volatility process can be adopted; for example, see [1, 12]. We will consider in addition to the constant
volatility model the case where the volatility process is a stochastic differential equation, in particular
a Langevin SDE.

2.3. Target and accrual redemption options

These options are very popular in the FX trading market. It provides the holder a capped sum of
payments over a period with the possibility of premature termination (knock-out) due to a target cap
pre-specified on the accumulated payments. A specified amount of payment is made on coupon dates
(referred to as fixing dates or cash flow dates) until the cap target is violated. One typical example is
the target accrual redemption note. The note value on a coupon date depends on the spot value of the
underlying asset and the accumulated payment amount up to the coupon date.

For simplicity, we consider in this article the typical TARNs introduced in [17]. Consider a sequence
of cash flow dates {Tn}n∈Tk

, where Tk = T is the note’s maturity date, and a real-valued function
f : R→ R. The gain and losses processes are given by

Gp =

p∑
i=1

f + (
S Ti

)
, Lp =

p∑
i=1

f −
(
S Ti

)
,

where f +, f − are positive and negative parts of f and Gp, Lp are positive and negative cash flows
respectively. Set

τ(L) = inf{k ≥ 1 : Lk ≥ ΓL} τ(G) = inf{k ≥ 1 : Gk ≥ ΓG}

for two given constants ΓL,ΓG. Set
τ = min{τ(L), τ(G), k}.

The value of the TARN is the expected value of the overall cash flow

E

 τ∑
i=1

e−rτ f
(
S Ti

) ,
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where r is the interest rate. We have assumed that the interest rate is deterministic. A more practical
version can be considered where the rate is underlying stochastic state variable. Additionally, the
amount paid to the holder and the termination date is uncertain. Note that this can be written in the
form of interest. Let

Ai = {S 1:i ∈ (R+)i : Gi < ΓG ∩ Li < ΓL}

then the value of the TARN is

E

 k∑
i=1

e−rτIAi(S T1:Ti) f
(
S Ti

) .
Most TARNs price estimation are solved using standard MC techniques. In the situation where the

function f is discontinuous, the MC estimates are unreliable and thus SMC techniques offer the best
alternative to the problem. In particular, we consider both the standard particle filter and multilevel
particle filter when the volatility is a constant and modelled by a stochastic differential equation.

2.4. Identities for approximation

We will suppose that the process 2.1 is suitably exotic such that

1. One cannot compute E
[
g
(
S t1:tk

)]
2. One cannot sample from the law of S t1:tk exactly, that is, without discretization error.

It is suppose that one will discretize (e.g. Euler or Milstein) and call the time discretization hL, with
the exact solution of (2.1) returned when hL = 0. We then take expectations with respect to a law with
the following finite dimensional law:

k∏
i=1

QL ((vi−1, si−1), (vi, si)) , (2.3)

where QL is the transition kernel induced by the time discretization. Note that we are simply denoting
V1, S 1,V2, S 2, . . . as the random variables associated to the time discretization: the actual time in [0,T ]
is suppressed from the notation. So we are reduced to computing

EπL

[
g(S 1:k)

]
,

where the expectation is with respect to the law associated to 2.3 i.e πL and denote by mL ∈ N, the
number of points induced by the time discretization at a resolution level L at time k = mL. As noted
in [13] even if one can sample from the law of S 1:k exactly, using standard Monte Carlo can induce a
substantial variance. This is also true when discretizing the time parameter.

2.4.1. Importance sampling

We suggest the following, close to optimal (in some sense), importance sampling procedure as used
in [11, 14]. Let g̃ : (R+)k → R+ be a function ‘related’ to g (which could be g itself). Then consider
the target density

πL (s1:k, v1:k) ∝ κL (s1:k, v1:k) = g̃ (s1:k)
k∏

i=1

QL ((vi−1, si−1), (vi, si)) . (2.4)
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We note that:

EπL

[
g
(
S mL

)]
= ZLEL

[
g (S 1:k)
g̃ (S 1:k)

]
where ZL =

∫
(R+)mL κL

(
s1:mL

)
ds1:mL . It is this identity that we will try to approximate efficiently. In

the [11, 13], it is discussed why such an approach can be useful. For instance, as used in [10], in the
context of barrier options a change of measure is useful to ensure that samples from the change of
measure will stay in a region of importance, i.e. yield (relatively) low variance Monte Carlo estimates.
Note that from a minimum variance perspective (i.e. for importance sampling), the optimal choice is
g̃ (s1:k) = g (s1:k), but this may not always work well; see e.g. [11] for some discussion.

2.4.2. Multilevel identity

Consider a hierarchy of discretizations 0 < hL < · · · < h1 < +∞with obvious extension of πL, κL,ZL.
Then one has that

EπL

[
g (S 1:k)

]
=

L∑
l=1

(
El

[
g (S 1:k)

]
− El−1

[
g (S 1:k)

])
=

L∑
l=1

{
ZlEl

[
g (S 1:k)
g̃ (S 1:k)

]
− Zl−1El−1

[
g (S 1:k)
g̃ (S 1:k)

] }
, (2.5)

where we use the convention that Z0E0

[
g(S 1:k)
g̃(S 1:k)

]
= 0. [15] show how the right hand side of the final

line of 2.5 can be approximated using the multilevel particle filter [14]. They also show the theoretical
benefits relative to using the procedure in the previous section. This is explicitly in the case of a pair
of possibly correlated diffusion processes and under regularity conditions. It shown that for a specific
choice of L and number of samples at each level this MLPF has the same MSE as a PF but with less
computational effort. We note that in the MLPF approach to be discussed in the next Section, these
results also apply under the conditions in [14, 15].

2.5. Pricing options using Multilevel Particle Filters

In this section, we briefly introduce the multilevel particle filter in particular context of estimating
option prices. We begin by briefly explaining the standard particle filter and then its extension to
the multilevel particle filter framework. We will suppose that for any 1 ≤ n ≤ k one has a function
g̃n : (R+)n → R+ associated to g̃. For instance, in the case of barrier options, we shall take

g̃(s1:k) = |sk − K|ρ
k∏

i=1

I[Li,Ui](si)

for some fixed ρ ∈ (0, 1) so there is a natural extension

g̃n(s1:n) = |sn − K|ρ
n∏

i=1

I[Li,Ui](si).
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2.5.1. Estimating option prices using the PF

A standard PF is given in Algorithm 1 for a given l ≥ 1; we use the notation xn = (vn, sn). The
resampling step is described in detail in e.g. [6] and can be made adaptive, i.e. only resampling “when
needed”. The unbiased estimator [4] of El[g(S 1:k)] is

( k−1∏
p=1

1
Nl

Nl∑
i=1

W l,i
p

) 1
Nl

Nl∑
i=1

W l,i
k g(Š l,i

1:k−1, S
l,i
k ).

Note that typically, this algorithm only works well if g̃n is of product form, or if g̃n depends only on
sn−u:n for some small u or k is small; see [4] for the reasons why and a justification of the algorithm.
One of these will be the case in all of our examples.

Algorithm 1 A generic PF algorithm

• 0. Set n = 1; for each i ∈ TNl sample X(l,i)
1 ∼ Ql((v0, s0), ·) and set initial weights W (l,i)

1 = g̃1(sl,i
1 ).

• 1. Resample X(l,1)
1 , . . . , X(l,Nl)

1 and write the resulting samples X̌(l,1)
1 , . . . , X̌(l,Nl)

1 .
• 2. Set n = n + 1; for each i ∈ TNl sample X(l,i)

n ∼ Ql
(
x̌(l,i)

n−1, ·
)

and compute weights W (l,i)
n =

g̃n(šl,i
1:n−1, s

l,i
n )/g̃n−1(šl,i

1:n−1).
• 3. Resample (X̌(l,1)

1:n−1, X
(l,1)
n ), . . . , (X̌(l,Nl)

1:n−1, X
(l,Nl)
n ) and write the resulting samples X̌(l,1)

1:n , . . . , X̌
(l,Nl)
1:n .

If n = k stop, otherwise return to 2.

2.5.2. Estimating option prices using the MLPF

We now discuss how one may approximate the identity detailed in Section 2.4.2. In the case of
the first summand, one can run the procedure detailed in the previous section. So we focus on the
approximation of a term of the form, for 2 ≤ l ≤ L:

ZlEl

[
g (S 1:k)
g̃ (S 1:k)

]
− Zl−1El−1

[
g (S 1:k)
g̃ (S 1:k)

]
.

We will use L − 1 independent algorithms to approximate the above expression. Critical to our
approach will be the use of a coupling of the kernel Ql. We will suppose that there is a Q̌l,l−1 such that
for any (xl, xl−1) ∈ (R+ × R)2 one has for any set A

∫
A×(R+×R)

Q̌l,l−1((xl, xl−1), (x̃l, x̃l−1))d(x̃l, x̃l−1) =

∫
A

Ql(xl, x̃l)dx̃l and∫
(R+×R)×A

Q̌l,l−1((xl, xl−1), (x̃l, x̃l−1))d(x̃l, x̃l−1) =

∫
A

Ql−1(xl−1, x̃l−1)dx̃l−1.

Big Data and Information Analytics Volume 3, Issue 2, 24–40.



31

Algorithm 2 A generic MLPF algorithm

• 0. Set n = 1; for each i ∈ TNl sample (X(l,i)
1 , X(l−1,i)

1 ) ∼ Q̌l,l−1((x0, x0), ·) and set initial weights
W (l,i)

1,l = g̃1(sl.i
1 ),W (l−1,i)

1,l = g̃1(sl−1.i
1 ).

• 1. Perform coupled resampling on (X(l,1)
1 , X(l−1,1)

1 ), . . . , (X(l,Nl)
1 , X(l−1,Nl)

1 ) and write the resulting
samples (X̌(l,1)

1 , X̌(l−1,1)
1 ), . . . , (X̌(l,Nl)

1 , X̌(l−1,Nl)
1 ).

• 2. Set n = n + 1; for each i ∈ TNl sample (X(l,i)
n , X(l−1,i)

n ) ∼ Q̌l,l−1
(
(x̌(l,i)

n−1, x̌
(l−1,i)
n−1 ), ·

)
and compute

weights W (l,i)
n,l = g̃n(šl,i

1:n−1, s
l,i
n )/g̃n−1(šl,i

1:n−1), W (l−1,i)
n,l = g̃n(šl−1,i

1:n−1, s
l−1,i
n )/g̃n−1(šl−1,i

1:n−1).
• 3. Perform coupled resampling on ((X̌(l,1)

1:n−1, X
(l,1)
n ), (X̌(l−1,1)

1:n−1 , X
(l−1,1)
n )), . . . ,

((X̌(l,Nl)
1:n−1, X

(l,Nl)
n ), (X̌(l−1,Nl)

1:n−1 , X̌(l−1,Nl)
n )) and write the resulting samples (X̌(l,1)

1:n , X̌
(l−1,1)
1:n ), . . . ,

(X̌(l,Nl)
1:n , X̌(l−1,Nl)

1:n ). If n = k stop, otherwise return to 2.

Such a coupling exists in our context, see the appendix. The algorithm is presented in Algorithm 2.
Note that the coupled resampling procedure is described in detail in [14, 15]. An unbiased estimate of
El

[
g (S 1:k)

]
− El−1

[
g (S 1:k)

]
is given by (see [15])

( k−1∏
p=1

1
Nl

Nl∑
i=1

W l,i
p,l

)
×

1
Nl

Nl∑
i=1

W l,i
k,lg(Š l,i

1:k−1, S
l,i
k )

−
( k−1∏

p=1

1
Nl

Nl∑
i=1

W l−1,i
p,l

)
×

1
Nl

Nl∑
i=1

W l−1,i
k,l g(Š l−1,i

1:k−1, S
l−1,i
k ).

3. Simulations

In this section we demonstrate, numerically, the computational savings obtained in using the MLPF
over the standard PF for option pricing. In order to compare the O(ε2) mean square error estimate
against the computational cost of Algorithms 1 and 2, we run each 50 times. We then look at MSE of
the 50 estimates and report the MSE versus computational cost. In the sequel we consider the basic
European call option, barrier options and target accrual redemption notes. The approach in [15] to
choose L and the N1:L is adopted for the MLPF. A time discretization hl = 2−l is used. For both the PF
and MLPF adaptive resampling is used.

3.1. Pricing basic European call option

We consider a standard European call option and the underlying is geometric Brownian motion and
there is only constant volatility. The functions g̃n are taken as |S n −K|ρ, where K is the strike price; the
choice of this potential function prevents the weights in the PF being zero (or infinite). We compare
estimates from these two algorithms, PF and MLPF with exact option price from the Black-Scholes
formula. Of course in this example, neither discretization nor MC are needed, but is just used as an
example where the price is known. The PF and MLPF are run at time discretization h5 and we consider
time points T50 to demonstrate the performance of our proposed methods.

Big Data and Information Analytics Volume 3, Issue 2, 24–40.
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Figure 1. Estimation of basic European call option for time points n = 50 at level L = 5;
in the right figure, the computational savings of using multilevel particle filter compared to
standard particle filter.

The results are shown in Figure 1. We can observe that both algorithms estimate the price with good
precision. The error-versus-cost plots are shown in the computational savings plot. The fitted linear
model of log cost against log MSE has a gradient of −1.502 and −1.267 for PF and MLPF respectively.
We observe that the MLPF outperforms the standard PF in this basic option price estimate. In the
subsequent sections, more exotic options difficult to price will be considered. A summary of these path
dependent options results are given in Table 1.

Table 1. Computational cost rates, log cost ∼ log MSE.

Constant volatility Stochastic volatility
Option type Time (n) PF MLPF PF MLPF

Barrier

50 −1.521 −1.271 −1.517 −1.342
75 −1.314 −1.260 −1.555 −1.313

100 −1.478 −1.212 −1.628 −1.257
200 −1.553 −1.335 −1.692 −1.457

TARNs

50 −1.587 −1.242 −1.563 −1.172
75 −1.540 −1.299 −1.443 −1.262

100 −1.614 −1.326 −1.691 −1.184
200 −1.553 −1.276 −1.714 −1.205

3.2. Barrier options

We consider a knock-out barrier option. As noted in the earlier sections of this article, this is a
path dependent option which standard MC gives inaccurate estimates since most of the particles give
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zero MC estimate. The most common monitoring strategy adopted in the literature is to monitor the
underlying assets after every n units of time for a total of k time periods. We consider four different n
units of time, that is n ∈ {50, 75, 100, 200}.
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Figure 2. Computational savings for pricing barrier option with constant volatility using PF
and MLPF; the constant volatility σ = 1.25.

3.2.1. Constant volatility

The underlying process follows a geometric Brownian motion as above. The performance of both
PF and MLPF can be seen in Figure 2 and Table 1. It can be observed that at all different time
points considered, the MLPF achieves significant computational savings against the PF estimates. For
example, at time point n = 100, a fitted linear model of log cost against log MSE has a gradient of
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−1.478 and −1.212 for PF and MLPF respectively. These computational rates are consistent with the
expected asymptotic behavior Cost∝MSE−5/4 for MLPF and Cost∝MSE−3/2 for PF respectively. This
agrees with the theoretical conlcusions contained in [14, 15]. Note that these latter results do not
consider the time parameter (n), but as seen here, the improvement seems to be uniform in time as
conjectured in that work.
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Figure 3. Computational savings for pricing barrier option with stochastic volatility using
PF and MLPF; the SDE used is Langevin.

3.2.2. Stochastic volatility model

The underlying asset price follows a system

dS t = rS tdt + σVtS tdWt
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dVt =
1
2
∇ log π (Vt) dt + βdBt, (3.1)

where σ, β > 0 are scale parameters, π (Vt) is the probability density chosen to be the Student t-
distribution with degrees of freedom ν = 100. S t is the price.

The following initial values were used in the simulation of Algorithms 1 and 2; s0 = 32, v0 = 1.25,
the strike price K = 30 and the scale parameters σ = 0.25, β = 0.75.

The same settings for introducing the potential function in the case of constant volatility is adopted.
It provides stable weights with minimal or no resampling at all time points considered. These weights
guide particle into regions of interest and prevent the zero payoffs before the terminal time.

The cost-versus-error plots for PF and MLPF are shown in Figure 3 and the corresponding com-
putational rates are given in Table 1. Again, the MLPF outperforms the PF at all different time units
considered. For instance, at time point n = 100, a fitted linear model of log cost versus log MSE has a
slope of −1.628 and −1.257 for the PF and MLPF respectively. It is observed that as the time parameter
increases, the error increases slightly but in general, the error rates are consistent with the theoretical
findings in the multilevel set-up literature.

3.3. TARNs

We model the volatility as deterministic and stochastic differential equation. The possible discon-
tinuity of the payoff function of the TARNs is the main challenge in using the standard MC methods.
To illustrate our methods, we consider a discontinuous function f of the form

f (s) =


2(s − 60) + 5 for s > 60,
2(30 − s) + 5 for s < 40,
−5 for 40 6 s 6 60.

When standard MC is used in this case, most of the samples stay inside the interval (40, 60), which
could possibly lead to a zero payoff for the particle. For example, the contribution for the first ten fixing
dates is −50. However, there is ocassional escapes of some of the particles within the first ten fixing
dates and this contributes values significantly different from −50 due to discontinuity of the payoff

function. This makes the variance of the MC estimates very high. We use g̃ = g and with an obvious
truncation to n variables.

3.3.1. Constant volatility

The underlying asset price process follows the same diffusion process with constant volatility as in
the case of barrier options constant volatility model example above.

Big Data and Information Analytics Volume 3, Issue 2, 24–40.



36

●

●

●

●

●

●

●

●

102 103 104

10−2

10−1

TARNs

lo
g 1

0 (
er

ro
r)

log10 (cost)

● ● ● ●n = 50 Algorithm MLPF PF

●

●

●

●

●

●

●

●

102 103 104

10−1

100

TARNs

lo
g 1

0 (
er

ro
r)

log10 (cost)

● ● ● ●n = 75 Algorithm MLPF PF

●

●

●

●

●

●

●

●

102 103 104

10−1

100

TARNs

lo
g 1

0 (
er

ro
r)

log10 (cost)

● ● ● ●n = 100 Algorithm MLPF PF

●

●

●

●

●

●

●

●

102 103 104

100

101

TARNs

lo
g 1

0 (
er

ro
r)

log10 (cost)

● ● ● ●n = 200 Algorithm MLPF PF

Figure 4. Computational cost plotted against MSE for TARNs with constant volatility.

Several constant values of the volatility were used to check the performance of the estimated prices
from the two algorithms. We notice that the TARNs favored lower values of volatility compared
to the barrier options, we do not show these results here for the same conclusions has been made
independently in [17]. We are interested in the computational savings gained while using the multilevel
set-up over the standard particle filter.

In Figure 4, the error plotted against the computational cost for both multilevel particle filter and
standard particle filter can be seen. The following initial values were used; N0 = 30, S 0 = 32, where
N0 is the notional value and a constant volatility of σ = 0.015625. The corresponding computational
rates for the four different time units are given in Table 1. For example, a fitted linear model of log
cost against log MSE at time point n = 100 has a slope of −1.614 and −1.326 for PF and MLPF
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respectively. The error can be seen as slighlty increasing from left to right as fixing dates increases. It
is clear from all the different time points considered that the MLPF has a significant advantage over PF
in terms of computational savings.

3.3.2. Stochastic Volatility Model

The underlying financial asset follows the same pair of correlated diffusion processes in 3.1 used in
the barrier option case with stochastic volatility model. We use the Langevin SDE for the underlying
volatility for the pricing of TARNs options.
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Figure 5. Computational savings gained in using multilevel particle filter against the standard
particle filter with SDE volatility; TARNs with 50, 75, 100 and 200 different times with a
Notional value N0 = 30.
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The error-versus-cost plots on base 10 logarithmic scales for PF and MLPF at four different time
points are shown in the Figure 5. A fitted linear models of log cost against log MSE are given in the
Table 1. Again the computational superiority of the MLPF over the PF can be seen. For instance,
at time point n = 100, the fitted linear model of log cost versus log MSE has a slope of −1.614 and
−1.326 for PF and MLPF respectively. These results again verify numerically the expected theoretical
asymptotic behaviour of computational cost as a function of MSE in [14, 15].

4. Conclusions

In this paper, we have shown how the PF and MLPF can be used to estimate the price of both
vanilla and exotic European type options and TARNs. We considered some exotic options, namely
knock-out barrier options and TARNs where standard Monte Carlo methods (see e.g. [9]) do not work
well and particle filtering methods have previously been shown to be useful, see e.g. [11, 17, 18].
Multilevel particle filters are shown to further improve on these standard particle filters. The main idea
is a slight algorithmic modifcation (based on importance sampling) which is necessary to devise an
efficient simulation strategy for exotic options. The methods presented in this article can potentially be
used in finance to price other kinds of path dependent options, e.g. the Asian options and the Greeks
as in [11].

The methods considered in this article enhance the existing standard SMC methods (see e.g.[11, 17])
when one seek to leverage in an optimal way the nested problems arising from multilevel set-up. The
option pricing formula involves essentially estimation of marginal likelihoods and this article have
shown the application of these SMC-based methods as in [5, 15]. It is observed that one underlying
financial asset was considered in this article, and it will be of interest to apply the MLPF on basket of
underlying financial assets.
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Supplementary

A. Sampling the Coupling

Given the SDEs 2.1 we describe how to sample the Euler discretized coupling. We consider a
pair of levels (l, l − 1), with hl = 2−l for any l ≥ 2. To sample the discretization at level l up to
some time t we suppose this induces kl discretized points. Consider W(m) i.i.d.

∼ N(0, 1) (N(0, 1) is the
standard normal distribution) and independently B(m) i.i.d.

∼ N(0, 1), m ∈ {0, . . . , kl}. Then given the
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point (v0, s0) = (vl
0, s

l
0) = (vl−1

0 , sl−1
0 ) (note that one can easily have (vl

0, s
l
0) , (vl−1

0 , sl−1
0 )) for the finer

discretization, we have the recursion, for m ∈ {0, . . . , kl}

S l
m+1 = S l

m + α(S l
m)hl + β(S l

m,V
l
m)

√
hlW(m)

V l
m+1 = V l

m + γ(V l
m)hl + ν(V l

m)
√

hlB(m).

For the more coarse trajectory, for m ∈ {0, . . . , kl−1}

S l−1
m+1 = S l−1

m + α(S l−1
m )hl−1 + β(S l−1

m ,V l−1
m )

√
hl−1[W(2m) + W(2m + 1)]

V l−1
m+1 = V l−1

m + γ(V l−1
m )hl−1 + ν(V l−1

m )
√

hl−1[B(2m) + B(2m + 1)].
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