
Big Data and Information Analytics doi:10.3934/bdia.2016014
c©American Institute of Mathematical Sciences
Volume 1, Number 4, October 2016 pp. 341–347

INCREASE STATISTICAL RELIABILITY WITHOUT LOSING

PREDICTIVE POWER BY MERGING CLASSES

AND ADDING VARIABLES

Wenxue Huang∗ and Xiaofeng Li∗

School of Mathematics and Information Sciences, Guangzhou University

Guangzhou, 510006, China

Yuanyi Pan

Clearpier Inc., 1300-121 Richmond St.W.

Toronto, Ontario

Canada M5H 2K1

(Communicated by Zhen Mei)

Abstract. It is usually true that adding explanatory variables into a proba-

bility model increases association degree yet risks losing statistical reliability.
In this article, we propose an approach to merge classes within the categorical

explanatory variables before the addition so as to keep the statistical reliability

while increase the predictive power step by step.

1. Introduction. In any applications where feature selection or dimension reduc-
tion is required, a key question to be answered is how many variables or features
are enough. More variables may increase data based association degree but may
also result in explanatory information reliability reduction or model over fitting. It
is particularly important for a stepwise forward feature selection procedure [8] to
decide when to stop the variable aggregation. It can be stopped when the maximum
joint association or the predefined maximum number of variables is reached. More
discussions about this subject can be found in [2].

The prediction accuracy naturally attracts most of the attention and has been
studied for hundreds of years. Categorical data analysis alone has the rate of point-
hit accuracy, of distribution bias and of the balanced one between them [9]. Huang,
Shi and Wang [12] suggested that the measure of association is fundamental to
obtain the prediction accuracy rate and that this measure will increase as more
explanatory variables added in that probabilistic model [12].

The risk of model failure, or the model’s reliability, is usually related to the aver-
age number of categories in a categorical predictive model. Guttman [7] presented
methods to estimate the upper and lower bounds to a categorical data set’s relia-
bility. These estimates are functions of the number of categories available and the
proportion of instance from which the model response is chosen. Probably the most
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generally applicable and widely used method for estimating the reliability of rating
or judgment is with the intra-class correlation, or some variation of it [3]. However,
none of these methods reflect the response variable’s distribution.

We hence introduce a new measure, denoted as E(Gini(X|Y )), to measure the
reliability. It is based on the classical measurement theory and the Gini coefficient
[13]. E(Gini(X|Y )) measures the independent variable X’s concentration degree
given the dependent variable Y . This measure ensures that the reliability will
always increase when two categories in X are merged, meaning these two categories
are treated as one.

We also prove that the association between the merged independent variable and
the target variable keeps exactly the same after the merge if the merged independent
classes have the same condition probabilities. Thus, we believe that the solution to
the dilemma of the association increase and the reliability decrease along the feature
selection process is to merge categories with similar conditional probabilities before
adding new variables.

This article is organized as follows. Section 2 presents the definitions for the
association and the reliability measures; section 3 discusses how and why the inde-
pendent classes are merged; two supportive experiments are analyzed in section 4;
the last section is a brief summarization and discussion to the future work.

2. Association, reliability and the comparison matrix Φ.

2.1. The association measures. Given a nominal categorical data set with one
independent variable X and one dependent variable Y , the following two association
measures are of our interest in this article to address the predicting accuracy issue.
Both measures were further discussed in [6]. The first one is a measure based on
modal (or optimal) prediction, the Goodman-Kruskal λ (denoted as λ thereafter).

λ =

∑
x ρxm − ρ·m
1− ρ·m

,

where

ρ·m = max
y

ρ·y = max
y

p(Y = y), ρxm = max
y

ρxy = max
y

p(X = x;Y = y).

Please note that p(·) is the probability of a statistical event. One can see that λ
is the relative decrease rate of predicting errors as we go from predicting Y with
X to that without X. The other association measure is the Goodman-Kruskal τ
(denoted as τ thereafter). It is based on the proportional prediction and defined as
follows.

τ =

∑
x

∑
y ρxy

2/ρx· −
∑

y ρ·y
2

1−
∑

y ρ·y
2

,

where

ρx· = p(X = x).

τ calculates the relative decrease of long-run proportion of predictions accuracy
from predicting Y with X to that without X. Both measures are used in many ap-
plications including supervised discretization [11, 10]. Both can be used to measure
the prediction errors: the first one aims to maximize the point-to-point accuracy
and the second one wants to keep the same distribution between the predicted and
the real target variable.
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2.2. Reliability measure. Going by “precision” in some publications, reliability
may be ambiguous in certain cases [17]. But in our context, it is how much a prob-
ability model built upon a given nominal categorical data set may fail in predicting
the unknowns hence the number of classes of the independent variable, or the ex-
pected one, approximately shows the model’s reliability. The expected number of
classes in a variable X is a variation of the well-known Gini index defined as follows.

Ep(X) =
∑
x

ρx·
2

Roughly speaking, the more independent classes a predictive model has, the less
support each conditional probability has in a given data set with limited size hence
the less reliable the constructed model is. However, this measure does not count
adequately the target variable’s distribution. We believe it is more appropriate to
construct one that considers the concentration of the independent values in each
dependent class. Here then comes our proposed measure of reliability of explanatory
information

E(Gini(X|Y )) = 1−
∑
x

∑
y

ρxy
2

ρ·y
= 1−

∑
x

∑
y

p(X = x, Y = y)p(X = x|Y = y),

which is nothing but the average number of independent classes within each depen-
dent class.

It is easy to see that the value of E(Gini(X|Y )) is within [0, 1], that it reaches
the minimum when and only there is one independent category in each dependent
class and that it reaches the maximum when and only when all independent classes
equally distributed within each dependent class. Given Dmn(X) = {1, 2, · · · , nx},
we can further conclude that E(Gini(X|Y )) is within [0, 1 − 1

nx
]; and the smaller

E(Gini(X|Y )) is, the more reliable the predictor information is.

3. Comparison matrix Φ and merging process. To decide which independent
classes to be merged, a category-to-variable measure is required to estimate each
independent class’ overall predictive power to the target variable. This new measure
to all element pairs in X, denoted as Φ(Y |X), is a matrix given by

Φ(Y |X) = (φst(Y |X)),

where

φst(Y |X) =
∑
y

(
ρsy
ρs·
− ρty
ρt·

)2ρ·y; s, t ∈ Dmn(X).

Thus, the (s,t)-entry in Φ(Y |X) is the weighted difference between the conditional
probabilities of X = s and of X = t. It can be seen that this comparison matrix
has the following properties:

1. Φ(Y |X) is symmetrical.
2. The value in the diagonal entries is zero.
3. The smaller φst(Y |X) is, the more similar the two conditional distributions

are. When φst(Y |X) = 0, X = s and X = t have the exactly the same
conditional distributions.

In addition, when we want to merge the classes in two independent variables,
denoted as X1 and X2 with domains Dmn(X1) = {1, 2, · · · , nx1} and Dmn(X2) =
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{1, 2, · · · , nx2}, respectively, the extended expression of φst(Y |X) is

φijkl(Y |X1, X2) = Σy(
ρijy
ρij·
− ρkly
ρkl·

)2ρ·y for i, k

= 1, 2, · · · , nx1 , and for j, l = 1, 2, · · · , nx2 .

Thus, the measure of association, Φ, can be applied to multi-dimensional or even
high dimensional models.

3.1. Merging the classes and enhancing the measure of associations. The
proportional prediction based association measure τ can also be rewritten as follows

τ =
ωY |X − Ep(Y )

1− Ep(Y )
,

where

ωY |X =
∑
x

∑
y

ρxy
2

ρx·
and Ep(Y ) =

∑
y

ρ·y
2.

Thus, ωY |X is equivalent to τ when it goes to evaluate the associations in a given
data set before and after the independent classes are merged.

We also have the following theorem to explain why merging the nominal classes
works.

Theorem 3.1. If the conditional probabilities of X = s and X = t are all equal,
i.e.,

ρsy
ρs.

=
ρty
ρt.

= ay, for y = 1, 2, . . . , ny,

then merging the classes X = s and X = t, and labelling the merged variable X as
X ′ gives us

ωY |X = ωY |X′
.

Proof. Let

ωY |X′
=

∑
x 6=s,t

∑
y

ρ2xy
ρx·

+
∑
y

ρ2my

ρm·
,

where m is the merged class of s and t
Because∑

y

ρ2my

ρm·
=

∑
y

(ρsy + ρty)2

ρs· + ρt·
=

∑
y

(ayρs· + ayρt·)
2

ρs· + ρt·
=

∑
y

a2y(ρs· + ρt·)

=
∑
y

a2yρs· +
∑
y

a2yρt· =
∑
y

ρ2sy
ρ2s·

ρs· +
∑
y

ρ2ty
ρ2t·

ρt· =
∑
y

ρ2sy
ρs·

+
∑
y

ρ2ty
ρt·

,

we have ∑
x 6=s,t

∑
y

ρ2xy
ρx·

+
∑
y

ρ2my

ρm·
=

∑
x6=s,t

∑
y

ρ2xy
ρx·

+
∑
y

(
ρ2sy
ρs·

+
ρ2ty
ρt·

),

that is

ωY |X = ωY |X′
.
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Thus, τ(Y |X ′) = τ(Y |X), where the X ′ represents the variable X with X = s
and X = t merged, when the conditional probabilities are the same for X = s and
X = t.

On the other hand, when the conditional probabilities of X = s and X = t are
extremely similar with each other, i.e., φst(Y |X) is very small, τ(Y |X ′) should be
very close to τ(Y |X) . It is then practically very possible to find another variable
Z or merged Z ′ in an usual high dimensional data set such that τ(Y |X ′, Z) >
τ(Y |X), since it is almost certain that the added variable Z satisfies τ(Y |X,Z) >
τ(Y |X,S), where S is any other predictor besides X and Z. Meanwhile, a smaller
E(Gini(X|Y )) ensures a better reliability. Thus, ideally, the added variables Z
also satisfies that E(Gini(X ′, Z|Y )) ≤ E(Gini(X|Y )). In the next section, we are
going to show two examples to support the previous statements. Please note that
the nominal classes to be merged don’t need to have exactly the same, but the
sufficiently close conditional probabilities. τY |X , λY |X and E(Gini(X|Y ) are all
going to be investigated to evaluate the goodness of the merge.

4. Experiments. Both experiments use the 1996 Survey of Family Expenditure
administrated by The Statistics Canada [16]. It has 10, 417 rows with over 200
continuous and categorical variables but we are only going to use some of them as
the supportive evidences.

4.1. Occupation, sex, age group and education. The first result shows how
the reliability and the association degrees are changed when Sex is added to
Age group with Occupation as the target variable. The result briefly demonstrate
how a regular feature selection process without merging works. It is also going to
be used as the baseline to evaluate the performance after the merge.

Table 1. Feature selection without merging: Occupation

X τY |X λY |X E(Gini(X|Y ))
Age group 0.1344 0.0311 0.8773

Age group + Sex 0.1511 0.0476 0.9228

As discussed above, the added variable Sex increases the association, measured
by τ or λ, but reduces the reliability.

Knowing that Age group has 13 categories and the E(Gini(X|Y )) is 0.8773, we

choose φst(Y |X) ≤ 0.003 as the criteria to merge class 2 to class 7 and class 11 to 13.
Treating merged Age group, denoted as Age group’, and Sex as a single variable,

we can merge it again using φijkl(Y |X1, X2) and the same threshold. Table 2 shows
the computation result.

Table 2. Feature selection with merging: Occupation

X τ
(Y |X)
b λ(Y |X) E(Gini(X|Y ))

Agegroup′+Sex 0.1484 0.0375 0.6688
(Age group’+Sex)’+Education’ 0.1542 0.0447 0.6620

Table 2 tells us that the merged Age Group, combined with Sex is better in
reliability given the smaller E(Gini(X|Y ) with worse association both in τ and λ,
compared with that without merging in Table 1. However, if we merge the merged
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then add Education into the variable list, we have a better association AND better
reliability, which was impossible in the old feature selection process without merging.

It is clear that the merging threshold determines how many classes will be merged
therefore affects the quality. Table 3 shows some simple analysis.

Table 3. Compare different merging threshold:Occupation

X φst(Y |X) λ(Y |X) τ (Y |X) E(Gini(X,Y ))
Age group - 0.0311 0.1344 0.8773

Agegroup′+Sex 0.0005 0.0414 0.1493 0.9222
Agegroup′+Sex 0.0030 0.0375 0.1484 0.6688
Agegroup′+Sex 0.0100 0.0000 0.0209 0.2710

As Table 3 suggests, the bigger the merging threshold is, the more classes are
merged then the higher the reliability is while the lower the association is. One
can tune this parameter to achieve the needed result given certain trade-off consid-
erations. The chosen ones in this article come from practical considerations than
theoretical optima.

4.2. House type, rooms, bedroom and tenure. Following similar steps to
those the previous section presents with different variable sets, we consider House
type as the target variable and investigate the effect of merging. Please note that

the threshold is still φst(Y |X) ≤ 0.003.

Table 4. Compare different merging threshold

X λ(Y |X) τ (Y |X) E(Gini(X|Y ))
Rooms 0.3443598 0.3004656 0.8200656

Rooms′+Tenure′ 0.4255117 0.3583277 0.7911177
(Rooms′+Tenure′)′ + bedroom′ 0.4381247 0.3901767 0.7165204

Table 4 also shows us an example of not only the better reliability but also the
higher association after two merged variables are combined.

5. Conclusion. Based on the theory of association measure and the Gini coef-
ficient, we take E(Gini(X|Y )) to measure the statistical reliability. A category-
to-variable comparison matrix Φ(Y |X) is proposed to represent the conditional
probability differences between the explanatory variable’s classes. We are going
to implement both E(Gini(X|Y )) and Φ(Y |X) in an improved feature selection
process in the future. Generally, this improved process will merge classes in the
candidate variables before adding one of them into the selected independent vari-
able list. By doing so, the selected features will keep reliability high while the
associations increased step by step, as shown in the above experiments.
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