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Abstract. Discrete choice models (DCMs) are applied in statistical modelling

of consumer behavior. Such models are used in many areas including social sci-

ences, health economics, transportation research, and health systems research
and they are time dependent. In this manuscript, we review references on

the study of such models, develop DCMs with emphasis on time dependent

best-worst choice and discrimination between choice attributes. Referenced
measurements of the dynamic DCMs are simulated. Expected utilities over

time are derived using Markov decision processes. We study attributes and
attribute-levels associated with the quality of life of seniors, report the estima-

tion results, and discuss our findings.

1. Introduction and motivation. Discrete choice models (DCMs) have appli-
cations in many areas such as social sciences, health economics, transportation
research and health systems (see [18, 11, 7]). DCMs focus on predicting consumer’s
choices in products or services. In many cases, they are time dependent but such
research has not been implemented in practice. In this manuscript, we apply the
models over a time sequence to quantify and measure consumer behavior and derive
the utilities using Markov decision processes (MDPs). The change in utilities from
the consumer is described. The utility is composed of a systematic component de-
pendent on the key attributes of the product and a random component. [24] presents
multiple models based on different assumptions about the distribution of the ran-
dom component. In some of his suggested models, the error terms are assumed
to be homogeneous and uncorrelated [24]. By assuming the covariates are gener-
ated under a normal distribution and the error terms under a generalized extreme
value distribution, the output data is then modeled as binary and conditional logit.
We will focus on the conditional logit assumption, but add a dependence structure
through time and transition probabilities under MDPs
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DCMs as described by the associated attribute-levels, are modeled at different
cases. [12] and [14] provide three cases of the best worst scaling experiments: 1)
best-worst object scaling, 2) best-worst attribute-level scaling or profile case and
3) best-worst discrete choice experiments (BWDCEs) or multi-profile case. We are
interested in the profile case, also referred to as Case 2 best-worst scaling (BWS).

By scaling the attributes and the attribute-levels, it is possible to determine the
utility impact on consumer behavior. We simulate data from [5] experimental design
and compute the associated parameter estimates. The results of this simulation are
used to project the expected discounted utility over time using MDPs.

The manuscript is organized as follows. In Section 2, we present the model design
and properties for attribute-level best-worst experiments. Extensions of MDPs for
Case 2 BWS with time dependent factor are provided in Section 3. Simulated data
example of Case 2 BWS models over time and results are described in Section 4. A
conclusion is provided in Section 5.

2. Attribute-level best-worst design. Assume we have a sample of n consumers
with J alternate choices. The utility function as described in [17] for the ith con-
sumer/individual selecting the jth choice is given as:

Uij = Vij + εij , (2.1)

where Vij is the systematic component and εij is the unobserved component, or
error term, where i = 1, 2, ..., n, j = 1, 2, ..., J .

The common distribution for the error terms comes from [17], where he proposed
the type I extreme value distribution or Gumbel distribution for the error terms,
that leads to the conditional logit for modelling the data. [24] presented various
models and associated assumptions in modelling the choice made by the consumers.
To allow for dependence in choices, the error terms may be distributed as normal
and that assumption allow the outcomes to be modeled under the probit or the
generalized extreme value distribution.

Let Yij denote ith individual choosing the jth alternative (alternate choice), where

Yij =

{
1, if ith individual chooses the jth alternative,

0, otherwise.

Using the results from the conditional logit, the utility associated with the various
choices may be estimated. The error term of the utility would come from the type
I extreme value distribution. The systematic component in the utility of the choice
is given as

Vij = x′ijβj ,

with x′ij describing the ith individual’s covariates on the jth alternative and βj is
defined as the individual specific covariate estimates.

The utility is then given as in Equation (2.1). Hence, the probability of the jth

choice being chosen is:

P (Yij = 1) =
exp (x′ijβj)

Σxij′∈C exp (x′ij′βj)
=

exp (Vij)

Σxij′∈C exp (Vij′)
,

for C the set of all possible choices.
The above can be seen as a special approach at the intersection of information

theory (entropy function) and the multinomial logit [1]. Following the setup as
described by [23], there are K attributes that describe the products denoted as Ai
with each attribute consisting of lk levels for k = 1, ...,K. In the study done by [9]
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and [8] for contraceptive data, there were K = 7 attributes, with attribute levels
l1 = 8, l2 = 3, l3 = 4, l5 = 4, l6 = 8, l7 = 9, and l8 = 6. The 2nd attribute is
the contraceptives effect on acne, and the levels associated with this attribute are;
no effect, improves, or worsens acne symptoms. Each product is represented by a
profile x = (x1, ..., xK) where xi is the attribute level for Ai that makes up the
product where the attribute-levels take values from 1 to lK for k = 1, 2, ...,K.

The choice task considered here is to look at the pairs of attribute-levels. For
every profile the choice set (pairs of attribute levels) is then given as:

Cx = {(x1, x2), ..., (x1, xK), (x2, x3), ..., (xK−1, xK), (x2, x1), ..., (xK , xK−1)},

where the first attribute-level is considered to be the best and the second is the
worst. From the profile Cx, the consumer evaluates the choice set and determines
from the τ = k(k − 1) choices given which is the best-worst pair.

In our setup, we extend the state of choices as follows. Consider G choice sets
and the associated profiles given as,

x1 = (x11, x12, ..., x1K)

x2 = (x21, x22, ..., x2K)

...

xG = (xG1, xG2, ..., xGK).

The corresponding choice pairs for the G choice sets are given in Figure 1. To
simplify the notation, let Cx1 , Cx2 , ..., CxG

be denoted as C1, C2, ..., CG, respectively.

Figure 1. The G choice sets in an experiment with corresponding
choice pairs.

[15] and [23] gave the best-worst choice probability for profile xi to be:

BWxi(xij , xij′) =

b(xij)
b(xij′ )∑

∀(xij ,xij′ )∈Cxi
,j 6=j′

b(xij)
b(xij′ )

, (2.2)
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where xij is chosen as the best attribute-level and xij′ is the worst, and b is some
positive scale function or impact of attribute for j, j′ = 1, 2, ...,K, j 6= j′ and i =
1, 2, ..., G. Thus, the following assumptions hold:

BWxi
(xij , xij′) ≥ 0, ∀i, j, and

∑
∀(xi,xj)∈Cxi

,j 6=j′
BWxi

(xij , xij′) = 1.

With such assumptions, the consumer is expected to select choices with higher
BWxi values, and authors have taken advantage of selecting a subset from all pos-
sible cases.

Under random utility theory, the probability an alternative is based on the utility
as defined in Equation (2.1). [12] provided the utility for Case 2 BWS models and
the definition of the probability as given in Equation (2.2) under the conditional
logit model. [13] and [16] described other measure of utility of parameters as a
function of log of odds. Here we consider the choice set Cxi , (xij , xij′) be the
chosen pair, and the utility for choosing this pair within set Cxi

is then given by:

Uijj′ = Vijj′ + εijj′ , (2.3)

where Vijj′ is the systematic component, εijj′ is the error term, j, j′ = 1, 2, ...,K, j 6=
j′, and i = 1, 2, ..., G.

The systematic component can be expressed as,

Vijj′ = Vij − Vij′ = (xij − xij′)
′β,

for xij and xij′ as in Equation (2.1) and β parameter vector of best and worst choice.
The data xij are indicators of the ith attribute xij ∈ Aj and its jth attribute-level
xij . The systematic component Vij is written as:

Vij = βAi
+ βAixij

.

Under the conditional logit, the probability that (xij , xij′) is chosen is

Pijj′ =
exp (Vijj′)∑

∀(xi,xj)∈Cxi
,j 6=j′ exp (Vijj′)

. (2.4)

Equation (2.2) with the choice of the scale function b(xij) = exp (βAi + βAixij ) =
exp (Vij) becomes Equation (2.4). This is easily seen by:

b(xij)

b(xij′)
= exp (Vij − Vij′) = exp (Vijj′).

We assume the error terms come from a Type I extreme value distribution and
use the conditional logit to estimate the parameter vector:

β′ = (βA1
, βA2

, . . . , βAK
, βA10, βA11, . . . , βA1l1−1, . . . , βAK0, . . . , βAK lK−1).

[10] suggested connecting models, their parameters in estimating analysis and
producing measures that are related to policy and practice. We include the time
feature in Case 2 BWS model structure.

3. Time dependent modelling under Markov decision processes. Markov
decision processes (MDPs) are sequential decisions making processes. MDPs seek
to determine the policy or set of decision rules, under which maximum reward over
time is obtained. MDPs are defined by the set (S,R,D), where S is the finite set
of states, R the set of rewards, and D the set of decisions. These processes may be
of discrete or continuous in time with a finite or infinite horizon, respectively. Our
interest is with discrete time finite horizon MDPs, that is t = 1, 2, . . . , T where T is
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fixed number of time periods. The rewards (or expected rewards) are maximized by
the best sequential decisions over time, making MDPs a dynamic optimization tool
as used in [3] to identify the right choices of substitution behaviors of consumers.

Let st ∈ S be the states occupied at time t, rt(st) be the reward associated
with st, and dt(rt, st) be the decision based on the possible rewards and states at
time t. The decision process maps the movement from one state to another over
time t based on rewards received and an optimal decision set. As the decision
process is Markovian, the transition probability to the next state, st+1 based solely
on the decision made at the current state, st is p(st+1|st), where t = 0, 1, . . . , T
[19]. There is a decision rule δ that governs the action the consumer makes and
rewards the results from the action. The decision of choices is made such that
maximizes their rewards. [20] and [2] applied MDPs to DCMs. [4] applied them
to solve problems in an ecological setting. As they mentioned, to suggest guidance
would require running several scenarios. To our knowledge, such technique has not
yet been applied to consumer choice experiments with attribute and attribute-level
best-worst experiments.

For DCMs, the reward is defined by the utility function, r(st, dt) = U(st, dt),
where dt = δ(t) is the decision rule at time t that maximizes the utility, and the
decision rule δ is the one that maximizes the expected discount utility given as the
value function.

The value function for DCMs comes from Bellman’s equation and is given as:

V t(xt, εt) = max
dt∈D

E

(
T∑
t′=t

γt
′−tU(xt′ , dt′) + ε(d′t)|xt, εt

)
,

where the discount utility rate is given by γ ∈ (0, 1). The steps for determining the
value function follow.

The decision rule used by a consumer is the one under which the utility is max-
imized, but assuming that a person’s perceived utility is impacted by time. [6]
reviewed the work done on the discount utility including consumers’ discount time
factor step. The discount utility rate weights the utility a person gains from an
option at some ulterior time based on their current state at time t and guarantees
the convergence in the infinite sum of rewards.

MDPs model the sequence of decisions based on expected rewards and transition
probabilities. We defined state transition as

P (st+1|st) = P (st+1 = s′|st = s) = Pss′ ,

and the corresponding transition probability of the decision can be written as
P (dt+1|dt, xt) with the decision dt made at time t that satisfies

max
dt∈D

E(U t(xt, εt)),

for t = 1, 2, . . . , T.
Since no closed form expression for this dynamic optimization problem is avail-

able, the value functions are computed recursively via dynamic programming, under
backwards recursion algorithm. First we compute,

V T (xT ) =
∑
dT∈D

U(xT , dT )P (dT ),

with P (dT ) as the probability that dT was made. We denote P (dj |dj−1) as the
transition probability of decision dj given previous decision dj−1 for j = 1, . . . , T .
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Next we move one time step back and compute,

V T−1(xT−1, dT−1) = U(xT−1, dT−1) +
∑
dT∈D

γV T (xT )P (dT |dT−1),

and another,

V T−2(xT−2, dT−2) = U(xT−2, dT−2) +
∑
dT∈D

γV T−1(xT−1, dT−1)P (dT−1|dT−2).

Following this pattern, we get:

V t(xt, dt) = U(xt, dt) +
∑
dT∈D

γV t+1(xt+1, dt+1)P (dt+1|dt),

for t = 1, 2, . . . , T−1. For these experiments, we consider discrete time finite horizon
MDPs where:

• G choice sets are modeled across time of length T .
• xt are the attributes and attribute-levels corresponding to the choices in
Cg, forg = 1, 2, . . . , G.
• The decision set depends on the choice set evaluated dt ∈ Di where i =

1, 2, . . . , G, and t = 1, 2, . . . , T.
• Transition probabilities depend on a set of parameters θ that are assumed

known or data estimable. θ is a function of attribute and attribute level not
necessarily identical to β, as described in [2].
• Transition probability matrices are dependent on time and on the choice set

being evaluated.

There are G choice sets with τ = k(k − 1) choice pairs in each set. To compute
the transition probabilities, the parameters are assumed known [2]. Let θdt+1|dt
be the parameter vector for the transition probability from choice dt to dt+1 that
captures consumer’s behavior or preference.

Let the choice pair (xj , xj′) denote the qth best-worst choice pair. Compute

πqr = exp ((xj − xj′)
′θq|r),

for j, j′ = 1, 2, ..., J , where J is the total possible choices for experiment, and θq|r
are the parameters estimating the transition from choice r to choice q.

In Case 2 BWS models, a set of G choice sets are considered in the experiment.
In MDPs, there exists a set of states st ∈ S and possible decisions in dt ∈ D for
t = 1, 2, . . . , T . For Case 2 BWS MDPs, the possible states in each choice set
are the alternatives, and the decision made at each time point will also be one
of the alternatives. For choice set Ci the state sti and decision dti are such that
1 ≤ sti, dti ≤ τ where i = 1, 2, . . . , G and t = 1, 2, . . . , T .

Let sit+1 = s′i and sit = si, where s′i, si ∈ Si for i = 1, 2, . . . , G and t =
1, 2, . . . , T . The transition probability is denoted as

P tiss′ = P t(s′i|si,θ
t
si),

where

θtsi = (θtsiA1
, . . . , θtsiAK

, θtsiA11, . . . , θ
t
siAK lk

)

is the set of parameters guiding the transition from si to s′i, for i = 1, 2, . . . , G.
In Case 2 BWS models, the parameters would be the measure of relative im-
pact/preference associated with the attributes and attribute-levels corresponding
to the different choice pairs, or states, given the current state is si, where i =
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1, 2, . . . , G. [21] and [2] state that θtsi is assumed known under some rationale with
regards to consumer behavior or preferences.

The parameter estimates determined by fitting the conditional logit model, as

described in Section 2, produced β̂ a p = K +
K∑
k=1

lk vector. These parameter

estimates measure the relative impact of each attribute and attribute-level in the
decisions made by consumers. The parameters θtsi are the assumed impacts of the
attributes and attribute-levels in consumers decisions given they currently occupy

state si. We define these parameters as functions of the parameter estimates β̂,
where there is a rate of change in the impacts over time, as follows:

θ̂
t

si = (asiA1
(t)β̂A1

, . . . , asiAK
(t)β̂AK

,

asiA11(t)β̂A11, . . . , asiAK lk(t)β̂AK lK ),

where a′is are the time factor change and β̂Ak
and β̂Aklk are fixed for i = 1, 2, . . . , G,

1 ≤ si ≤ τ , k = 1, 2, . . . ,K, and t = 1, 2, . . . , T . The definition of

asi(t) = (asiA1(t), . . . , asiAK
(t), asiA11(t), . . . , asiAK lk(t)),

depends on the state si and time t = 1, 2, . . . , T . We have considered asij(t) = atsij ,
where if |asij | < 1 the impact of the attribute or attribute-level would be lessening

with time, where i = 1, 2, . . . , G and j = 1, 2, . . . ,K. Also, if asiA(t)β̂A = atsiAβ̂A >
0, then the attribute or attribute-level has a positive impact evolving at the rate
atsiA over time for A = A1, A2, . . . , AK , i = 1, 2, . . . , G, and t = 1, 2, . . . , T . A static,
or non-time dependent, system is considered if asiA(t) = 1 , where i = 1, 2, . . . , G,
A = A1, A2, . . . , AK , and t = 1, 2, . . . , T .

These asiA(t) are rates of change that guide how the dynamic transition of
the decision process. We can easily consider them to be non-time dependent,
asiA(t) = asiA, defining the transition probabilities as stationary over time. As
was mentioned earlier, there are infinitely many possibilities in how we define the
transitions. [21] states that when using rational observation to define the transitions,
many possible choice behaviors on the consumers are possible. [4] recommends run-
ning many scenarios to determine the transition probabilities that will maximize the
expected reward. Our definition also offers infinitely many possibilities in terms of
the definition; however, we defined a rate of change to consider an evolving system.
In this way, the researcher can determine what they consider feasible rates and see
if the system eventually evolves to the decision they desire and how long it would
take to get there.

Given θtsi , the transition probabilities may be determined using random utility
theory, or inverse random utility theory in the case attribute-level best-worst models
as shown in Section 3. Let s′ijj′ = (xij , xij′), where j 6= j′, j, j′ = 1, 2, . . . , τ , and

i = 1, 2, . . . , G. The probability that s′ijj′ is the chosen state means that given θtsi ,

the utility for s′ijj′ is the maximum utility. The transition probability is given as,

P t(s′ijj′ |si,θ
t
si) = P t(U tijj′ > U tikk′ ,∀k 6= k′ ∈ Ci|si,θtsi)

= P t(V tijj′ + εtijj′ > V tikk′ + εtikk′ ,∀k 6= k′ ∈ Ci|si,θtsi)

= P t(εtikk′ < εtijj′ + V tijj′ − V tikk′ ,∀k 6= k′ ∈ Ci|si,θtsi),
where j 6= j′, j, j′ = 1, 2, . . . , τ , i = 1, 2, . . . , G, and t = 1, 2, . . . , T . If we assume the
random error terms are independently and identically distributed as type I extreme
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value distribution, the probability would then be found using the conditional logit,
and is given as:

P t(s′ijj′ |si,θ
t
si) = P t(U tijj′ > U tikk′ ,∀k 6= k′ ∈ Ci|si,θtsi)

=
exp(V tijj′)∑

k,k′∈Ci
exp(V tikk′)

,

where j 6= j′, k 6= k′, j, j′ = 1, 2, . . . , τ , i = 1, 2, . . . , G, and t = 1, 2, . . . , T .
The transition matrix is then a τ × τ matrix of the form,

P ti =


P ti11 P ti12 . . . P ti1τ
P ti21 P ti22 . . . P ti2τ
. . . . . .
. . . . . .
. . . . . .

P tiτ1 P tiτ2 . . . P tiττ

 =
(
P tiss′

)
τ×τ

where i = 1, 2, . . . , G, s, s′ = 1, 2, . . . , τ , and where
τ∑

s′=1

P tiss′ = 1.

The transition matrix may be either stationary or dynamic in nature. In our
definition of θtsi , this is determined by the rate asij(t), where i = 1, 2, . . . , G, 1 ≤
j ≤ p, and t = 1, 2, . . . , T . In Section 4, we provide simulations under stationary
and dynamic transition probabilities and make comparisons.

The decision at time t is denoted by dt are the choice pairs, and are the different
states within a choice set. In Case 2 BES experiments, the dit = (xij , xij′), where
i = 1, 2, ..., G, j, j′ = 1, 2, ...,K, and j 6= j′. Then the parameter vector θdt is a
known vector relating the decision made at time t given the decision made at time
t−1 for t = 1, 2, ..., T . Different assumptions about the parameters θdt yield different
results and value functions within the experiments. However, this variability in
constructing these parameters allows us to view hypothetical future and the values
they offer to consumers.

We look at the effect of varying hyper-parameters over time to compute the
transition probabilities, that is we use the previous parameter estimates as inputs
into determining θdt+1 .

For simplicity, we will first consider stationary transition matrices. That is,
θdt+1

= arθ where ar as independent of time, and will extend to dynamic version.
In practical applications, decisions on how to act or proceed would be dictated

under some expected utility. To that end, a backward recursive method is then used
and a dynamic planning system that the process from its starting values/stages to
its goal stage is provided.

4. Computations.

4.1. Data simulation. We adapt our simulations of experiments to [5]. The latter
conducted a Case 2 BWS type of study to examine the quality of life of seniors.
They considered a balanced design with five attributes (attachment, security, role,
enjoyment, and control) with four attribute levels (none, little, lot, and all) for
attachment, security, and enjoyment and (none, few, many, all) for role and control.
The attribute-levels are about the hypothetical quality of life states of 30 people of
age 65 or more studied at one time. In their paper, they provide a partial look at
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their data and include the parameter estimates. Using that information, data was
generated under such rationale and MDP simulations performed.

As mentioned in [23], a full factorial design, with a total of 1024 profile in this
case, is costly and places an overwhelming choice task on the shoulders of the
consumers. Therefore, an optimal fractional factorial design was considered. In
doing the computations in R, we utilized a package DoE.design. A subset of 32
profiles, with τ = 20 choice pairs in each choice set, was selected and used in the
simulations based on a sample of n = 100 consumers. Using the parameter estimates
from [5], we generated data from that model since real data was not available. We
will first compare the model parameters with those from [5]. Results are shown in
Table 1. Our simulated data appears to be similar to their data. Based on the data,
we aim to compute the probabilities, BWxi(xij , xij′), the utilities on the choice set
Ci dynamically over T = 5 time periods using MDPs. Time can be thought of in
years if we consider such surveys to be conducted annually.

Attribute and attribute-level data in the experiments are series of 1′s, and 0′s
indicating the attributes and attribute-levels in the choice pair. Looking at Table
3 in [5], the attribute-level data when the lthi attribute-level is chosen as best is
coded as 1 for the attribute-levels 1, 2, . . . , li− 1, and the attribute-level data when
the lthi attribute-level is chosen as worst is coded as −1 for the attribute-levels
1, 2, . . . , li − 1. [22] explained that for attribute-level point estimates, they satisfy
the condition:

lk∑
i=1

βi = 0 or βlk = −
li−1∑
j=1

βj ,

for all k = 1, 2, . . . ,K.
The probabilities to simulate choice behavior were computed using Equation

(2.4). Using the estimates provided in Table 1, the values of Vijj′ were computed.
For the choice pair (Attachment None, Enjoyment Lot), the associated parameter
estimates with this pair are given as:

β̂A1
= 0.8142 for Attachment, β̂A4

= 0.2842 for Enjoyment, β̂A11 = −1.8535 for

Attachment None, and β̂A43 = 0.6884 for Enjoyment Lot.
The value of Vijj′ for this pair would be:

V̂ijj′ = exp (V̂ij − V̂ij′) = exp ((β̂Aj + β̂Ajxj )− (β̂Aj′ + β̂Aj′xj′ ))

= exp ((0.8142− 1.8535)− (0.2842 + 0.6884)).

Obtaining these values for all choice pairs, the probabilities of choice selection were
determined per profile and consumer choices were simulated. The value function,
or expected utility, under our set up for the best-worst pairs from profile 1 are
computed with the discount rate γ = 0.95.

The data was exported from R into the SAS R© environment. Using the SAS R©

multinomial discrete choice procedure (MDC), the multinomial logit model was
fitted to the data.

From the parameter estimates, we determine the choice pairs with the high-
est and lowest utilities for the experiment as in Equation (2.3). The choice pairs
with the highest utilities are given in Table 2, and the pairs with the lowest util-
ities are given in Table 3. Capturing the attribute-level information in the choice
pair, we consider the notation xij be also written as xijl or xjl (if the profile is
obvious) where i indicates the profile, j the attribute and l the attribute-level
(i = 1, . . . , G = 32, j = 1, . . . ,K = 5 and l = 1, . . . , lj). The pair (x113 , x151)
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[5] Simulated data
Parameters Estimates SE Estimates SE
Constant -0.3067 0.0750 0.0500 *

Attachment 0.8105 0.0803 0.8142 *
Security * * * *

Enjoyment 0.2632 0.1010 0.2842 0.0394
Role 0.1908 0.0974 0.1611 0.0400

Control 0.1076 0.0971 0.1148 0.0402
Attachment None -1.9678 0.1129 -1.8535 0.0548
Attachment Little 0.1694 0.1012 0.1389 0.0532
Attachment Lot 0.9053 0.0905 0.9210 0.0561
Attachment All 0.8932 * 0.7936 *
Security None -0.6123 0.1180 -0.6262 0.0541
Security Little -0.3761 0.1302 -0.4077 0.0547
Security Lot 0.0373 0.1153 0.1027 0.0543
Security All 0.9511 * 0.9312 *

Enjoyment None -0.8888 0.1286 -0.8166 0.0542
Enjoyment Little -0.3367 0.1632 -0.3814 0.0544
Enjoyment Lot 0.6561 0.1493 0.6844 0.0548
Enjoyment All 0.5695 * 0.5136 *

Role None -0.8956 0.1239 -0.8903 0.0546
Role Few -0.0277 0.1532 -0.0079 0.0546

Role Many 0.4435 0.1363 0.4007 0.0546
Role All 0.4798 * 0.4975 *

Control None -0.8085 0.1122 -0.7254 0.0546
Control Few 0.0835 0.1596 0.0755 0.0552

Control Many 0.2780 0.1376 0.2592 0.0543
Control All 0.4471 * 0.3907 *

Table 1. Parameter estimates from [5] paper and our simulation
of their data.

provides the greatest utility of any pair in the experiment as seen in Table 2. The
pair (x113 , x151) has the attribute “Attachment” and attribute-level “Lot” as the
best and attribute “Control” and level “None” as the worst. Looking at the at-
tribute and attribute-level impacts and the parameter estimates given in Table 1,
this choice pair having the highest utility makes sense. We see that the attribute
“Attachment” has the largest impact in comparison to “Security”, which was also
noted in [5]. The attribute with the smallest impact in comparison to “Security”
was “Control.” Looking at the attribute-levels for these attributes, we see that the
level “Lot” for “Attachment” has the largest positive impact, and attribute-level
“None” for “Control” has the largest negative impact.

We next conduct the Case 2 BWS experiment of choosing the pairs and describ-
ing the optimal variation over T = 5 time periods. Under that experiment, the
consumer chooses an alternative that provides maximum utility of attributes and
attribute-levels over time. We will use numerical maximization to find the expected
utility under Bellman’s equation of the MDPs. We will consider two options. Under
Option 1, stationary transition probabilities are considered while dynamic transition
probabilities are presented under Option 2.
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Table 2. Choice pairs with the highest utility in the experiment

Best Attribute Level Worst Attribute Level Utility

1 3 5 1 8.9107
1 3 4 1 7.7977
1 4 5 1 7.2599
1 3 3 1 6.9108
1 4 4 1 6.6562
1 3 2 1 6.4402

Table 3. Choice pairs with the lowest utility in the experiment

Best Attribute Level Worst Attribute Level Utility

5 1 1 3 -4.3159
4 1 1 3 -4.1167
5 1 1 4 -3.9912
3 1 1 3 -3.9082
4 1 1 4 -3.8493
2 1 1 3 -3.7974

4.1.1. Option 1: Stationary transition probabilities. For the simulated data of [5],
we consider MDPs where the consumers are more likely to choose the same alter-
native at each time point. The transition parameters θtsi , where sti = (xij , xij′) are
defined as for the attributes as,

θtsiAk
=


3|βAk

|, if xij ∈ Ak,

−3|βAk
|, if xij′ ∈ Ak,

βAk
, otherwise,

and for the attribute-levels,

θtsiAkxik
=


3|βAkxik

|, if xij = xik where xik ∈ Akxik
,

−3|βAkxik
|, if xij′ = xik where xik ∈ Akxik

,

βAkxik
, otherwise,

where j 6= j′, j, j′, k = 1, 2, . . . ,K, 1 ≤ xik ≤ lk, and i = 1, 2, . . . , G. The goal
of this option was to design the transition probabilities in a way that the choice
made at t is most likely to be made at t + 1. If we considered asim(t) = βm for
i = 1, 2, . . . , G, and m = 1, 2, . . . , p, then the system would remain static and every

row of the transition matrix would be the same. Recall that p = K +
K∑
k=1

lk = 25

is the number of parameters. We consider 3|βm| when a state or choice pair at
time t+ 1 has the same best attribute and attribute-level as the state occupied at
time t, and −3|βm| when a state or choice pair at time t + 1 has the same worst
attribute and attribute-level as the state occupied at time t. We consider |βm| to
control the direction of the impact making sure it is positive for the best attribute
and attribute-level of si and use −|βm| to make sure its negative for the worst
attribute and attribute-level of si. We use 3 to increase the impact of the best
and worst attributes and attribute-levels of si. The definition of asim(t) in this
way insures that states with common best and worst attributes and attribute-levels
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as the present state occupied, sti = (xij , xij′), have a greater probability of being
transitioned to, where i = 1, 2, . . . , G, j 6= j′, j, j′ = 1, 2, . . . ,K, and t = 1, 2, . . . , T .

4.1.2. Option 2: Dynamic transition probabilities. In this option, consumers acquire
time dependent decisions with a different impact, making the transition probabilities
dynamic. For the simulated data as in [5], we consider MDPs where in the consumers
are more likely to choose the same alternative at each time point. The transition
parameters θtsi where sti = (xij , xij′) are defined as for the attributes as:

θtsiAk
=


3t|βAk

|, if xij ∈ Ak,

−3t|βAk
|, if xij′ ∈ Ak,

βAk
, otherwise,

and for the attribute-levels,

θtsiAkxik
=


3t|βAkxik

|, if xij = xik where xik ∈ Akxik
,

−3t|βAkxik
|, if xij′ = xik where xik ∈ Akxik

,

βAkxik
, otherwise,

where j 6= j′, j, j′, k = 1, 2, . . . ,K, 1 ≤ xk ≤ lk, and i = 1, 2, . . . , G.

4.2. Results and discussions. The responses for choice sets are discussed here.
Table 2 reveals that “Attachment” is one of the most important attributes for the
models, matching the results obtained in [5]. Since only one level of “Attachment”
is represented in each profile, we do not compare the attribute-levels with those
found in [5].

Furthermore, the expected utilities are then obtained for each of the 32 profiles
and each of the 20 choices. For summary purpose, the difference of the expected
utility values, ∆U t1jj′ = U t+1

1jj′ − U t1jj′ , for Profile 1 at consecutive time periods are

given in Figure 2. Choice pair (x112 , x151), where x112 is the attribute-level “Little”
of attribute “Attachment” is the best and x151 is the attribute-level “None” of
attribute “Control” is the worst, corresponds to the highest expected utility.

The transition matrices are built for each of the options of previous subsections.
For Option 1 the transition matrix is the same at all the time points since it is
stationary, and it is given in Table 4. For Option 2, the transition matrix at time
t = 1 is kept the same as it was in Option 1 in Table 4, and subsequent transi-
tion probabilities at time t = 2, 3, 4 are given in Tables 5, 6, and 7, respectively.
The same best-worst pair (x112 , x151), where x112 is the attribute-level “Little” of
attribute “Attachment” is the best and x151 is the attribute-level “None” of at-
tribute “Control” is the worst, corresponds to the highest expected utility as it was
in Option 1 with a slight difference in the expected utilities. This is because the
transition matrices are reinforcing those choices over time. This explains why the
transition matrix under Table 7 is the identity matrix as expected under the trend
in the expected utilities. We also note a clustering in Figure 3 of the expected util-
ities into 5 groups. This clustering based on the suggested transition probabilities
seems to better capture the estimates from the DCEs as was suggested in [5] when
they considered gender in the quality of life study. Such results open up new ideas
of supervised temporal learning algorithm in DCMs.
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Figure 2. Difference of expected utilities ∆U t1jj′ for Profile 1 at
consecutive time periods under Option 1.

Figure 3. Difference of expected utilities ∆U t1jj′ for Profile 1 at
consecutive time periods under Option 2.

5. Conclusion. DCMs have applications in many areas. However, challenging
issues are faced because of the large number of covariates, reliability of model,
and the condition that consumer behavior is time dependent. By extending the
idea of choices into time dependent and with transition probabilities process, we
presented a time dependent Case 2 BWS model with evaluation under random
utility analysis. Our study showed that clustering can be captured and the design
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Table 7. Dynamic transition matrix in Option 2 for Profile 1 at
time t = 4

(x12, x23) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(x23, x12) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(x12, x33) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(x33, x12) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(x12, x42) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(x42, x12) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(x12, x51) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(x51, x12) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
(x23, x33) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
(x33, x23) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
(x23, x42) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
(x42, x23) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
(x23, x51) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
(x51, x23) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
(x33, x42) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
(x42, x33) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
(x33, x51) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
(x51, x33) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
(x42, x51) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
(x51, x42) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

can predict time stages needful to reach some target. With the simulated examples,
dynamic programming algorithms reveal the highest and lowest utility trends.
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