
Big Data and Information Analytics doi:10.3934/bdia.2016013
c©American Institute of Mathematical Sciences
Volume 1, Number 4, October 2016 pp. 309–340

A TESTBED TO ENABLE COMPARISONS BETWEEN

COMPETING APPROACHES FOR

COMPUTATIONAL SOCIAL CHOICE

John A. Doucette∗

University of Waterloo & New College of Florida

5800 Bayshore Road

Sarasota, FL 34234, USA

Robin Cohen

University of Waterloo

200 University Avenue West
Waterloo, ON N2L 3G1, Canada

(Communicated by the Aijun An)

Abstract. Within artificial intelligence, the field of computational social choice
studies the application of AI techniques to the problem of group decision mak-

ing, especially through systems where each agent submits a vote taking the

form of a total ordering over the alternatives (a preference). Reaching a rea-
sonable decision becomes more difficult when some agents are unwilling or

unable to rank all the alternatives, and appropriate voting systems must be

devised to handle the resulting incomplete preference information. In this pa-
per, we present a detailed testbed which can be used to perform information

analytics in this domain. We illustrate the testbed in action for the context of

determining a winner or putting candidates into ranked order, using data from
realworld elections, and demonstrate how to use the results of the testbed to

produce effective comparisons between competing algorithms.

1. Introduction. This paper is in the topic area of computational social choice,
which concerns the computational study of facilitating group decision making among
intelligent agents. The particular focus is on enabling votes from agents to be ef-
fectively aggregated in order to select the winner from amongst a set of possible
candidates, or to put the candidates into a ranked order, to reflect the collective
preferences of the community. While one application may be political elections,
where votes are registering an individual’s preference for a specific leader or repre-
sentative, it is important to note that the paradigm of voting and aggregating votes
is applicable as well to any environment where a group decision is to be made (for
example, enabling a collection of robots to determine where each will be operating;
selecting the primary recommendation for an individual by examining preferences
recorded by a set of peers).

2010 Mathematics Subject Classification. Primary: 91B14, 91B10; Secondary: 68T37.
Key words and phrases. Information analytics for voting systems, computational social choice,

machine learning, partial preferences, testbeds.
The authors acknowledge support from the Natural Sciences and Engineering Research Council

of Canada, the Ontario Graduate Scholarship Program, and the University of Waterloo.
∗ Corresponding author: John A. Doucette.

309

http://dx.doi.org/10.3934/bdia.2016013


310 JOHN A. DOUCETTE AND ROBIN COHEN

In this work, we describe in full a testbed designed to enable comparisons between
competing algorithms for aggregating votes from a community of agents, when in-
dividual agents are unwilling or unable to provide the complete information usually
required by group decision making systems. Particular features of the work include:
careful selection of a set of metrics for comparing algorithms, concern for a proper
interface for users, decisions about implementation that enable comparisons to be
made efficiently, and detailed consideration of the various options that should be
admitted, within the framework.

We illustrate the testbed operating with data drawn from real-world elections,
to compare three existing techniques for group decision making with incomplete
information. This is an application where one can imagine vast stores of data,
which may be challenging to manage and to analyze. We briefly comment on the
reasons why it is difficult to design computational systems to enable group decisions,
towards the end of the paper, to reinforce the value of the testbed that has been
designed, for current researchers and practitioners.

2. The Prefmine system. In our research, we have been developing models to
impute missing data in ballots expressing voters’ ranked preferences [12]. This is
done in order to facilitate group decision making. A common application area for
group decision making is that of real-world political elections, where a group is
trying to determine a candidate to be chosen to represent the population. When
introducing our models, we have provided empirical data to validate the effective-
ness of our algorithms. These results involved 100 repetitions of each experimental
condition, with 4 voting rules, 11 electoral datasets containing tens of thousands of
ballots in total, and 4 different systems that could be used to address the impact of
missing preference information on the outcome of the election. In total 4,400 deci-
sion problems were considered, and 17,600 decisions were made. When performing
experiments on this scale, it pays to have a reliable system, in which one can be
certain of the integrity of the data, experimental methodology, and results. Such a
system was constructed largely from scratch, but in a carefully tested and designed
fashion. The resulting system has several features that may be of great interest to
practitioners and to other researchers. First, since the system contains implementa-
tions of the imputation-based approach to social choice under several classification
systems [12], and also of the Minimax Regret approach [29], a worst-case approach,
and several other algorithms, it can serve as a ready means of comparison for prac-
titioners interested in evaluating their own approaches to this problem domain, or
in making electoral decisions using any of the implemented techniques. Researchers
may also be interested in the system as an independent implementation of existing
algorithms for social choice, given that typical scientific software has disagreement
in the output results on the order of 10% between different implementations of the
same algorithm [20, 19], perhaps because of poor testing practices adopted in the
development of most scientific software [25]. By comparing the results of several
independent implementations, researchers can be surer of their results, and uncover
issues in their own implementations. Second, the system contains implementations
of four voting rules, and is readily extensible to accommodate many more. Practi-
tioners interested in using the system to decide elections can compare the results
under several different voting systems, with or without additional systems like MMR
or the imputation-based approach augmenting them. Further, the implementations
of these systems adopt a simple parallelization strategy to provide quick evaluation.
Finally, other researchers may be interested in the experimental design available in



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 311

this system, which leverages real world datasets to create plausible problems where
the ground truth is known, but concealed from the algorithms under evaluation.
This could be a very potent evaluation tool for other new algorithms intended for
the same problem domain.

The testbed system is called “Prefmine”, since it facilitates data mining over the
Preflib repository of datasets [32] (although the system could be readily extended
to work with other online repositories). The Preflib repository contains dozens of
datasets, each of which contains the (usually incomplete) ballots from real human
elections, in contests from politics, sports, and non-governmental organizations.
Prefmine is not the first system intended to mine preference data, though it ful-
fills a different niche than other methods. Web-based social choice systems like
Pnyx [4], Spliddit [17], Whale3 [3], Democratix [6] and RoboVote1 provide user
friendly implementations of social choice functions that may be difficult to imple-
ment or operate correctly, to assist with popularizing these techniques. Ordinary
users can submit preferences to the systems and obtain results from sophisticated
Condorcet extensions or other rules that are automatically selected according to
expert knowledge, in order to fit the users’ problem domain. The systems each
offer some specialized benefits. For example, Democratix implements answer set
programming [15, 16] to select winners using voting rules that are NP-Complete,
while Whale3 boasts an extremely simple user interface. Preflib itself provides a
set of associated tools for generating synthetic data for social choice [33], as well as
data for matching domains [10].

Additionally there are several frameworks designed to facilitate machine learning
over preference data. LPCforSOS [22] implements a binary classification approach
similar to the one adopted in the initial implementation of the imputation-based
approach to social choice. The SVM-rank toolkit [24, 23] provides a means to apply
the popular Support Vector Machine algorithm [7] to learning rankings. There are
also more general frameworks that allow the application and integration of several
approaches, including the Preference Learning Toolbox [14], a recent Java-based
toolkit, and WEKA-LR [2], an extension for the popular Weka machine learning
toolkit [18] that allows models to output rankings instead of classes during classifi-
cation.

Prefmine should be understood as an integrated framework offering the features
of a preference mining toolkit (i.e. learning algorithms capable of dealing with rank-
ings) alongside features more typical of a toolkit for computational social choice (i.e.
efficient implementations of voting rules, synthetic data generation routines). In this
respect, it is novel compared with the approaches described above. Prefmine imple-
ments a combination of machine learning approaches similar to the label-ranking
algorithms of LPCforSOS, alongside more general learning algorithms, and prob-
lem specific approaches like MMR that do not use machine learning, and instead
optimize the social choice decision process directly. Additionally, Prefmine provides
efficient implementations of several voting systems, and an extensible framework
for implementing many more, alongside algorithms for the generation of synthetic
data according to several common preference distributions. Prefmine should be
viewed as complementary to existing systems, bringing together two different sets
of functionality in a single package, while simultaneously providing seamless access
to the data stored in Preflib itself.

1A forthcoming system with anonymous authors. See robovote.org.

robovote.org


312 JOHN A. DOUCETTE AND ROBIN COHEN

2.1. System design. Prefmine is designed both to facilitate experiments, and to
ensure that they are conducted correctly. This broad design goal can be expanded
into six objectives:

1. Data should be seamlessly obtained from Preflib, or other online repositories
with similar formats.

2. The system should store the original data in a read-only format, so that
experimenters cannot accidentally change it.

3. Problem instances should be easy to generate from both real-world and syn-
thetic data.

4. It should be easy to run arbitrary combinations of social choice algorithms on
a given problem instance, and easy to collect arbitrary performance measures.

5. The system should make use of all available computational resources (to avoid
having experimenters implement their own error-prone parallelism).

6. The system should be easy for a new user to apply.

Seamlessly obtaining data from Preflib entails both fetching the desired datasets
in a straightforward manner, and processing them from their current format in a
representation more suitable for the imputation-based approach to social choice. It
is important that this process be automated to ensure consistency, because manual
processing can very easily introduce errors into the source data. For this reason
also, Prefmine dynamically fetches data from the Preflib repository each time a
new experiment is run, rather than storing it locally where it might be subject
to (inadvertent) corruption by the experimenter. This is marginally slower than
storing the data on a local disk, but the datasets on Preflib, and indeed, most social
choice sets in general, are relatively small. They contain on the order of tens or at
most hundreds of thousands of votes, and at most dozens of candidates. Preflib also
uses a simple compression format to store the data more efficiently. The result is
that fetching the data is a rapid step when modern network connections are utilized,
lasting no more than a second or two.

Once the data has been obtained from Preflib, Prefmine stores it as an immutable
data structure, using a language with true immutability (the D programming lan-
guage). It is therefore not possible for an experimenter’s own (novel) social choice
algorithm to inadvertently modify the data, as attempting to do so will trigger a
fault. This ensures that, for example, performance measures based on aggregates
over a ground-truth ordering are never computed over data that has been modified
by the methods under assessment. It also facilitates parallel processing of the orig-
inal dataset, because there is no chance of race conditions arising from data being
mutated.

Prefmine adopts an extensible framework to allow easy incorporation of new
problem generation algorithms, social choice functions, imputation algorithms, and
performance measures. The system uses a plugin-style architecture, where new fea-
tures can be added without changing the core experiment, analysis, and data loading
code at all, preserving the integrity of these components. The system also boasts a
simple user interface featuring both a graphical mode and “headless” operation via
the commandline. The interface also makes use of the plugin architecture, allow-
ing users to seamlessly access newly developed functionality through the graphical
interface.

Prefmine also seeks to use all computational resources available on the system
upon which it is run. Modern commercial desktop computers, as well as servers,
typically feature a multi-core architecture in which properly parallelized code can



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 313

run an order of magnitude faster than code which runs sequentially. Importantly,
parallelization is a highly error-prone process, and the subtle bugs it produces can
yield slightly (or wildly) incorrect computations without giving off overt signs to
the user like a program crash. Indeed, many development versions of Preflib ex-
hibited these properties. With this in mind, Prefmine seeks to minimize the need
for experimenters to consider parallelism when adding extensions to the system
(e.g. new imputation methods, voting rules, etc.), and instead to parallelize the
process inside the core experimental setup, making maximal use of computational
resources. Although many of the results generated in [12] used a parallel version
of Prefmine, recent updates to the core design of the D programming language (in
which Prefmine is implemented) have necessitated a rewrite of the parallel process-
ing code2. As a result, the current version of Prefmine uses only one CPU core at
a time, and is significantly slower.

2.2. An algorithmic description of Prefmine. The previous few pages situ-
ated the Prefmine system within the context of other similar systems, and outlined
the broad design goals of the system and the reasoning behind them. This sub-
section provides an algorithmic description of the core Prefmine system, the main
experiment loop. The loop operates over a large set of parameters, which will be
described first. The remainder of this section is dedicated to a “user manual”-style
description of Prefmine, including both examples showing how the system is to be
used, and explaining all of the possible settings present in the current version of
the system. In many cases these settings are simply instantiations of algorithms
presented in the existing research literature. A reader interested only in the general
design of the system can safely skip Subsection 2.4 through to the start of Section 3.

Prefmine’s core consists of three components: a system for loading electoral data
in .soi format [32] (i.e. one of several format’s available for data from the Preflib
repository, and a common native format for ballots) and storing them immutably;
an experimental loop which can dynamically generate new problem instances from
stored datasets, decide them using arbitrary combinations of imputation algorithms
and voting rules, or using comparison algorithms like Minimax Regret, and assess
the quality of the resulting decisions relative to the ground truth data; and an
analysis toolkit that can produce both human readable and LATEX-formatted sum-
maries of the results from running the experimental loop. The three components
are depicted together in Figure 1.

The Dataset Loader component of Preflib is summarized in Algorithm 1. The
loader accepts a string corresponding to the name of a dataset, and looks up the
appropriate URL on the Preflib website, obtaining a .soi file. The .soi format is a
Strict Order, Incomplete list representation of the ballots in an election. The start
of the file contains metadata: the number of candidates, a mapping from candidate
names to numbers, and information about the total number of ballots in the set.
After this, the file contains one line per unique ballot in the election. The first
number on a line indicates the number of voters who cast this ballot. The remainder
of the line is a comma-separated list of numbers, which are mapped to candidates
according to the mapping in the metadata. Candidates that appear earlier (i.e.
closer to the start of the line) in this list strictly precede those who come later. The
list need not contain every candidate. The interpretation of unranked candidates

2In particular, the removal of semi-immutable maps has rendered much of the core Prefmine
code non-threadsafe.



314 JOHN A. DOUCETTE AND ROBIN COHEN

“D
ublin N

orth”
“D

ublin W
est”

D
ataset Loader

(A
lgorithm

 6.1)
{Preflib}

w
w

w
.preflib.org/...

U
R

L

Exam
ple 

Input

.SO
I file

41,B
randen R

obinson 
2,R

aphael H
ertzog 

3,B
dale G

arbee 
4,N

one O
f The A

bove 
475,475,41
60,3,1,2,4
50,1,3,2,4
40,3,1,2
....

“E
m

pirical A
blation”

“Logistic R
egression”

“S
V

M
”

“M
M

R
”

“B
orda”

“C
opeland”

“S
ingle W

inner”
“First E

rror”

Input Type
D

ataset 
N

am
es

1 A
blation 

M
ode

Social C
hoice 

A
lgorithm

s
Voting R

ules
Perform

ance 
M

easures

Experim
ental 

Loop
(A

lgorithm
 6.2)

R
esults 

D
atabase

Im
m

utable 
D

atasets

“Logistic 
R

egression”
“C

opeland”
“S

ingle W
inner”

“First E
rror”

1 Social C
hoice 

A
lgorithm

1 Voting 
R

ule
Perform

ance 
M

easures

A
nalysis Toolkit

(A
lgorithm

 6.3)

H
um

an 
R

eadable O
utput

Latex Form
atted 

Table O
utput

D
ataset 

N
am

es

“D
ublin N

orth”
“D

ublin W
est”

F
ig
u
r
e
1
.

A
g
ra

p
h

ica
l

d
ep

ictio
n

o
f

th
e

d
a
ta

fl
ow

in
P

refm
in

e,
w

ith
ex

a
m

p
le

in
p

u
t

argu
m

en
ts.

R
ou

n
d

ed
b

ox
es

d
en

ote
a
lg

o
rith

m
s,

p
resen

ted
in

fu
ll

in
th

e
tex

t.
C

y
lin

d
ers

sh
ow

ex
tern

a
l

d
a
ta

sto
res.

S
h

a
rp

sq
u

ares
d

en
ote

im
m

u
tab

le
in

tern
al

d
a
ta

sto
res,

o
u

tp
u

t
b
y

o
n

e
o
f

th
e

sy
stem

’s
a
lg

o
rith

m
s.

O
va

ls
sh

ow
th

e
sy

stem
’s

fi
n

al
ou

tp
u

t.
P

ro
cessin

g
b

egin
s

w
ith

th
e

leftm
o
st

a
lg

o
rith

m
(th

e
D

a
ta

set
L

o
a
d

er),
w

h
ich

d
ow

n
lo

a
d

s
d

a
ta

fro
m

th
e

P
refl

ib
rep

ository,
an

d
th

en
form

ats
it

as
a
n

im
m

u
ta

b
le

d
a
ta

b
a
se.

T
h

e
im

m
u
ta

b
le

d
a
ta

sets
a
re

th
en

p
a
ssed

to
th

e
m

id
d

le
algorith

m
(T

h
e

E
x
p

erim
en

tal
L

o
op

),
w

h
ich

ru
n

s
ex

p
erim

en
ts

o
n

th
em

a
cco

rd
in

g
to

its
o
th

er
in

p
u

t
p

a
ra

m
eters,

p
ro

d
u

cin
g

an
im

m
u

tab
le

resu
lts

d
atab

ase.
T

h
e

rig
h
tm

o
st

a
lg

o
rith

m
(T

h
e

A
n

a
ly

sis
T

o
o
lk

it)
ca

n
b

e
u

sed
to

g
en

era
te

h
u

m
a
n

read
ab

le
an

d
L

atex
-form

atted
tab

les
b
y

q
u

ery
in

g
th

e
resu

lts
d

a
ta

b
a
se.

Q
u

eries
a
re

co
n

stru
cted

fro
m

th
e

in
p

u
t

p
a
ra

m
eters.

E
x
istin

g
valid

p
aram

eter
settin

gs
a
re

d
iscu

ssed
la

ter
in

th
e

tex
t,

b
u

t
m

o
st

p
a
ra

m
eter

sets
a
re

ea
sily

ex
ten

sib
le.



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 315

depends on the election, but in many cases the original ballots were effectively
interpreted as top orders. In its current implementation, Prefmine interprets all
datasets obtained in .soi format as top orders. The runtime of the Dataset Loader
algorithm is in O(|B||C|), where B is the set of ballots and C is the set of candidates.

After obtaining a .soi file, the loader processes it into an immutable datastore.
Candidate mapping is stored as an immutable hashmap. Each line is converted into
a “Datum” data structure. A Datum is a map from positions to sets of candidates.
If and only if the (partial) ordering implied by a given line could be completed
such that a candidate ci were placed in a position pj , will the corresponding Datum
structure return a set of candidates containing ci when queried with key pj . The
loader’s immutable datastore is called a “Data” instance, and contains metadata
(the total number of ballots; the Candidate mapping), and a list of Datum structures
corresponding to the list of orderings from the original .soi file. The entire Data
instance is output as an immutable structure, meaning none of the components can
be changed in any way. Data can only be read, not written.

Once the Dataset Loader has completed its task, the Experimental Loop algo-
rithm (described in Algorithm 2) takes over, and performs a series of repetitions
according to an experimental design specified by the passed parameters. Each iter-
ation of the outermost loop is a single repetition of the experiment. A new problem
instance is generated by making a mutable copy of the complete rows from an im-
mutable Dataset instance that was generated by the Dataset Loader (Algorithm 1),
and then ablating it according to the single Ablation Mode parameter’s setting.
This parameter can currently be configured to either ablate the data according to a
distribution learned from the corresponding immutable Dataset instance, or a user-
specified vector of probabilities. Both modes are discussed in the next subsection,
along with examples of their use.

After the new problem instance has been generated, each member of the list
of Social Choice Algorithms is given a deep copy of the problem instance. If the
method relies on the generation of imputations, it generates an imputation, and
each of the listed Voting Rules is run on the resulting imputation to generate a set
of orderings (one per voting rule). If the method does not rely on the generation
of an imputation (e.g. Minimax Regret), then it is instead called with each voting
rule in turn as an argument to obtain these orderings. Subsection 2.5 discusses
the implementation details of this part of the system and shows example uses.
Additionally, each of the listed voting rules is run once on the true-preferences of
the problem instance to obtain the “correct” orderings. Finally, every member of
the list of Performance Measures is applied, comparing each ordering produce by
a Social Choice Algorithm under each voting rule, to the corresponding “correct”
ordering. The results are stored in an immutable database under a composite key
that encodes the dataset, Social Choice Algorithm, Voting Rule, and Performance
Measure that were used, as well as the repetition number from the main loop. The
entire main loop is then repeated. In the final step of the algorithm, the output
database is rendered immutable in the final step to ensure that the data are not
tampered with by the system inadvertently3. The total runtime of the algorithm is
highly dependent on the runtimes of the parameters it is passed. If k datasets, all
with ballot sets smaller than |B| over candidate sets smaller than |C| are passed, and
l voting rules, all taking less than O(S(B)) time to evaluate over the most complex

3In practice the database is written to disk, and the files marked as read only after the run is
complete.



316 JOHN A. DOUCETTE AND ROBIN COHEN

Algorithm 1 An algorithmic description of the Dataset Loader component of the
Prefmine system. The Dataset Loader accepts a string corresponding to the name
of a dataset, and then downloads the corresponding .soi file from the Preflib repos-
itory [32]. The file is then processed into an immutable Data instance which is
produced as output.

procedure DatasetLoader(DatasetName)
Let url← lookupURL(DatasetName)
Let S be a stream obtained by opening url.
Let |C| ← S.nextLine()
Let CandMap = ∅
for i = 0; i < |C|; i++ do

Let {key, name} = split(S.nextLine(),“,”)
Let CandMap[key] = name

end for
// The last line of the metadata contains the number of ballots.
Let |B| ← split(S.nextLine(), “,”)[0]
Dataset output = ∅
while S.hasNextLine() do

//Each remaining line is parsed into a top order.
tokens ← split(S.nextLine(),“,”)
numBallots ← tokens[0]
Datum d = ∅
notAssigned = CandMap.keys()
for i=1; i < —tokens—; i++ do

d[i] = tokens[i]
notAssigned \ = tokens[i]

end for
for i= —tokens—; i ¡ —C—; i++ do

d[i] = notAssigned
end for
for i = 0; i ¡ numBallots; i++ do

output ← append(output, d.duplicate())
end for

end while
return cast(Immutable Dataset) output

end procedure

dataset, and m Social Choice Algorithms all taking less than O(M(B)) time, and n
performance measures, all taking less than O(P (o1, o2)) time, are passed, then the
total runtime will be in O(NumReps · k(ablate(B) +ml(S(B) +M(B) + n)))

The final component of the Prefmine system is the Analysis Toolkit, an algo-
rithm that allows the analysis of results generated by the Experimental Loop. The
toolkit allows the user to specify an output database from a run of the Experimental
loop, a social choice algorithm and a voting rule, as well as a list of performance
measures. The toolkit then generates a tabular summary of the mean performance
of that social choice algorithm under that voting rule, with respect to each perfor-
mance measure. Sample standard deviations are also reported. The table is output
both in a human-readable format, and as a Latex tabular environment that can be



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 317

Algorithm 2 An algorithmic description of the Experimental Loop component of
the Prefmine system. The Experimental Loop accepts an Immutable Dataset (pro-
duced using Algorithm 1), an ablation mode, a list of social choice algorithms (e.g.
imputation-based, Minimax Regret), a list of voting rules (e.g. Borda, Copeland,
a list of performance measures (e.g. Single Winner Error, First Error Location), and
a number of repetitions for the experiment. For each repetition of the experiment,
a new problem instance is generated using the specified ablation mode. Then every
social choice algorithm is run under every voting rule to produce an outcome. The
outcome is compared to the ground truth outcome for the voting rule under con-
sideration using every performance measure. The results are written to an output
database, which is rendered read-only as the final step.

procedure ExperimentalLoop(ImmutableDatasets, AblationMode, ListOfS-
CAlgs, ListOfVotingRules, ListOfPrefMeasures, NumReps)

Let Output = ∅
for Rep = 0; Rep ¡ NumReps; Rep++ do

for all Dataset in ImmutableDatasets do
Let Problem = AblationMode(Dataset.copy())
for all Alg in ListOfSCAlgs do

for all Rule in ListOfVotingRules do
if Alg uses Imputation then

Outcome = Rule(Alg(Problem.expressedPrefs.copy()))
else

Outcome = Alg(Problem.expressedPrefs.copy(), Rule)
end if
CorrectOutcome = Rule(Problem.truePrefs)
for all Measure in ListOfPerfMeasures do

Key = concatenateNames(Dataset, Alg,Rule,Measure,Rep)
Output[Key] = Measure(Outcome, CorrectOutcome)

end for
end for

end for
end for

end for
return cast(Immutable) Output

end procedure

dropped into a document with minimal editing. The Analysis Toolkit’s behaviour
is summarized in Algorithm 3. The algorithm’s runtime is in O(NumReps · kn),
where k is the number of datasets, and n is the number of performance measures,
assuming that printing is a constant time operation, and NumReps is the largest
number of entries in the database for any single key.

This concludes the presentation of the Prefmine system at a high level. Note
that the algorithms as presented contain some inefficient components to facilitate
their presentation. For example, Algorithm 2 repeatedly recomputes the value
Alg(Problem.expressedPrefs.copy()), when in practice this is computed once and
cached. Additionally, the algorithms are all presented as sequential when (at least
in earlier versions of the system) parallel processing took place. In the past, parallel
processing took place within individual algorithms. For example, when training a



318 JOHN A. DOUCETTE AND ROBIN COHEN

Algorithm 3 An algorithmic description of the Analysis Toolkit component of the
Prefmine system. The Analysis Toolkit accepts an output database produced by
the Experimental Loop component of the system (Algorithm 2). The user also
specifies a particular social choice algorithm and voting rule, as well as a list of
datasets and performance measures. The toolkit computes a table where each row
corresponds to a dataset, and each column to a performance measure. The value in
a particular table cell will be the mean and standard deviation of the selected social
choice algorithm under the selected voting rule, with respect to the corresponding
performance measure (i.e. column) and dataset (i.e. row). The resulting table is
then output both in a human readable format and as a Latex tabular environment.

procedure AnalysisToolkit(OutputDatabase, SCAlg, VotingRule, ListOf-
PrefMeasures, ListOfDatasets)

Let Table = ∅
for all Dataset in ListOfDatasets do

for all Measure in ListOfPerfMeasures do
Key = concatenateNames(Dataset,SCAlg,VotingRule,Measure, *)
Results = OutputDatabase[key]
Mean = computeMean(Results)
Stdev = computerStandardDeviation(Results)
Table[Dataset][Measure][“mean”] = Mean
Table[Dataset][Measure][“stdev”] = Stdev

end for
end for
Print(Table)
PrintLatex(Table)

end procedure

chained classifier based on logistic regression, many classifiers could be trained in
parallel from the same dataset. After changes in the implementation language
took place during 2015, this feature ceased to function properly and was removed.
Future versions of Prefmine will likely include parallelism in the outermost loop of
Algorithm 2 (i.e. the Reps loop) instead. Although this is not always maximally
efficient, it will ensure thread safety and should produce a significant speedup when
the slowest social choice algorithms are run. Additional parallelism was previously
present in the computation of the social choice functions, which adopted a map-
reduce paradigm [8] to efficiently compute the outcome.

The remainder of this section serves as a reference manual for Prefmine, describ-
ing its use, features, and how to extend the existing code base, with examples. The
features and usage are both presented via the graphical user interface.

2.3. Using Prefmine. Prefmine is implemented in the D programming language.
To compile Prefmine, users must install the Digital Mars D compiler dmd4, and
the dub package manager5. After obtaining the Prefmine source code from the
author, users can run dub in the top-level directory of the project source to compile
and execute the code. dub will automatically fetch and install all other required
libraries. dub will produce an executable named prefmine in the top-level directory

4http://www.digitalmars.com/d/1.0/dmd-linux.html
5For Debian-based operating systems: http://d-apt.sourceforge.net/



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 319

Figure 2. The initial Prefmine window, from which users can
launch a new experiment, or run the analysis toolkit.

of the project source code after a successful compilation. Running the prefmine

executable will open a small window, shown in Figure 2. Users can elect to either
start a new experiment or run the analysis toolkit, by selecting the corresponding
options from the drop down menu, as shown.

Starting a new experiment will display the window shown in Figure 3, which al-
lows the user to configure which datasets will be loaded, and to configure the inputs
to both the Dataset Loader and Experimental Loop portions of the system. The
configuration of the experiment is detailed later in this section. Additionally, the
user can configure the directory to write the experimental loop’s output database
to, and indicate whether to overwrite or append to any existing database present
at that location. After selecting the settings they prefer (e.g. Figure 4), the user
presses the “Create” button. Datasets are loaded, and the experimental loop begins
running. Two progress bars in the lower right indicate the progress of the experi-
mental loop, and the large textbox provides a summary of this progress (Figure 5).
When the experiment is complete, the user should close the application.

The process for analysis of the data is similar. Instead of selecting “Experiment”
from the File menu at the start, one selects “Analysis”. A very similar window will
be constructed, displayed in Figure 6. Radio buttons limit the user to the selection
of a single imputation method and a single voting rule, while the familiar checkbox-
style interface allows the selection of multiple performance measures. All datasets
stored in the results database at the specified path will be presented in the results
table.

2.4. Dataset generation. In Prefmine, the selection of datasets for the Dataset
Loader to fetch is accomplished through a dropdown menu at the top of the experi-
ment window, as seen in Figure 7. The menu is used to avoid any possible confusion
on the part of the experimenter about which dataset an experiment is being run on:
selection of the specified name ensures that data is fetched from the corresponding
URL. The menu is populated dynamically from the Preflib repository’s website, so
all available datasets are listed6. In addition to each individual set of electoral data,
it is possible to run a Prefmine experiment on any set of related elections at one, if
they are stored together on Preflib as a single collection of data. For example, the

6In the example windows, this feature has been disabled by the author to avoid searching
through such a large list.



320 JOHN A. DOUCETTE AND ROBIN COHEN

Figure 3. The experiment configuration window in Prefmine,
from which the user can configure input parameters for both the
Dataset Loader and Experimental Loop portions of the system.

7 Debian elections and 3 Irish elections are grouped together, and so experiments
can be run on these 3 or 7 sets all at once. Additionally, two synthetic dataset
generators are listed in the dropdown menu: RUM and NoisedMallows. The RUM
option is an implementation of a Random Utility Model [30] for generating problem
instances, based on [1]. This model assumes that each voter’s utility for a given can-
didate is sampled from a Gaussian distribution. All voters sample utilities from the
same Gaussian distribution for a particular candidate, but each candidate has its
own distribution. The Gaussian distribution for each candidate has mean sampled
uniformly from (0, |C|), and standard deviation equal to the RUM_sigma parameter
setting, which is configured near the bottom of the experiment window. A voter’s
true preferences are implied by the utility they have sampled for each candidate:
the candidate with the highest sampled utility is ranked first, and the candidate
with the lowest sampled utility is ranked last.

The other synthetic data generator is simply a standard Mallows model [31]. The
central ordering is a permutation of the candidates selected uniformly at random.
The dispursion parameter φ is set using the mallows_phi parameter near the bot-
tom of the experimenter window. Synthetic ballots are sampled from the Mallows
model using a re-implementation of the efficient algorithm from [28].



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 321

Figure 4. An example of an experiment configured using
Prefmine’s experiment configuration window. The experiment will
run over the seven Debian datasets from the Preflib repository. Lo-
gistic Regression and a Worst Case Imputation approach will be ap-
plied to each problem instance, and the Copeland voting rule will
be used to decide outcomes. Performance will be assessed under
the Single Winner Error, First Error Location, and Kendall Corre-
lation (τ) performance measures. 5 replications will be performed,
and the output database will be stored in /tmp/, overwriting any
existing results there. Since more than one dataset is being pro-
cessed, the output filename parameter is ignored. The parameters
below the output textbox (“Waiting...”) are used to configure syn-
thetic data generators or imputation methods that are not used,
and so are ignored. Pressing the “Create” button will start the
experiment.

Both the Mallows and RUM synthetic data generators share a number of pa-
rameters set within the Prefmine experiment window. Collectively these are called
the artificial data parameters, and are denoted with the prefix ad_. All artifi-
cial data parameters must be set in order to use a synthetic data generator. The
ad_num_cands and ad_num_ballots parameters respectively specify the number of
candidates who will compete in the synthetic election, and the number of ballots
that will be cast in the election. The ad_eta parameter allows the construction
of simple top-ordered ballots, rather than the totally-ordered ballots that are gen-
erated by the two methods. The probability of generating a top-ordered ballot of



322 JOHN A. DOUCETTE AND ROBIN COHEN

Figure 5. An example of a Prefmine experiment in progress, us-
ing the settings from Figure 4. Note the progress bars showing
the fraction of datsets processed (top) and runs completed on this
dataset (bottom). The Textbox summarizes progress, including
runtimes required to complete each dataset.

length at least k is given by ηk−1 (i.e. in expectation a fraction η of ballots rank at
least two preferences, η2 rank at least 3, and so on).

In addition to selecting datasets, Prefmine offers two methods for ablating
datasets to generate problem instances7. In the first, a user specifies a cumula-
tive density function for the probability that a ballot has at least k candidates
ranked, for every 1 < k ≤ |C|, and the system ablates the ballots such that this
distribution is observed in expectation. In the other, such a distribution is learned
empirically from the original dataset, and the ablation process is identical.

2.5. Imputation Modes. After selecting a dataset or synthetic data generation
method, the Prefmine user should select one or more “Imputation Modes” from
the array of checkboxes located directly beneath the dataset selection menu. To
select more than one imputation mode at a time, the user simple checks the boxes
beside multiple methods. Figure 8 shows a closeup of the array of checkboxes, which
currently includes twelve different methods. Some of these are actually comparison

7The interface shown in this paper does not allow selection between them, as this created
additional clutter. The choice is easily made using the commandline interface to Prefmine.



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 323

Figure 6. The Prefmine analysis window. The window is similar
to the experiment window, but with a reduced set of options, and
larger space to view the output.

algorithms and do not use imputation, despite the name. The details of the methods
are itemized below.

• All: Behaves identically to selecting every other checkbox in the array.
• MarkovModel: This is a Markov-Tree based imputation method. The intu-

itive idea behind the model is that in domains like voting, ranked alternatives
can be thought of as embedded in a small feature space (for example, the fa-
miliar left-right political axis). A ranking can be thought of as a trajectory
through such a space, moving from candidate to candidate, and so can be
learned with a variant of a Markov Tree. A Markov Tree itself is simply a
different factoring of the distributions in a conventional Markov Model.

• best: The “best case” imputation method. The method peeks at the true
preferences of users, and imputes each expressed ballot with the correct values.
It can be useful to detect whether ties are present in the orderings produced
by the true preferences of users, an especially common problem when the
Copeland voting rule is used.



324 JOHN A. DOUCETTE AND ROBIN COHEN

Figure 7. The location of the dataset selection dropdown menu
in Prefmine’s experiment window.

Figure 8. The Imputation Method selection box in Prefmine’s
experiment window.

• binsvm: The standard imputation-based approach to social choice described
by [12], using a binary Support Vector Machine [7] as the base classifier. A set
of SVMs are learned to predict the candidate that should be imputed at each
position. Since this is a multi-class classification problem, one SVM is trained
to predict membership in each class, a one-versus-all approach [34]. Contrast
with the svm option, which uses a one-versus-one approach. The individual
SVM models are trained using the popular libsvm C++ implementation [5],
which is linked directly with Prefmine’s D code via a custom interface. Param-
eters for the SVM are selected using cross validation, with Linear, Polynomial



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 325

(degree 3), and Radial Basis Function kernels considered alongside every com-
bination of parameter values for C ∈ (2−5, 215) and γ ∈ (2−15, 25), spaced at
equal factors of 24 (i.e. 2−15, 2−11, 2−7, and so on). In the current imple-
mentation this can take a tremendous amount of time compared with other
imputation methods. A subsampling approach maybe implemented in future
to remedy this.

• logres: The standard imputation-based approach to social choice described
in [12], using logistic regression as the base classifier. This is identical to
the model described in [12], including the choice of features, feature selection
algorithms, and parameterization. The implementation is a custom version of
the conjugate gradient descent algorithm [21] designed to operate efficiently
over the standard Prefmine data format.

• mmr: An implementation of the Minimax Regret algorithm [29], used as
a comparison method and described in [12]. This implementation handles
partial orders when used with scoring vector-based voting rules (e.g. Borda),
but only with top-orders on Copeland.

• random: A randomized imputation approach, in the spirit of the MLE ap-
proach [40]. Starting from the top of the ballot, each position that could be
held by more than one candidate is considered (i.e. each position n where
the voter has not definitely ranked a candidate in nth place). A candidate
is selected uniformly at random from the set of candidates eligible for this
position, and this candidate is ruled out for all other positions. The process
is then repeated until every candidate has been assigned to a position. For
top-orders, this selects a suffix for each ballot uniformly at random.

• raw: No imputation is performed. The ballots are passed directly through to
the voting rules, in their original, incomplete, forms. This is useful primarily
when testing a new ablation model, but could also be used to decide elections
directly as a comparison.

• svm: As binsvm above (including parameter selection procedures and run-
times), but using libsvm’s default one-versus-one approach to multiclass clas-
sification instead of the one-versus-all approach used by binsvm and logres.

• SWW: Single Winner Worstcase: A comparison method like MMR that com-
putes the set of possible winners, per [40], and assigns a score of 1 to members
of the set, and 0 to all other members. Essentially it computes an upper
bound on the worst possible single winner distance. Current implementations
work only for monotonic scoring rules, since other voting rules are NP-Hard
to compute possible winners for.

• worst: Peeks at voters’ true preferences, and imputes the reverse ordering
(i.e. each candidate goes as far from its true position as possible, while still
producing an ordering consistent with the voter’s expressed preferences).

• worsttau: The system used as a benchmark for the difficulty of different
datasets in [12]. It imputes each ballot with the opposite of the correct aggre-
gate ordering under the Borda voting rule. That is, with the opposite of the
ordering that is returned by Borda under consideration when run on the true
preferences of the voters, which the method peeks at. Contrast with worst
and SWW above. This creates a profile where candidates that were ranked
highly on average are ranked low consistently, and vice-versa. It is a good
heuristic approximation of the SWW method for many voting rules, and is
a lower-bound on the worst possible distances, rather than an upper bound



326 JOHN A. DOUCETTE AND ROBIN COHEN

Figure 9. The Voting Rules selection box in Prefmine’s experi-
ment window.

(i.e. there may exist profiles that are even worse, especially for non-monotonic
rules).

Extending the set of “Imputation Methods” is a straightforward proposition.
An imputation method must accept a profile of incomplete ballots and produce a
completed one. A comparison method must accept both a profile of incomplete
ballots and a list of voting rules. It must output a score for each candidate under
each rule, such that candidates with higher scores under a given rule come before
those with lower scores. In both cases, after writing a function satisfying the above
constraints, users can add its name to a list which is used to dynamically generate
the box depicted in Figure 8. The system will automatically generate appropriate
calls to the function in the experimental loop, storage of its results, and so on.

2.6. Voting rules. After picking one or more imputation methods, Prefmine users
should pick one or more voting rules for their experiments. The Voting Rule se-
lection box is an array of checkboxes directly below the Imputation Methods box.
The current implementation of Prefmine contains seven voting rules, two of which
are used only for synthetic data. As with the Imputation Method box, a user who
wants to sequentially run several voting rules on the same data simply checks more
than one box. The Voting Rule selection box is shown in Figure 9. The various
options are itemized below.

• All: Equivalent to checking all other boxes.
• MallowsVR: A “voting rule” to use in conjunction with synthetic data gen-

erated by the Mallows Model. When selected, models with the ability to
aggregate rankings directly (like the Markov Model, or MMR), rather than
imputing ballots and then using a separate voting rule, will have their esti-
mated rankings directly compared to the true central ranking of the Mallows
distribution that was used to generate the current problem instance, rather
than using an ordinary voting rule. Activating this function when a dataset
other than NoisedMallows is selected will trigger a fault.

• RUMVR: A “voting rule” to use in conjunction with synthetic data gener-
ated by the Random Utilty Model. When selected, models with the ability to
aggregate rankings directly (like the Markov Model, or MMR) will have their
estimated rankings directly compared to the true central ranking of the RUM
that was used to generate the current problem instance, rather than using
an ordinary voting rule. Activating this function when a dataset other than
RUM is selected will trigger a fault.



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 327

• borda: An implementation of the Borda count voting rule. A candidate
receives exactly k points for appearing ahead of k other candidates on a ballot.

• copeland: An implementation of the Copeland voting rule. A candidate
receives 1 point for each pairwise runoff contest it wins against other candi-
dates.

• kapprove: An implementation of |C|2 -approval. A candidate receives 1 point
for appearing in the top half of the positions on a ballot (round down), and 0
otherwise.

• veto: An implementation of the Veto voting rule. A candidate receives 1
point for every ballot on which it is not ranked last.

Note that none of these voting rules express behaviour in the case of ties. This
is because when Prefmine is used for experimental purposes, detection of ties is
important (e.g. if the correct ordering contains no ties, but the winning candidate
selected by an imputation method was tied with someone else, then this result may
have a different interpretation even if the method has picked the correct winner via
tie-breaking). Additionally, all voting rules assign a score to each candidate. This is
to facilitate measurement of the errors in candidate’s scores under rules like Borda.
Voting rules that are not based on assigning a score to each candidate can simply
assign each candidate a score equal to the number of candidates behind them in
whatever ranking is decided upon. Indeed, this is precisely what is done for the
current implementations of the MallowsVR and RUMVR rules.

Additionally, note that the implementations of these rules use a simple Map-
Reduce [8] approach for the borda, kapprove, veto, and Copeland options. In each
case, since the ballots in a profile express independent information, the set of bal-
lots can be partitioned into independent subsets, one for each available CPU core.
Aggregate scores can be computed (in the case of Copeland, these are computed
for a given pairwise contest, not the overall ranking) by separate threads for each
subset. The aggregate scores for each thread can then be combined to obtain the
final result. This feature was present in an earlier version of Prefmine, but has been
disabled following changes in the implementation language in 2015.

As with the addition of new Imputation Methods, Prefmine’s plugin-style archi-
tecture allows users to readily add new voting rules of their own. A voting rule
must accept a profile of complete ballots (i.e. total orderings). It may optionally
accept a profile of partial orderings as well. It must produce a mapping from each
candidate to a score, such that candidates with higher scores are ahead of those
with lower scores.

2.7. Performance measures. After selecting the desired dataset, imputation
methods, and voting rules, the user need only select one or more performance mea-
sures before starting the experiment (other parameters have functional defaults).
Prefmine currently implements eleven different performance measures. Users select
desired performance measures from the Performance Metric selection box, located
directly below the Voting Rule selection box in the experiment window. This box
is pictured in Figure 10. As with the other selection boxes, the Performance Metric
selection box contains an array of checkboxes. Users can click on a checkbox to
select a performance measure. Clicking on multiple checkboxes allows the user to
select several methods. Note that although the name of the box suggests that all
options are Metrics, this is not formally true. For example, the tau options is a
correlation. The eleven possible options are summarized below. Throughout the



328 JOHN A. DOUCETTE AND ROBIN COHEN

Figure 10. The Performance Metric selection box in Prefmine’s
experiment window.

summary, o1 is the overall ordering of the candidates under an imputation method
of interest, and o2 is the ordering under the true preferences of voters. Additionally,
S1 and S2 are used to denote the scores for the candidates, as output by the voting
rules described in the previous subsection.

• All: Equivalent to selecting all other options simultaneously.
• firstError: The First Error Location measurement, defined as δFE(o1, o2) =

arg maxi ∀j < i, o1,j = o2,j . Returns the location of the highest ranked candi-
date in o1 that has been placed in an incorrect position. Proportionate to the
length of the prefix under which two sequences agree. This measurement is
useful in conjunction with measurements like tau below, which give an overall
view of the similarities between two sequences.

• footrule: Computes Spearman’s Footrule distance [9, 37], the underlying
(but un-normalized measurement used in the non-parametric Spearman cor-

relation. Formally, this is δSF (o1, o2) =
∑|C|

i=1 |Pos(o1, ci) − Pos(o2, ci)|, the
summed number of positions between where a candidate ought to be placed
(i.e. the position of the candidate in sequence o2), and where the candidate
has actually been placed (i.e. its position in o1). This is also similar to the
Single Winner Error, but computed for every candidate, not just the winner.
It is a less commonly used alternative for τ .

• impMargin: Computes the margin by which the winner picked by the impu-
tation method loses to the true winner, in the ground truth elections. That
is: δIM (o1, S2) = arg maxc∈C S2(c)− S2(o1). Used to measure the margins of
victory, which are predictors of performance for some imputation methods.

• macroAvg: Computes the average percentage error in the score of a candi-
date: δmac(S1, S2) = 1

|C|
∑

c∈C |(S1(c)/S2(c)) − 1|. Can be used to compare

the average bias towards different candidates, independent of their popularity.
• margin: As impMargin above, but instead computes the margin by which

the true winner has lost to the winner picked by the imputation method, in the
imputation method’s election. That is: δMarg(S1, o2) = arg maxc inC S1(c)−
S1(o2). Used to measure the margins of victory, which are predictors of per-
formance for some imputation methods.

• microAvg: Computes the overall percentage error in the scores of candidates
collectively:

δmic(S1, S2) =

∑
c∈C |S1(c)− S2(c)|∑

c∈C S1(c)



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 329

Can be used to compare the total error in the imputation, but will favour
methods that are more accurate on popular candidates (which will have much
higher scores) even if they are less accurate on unpopular candidates (which
will have smaller scores).

• singleWinner: Computes the Single Winner Error for the imputation method:
the rank of the winner chosen by the imputation method in the ground truth
election. δw(o1, o2) = |{c ∈ C|c o2 o1(1)}, where o1(1) is the candidate ranked
first in the imputation method’s ordering.

• tau: Computes the Kendall Correlation τ between the two outcome order-
ings [26].

τ(o1, o2) =

∑
ci∈C

∑
cj∈C\ci I((ci o1 cj) = (ci o2 cj) ∧ (cj o1 ci) = (cj o2 ci))

|C|(|C| − 1)

where I is a binary indicator variable. This measures the fraction of pairwise
comparisons on which the two orders agree, and thus facilitates the evaluation
of the ability for competing methods to recover the overall ordering of the
candidates, rather than just determining the winner.

• weightedFootrule: A variant of footrule above, where errors are weighted
by the (correct) position of each candidate. This effectively penalizes meth-
ods that make mistakes in highly ranked candidates, and benefits those that
make mistakes only in the ordering of lower ranked candidates. Formally:

δSF (o1, o2) =
∑|C|

i=1 |Pos(o1, ci)− Pos(o2, ci)| × Pos(o2, ci).
• weightedTau: A variant of tau above, where errors are weighted by the

position of each candidate.

τ(o1, o2) =

2

∑
(ci,cj)∈(C×C),i6=j I((ci o1 cj) = (ci o2 cj) ∧ (cj o1 ci) = (cj o2 ci))× Pos(o1, ci)

|C|(|C| − 1)(|C|+ 1)

As with the other features of Prefmine, the set of performance measures is easily
extended. A performance measure must accept a mapping of candidates to scores,
as output by a voting rule, and must output a scalar value. The code base readily fa-
cilitates conversion between scores and orderings. After writing a new performance
measure, adding it to the user interface simply entails adding its name to a list,
which will be used to populate the Performance Metric selection box at runtime.

2.8. Sample output. Tables 1 and 2 show example outputs from an experiment
performed with the Prefmine system to compare two competing approaches to group
decision making with incomplete information. All of the sets from the Debian
and Irish groupings of Preflib.org were selected as datasets, with the Imputation
Modes selected were logres and mmr. The Copeland voting rule was used, and
the firstError, singleWinner, and tau performance metrics were selected. 1600 runs
were performed on each of the Debian sets, while only 400 were performed on the
larger Irish ones. Prefmine outputs a latex formatted table for each method, and
the resulting tables are shown below.

2.9. Extending the system. Prefmine is envisioned as an experimental platform
for other researchers to extend, facilitating the application of machine learning al-
gorithms to the extensive Preflib repository. At present there are no plans to add
further imputation methods, voting rules, or performance measures to Prefmine,
although these additions would be easily accomplished. Instead, future work will



330 JOHN A. DOUCETTE AND ROBIN COHEN

First Error Single Winner τ —C— % Missing

Debian 2002 4.00± 0.00 0.00± 0.00 1.00± 0.00 4 11.9
Debian 2003 4.94± 0.49 0.01± 0.12 0.99± 0.07 5 13.6
Debian 2005 7.00± 0.00 0.00± 0.00 1.00± 0.00 7 15.5
Debian 2006 6.35± 0.76 0.00± 0.00 0.94± 0.03 8 14.8
Debian 2007 9.00± 0.00 0.00± 0.00 0.90± 0.08 9 19.1
Debian 2010 5.00± 0.00 0.00± 0.00 1.00± 0.00 5 11.0
Debian 2012 4.00± 0.00 0.00± 0.00 1.00± 0.00 4 13.2
Debian Logo 5.18± 1.36 0.00± 0.00 0.75± 0.11 8 40.0
Dublin North 4.01± 0.07 0.00± 0.00 0.85± 0.01 12 58.5
Dublin West 3.85± 1.88 0.82± 0.38 0.81± 0.06 9 50.8

Meath 1.00± 0.00 3.54± 0.32 0.74± 0.02 14 66.8

Table 1. Table showing the mean firstError, singleWinner, and
tau measures for the instantiation of the imputation-based ap-
proach using logistic regression on the Copeland social choice
function. Reported values are the mean over many problem in-
stances, and reported measurement errors are the sample standard
deviations. The rightmost columns report the number of candi-
dates, and the percentage of missing information in each set.

First Error Single Winner τ —C— % Missing

Debian 2002 4.00± 0.00 0.00± 0.00 1.00± 0.00 4 11.9
Debian 2003 4.40± 0.84 0.02± 0.09 0.90± 0.11 5 13.6
Debian 2005 6.57± 1.54 0.04± 0.13 0.99± 0.02 7 15.5
Debian 2006 6.00± 0.10 0.00± 0.00 0.93± 0.00 8 14.8
Debian 2007 2.05± 0.37 0.00± 0.00 0.87± 0.03 9 19.1
Debian 2010 3.04± 1.39 0.00± 0.00 0.82± 0.14 5 11.0
Debian 2012 4.00± 0.00 0.00± 0.00 1.00± 0.00 4 13.2
Debian Logo 5.44± 1.00 0.00± 0.00 0.74± 0.12 8 40.0
Dublin North 3.98± 0.14 0.00± 0.00 −0.09± 0.03 12 58.5
Dublin West 3.00± 0.00 0.72± 0.13 0.52± 0.05 9 50.8

Meath 2.97± 0.17 0.00± 0.00 −0.46± 0.04 14 66.8

Table 2. Table showing the mean firstError, singleWinner, and
tau measures for the Minimax Regret approach on the Copeland
social choice function. Reported values are the mean over many
problem instances, and reported measurement errors are the sample
standard deviations. The rightmost columns report the number of
candidates, and the percentage of missing information in each set.

focus on adding additional features to the software, to further streamline its appli-
cation and to improve runtimes.

At present, users of Prefmine may add new approaches written in the D program-
ming language directly. C and C++ code can also be linked directly to Prefmine,
but requires users to write a simple interface file. Automating the construction of
such an interface would broaden the appeal of Prefmine significantly, as C and C++
are much more commonly used languages.



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 331

Prefmine also lacks graphing capabilities, requiring users transport their results
to external software in order to visualize the differences between the different meth-
ods. Adding in direct support for graphing through a third-party application like
the plot.ly cloud service or Python’s matplotlib could allow users to quickly com-
pare the results of different methods, and perhaps even construct custom graphs in
inside a Prefmine instance.

Finally, Prefmine currently lacks proper parallel processing facilities, and conse-
quently is much slower than it ought to be. While in the short term this will be
addressed by enabling parallel repetitions of the experiment, in the long run general
purpose frameworks like OpenCL [38] could be incorporated into Prefmine, allowing
much faster computation.

3. Lessons for practitioners. The previous section described the Prefmine ex-
perimental testbed. The testbed was carefully constructed to minimize the potential
for experimental error, and to streamline the addition of new imputation methods,
voting rules, and performance measures. Prior to the creation of Prefmine, experi-
ments were performed using a multi-part experimental framework, which performed
many of the same steps, but which also suffered from systematic problems with the
replication and storage of results and data, parallel processing of data, and exten-
sions of the system to incorporate additional techniques. Despite this, these earlier
systems provided a number of important findings that were later incorporated into
Prefmine, particularly the choice of learning algorithms available in Prefmine (logis-
tic regression and two SVM variants), as well as the internal algorithm for feature
selection (information gain with a fixed feature set size). This section describes
first the deficiencies of the earlier experimental setup that were solved by Prefmine
(briefly), and then the experiment design and results that were used to select the
learning and feature selection algorithms used within the Prefmine system.

3.1. Experimental robustness. A major advantage of Prefmine over the earlier
system is the experimental robustness. The earlier system relied on a large number
of modular programs written in three languages, and invoked by a series of intercon-
necting scripts. The result was a brittle system, where changes in one component
often produced subtle errors in other, distantly related, parts. The lack of a com-
prehensive testing framework meant that often errors were uncovered only longer
after their introduction, invalidating a large number of earlier runs. Prefmine over-
comes this deficiency by combining a plugin-style architecture with integrated unit
tests in the core experimental framework, incorporating the lessons learned during
the initial system’s development. The plugin-style architecture is also the feature
that facilitates Prefmine’s extensability, allowing it to support many times more
experimental settings than the earlier system, and to easily integrate yet more.

The earlier system also taught important lessons regarding data integrity. Since
the system worked on locally cached copies of the Preflib datasets, and since the
introduction of new features frequently produced incorrect behaviour in unrelated
parts of the system, data were often corrupted without the experimenter’s knowl-
edge. Eventual discovery of these errors necessitated rerunning earlier experiments,
and dramatically increased development times. In contrast, Prefmine stores no data
locally: fresh copies are procured from the Preflib repository at the start of each
experiment. Additionally, the first step in any experiment is to render the stored
copied of the data immutable (i.e. read-only). The last step is for all results to
be written out into an immutable database. This prevents systematic corruption



332 JOHN A. DOUCETTE AND ROBIN COHEN

of the data, and further de-couples the different components of the system. Each
algorithm is provided with its own read-write copy of a problem instance, which
ensures that when a new algorithm is developed, the benchmark results from older
ones are not influenced, even if the new algorithm is corrupting its own data. As
a result, development times are greatly reduced, and adding new features to the
system has taken less (rather than more) time as the capabilities of the framework
have expanded.

The earlier system also provided lessons in the importance of integrating par-
allelism directly into the experimental system, rather than adding it piecemeal
throughout its components. The original system frequently suffered race conditions
resulting from the use of multiple components accessing the same (mutable) datasets
simultaneously, and the only parallelism that was manageable in later versions of
the system was through entirely separate installations that were started as separate
processes. In contrast, Prefmine was implemented in a language that supported
extensive static analysis, immutable data types, and simple parallel structures (D),
which facilitated simple, error free, parallel processing in earlier Prefmine versions
(though not in the current version).

Although these lessons seem relatively obvious in retrospect, they constitute
an important reason for future experimenters to consider using (or extending)
Prefmine, rather than constructing their own testbeds. At present there is no uni-
fied testbed for use with Preflib, and correctly managing the data can be a laborious
process, prone to many of the issues outlined above. By extending Prefmine, prac-
titioners instead can jump straight to the implementation of their new algorithm
or voting rule, confident in the integrity and efficiency of the resulting experiment
design.

3.2. Feature selection and algorithm choice. Although the earlier system was
error-prone and laborious to construct, it was used for a number of initial experi-
ments on the imputation-based approach to social choice, some of which have not
since been replicated with the more reliable Prefmine system. The experiment
most likely to be of interest to readers is one that set out to answer the questions
“Which conventional machine learning algorithm is best suited to predicting voters’
unstated preferences?” and “How large should the feature set for the imputation-
based approach to social choice need to be, and how should it be selected?”. The
results from this experiment later influenced the choice of classification algorithms,
feature sets, and feature selection algorithms used in Prefmine.

To answer these questions, an experiment design much like the one used in
Prefmine was adopted. 10 datasets were selected (the eight Debian sets from Preflib,
and Dublin North and West from the Irish sets). These sets were picked because
they represent real-world preferences that humans expressed as top-orders for use
in a ranked ballot voting system. The details of the datasets in question are pro-
vided in [12], but basically these are data generated from real-world elections held
in three Irish counties in 2002, and a number of leadership elections held for the
Debian Society over the years 2002–2012. Problem instances were generated by
discarding incomplete ballots, and then ablating the completed ones in a fashion
consistent with the distribution of missingness in the original dataset, exactly as
is done in Prefmine’s standard ablation mode. Only the Borda voting rule was
considered in these experiments.

The experiments of [12] measured performance in terms of the correctness of
the outcomes, which was a sensible choice for comparing dissimilar approaches like



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 333

MMR and the imputation-based approach. However, since this is essentially com-
paring competing variants of the same approach (i.e. variants of the imputation-
based approach with different classifiers used), a different set of measurements were
adopted. Two measurements were used. The first was the error in the Borda scores
of the candidates after the imputation took place, a measurement that amounts to
the microAvg setting in Prefmine, discussed above. Let S1 and S1 be vectors in-
dexing candidates to Borda scores (i.e. positive integers). The Borda Count Error
(BCE) of S1 with respect to S2 is given by:

BCE(S1, S2) =

∑
c∈C |S1(c)− S2(c)|∑

c∈C S2(c)

If the Borda scores (i.e. average ballot positions) are computed for an imputed
preferences of voters, and for the voters’ true preferences, then the BCE of the scores
for the imputed preferences with respect to the scores for the true preferences is a
measure of how accurately the imputation method has predicted the preferences of
voters. Note that there exist other methods, like simply counting the error rates
of the classification methods, that could be adopted instead. However, a classifier
making errors that cancel out in aggregate is generally preferable to one with a
lower absolute error rate making errors that do not cancel out, a concept captured
nicely by looking at the errors in the aggregate totals, rather than on individual
ballots. For succinctness, BCE(S1, S2) will be written simply as BCE, denoting the
error between the aggregates of a method and the ground truth preferences.

Related to this preference for methods that are less biased in the mistakes they
make, the second measurement used in this experiment is the popularity bias of the
methods, a feature that was found to be problematic in some earlier, smaller scale,
experiments. In particular, earlier experiments indicated that imputation-based
methods tended to under-estimate the aggregate scores for unpopular candidates,
and overestimate them for popular ones. If a method tends to make errors that
penalize unpopular candidates, then even if it performs well, its use might be ques-
tionable when the goal is to make “fair” decisions, because candidates will be treated
unequally by the system, not merely by voters. Of course, this is a matter of de-
gree. Certainly unpopular candidates may also view Plurality (i.e. the common
electoral system when voters simply name their first preference, and the most com-
monly named preference wins) as a system that discriminates against them, though
in a rather different manner.

In some cases bias of this kind may be a desirable feature: candidates none of
the voters know much about may after all be a poor choice. However, in other
applications the fact that voters do not know much about a given alternative is
coincidental. For example, in the case of the robotic mining swarm, firms that do
not know about a given region may do so because they are recent entrants to the
area, not because the region is a fringe or undesirable alternative. In any case,
methods with less bias clearly ought to be preferred to those with more, since the
former are usable in a broader class of applications. Formally, bias is defined as the
Pearson Correlation between the true (i.e. “correct”) scores of a candidate, and the
error in the candidate’s score:

Bias(S1, S2) = cor(S1 − S2, S2)

that is, the correlation between the elementwise difference (n.b. not the absolute
value of the difference) of the two scoring vectors, and the second scoring vector.



334 JOHN A. DOUCETTE AND ROBIN COHEN

Again, Bias is frequently used without arguements to denote Bias(S1, S2), where S1

is the Borda scores of the candidates under the imputed preferences, and S2 is the
true Borda scores of the candidates.

The experiment compared three different imputation algorithms, each under
three different feature selection treatments. The three algorithms were a multi-
nomial logistic regression model, a support vector machine, and a Naive Bayes
model. The multinomial regression model works much like logistic regression, but
with a multinomial output instead of a binary one. It trains a single multinomial
log-linear model using a neural network from the nnet package in R [35] The model
has no important parameters to tune, and operates more or less automatically. Pre-
dictions from the model were generated with the predict function in R, using the
undocumented type=“prob” argument to provide a distribution over all the classes
for each record.

The second model was a simple Naive Bayes classifier, taken from the e1071
package in R [11]. The model was configured to use Laplace smoothing with value
1, and predicted new values using the R predict function, with the type=“raw”
argument. To ensure the creation of a valid model, several additional preprocessing
steps were performed before providing data to Naive Bayes. First, a second copy of
every record was added, to avoid the situation where a class has only one example,
which produced strange behaviours. Second, a very small amount of uniformly ran-
dom noise (∈ ±10−4) was added to every feature for every ballot. This avoided the
situation where attributes had nonzero variance overall, but zero variance when con-
ditioned on a particular class, which produced unhandled exceptions in the model.
We selected this model because of its extreme simplicity, and also because of the
intuitive notion that models based on effectively counting the votes were likely to
produce a good performance. This thought was eventually borne out in the Markov
Tree models, though in a rather more principled way, by designing a model that
learns patterns in the votes by counting them, but with a clearer semantic meaning
to the counts.

The final model was the support vector machine (SVM), using the libsvm imple-
mentation [5]. The standard svm-train and svm-predict tools were wrapped with
a Perl script. The script performed a search over the SVM parameter space for
each training set, and then produced a model using the parameterization with the
highest cross validation accuracy. The search used the polynomial (degree 3), RBF,
and sigmoid kernels. For each kernel, the search performed a grid search over the
parameter space of C ∈ (2−5, 215) and γ ∈ (2−15, 2−5), in steps of 24 . A large
step size was used because of limited computational resources. Parameter selection
used a randomly selected subset of 500 data points to improve run times. Addition-
ally, the Perl script monitored the polynomial kernel, which failed to converge on
certain datasets. Experimentation with the parameter ranges did not change this
behaviour, so the script was configured to stop searching with the polynomial kernel
after the first instance where it failed to converge on any given dataset. This pro-
vided approximately a twenty-fold decrease in run times for the SVM. Overall, this
method served as the inspiration for the svm Imputation Method in Prefmine (not
binsvm). There are slight differences in the Prefmine implementation however.

Since all three learning algorithms were to be used in the imputation-based ap-
proach to social choice, features over the ballot needed to be constructed. Features
included the rank (position) of each candidate on the ballot, if known; a three valued
indicator variable for each pair of candidates (i, j), indicating whether i appeared



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 335

before j, after j, or the ordering of the two candidates was unknown; and a set of
variables indicating the magnitude of the difference in position of two candidates
on the voter’s ballot. For instance, if candidate i is the voter’s fifth preference, and
candidate j is the voter’s eighth preference, then the distance between them was
5− 8 = −3. Features were generated using a number of Perl and bash scripts that
operated over the ballots. Files containing the resulting features were stored for
later use.

Two alternative feature sets were generated as well. The first set was constructed
by running principal component analysis (PCA) on the original feature set [13].
PCA is a dimensionality reduction technique, in which the original feature set is
compressed into a smaller set of features, each of which is a linear combination of
the original feature set. Using PCA allows much (often most) of the original feature
set’s information to be represented in a smaller set of features, which can in turn
reduce the runtime of classification algorithms applied to the data.

Before applying PCA to a dataset represented using the original feature set,
values that indicated missing data were replaced with the mean of the column in
which they appeared. This is a standard stem to avoid bias. If a column was entirely
comprised of missing values, or if it had variance 0, it was removed entirely prior
to performing PCA, to avoid faults in the PCA implementation that was used. For
each training file, all components with magnitudes at least 10% of the first principal
component (i.e. containing at least 10% of the information content of the most
informative component) were captured, and created an alternative file containing
only the reconstructions of each row within the resulting subspace. The PCA calls
subtracted the mean from each column automatically, and also normalized the data
prior to computing the components. R was used [39] for the preprocessing described
in this step, and the R prcomp implementation of PCA was then applied.

The second feature set was obtained by applying an information gain filter to the
data, and selecting just the ten most predictive features under this metric, using
the FSelector package in R [36], and with the same preprocessing steps as the PCA
feature selection. In a classification context, the information gain of a feature is the
change in entropy produced by partitioning the data on that feature. It is based on
the Kullback-Leibler divergence measure [27]. Let H(Y ) be the overall entropy a
dataset with features X and labels Y 8. Then the information gain of feature Xi is:

IG(Xi, X, Y ) = H(Y )−
∑

v∈values(Xi)

|{xj ∈ X|Xij = v}|
|X|

H({y ∈ Y |Xij = v)})

The 10 original features with the highest information gain were selected and used
as the third feature treatment. This constant size set of features was included to
explore the possibility of speeding up the machine learning algorithms with a greatly
reduced version of the original feature space, rather than trying to construct new
features as with the PCA approach. An advantage of the information gain approach
is that, since the original features already had clear human-interpretable meanings,
models learned from subsets of this set of feature ought to be easy to interpret as
well. In contrast, models learned using the PCA feature set might be more difficult
to interpret. As a final step before providing data to a classifier, any remaining
missing values were imputed with the mean of the corresponding column. The

8i.e. a measure of how much variety there is in the labels of the dataset: higher if the dataset
is split more or less evenly among all the classes, lower if one class dominates the set.



336 JOHN A. DOUCETTE AND ROBIN COHEN

data were also centered and normalized, and any columns with 0 variance were
dropped. These steps were taken to ensure that the classifiers were able to process
the data, as the support vector machine proved especially temperamental when
given datasets that violated any of the mentioned properties. These techniques
were automatically integrated into the support vector machine implementation that
appears in Prefmine.

Each of the three algorithms (SVM, Naive Bayes, and Multinomial Logistic Re-
gression) was run under each of the three feature treatments for each of the ten
datasets considered. Every combination of dataset, feature set and algorithm was
run with ten different problem instances. This small number of replications was used
because the system was very slow (especially when PCA was used, and because of
the parameter selection component of the SVM). Performance is summarized in
Tables 3 and 4. Bold values indicate the best performance under each dataset. If
there are multiple bolded values for a single set, this indicates that the two values
are statistically indistinguishable. To compare measurements between two machine
learning methods, a Student’s t-test was used over the paired differences between
the value of the measurements for the two methods on the same training and test
data, with the null hypothesis that the mean difference between the measurements
is zero. It was not immediately clear that the assumptions required for use of the
t-test would be satisfied with such a small dataset. In particular, the normality
assumption was not assured. To mitigate this, a Shapiro-Wilk test was applied to
the distribution of differences, prior to analysis, and a non-parametric test was used
instead if the data were not consistent with a normal distribution.

In terms of the Borda Count Error, the combination of the SVM and information
gain feature selection method appears best. The SVM has statistically significantly
better performance than the other two methods on every set except Debian 2002
and Debian 2012, which were both shown to have minimal room for errors in any
case in [12]. The SVM performance using the information gain selected features
was generally at least as good as using the other two sets, and on Dublin North and
Debian 2003, was statistically better. This was true despite the information gain
feature set requiring the lowest runtimes overall, on account of having the smallest
feature spaces.

The Bias results in Table 4 provide an interesting contrast. The non-SVM meth-
ods consistently exhibit lower bias than the SVM across the easy Debian sets, though
they are not statistically different on the Debian Logo and Dublin North sets. The
SVM results are better on Debian West. Bias also appears to be slightly worse
for the SVM when used with the information gain feature sets. It appears the
SVM+IG combination is imputing with a bias for more popular candidates, which
leads to a more accurate imputation over all. It is also interesting to note that
Dublin North in general exhibits much higher bias values than any of the other
sets. Performance when ordering the less popular candidates on this set was also
lower for the imputation-based approach than for other methods in the experiments
of [12]. It appears that the patterns present in the data lead methods to impute
more popular candidates. This is further illustrated by measuring the diversity of
the sets of ballots in Dublin North and Dublin West, shown in Figure 11. The
ballots of the Dublin North set exhibit much more diversity of opinion, meaning
more patterns must be learned to impute them accurately.

Overall, these results suggested only a small number of features were needed to
ensure good performance from machine learning models, and that using information



A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 337

SVM NB MN
PCA IG plain PCA IG plain PCA IG plain

Deb. 2002 0.008 0.007 0.008 0.003 0.003 0.003 0.003 0.003 0.003
Deb. 2003 0.009 0.005 0.009 0.009 0.009 0.009 0.009 0.009 0.009
Deb. 2005 0.014 0.013 0.016 0.031 0.031 0.031 0.031 0.031 0.031
Deb. 2006 0.013 0.013 0.015 0.031 0.031 0.031 0.031 0.031 0.031
Deb. 2007 0.033 0.031 0.033 0.043 0.043 0.043 0.043 0.043 0.043
Deb. 2010 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005
Deb. 2012 0.011 0.011 0.011 0.003 0.003 0.003 0.003 0.003 0.003
Deb. Logo 0.006 0.008 0.006 0.011 0.011 0.011 0.011 0.011 0.011

North 1.084 0.923 1.08 1.546 1.546 1.546 1.546 1.546 1.546
West 0.549 0.458 0.575 0.654 0.654 0.654 0.654 0.654 0.654

Table 3. A summary of the results from the preliminary exper-
iment comparing feature selection methods and classifiers for use
with the imputation based approach to resolving social choice with
incomplete information. Performance is reported under the Borda
Error measure, which is related to the classifier’s accuracy in im-
puting ballots. Performance which is statistically indistinguishable
from the best on any given dataset has been rendered in bold.

Figure 11. Empirical cumulative density functions for unique bal-
lots in Dublin North and Dublin West. The x-axis shows the rank-
ing of ballots from most to least common. The y-axis shows the
cumulative proportion of voters who cast each ballot.

gain to select them was a reasonable approach. As a result, all classifier-based
imputation methods in Prefmine use information gain feature selection, though with
a value of 30 rather than 10, since this is still adequately fast for most applications,
and provides a slight performance boost on some sets. SVM was added to Prefmine,
while the Naive Bayes classifier and the multinomial model were not, on the basis
of these performance results.

4. Summary. This paper described the Prefmine system, a general testbed for
evaluating different approaches to the problem of social choice with partial informa-
tion. The testbed system implements many different approaches to this problem,
many different voting rules, and many different performance measures, allowing



338 JOHN A. DOUCETTE AND ROBIN COHEN

SVM NB MN
PCA IG plain PCA IG plain PCA IG plain

Deb. 2002 0.151 0.155 0.159 0.109 0.109 0.109 0.109 0.109 0.109
Deb. 2003 0.088 0.030 0.051 0.009 0.009 0.009 0.009 0.009 0.009
Deb. 2005 0.255 0.182 0.309 0.031 0.031 0.031 0.031 0.031 0.031
Deb. 2006 0.171 0.040 0.203 0.011 0.011 0.011 0.011 0.011 0.011
Deb. 2007 0.280 0.170 0.296 0.065 0.065 0.065 0.065 0.065 0.065
Deb. 2010 0.078 0.162 0.064 0.099 0.099 0.099 0.099 0.099 0.099
Deb. 2012 0.34 0.35 0.32 0.12 0.12 0.12 0.12 0.12 0.12
Deb. Logo 0.056 0.034 0.026 0.007 0.007 0.007 0.007 0.007 0.007

North 0.331 0.323 0.322 0.391 0.391 0.391 0.391 0.391 0.391
West 0.020 0.101 0.026 0.041 0.041 0.041 0.041 0.041 0.041

Table 4. A summary of the results from the preliminary exper-
iment comparing feature selection methods and classifiers for use
with the imputation based approach to resolving social choice with
incomplete information. Performance is reported under the Bias
measure, which is the correlation between the classifier’s error in
imputing a given candidate and the popularity of that candidate.
Performance which is statistically indistinguishable from the best
on any given dataset has been rendered in bold.

practitioners to easily evaluate algorithms on their own datasets. Additionally, the
system’s plugin-style architecture allows future experimenters to easily add a new
approach to Prefmine, and then compare it with existing methods, without needing
to implement their own error-prone code to obtain, pre-process, or evaluate data.
Prefmine also provides intuitive and easy to read results summaries for the user,
and efficiently makes use of parallel computing resources.

In addition to showcasing Prefmine, the paper contains a detailed description of
the system, including descriptions of all user settings, and pictures illustrating how
to use Prefmine. An initial study described near the end of the paper demonstrates
the benefits of many of Prefmine’s features, and provides insights into the design of
Prefmine, and why future users might prefer using it to creating their own systems.

Our work can be viewed as enabling information analytics for the application
of elections (and for any environment where group decision making among agents
faces the challenge of addressing missing data values in voters’ preferences).

REFERENCES

[1] H. Azari, D. Parkes and L. Xia, Random Utility Theory for Social Choice, in Advances in
Neural Information Processing Systems, NIPS Foundation, 2012, 126–134.

[2] A. Balz and R. Senge, WEKA-LR: A Label Ranking Extension for WEKA, URL http:

//www.uni-marburg.de/fb12/kebi/research/software/labelrankdoc.pdf.
[3] S. Bouveret, Whale3 - WHich ALternative is Elected, URL http://strokes.imag.fr/

whale3/.

[4] F. Brandt, G. Chabin and C. Geist, Pnyx: A Powerful and User-friendly Tool for Preference
Aggregation, in Proceedings of the 2015 International Conference on Autonomous Agents

and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent

Systems, 2015, 1915–1916.
[5] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, ACM Transac-

tions on Intelligent Systems and Technology (TIST), 2 (2011), 27–66.

http://www.uni-marburg.de/fb12/kebi/research/software/labelrankdoc.pdf
http://www.uni-marburg.de/fb12/kebi/research/software/labelrankdoc.pdf
http://strokes.imag.fr/whale3/
http://strokes.imag.fr/whale3/
http://dx.doi.org/10.1145/1961189.1961199


A TESTBED FOR COMPUTATIONAL SOCIAL CHOICE 339

[6] G. Charwat and A. Pfandler, Democratix: A Declarative Approach to Winner Determination,
in Algorithmic Decision Theory, Springer, 2015, 253–269.

[7] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20 (1995), 273–297.

[8] J. Dean and S. Ghemawat, MapReduce: simplified data processing on large clusters, Com-
munications of the ACM , 51 (2008), 107–113.

[9] P. Diaconis and R. L. Graham, Spearman’s footrule as a measure of disarray, Journal of the
Royal Statistical Society. Series B (Methodological), 262–268.

[10] J. P. Dickerson, A. D. Procaccia and T. Sandholm, Price of fairness in kidney exchange,

in Proceedings of the 2014 international conference on Autonomous agents and multi-agent
systems, International Foundation for Autonomous Agents and Multiagent Systems, 2014,

1013–1020.

[11] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer and A. Weingessel, Misc functions of the
Department of Statistics (e1071), TU Wien, R package, 1 (2008), 5–24.

[12] J. A. Doucette, K. Larson and R. Cohen, Conventional machine learning for social choice, in

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI Press,
2015.

[13] G. H. Dunteman, Principal Components Analysis, no. 69 in Quantitative Applications in the

Social Sciences, Sage, 1989.
[14] V. E. Farrugia, H. P. Mart́ınez and G. N. Yannakakis, The preference learning toolbox, arXiv

preprint arXiv:1506.01709.
[15] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub and M. Schneider, Potassco:

The Potsdam answer set solving collection, AI Communications, 24 (2011), 107–124.

[16] M. Gelfond and V. Lifschitz, Classical negation in logic programs and disjunctive databases,
New Generation Computing, 9 (1991), 365–385.

[17] J. Goldman and A. D. Procaccia, Spliddit: Unleashing fair division algorithms, ACM SIGecom

Exchanges, 13 (2015), 41–46.
[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The WEKA

data mining software: an update, ACM SIGKDD explorations newsletter , 11 (2009), 10–18.

[19] L. Hatton, The T-experiments: errors in scientific software, in Quality of Numerical Software,
Springer, 1997, 12–31.

[20] L. Hatton and A. Roberts, How accurate is scientific software?, IEEE Transactions on Soft-

ware Engineering, 20 (1994), 785–797.
[21] M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems1,

Journal of Research of the National Bureau of Standards, 49.
[22] E. Hüllermeier and J. Fürnkranz, Learning from label preferences, in Proceedings of the 14th

International Conference on Discovery Science, Springer, 2011, 2–17.

[23] T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,

2002, 133–142.
[24] T. Joachims, Training linear SVMs in linear time, in Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, 2006, 217–226.

[25] D. Kelly and R. Sanders, The challenge of testing scientific software, in In Proceedings of the

2008 Conference for the Association for Software Testing, AST, 2008, 30–36.
[26] M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), 81–93.

[27] S. Kullback and R. A. Leibler, On information and sufficiency, The Annals of Mathematical
Statistics, 22 (1951), 79–86.

[28] T. Lu and C. Boutilier, Learning Mallows models with pairwise preferences, in Proceedings

of the 28th International Conference on Machine Learning (ICML-11), 2011, 145–152.

[29] T. Lu and C. Boutilier, Robust approximation and incremental elicitation in voting protocols,
in Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence,

AAAI Press, 2011, 287–213.
[30] R. D. Luce, Individual Choice Behavior: A Theoretical Analysis, Wiley, 1959.

[31] C. L. Mallows, Non-null ranking models. I, Biometrika, 44 (1957), 114–130.

[32] N. Mattei and T. Walsh, Preflib: A library for preferences http://www. preflib. org, in Algo-
rithmic Decision Theory, Springer, 2013, 259–270.

[33] N. Matti, PrefLib-Tools: A small and lightweight set of Python tools for working with and

generating data from www.PrefLib.org., URL https://github.com/nmattei/PrefLib-Tools.
[34] R. Rifkin and A. Klautau, In defense of one-vs-all classification, The Journal of Machine

Learning Research, 5 (2004), 101–141.

http://www.ams.org/mathscinet-getitem?mr=MR3480300&return=pdf
http://dx.doi.org/10.1007/978-3-319-23114-3_16
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/1327452.1327492
http://www.ams.org/mathscinet-getitem?mr=MR0652736&return=pdf
http://dx.doi.org/10.4135/9781412985475
http://www.ams.org/mathscinet-getitem?mr=MR2848167&return=pdf
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1145/2728732.2728738
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/978-1-5041-2940-4_2
http://dx.doi.org/10.1109/32.328993
http://www.ams.org/mathscinet-getitem?mr=MR0060307&return=pdf
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1145/775047.775067
http://dx.doi.org/10.1145/1150402.1150429
http://www.ams.org/mathscinet-getitem?mr=MR0138175&return=pdf
http://dx.doi.org/10.1093/biomet/49.1-2.133
http://www.ams.org/mathscinet-getitem?mr=MR0039968&return=pdf
http://dx.doi.org/10.1214/aoms/1177729694
http://www.ams.org/mathscinet-getitem?mr=MR0108411&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0087267&return=pdf
http://dx.doi.org/10.1093/biomet/44.1-2.114
http://dx.doi.org/10.1007/978-3-642-41575-3_20
https://github.com/nmattei/PrefLib-Tools
http://www.ams.org/mathscinet-getitem?mr=MR2247975&return=pdf


340 JOHN A. DOUCETTE AND ROBIN COHEN

[35] B. Ripley and W. Venables, nnet: Feed-forward neural networks and multinomial log-linear
models, R package version, 7.

[36] P. Romanski, FSelector: Selecting attributes, Vienna: R Foundation for Statistical Comput-

ing.
[37] C. Spearman, ‘Footrule’ for measuring correlation, British Journal of Psychology, 1904-1920 ,

2 (1906), 89–108.
[38] J. E. Stone, D. Gohara and G. Shi, OpenCL: A parallel programming standard for heteroge-

neous computing systems, Computing in Science & Engineering, 12 (2010), 66–73.

[39] R. C. Team, R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. 2013, ISBN 3-900051-07-0, 2014.

[40] L. Xia and V. Conitzer, Determining Possible and Necessary Winners under Common Vot-

ing Rules Given Partial Orders., in Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI Press, 2008, 196–201.

E-mail address: jdoucette@ncf.edu

E-mail address: rcohen@uwaterloo.ca

http://dx.doi.org/10.1111/j.2044-8295.1906.tb00174.x
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
mailto:jdoucette@ncf.edu
mailto:rcohen@uwaterloo.ca

	1. Introduction
	2. The Prefmine system
	2.1. System design
	2.2. An algorithmic description of Prefmine
	2.3. Using Prefmine
	2.4. Dataset generation
	2.5. Imputation Modes 
	2.6. Voting rules
	2.7. Performance measures
	2.8. Sample output
	2.9. Extending the system

	3. Lessons for practitioners
	3.1. Experimental robustness
	3.2. Feature selection and algorithm choice

	4. Summary
	REFERENCES

