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Abstract: This paper derives a novel algorithm for joint detection and tracking of multiple moving
objects in thermal videos. The problem of determining multiple objects in a frame sequence is for-
mulated as the task of factorizing a properly defined kernel covariance matrix into sparse factors. The
support of these factors will point to the indices of the pixels that form each object. A coordinate
descent approach is utilized to determine the sparse factors, and extract the object pixels. A centroid
pixel is estimated for each object which is subsequently tracked via Kalman filtering. A novel interplay
between the sparse kernel covariance factorization scheme along with Kalman filtering is proposed to
enable joint object detection and tracking, while a divide and conquer strategy is put forth to reduce
computational complexity and enable efficient tracking. Extensive numerical tests on both synthetic
data and thermal video sequences demonstrate the effectiveness of the novel approach and superior
tracking performance compared to existing alternatives.

Keywords: Multi-object tracking; kernel learning; sparse matrix decomposition; Kalman filtering;
thermal video

1. Introduction

Tracking of moving objects in videos is a fundamental problem in computer vision, and a plethora of
approaches have been put forth to address the tracking problem using RGB (red, green, blue) cameras,
see e.g., [4, 15, 19, 29]. Nonetheless, there are many challenges that still need to be addressed such
as object/camera motion, varying appearances of the objects, different illumination conditions and
occlusions. Further, the presence of a changing number of multiple objects in a frame sequence makes
tracking still an extremely challenging problem.
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Recently, uncooled thermal sensors have become affordable and achieve improved resolution capa-
bility [7]. Further, there is an increasing interest in utilizing thermal sensors to facilitate vision tasks,
such as face recognition, and human-robot interaction, [5, 31]. Moreover, in moving object tracking
applications like outdoor surveillance, where usually the background temperature is largely different
from the moving objects, thermal imaging becomes crucial in detecting and tracking those objects that
radiate thermal energy such as humans, animals or vehicles. It is noteworthy that thermal imaging
is not affected by shadow and light illumination, which normally is a bottleneck for RGB cameras,
rendering it more suitable for moving object tracking in both daytime and nighttime [22]. In [34], a
sparse representation technique is utilized to extract features for the video objects. Compressed feature
vectors are first obtained by the sparse representation technique, then a Bayes binary classifier is de-
signed to track the object. A subspace model is learned in [3] to model the object of interest in videos,
though it is an offline tracking approach. [22] proposed to use a particle filter to track object motion
features preprocessed from the Wigner distribution. Support vector machines and Kalman filtering are
combined toward identifying and tracking pedestrians in [35]. In [36], a scheme is developed to detect
the pedestrian head, and pedestrian legs which are later tracked by local search. The aforementioned
approaches are limited in the sense that they cannot jointly detect and track multiple objects, while they
have to impose certain pixel intensity thresholding or statistical/structural assumptions for the objects
present.

Thermal cameras output corresponds usually to gray scale imaging, which results in a lower data
processing complexity, in contrast to the triple data load produced by RGB cameras. Also, there
are some research efforts that propose fusion of thermal and RGB visible data, e.g., [6, 8, 11]. The
work in [6] relies on the contour saliency map, to fuse together object locations and contours from
both thermal and color sensors and eventually extract the object silhouette features, thus obtaining
improved tracking performance. However, the method is computationally expensive since it aims at
constructing a complete object contour. In [11], data fusion is implemented to fuse thermal and visible
data, resulting in an illumination-invariant face image. In the latter work, decision fusion combines
the matching score generated from individual face recognition models. Indeed, modal fusion enables
better tracking performance since more data are utilized. However, in many practical scenarios where
only one of the imaging modalities is available to use, tracking systems can benefit from the utility of
thermal data due to the computational cost savings introduced.

In this paper we propose a novel approach to perform joint detection and tracking of multiple mov-
ing objects in thermal videos. Having no prior information on the objects present in the video frames,
the object detection problem is formulated as the problem of factorizing a pertinent kernel covariance
matrix into sparse factors. The pixels consisting of an object will be determined by estimating the
support of these sparse factors and employing clustering of the nonzero entries to separate individ-
ual objects. Each object will be tracked via an alternative implementation of Kalman filtering, which
has been used extensively in target tracking using sensor networks [16, 20, 24–26], and the proposed
kernel matrix sparse factorization scheme. The idea of sparse covariance factorization was first ex-
plored in [28] to determine informative sensors in a network. However, in [28], linear data models
are considered which is not the case in the video object tracking setting considered here. Further, the
approach in [28] focuses in detecting stationary and static sources, whereas in the proposed work here
nonlinear inter-pixel correlations are extracted and utilized along with multiple object dynamics to
achieve accurate multi-object tracking. Coordinate descent techniques [2,32], are employed to decom-
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pose the formulated kernel covariance matrix in a recursive way. Moreover, the implementation of a
computationally efficient ’divide-and-conquer’ based scheme mitigates the high computational burden
of factorizing large kernel covariance matrices resulting from frames having large dimensions and ac-
quired at fast rates. The Kalman filter [17] is further combined with the aforementioned sparse kernel
covariance factorization scheme to allow precise tracking of the detected objects in videos.

The paper is structured as follows. The problem setting is introduced in Sec. II. The problem of
clustering pixels according to the object they belong to is formulated as a sparse kernel covariance
factorization problem and is detailed in Sec. III. A computational efficient method is derived based on
coordinate descent approaches. Kalman filtering is employed to track the estimated centroid pixel of
the detected objects in Sec. IV. A divide and conquer implementation is described in Sec. V, along
with the interplay of Kalman filtering and our proposed sparse kernel covariance factorization algo-
rithm. Numerical results in different scenarios in Secs. VI, VII, VIII are carried out to corroborate the
effectiveness of the proposed multiple object tracking scheme in thermal videos, while demonstrating
the superiority of the novel approach over existing alternatives.

2. Problem setting and preliminaries

Consider a sequence of frames forming a video in which the frames contain multiple nonstation-
ary/moving objects of interest that need to be detected/identified and tracked. Let Ft be the frame of
the available video sequence at time instant t of dimensions fx× fy whose entries are real numbers, i.e.,
Ft ∈ R

fx× fy . Further, let xm,n
t denote the pixel intensity of the (m, n)-th pixel of frame Ft at time instant t

where m = 1, . . . , fx and n = 1, . . . , fy. For simplicity in exposition xt ∈ R
p×1, with p = fx · fy denotes a

vector that contains all the pixels of frame Ft placed in there after traversing them from top to bottom
and left to right. For the sake of simplicity later on we will omit the f index in xt.

There is an unknown number of objects in the video that we are interested in tracking, and M denotes
the maximum number of objects that can be present in a frame. Let Pt

m denote the set of pixel indices
corresponding to the mth object at time instant t, i.e., Pt

m := {[xm,1,t, ym,1,t], . . . , [xm,Nm,t, ym,Nm,t]} indicate
the coordinates of the pixels of the mth object at time instant t, with Nm indicating the number of pixels
of object m. The pixels corresponding to an object at time instant t, say Pt

m, are not known. In order to
model the movement of each of the objects we will focus on how the coordinates of the centroid pixel
of each object evolve in time. The centroid pixel for the mth object at time instant t is defined as

ct
m := bN−1

m

Nm∑
i=1

[xm,n,t, ym,n,t]c,

with bc denoting the floor operator. The centroid pixel intuitively describes the center point of the mth
moving object.

When the video sequence is acquired at a high frame rate, it can be assumed that the objects’ cen-
troid pixels move from frame to frame according to a constant velocity moving model [1]. The velocity
can be kept constant for a certain number of frames and then changed if necessary. Specifically, the
m-th object’s state vector is denoted as sm(t) := [(ct

m)T , vt
m], where vt

m is a 2 × 1 vector that contains the
velocity across the horizontal and vertical axis. The state vector sm(t) is assumed to evolve according
to the following model:

sm(t) = Asm(t − 1) + um(t), m = 1, . . . ,M (2.1)
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where A ∈ R4×4 is the state transition matrix, while um(t) denotes zero-mean Gaussian noise with
covariance Σu. The matrices A and Σu have the following structure (e.g., see [1])

A =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 , (2.2)

Σu = σ2
u

[
(∆T )3/3 · I2 (∆T )2/2 · I2

(∆T )2/2 · I2 ∆T · I2

]
, (2.3)

where ∆T corresponds to the inter-frame time interval, σ2
u is a nonnegative constant controlling the

variance of the noise entries in um(t), while I2 denotes the 2 × 2 identity matrix. The pixel coordinates
[xm,1,t, ym,1,t] take integer values, however the state noise um(t) is assumed Gaussian causing the state
to take real values. Though, we can control the state noise standard deviation such that 3σu (3 − σ
bounds) is equal to a small number corresponding to the number of pixels that the state is deviating
from the constant velocity movement. Since the noise will take values within the interval [−3σu, 3σu]
with probability 99.7%, the state noise can model at an acceptable level of accuracy the movement of
the video objects from frame to frame despite the fact that the centroid cm(t) can have real values.

2.1. Kernel-based object pixel correlations

As stated earlier the pixels corresponding to an object are unknown, thus it is essential to identify
the objects before attempting to track them. To cluster the pixels of interest according to the object
they belong to, we will utilize statistical correlations that pixels belonging to the same object exhibit.
Pixels of an object are expected to have similar intensity (different from the background pixels) which
subsequently makes them correlated.

Pixels belonging to the same object exhibit nonlinear dependencies in general in the sense of being
nonlinearly correlated [14], thus employing a linear covariance matrix will not identify correlated
components. To this end, we account for the nonlinear inter-pixel correlations of frame Ft, namely
xt := vec(Ft) where vex(.) is the vectorization operator, by utilizing nonlinear mappings φx(xt) that are
applied row-wise across the entries of xt and map each pixel in xt, in a higher dimensional space where
linear correlations can be exploited. Specifically, the mapping φx results a fx fy × D matrix

φx(xt) := [φx(xt(1)), . . . ,φx(xt( fx fy))]T , (2.4)

where D corresponds to the dimensionality of the transformed pixel vector φx(xt(i)) for i = 1, . . . , fx fy.
The nonlinear mapping φx should be selected such that the covariance matrix of the transformed

frames exhibits a block diagonal structure. For example Figure 1 depicts the nonzero entries (black
dots) of a kernel (the Gaussian kernel will be used) covariance matrix obtained from a sequence of
frames in which a single white object moves within black background. Clearly, the covariance ma-
trix has a block diagonal structure after proper permutation of the rows and columns that contain the
nonzero entries.

After properly selecting a kernel (see details later on) the covariance of the transformed data φx(xt)
can be written as
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E[(φx(xt) − E[φx(xt)])(φx(xt) − E[φx(xt)])T ]
= Prbdiag(B1,t,B2,t, . . . ,BM,t)Pc, (2.5)

Figure 1. Sparse structure of a kernel covariance matrix.

where bdiag() refers to a block diagonal matrix, with Bm,t denoting the mth diagonal block of size
Nm × Nm indicating how the Nm pixels of object m are correlated, while pixels belonging to different
component are assumed to be uncorrelated. It is also possible that pixels from different objects may
be correlated if the objects have similar pixel intensity or texture. In that case one diagonal block,
namely B j,t, may be associated with more than one objects and we will see later on how the pixels can
be separated. Further, matrices Pr and Pc corresponds to an arbitrary unknown permutation of the rows
and columns.

The first challenge will be to locate the pixels of each object, which pertains to identifying where
the entries of each of the M diagonal blocks are located in the transformed covariance matrix in (2.5),
which boils down to estimating the size of each diagonal block Nm, as well as the indices of the pixels
that belong to the mth diagonal block. In the following section we will formulate this as a sparse
matrix factorization problem, while properly selecting the kernel to induce a covariance matrix with
block diagonal structure. Then, once the pixels of an object have been determined we will proceed
with tracking the estimated centroid of each of the objects.

3. Multi-object pixel clustering

3.1. Kernel covariance estimation

In order to estimate the covariance matrix of the transformed data in (2.5) we will rely on sample-
averaging, where after applying a proper transformation to the pixel vectors to obtain φx(xt) we estimate
the covariance of the transformed data as

Σ̂φx,t =
1
F

Σt·F
τ=(t−1)·F+1(φx(xτ) − φ̄x,t) · (φx(xτ) − φ̄x,t)

T

=
1
F

Σt·F
τ=(t−1)·F+1[φx(xτ)φT

x (xτ) − φx(xτ)φ̄
T
x,t

− φ̄x,tφ
T
x (xτ) + φ̄x,tφ̄

T
x,t], (3.1)
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where φ̄x,t := F−1Σt·F
τ=(t−1)·F+1φx(xτ) corresponds to the sample-average estimate of the mean of the

transformed frame pixels, while F corresponds to the number (different than Ft that denotes the frame
at time t) of frames that the objects are virtually stationary and occupy the same area in the frames.
The higher the sampling rate is, the larger F can be chosen while assuming the objects are stationary
within the time interval [(t − 1)F + 1, tF].

Applying the kernel trick (assuming a proper nonlinear mapping φx(·) is used; see details in [12,
18, 27, 33]) the inner products involved in calculating the entries of φx(xτ)φT

x (xτ) can be found using a
proper positive definite kernel function K(x1(i), x2( j)) whose two arguments correspond to pixels i and
j from frame pixel vectors x1 and x2 respectively, i.e., the kernel trick implies that the inner product
〈φx(x1(i)),φx(x2( j))〉 can be evaluated from a proper scalar kernel function K(x1, x2). Utilizing this
property the first term in Eq (3.1) can be rewritten as

1
F

Σt·F
τ=(t−1)·F+1φx(xτ)φT

x (xτ) =
1
F

Σt·F
τ=(t−1)·F+1K(xτ, xτ), (3.2)

where K is a fx fy × fx fy matrix whose (i, j)-th entry is given as [K]i, j = K(xτ(i), xτ( j)). Similarly, the
second and third summation terms in Eq (3.1) can be expressed as

1
F

Σt·F
τ=(t−1)·F+1φx(xτ)φ̄

T
x,t

=
1
F

Σt·F
τ=(t−1)·F+1φx(xτ)

1
F

Σt·F
τ′=(t−1)·F+1φx

T (xτ′)

=
1
F
·

1
F

Σt·F
τ=(t−1)·F+1Σ

t·F
τ′=(t−1)·F+1φx(xτ)φx

T (xτ′)

=
1

F2 Σt·F
τ,τ′=(t−1)·F+1K(xτ, xτ′), (3.3)

while the fourth summation term in Eq (3.1) gives

1
F

Σt·F
τ=(t−1)·F+1φ̄x,tφ̄

T
x,t

=
1

F2 Σt·F
τ′=(t−1)·F+1φx(xτ′)Σt·F

τ′′=(t−1)·F+1φ
T
x (xτ′′)

=
1

F2 Σt·F
τ′′=(t−1)·F+1 K(xτ′ , xτ′′). (3.4)

Notice that the matrix in Eq (3.4) is the same with the one obtained in (3.3), thus the covariance matrix
of the transformed data can be calculated with the aid of the kernel function K(·, ·) as follows

Σφx,t
=

1
F

Σt·F
τ=(t−1)·F+1K(xτ, xτ)

−
1

F2 Σt·F
τ′,τ′′=(t−1)·F+1 K(xτ′ , xτ′′). (3.5)

A kernel utilized in image pixel classification successfully [9,23], is the Gaussian radial basis function
(RBF) in which the (i, j) entry of matrix K used earlier can be expressed as

K(xτ(i), xτ( j)) = exp
(
−

(xτ(i) − xτ( j))2

2σ2

)
, (3.6)

where the variance σ2 is a crucial parameter that controls the degree of inter-pixel correlation. Details
on how to select this parameters will be given in Sec. 6.
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3.2. Kernel covariance sparse factorization

Next, we will try to determine sparse factors m1, . . . ,mM such that Σ̂φx,t
≈

∑M
m=1 mmmT

m = MtMT
t ,

while the support of each of the factors gm will indicate the indices of the entries belonging to a block
of correlated pixels in Σ̂φx,t

that subsequently belong to the same object. The idea of utilizing sparse
matrix decomposition to identify correlated data was first proposed in [28] and here it is generalized
under the realm of kernel-based nonlinear data transformations.
Single Object:
We start with the case where there is only one moving object in the frames of the video sequence. A
standard least-squares based matrix decomposition scheme would minimize the Frobenius norm-based
cost ‖Σφx,t

−MtMT
t ‖

2
F with respect to the factor estimates Mt ∈ R

p×1. However, such a formulation does
not take into account the sparse structure of Mt. To this end, the following minimization framework is
proposed:

M̂t := arg min
Mt
‖Σφx,t

−MtMT
t ‖

2
F + λ‖Mt‖1, (3.7)

where the norm-one term ‖ · ‖1 is utilized to induce sparsity in the column vector Mt, see e.g., [30,37],
in the column of Mt whose support will point to those pixels in a collection of F frames that contain
the object of interest within interval [(t − 1)F + 1, t · F]. The parameter λ is the sparsity controlling
coefficient that determines the number of zeros in Mt, i.e., the larger λ is, the more zero entries will be
contained in the optimal solution M̂t.

The cost in Eq (3.7) is nonconvex with respect to (wrt) Mt. To overcome this obstacle an iterative
minimization scheme is derived next using coordinate descent strategies [2]. The cost in Eq (3.7) is
minimized recursively wrt one entry of Mt, namely Mt( j), while keeping all other entries in Mt fixed
to their latest updates.

Minimization of the cost in Eq (3.7) wrt Mt( j) while fixing the remaining variables to their latest
update during coordinate cycle k gives the following solution for updating M̂k

t ( j):

M̂k
t ( j) = arg min

Mt( j)
2 ·

p∑
µ=1,µ, j

[Σφx,t
( j, µ) −Mt( j)M̂k−1

t (µ)]2

+ λ|Mt( j)| + [Σφx,t
( j, j) −M2

t ( j)]2. (3.8)

Discarding the terms that do not depend on Mt( j) and applying proper algebraic manipulations, the
cost in Eq (3.8) can be rewritten as:

Jk( j) = (Mt( j))4 + λ|Mt( j)|

+ (Mt( j))2[2
p∑

µ=1,µ, j

[M̂k−1
t (µ)]2 − 2δk( j, j)]

−Mt( j)[4
∑

µ=1,µ, j

δk( j, µ)M̂k−1
t (µ)] (3.9)

where δk( j, µ) := Σφx,t
( j, µ) for j, µ = 1, . . . , p. Given the most recent update M̂k−1

t from coordinate

cycle k − 1, as shown in Appendix A, the update for M̂k
t ( j) will be the value which achieves the
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minimum cost in Eq (3.9) among the following candidates: i) 0; ii) the real positive roots of the third-
degree polynomial:

4 · h3 + 4(
∑

µ=1,µ, j

[M̂k−1
t (µ)]2 − δk( j, j)) · h

− 4(
p∑

µ=1,µ, j

δk( j, µ)M̂k−1
t (µ)) + λ = 0 (3.10)

iii) the real negative roots of the third-degree polynomial:

4 · h3 + 4(
∑

µ=1,µ, j

[M̂k−1
t (µ)]2 − δk( j, j)) · h

− 4(
p∑

µ=1,µ, j

δk( j, µ)M̂k−1
t (µ)) − λ = 0 (3.11)

To obtain the roots for the above two third-degree polynomial, we utilized companion matrices, [13].
The proposed sparsity-aware kernel matrix decomposition algorithm is tabulated as Algorithm 1. In
fact, convergence to at least a stationary point of the cost in Eq (3.7) is established in Appendix B.

Algorithm 1 Sparse Kernel Covariance Factorization
1: Using frames within time interval [(t − 1) · F + 1, t · F]:

2: Form the kernel covariance matrix using Eq (3.5).

3: Initialize Mt( j)’s with 0’s.

4: for k = 1, 2, . . . , κ do
5: Evaluate δk( j, µ) for j, µ = 1, . . . , p.
6: Determine the updates {M̂k

t ( j)} after determining the positive roots of Eq (3.10) and the negative roots of Eq (3.11).
7: If ‖Mk

t −Mk−1
t ‖ ≤ ε, where ε is the desired error threshold then break.

8: end for

After determining the sparse factor M̂k
t , the nonzero entries’ indices (support) of M̂k

t will point to
the moving object pixels within the frame sequence during time interval [(t − 1)F + 1, tF]. Next, we
generalize the pixel classification framework in the presence of multiple objects.

3.3. Multiple objects

In the presence of multiple objects in a frame sequence the sparse factorization formulation in Eq
(3.7) can be used by introducing multiple columns in Mt and employing the same coordinate descent
process described earlier. One challenge in the presence of multiple objects is the correlation among
objects that have similar pixel intensities and/or texture. In this case, the sparse factorization framework
may return sparse factors M̂t that contain nonzero values in entries corresponding to pixels of more than
one objects. Thus, it may be necessary to do some extra clustering among these pixels to separate them
according to the object they correspond to. This process will enable to split the objects that may appear
in the same sparse factor and enable us to track them individually.

To split the objects that may be present in a sparse factor returned by the sparse factorization algo-
rithm we rely on the property that pixels corresponding to the same object present in a sparse factor
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M̂t should be neighboring and thus closer (in terms of Euclidean distance) compared to pixels corre-
sponding a different object (placed at a different part of the frame).

Let Pt denote the nonzero entries of M̂k
t which indicates the moving objects’ pixels, from which the

coordinates zi for each pixel i ∈ Pt can be further extracted. Then, we employ K-means clustering,
see [10], aiming at partitioning the Pt pixels into Zt clusters {Ξ1, . . . ,ΞZt} according to the similarity
of their corresponding coordinates zi, i ∈ Pt. K-means clusters the pixels by minimizing the following
formulation

arg min
Ξ j

Zt∑
j=1

∑
zi∈Ξ j

‖zi − ξ j‖
2, (3.12)

where ξ j corresponds to the centroid of cluster Ξ j.
In this way, Pt pixels will be clustered into Zt clusters, centered at ξ j, j = 1, . . . ,Zt corresponding to the
different moving objects contained within a sparse factor obtained via Alg. 1. If two clusters’ centroid
coordinates are too close then:

‖ξ j − ξ j′‖
2 ≤ εd, (3.13)

where εd is a predefined distance, we will decrease the initial number of clusters to Zt − 1. By setting
an upper limit Mup on the number of moving objects, we can adjust the required number of clusters Zt

in the aforementioned way to accurately estimate the unknown number of video objects.

4. Frame object tracking

Once the pixels Pt
m corresponding to object m have been determined, each object’s centroid pixel

can be determined as described earlier and Kalman filtering will be utilized to accurately track the
location of each detected object within the video sequence. Recall that the state vector sm(t) contains
the location coordinates, as well as the velocity at which the object’s centroid is moving along each
of the two dimensions present in each frame. It should be emphasized that there may be some errors
when clustering the pixels according to the objects they belong to, in which case let P̂t

m denote the
estimated pixel locations corresponds to object m, while ĉt

m corresponds to the corresponding estimate
of the object’s centroid pixel. The following measurement model can be utilized to associate ĉt

m with
the state vector sm(t) as follows

ĉt
m = H(t)sm(t) + wm(t) = ct

m + wm(t), (4.1)

with m = 1, . . . ,M, where

H(t) =

[
1 0 0 0
0 1 0 0

]
,

while wm(t) corresponds to the localization error that may be present in ĉt
m when utilizing the sparse

factorization approach in Sec. III. It is assumed that the noise wm(t) is zero mean with variance σ2
w ·I2×2.

After numerical testing, the noise standard deviation σw is found to be less than 3 pixels.
Although, the distribution of the noise wm(t) is unknown in (4.1) and not necessarily Gaussian, the

Kalman filter will still provide the linear minimum mean-square estimation for the state and observa-
tion models in (2.1) and (4.1). The object state estimator and corresponding error covariance matrix,
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obtained by the Kalman filter for object m are denoted here as ŝm(t|t) and Pm(t|t), respectively. The
prediction step in the Kalman filter used here, see e.g. [17], involves the following updating recursions
for the state estimator and corresponding covariance

ŝm(t|t − 1) = Aŝm(t − 1|t − 1) (4.2)

P̂m(t|t − 1) = AP̂m(t − 1|t − 1)FT + Σu. (4.3)

The estimated centroid ĉt
m will then be used to carry out the correction step of the Kalman filter which

involves the following updating recursions:

ŝm(t|t) = ŝm(t|t − 1) + Gm(t) · [ĉt
m −H(t)ŝm(t|t − 1)]

Pm(t|t) = (I −Gm(t)H(t))Pm(t|t − 1) (4.4)

for m = 1, . . . ,M), while the matrix Gm(t) which corresponds to the Kalman gain can be evaluated as

Gm(t) = Pm(t|t − 1)HT (t)(σ2
w · I2×2 + H(t)Pm(t|t − 1)HT (t))−1. (4.5)

A separate Kalman filter is implemented for each of the M objects determined using Alg. 1. Each of
these filters is using the estimated centroid ĉt

m found at every time instant t.

5. Real-time object identification and tracking

5.1. Dealing with large frames

One may notice that the proposed matrix decomposition scheme may involve high complexity com-
putations in the initialization stage when determining Mt, especially when the video resolution is very
high leading to a large number of pixels per frame. To deal with this issue, we resort to a divide and
conquer strategy. We split the fx fy × fx fy kernel covariance matrix into smaller parts corresponding to
smaller regions of a frame with size % × %, where % � fx fy.

For each of these smaller regions we obtain M̂ j
t for j = 1, . . . , J using Alg. 1 on the kernel covari-

ance matrix Σ̂φx j ,t
that corresponds to subframe xt

j that subsequently corresponds to a smaller region of

the frame xt at time instant t, and J =
fx fy
%2 . Then, the smaller sparse factors M̂ j

t are stacked as follows

M̂t = [{M̂1
t }

T , . . . , {M̂J
t }

T ]T , (5.1)

to construct the sparse factor M̂t corresponding to the kernel covariance matrix Σ̂φx,t
of the entire

frame xt. It is worth noting that M̂t is acquired without the need of factorizing the much larger in size
fx fy × fx fy kernel covariance matrix Σ̂φx,t

. Proceeding as before, the nonzeros entries of M̂t can be
utilized to estimate the Pt object pixels. After implementing the K-means clustering method on the
Pt pixels, cluster centroids will serve as the initialization positions of the objects in the filtering stage.
Further, the pixel subsets Pt

m are also used to estimate the width and height of a rectangular subframe,
say width w0

s and height h0
s , that surrounds the pixels of each moving object in the frame and gives a

rectangular area that estimates the objects’ location.

Big Data and Information Analytics Volume 3, Issue 2, 1–23.



11

5.2. Object identification and tracking

Next, it is outlined how the Kalman filter and the sparse kernel factorization algorithm interact with
each other to track multiple moving objects in a given video sequence. During the start-up stage, a
number of Fs frames will be utilized to evaluate the kernel covariance matrix. After applying Alg. 1
using the divide and conquer implementation in Sec. (5.1), the nonzero entries in the acquired sparse
vector M̂0 will point to the pixels of the moving objects in the video.

From M̂0, we can extract the pixels which form the detected moving objects. Here the size of the
estimated rectangular area surrounding the object (cf. Sec. 5.1), namely w0

s and h0
s will be increased to

ws and hs which satisfies ws ≥ w0
s , and mod(ws, %) = 0, and hs ≥ h0

s , and mod(hs, %) = 0. This results a
slightly larger rectangular region for each object in which smaller regions of size % × % can be further
extracted. In the next time instance, we will just incorporate the pixels around the predicted centroid
position ŝm(t|t − 1) from Kalman filter Eq (4.2) to form the object kernel covariance matrix Σ̂φx,t,m

following Eq (3.1) in which x contains the pixels xi, j with x- and y- coordinates within the intervals

[ŝm(t|t − 1)]1 − ws/2 ≤ i ≤ [ŝm(t|t − 1)]1 + ws/2
[ŝm(t|t − 1)]2 − hs/2 ≤ j ≤ [ŝm(t|t − 1)]2 + hs/2. (5.2)

Similarly to the initialization stage, the divide and conquer implementation is carried out in the
kernel covariance matrix Σ̂φx,t,m

for each object separately to acquire the pixels which corresponds to
the moving object m at the current time instant. This approach reduces the computational complexity
since each object allocated areas is further split into smaller regions.

To account for newborn or disappearing objects in the video resulting a time-varying number of
objects we can periodically generate and factorize the kernel covariance matrix in the entire frame.
The complete scheme is outtlined as Alg. 2.

Algorithm 2 Joint Multi-Object Detection and Tracking
1: Start-up stage (t = 0)/Reconfiguration (mod(t,Tc) = 0): For Fs consecutive frames, the kernel covariance matrix is

formed according to Eq (3.5) and Algorithm 1 is applied in the entire frame to determine moving objects in the input
frame sequence.

2: for t = 1, 2, . . . , do
3: Gather frames within time interval [(t − 1) · F + 1, t · F].
4: Using the F acquired frames form the kernel covariance matrix Σφx,t,m

with pixels in a rectangular region of size
ws × hs with centroid [ŝm(t|t − 1)]1:2 for m = 1, . . . ,M.

5: Apply Algorithm 1 to Σφx,t,m
and acquire the nonzero entries in M̂m

t .
6: Apply Kalman filtering for each of the M objects, i.e., Eq (4.2)-(4.5) to track each of the M objects’ centroid pixel.

7: end for

6. Synthetic numerical tests

The performance of the proposed scheme is first tested on a synthetic frame sequence that contains
three rectangular objects that move independently from each other. Video background contains ran-
domly generated Gaussian zero-mean noise with variance 20, while the objects consist of pixels with
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intensity varying between 240 to 255. The synthetic video contains 60 frames, during which object 1
moves from the left to the right, object 2 moves from the top to the bottom of the frame and object 3
moves from the right to the left. The frame size is 100 by 100, while all the objects are of size 10 by
10. The true coordinates of each object’s centroid pixel are recorded to evaluate our proposed tracking
scheme. To select a proper kernel variance, firstly we empirically choose a variance range [0.001, 1], by
checking the kernel covariance matrix formed with different variances in the variance range, we select
the variance value which results the desired block diagonal structure in the kernel covariance matrix.
The value is set as σ2 = 0.01. Three sample images are given in Figure 2, 3, 4, with frame indices
20, 40, and 60. The objects are marked out by a dark-colored circle to show how our method captures
the momentary location of each of the rectangular moving objects. The tracking root mean-squared
error (RMSE) which quantifies the number of pixels by which the estimated centroid pixel coordinates
is ‘missing’ the true centroid of each object is depicted in Figure 5. It is clear that both the proposed
tracking scheme and the scheme in [34] localizes the moving objects within 2 pixels of accuracy on
average. Though, the approach in [34] requires prior knowledge of the objects’ initial coordinates, and
a proper search window size which our scheme can generate in an unsupervised manner and without
the need of any prior information.

Figure 2. Synthetic frame sequence; Frame 20. The white squares correspond to the ground
truth objects moving, while the dark curve inside the squares gives the estimated object out-
line by applying tracking using a Gaussian kernel with variance in the range [0.001, 1].

Figure 3. Synthetic frame sequence; Frame 40.The white squares correspond to the ground
truth objects moving, while the dark curve inside the squares gives the estimated object out-
line by applying tracking using a Gaussian kernel with variance in the range [0.001, 1].
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Figure 4. Synthetic frame sequence; Frame 60.The white squares correspond to the ground
truth objects moving, while the dark curve inside the squares gives the estimated object out-
line by applying tracking using a Gaussian kernel with variance in the range [0.001, 1].

Figure 5. Tracking root mean-squared error (RMSE) for the synthetic video sequence. The
proposed novel method is compared with the approach in [34].

7. Multi-object detection and tracking in thermal video

Next, the proposed tracking scheme is tested on video sequences extracted from the datasets avail-
able on the OTCBVS website [21], where a Raytheon L-3 Thermal-Eye 2000AS infrared sensor is
utilized to acquire 8-bit grayscale images (with a resolution of 320 × 240 pixels per frame). The first
image sequence is extracted from the OTCBVS dataset 05, i.e, terravic motion infrared database. In
this video sequence, a man with a weapon moves from the left to the right with deformation. Six sam-
ple frames are presented in Figure 6, 7, 8. Even though the shape of the target varies with the non-rigid
movement of the limbs, our novel algorithm is able to detect the person and tracks the target accurately
(the white box surrounding the objects denotes the estimated area where the algorithm projects there is
an object). Frames 243 and 282 are zoomed in to show the accuracy of the bounding box our proposed
tracking scheme generated; see Figure 9, 10.
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Figure 6. Tracking results for sequence 1; Frames 231, and 240. The white frame around
the moving person indicates the estimated object area by the novel approach.

Figure 7. Tracking results for sequence 1; Frames 243, and 267.The white frame around the
moving person indicates the estimated object area by the novel approach.

Figure 8. Tracking results for sequence 1; Frames 282, and 288.

Another experiment is conducted on another video sequence extracted from the OTCBVS database.
In this sequence, there are two pedestrians one of which moves from the left to the right, while the
other pedestrian moves from the right to the left. Six sample frames are displayed in Figure 11, 12, 13.
For a better view of how our proposed tracking scheme manages to localize both pedestrians, frames
251 and 360 are zoomed in and displayed in Figure 14, 15, 16, and 17. The tracking RMSE for our
proposed method and the tracking scheme in [34] is compared in Figure 18. It can be seen that our
tracking scheme outperforms the scheme in [34] for both pedestrians, and it is worth noting that for
our scheme, the average tracking error for most of the tracking time is below 4 pixels.
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Figure 9. Tracking results for sequence 1; Frames 243 zoomed in, demonstrating the accu-
rate tracking of the area in which the moving object resides.

Figure 10. Tracking results for sequence 1; Frames 282 zoomed in, demonstrating the accu-
rate tracking of the area in which the moving object resides.

Figure 11. Tracking results for sequence 2; Frames 240 and 264.
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Figure 12. Tracking results for sequence 2; Frames 282 and 318.

Figure 13. Tracking results for sequence 2; Frames 336 and 360.

Figure 14. Tracking results for sequence 2; Frame 251 zoomed in for pedestrian on the left.
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Figure 15. Tracking results for sequence 2; Frame 251 zoomed in for pedestrian on the right.

Figure 16. Tracking results for sequence 2; Frame 360 zoomed in for pedestrian on the left.

Figure 17. Tracking results for sequence 2; Frame 360 zoomed in for pedestrian on the right.
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Figure 18. OTCBVS thermal video tracking RMSE. The novel approach is compared with
the method in [34].

Further, we compare our novel object detection scheme with a simple approach where objects are
detected by thresholding the pixel values. The result is displayed in Table. 1. One can observe that the
thresholding approach is very sensitive to the selection of the threshold and it may detect the wrong
number of objects. Thresholding may miss objects whose pixels have intensity less than the chosen
threshold or declare as objects background artifacts whose pixel intensity is larger than the threshold.
However, our scheme is not affected by background noise and is capable of finding the correct number
of objects.

Table 1. Number of detected objects.

Novel object detection Pixel thresholding
Synthetic video sequence 3 3
Thermal video sequence 1 1 2
Thermal video sequence 2 2 1

8. Tracking with missing pixels

Oftentimes, videos may be corrupted due to camera or storage issues, resulting missing pixels in
the video frames. Here, our tracking scheme is tested in the scenario where a portion of the frame
pixels are missing (their intensity is set to 0); see Figure 19 and 20. Here, two sample frames 224, 252
with a 5% random pixel loss are provided to display the tracking result. Despite the missing pixels
our approach is able to track the objects. For the pedestrian on the right, despite the loss of several
pixels, our tracking scheme enables precise localization. Notice that the tracking performance of the
pedestrian on the left is not as good as the pedestrian on the right, since the left side pedestrian occupies
a smaller number of pixels which results a larger portion of the object to disappear in the presence of
missing pixels.
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Figure 19. Tracking in the presence of 5% missing pixels; Frame 224.

Figure 20. Tracking in the presence of missing pixels; Frame 252.

9. Concluding remarks

A novel multi-object detection and tracking algorithm was put forth in video sequences. The task of
identifying objects in a sequence of frames was transformed in a sparse kernel covariance factorization
problem, where the support of the estimated sparse factors point to the pixels of each object present in
a frame. To this end, a sparsity-aware kernel covariance matrix factorization scheme, based on norm-
1 regularization was proposed and minimized utilizing a coordinate descent approach. After objects
are successfully determined, Kalman filtering is implemented cooperatively with the sparse kernel
covariance factorization scheme to allow accurate tracking of each object’s centroid pixels. Numerical
tests on different video datasets validate the effectiveness of our proposed video tracking mechanism
in the presence of multiple objects, and corroborate the improved tracking performance over existing
alternatives.
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Supplementary

10. Proof of Eq (3.10), (3.11)

Let Mt( j) = h, while setting the rest of the minimization variables in (3.7) to their most up-to-date
values at the end of cycle k − 1. It follows that M̂k

t ( j) is the minimizer of

arg min
h

h4 + c1 · h2 + c2 · h + λt, s. to |h| ≤ t, (10.1)
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where

c1 = 2
∑p

i,i, j[M̂
k−1
t (i)]2 − 2δk( j, j) + φ, and (10.2)

c2 = −4
∑p

i,i, j δ
k( j, i)M̂k−1

t (i). (10.3)

After evaluating the derivatives of the cost in (10.1) wrt h and t and applying the Karush-Kuhn-Tucker
optimality conditions [2] it follows that h∗ := M̂k

t ( j) should satisfy 4(h∗)3 + 2c1h∗ + c2 + µ∗1 − µ
∗
2 = 0

and −µ∗1 − µ
∗
2 + λ = 0, where µ∗1 and µ∗2 are the optimal multipliers corresponding to the inequality

constraints of (10.1). Note that µ∗1 ≥ 0, µ∗2 ≥ 0, while the complementary slackness conditions impose
that µ∗1(h∗ − t∗) = µ∗2(−t∗ − h∗) = 0. If h∗ > 0 the slackness conditions imply that µ∗2 = 0 from which
it follows that µ∗1 = λ. Substituting the latter values in 4(h∗)3 + 2c1h∗ + c2 + µ∗1 − µ

∗
2 = 0 gives (3.10).

Similarly, the negative candidate minimizers of (10.1) can be obtained by the roots of (3.11).

11. Convergence of Alg. 1:

Let `({Mt( j)}pj=1) denote the cost in (3.7) which is defined over Rp×1, and let us define

`0({Mt( j)}pj=1, ) :=
∑p

j=1

∑p
j′=1[Σ̂φx,t( j, j′)

−Mt( j)Mt( j′)]2.

Further, consider the following level set:

L0
t := {{Mt( j)}pj : `({Mt( j)}pj=1) ≤ `(M̂0

t )}, (11.1)

where M̂0
t is the p × 1 matrix used to initialize Alg. 1 and selected such that ‖M̂0

t ‖1 < ∞, from which
it follows that `(M̂0

t ) < ∞. Then, from (11.1) and the form of `(·) it follows that the member matrices
Mt ofH0

t satisfy
p∑

j=1

λ`|Mt( j)| ≤ `(M̂0
t ) < ∞.

Thus, the level set L0 is closed and bounded (compact). Also, `(·) is continuous on L0.
Recall from [cf. (10.1)] that the cost involved in updating M̂k

t ( j) can be written as Jk
t ( j) := h4 + c1h2 +

c2h + λ|h| . If c2 , 0 then after determining the monotonicity of Jk
t ( j), it has a unique minimizer. And

if c2 = 0, then Jk( j) is symmetric around zero. In that case if c1 > 0 then the unique minimizer of
Jk

t ( j) is 0. Though, if c1 < 0 then Jk
t ( j) has two minimizers with the same magnitude but different

sign. In that case we can consistently select the positive (or negative) minimizer ensuring a unique
minimizer per iteration. Function `(·) satisfies the regularization conditions outlined in [32, (A1)].
In detail, the domain of `0(·) is formed by matrices whose entries satisfy Mt( j) ∈ (−∞,+∞). Then,
domain(`0) = (−∞,∞)p×1 is an open set. Further, `0(·) is Gâteaux differentiable over domain(`0). The
Gâteaux derivative is

`′0(M; ∆M) := lim
ε→0

[`0(M + ε∆M) − `0(M)]/ε. (11.2)

After carrying out the necessary algebraic operations it follows readily that `′0(M; ∆M) exists for all
∆M ∈ domain(`0), and it equals

−2tr[(Σ̂x,t −MtMT
t )(Mt∆

T
M + ∆MMT

t )] + 1T (Mt � ∆M)1.
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The aforementioned properties ensure that Alg. 1 iterates converge to a stationary point of `(·) [32,
Thm. 4.1 (c)].
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